1
|
Groen K, Kuratli R, Enkelmann J, Fernbach S, Wendel-Garcia PD, Staiger WI, Lejeune M, Sauras-Colón E, Roche-Campo F, Filippidis P, Rauch A, Trkola A, Günthard HF, Kouyos RD, Brugger SD, Hale BG. Type I interferon autoantibody footprints reveal neutralizing mechanisms and allow inhibitory decoy design. J Exp Med 2025; 222:e20242039. [PMID: 40111224 PMCID: PMC11924951 DOI: 10.1084/jem.20242039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
Autoantibodies neutralizing type I interferons (IFN-Is; IFNα or IFNω) exacerbate severe viral disease, but specific treatments are unavailable. With footprint profiling, we delineate two dominant IFN-I faces commonly recognized by neutralizing IFN-I autoantibody-containing plasmas from aged individuals with HIV-1 and from individuals with severe COVID-19. These faces overlap with IFN-I regions independently essential for engaging the IFNAR1/IFNAR2 heterodimer, and neutralizing plasmas efficiently block the interaction of IFN-I with both receptor subunits in vitro. In contrast, non-neutralizing autoantibody-containing plasmas limit the interaction of IFN-I with only one receptor subunit and display relatively low IFN-I-binding avidities, thus likely hindering neutralizing function. Iterative engineering of signaling-inert mutant IFN-Is (simIFN-Is) retaining dominant autoantibody targets created potent decoys that prevent IFN-I neutralization by autoantibody-containing plasmas and that restore IFN-I-mediated antiviral activity. Additionally, microparticle-coupled simIFN-Is were effective at depleting IFN-I autoantibodies from plasmas, leaving antiviral antibodies unaffected. Our study reveals mechanisms of action for IFN-I autoantibodies and demonstrates a proof-of-concept strategy to alleviate pathogenic effects.
Collapse
Affiliation(s)
- Kevin Groen
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kuratli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jannik Enkelmann
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Pedro D. Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Willy I. Staiger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marylène Lejeune
- Biobank IISPV-Node Tortosa, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain
| | - Esther Sauras-Colón
- Clinical Studies Unit, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain
| | - Ferran Roche-Campo
- Intensive Care Unit, Hospital Verge de la Cinta, Institut d’Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain
| | - Paraskevas Filippidis
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Hass RM, Toledano M. Powassan and other emerging neuroinvasive arboviruses in North America. Curr Opin Infect Dis 2025; 38:242-251. [PMID: 40152184 DOI: 10.1097/qco.0000000000001108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
PURPOSE OF REVIEW Arthropod-borne viruses (arboviruses) represent a group of pathogens with increasing global relevance, some of which cause neuroinvasive disease. Transmitted by arthropod vectors and maintained by a variety of primary and amplifying hosts, epidemics are dependent on numerous environmental and anthropogenic factors. This review serves to highlight several important neuroinvasive arboviruses relevant to North America and discuss the neurologic presentations, diagnosis, outcomes, and future trends. RECENT FINDINGS Recent shifts in the epidemiology and ecology of arboviruses in North America include the divergence of arboviruses such as dengue and chikungunya from dependence on enzootic cycles, the geographical expansion of Oropouche virus, and the increasing incidence of some established North American arboviruses such as Powassan virus. Accurate identification of the factors contributing to arboviral outbreaks is critical to improve preventive public health measures. Similarly, further elucidating the relevant pathogen and host factors that determine neuroinvasiveness, neurotropism, and neurovirulence will be key to the development of successful vaccines and targeted therapeutics. SUMMARY Arboviruses are an important pathogen relevant to human disease. Familiarity with the presentations, diagnostic workup, treatment and preventive strategies, and expected course is critical for clinicians caring for these patients.
Collapse
Affiliation(s)
- Reece M Hass
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
3
|
Noma K, Asano T, Taniguchi M, Ashihara K, Okada S. Anti-cytokine autoantibodies in human susceptibility to infectious diseases: insights from Inborn errors of immunity. Immunol Med 2025; 48:124-140. [PMID: 40197228 DOI: 10.1080/25785826.2025.2488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
The study of Inborn Errors of Immunity (IEIs) is critical for understanding the complex mechanisms of the human immune response to infectious diseases. Specific IEIs, characterized by selective susceptibility to certain pathogens, have enhanced our understanding of the key molecular pathways and cellular subsets involved in host defense against pathogens. These insights revealed that patients with anti-cytokine autoantibodies exhibit phenotypes similar to those with pathogenic mutations in genes encoding signaling molecules. This new disease concept is currently categorized as 'Phenocopies of IEI'. This category includes anti-cytokine autoantibodies targeting IL-17/IL-22, IFN-γ, IL-6, GM-CSF, and type I IFNs. Abundant anti-cytokine autoantibodies deplete corresponding cytokines, impair signaling pathways, and increase susceptibility to specific pathogens. We herein demonstrate the clinical and etiological significance of anti-cytokine autoantibodies in human immunity to pathogens. Insights from studies of rare IEIs underscore the pathological importance of cytokine-targeting autoantibodies. Simultaneously, the diverse clinical phenotype of patients with these autoantibodies suggests that the influences of cytokine dysfunction are broader than previously recognized. Furthermore, comprehensive studies prompted by the COVID-19 pandemic highlighted the substantial clinical impact of autoantibodies and their potential role in shaping the outcomes of infectious disease.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Maki Taniguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Ashihara
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Peng JJ, Ding JY, Xu Y, Shih HP, Lin YN, Wu TY, Lo YF, Lo CC, Yeh CF, Kuo CY, Tu KH, Wang SY, Lei WT, Wu TS, Lin HS, Lee CH, Huang WC, Chen YC, Liu YM, Shi ZY, Chang YT, Syue LS, Chen PL, Teh SH, Chou CH, Ho MW, Chi CY, Ho PC, Ku CL. Chimeric autoantibody receptor T cells clonally eliminate B cells producing autoantibodies against IFN-γ. Sci Immunol 2025; 10:eadm8186. [PMID: 40344086 DOI: 10.1126/sciimmunol.adm8186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2024] [Accepted: 03/27/2025] [Indexed: 05/11/2025]
Abstract
Neutralizing anti-interferon-γ (IFN-γ) autoantibodies (nAIGAs) impair IFN-γ-mediated immunity, predisposing patients with nAIGAs to infection by nontuberculous mycobacteria, Talaromyces marneffei, and other intracellular pathogens. Current clinical management relies on continuous antimicrobial therapy, with no treatment offering sustained benefits. Here, we developed human chimeric autoantibody receptor (CAAR) T cells targeting autoreactive B cells expressing nAIGA B cell receptors (BCRs) using an IFN-γ receptor-irresponsive IFN-γ variant as bait. By exploiting a mouse model of nAIGA BCR-expressing B cell leukemia, we found that IFN-γ CAAR T cells lack off-target toxicity, including IFN-γ receptor cross-reactive toxicity and Fc-redirected toxicity. IFN-γ CAAR T cells substantially reduced circulating AIGAs secreted from target cells in vivo. Further, IFN-γ CAAR T cells effectively eliminated autoreactive B cells in ex vivo cultures of peripheral blood mononuclear cells from patients with nAIGAs. Together, these results demonstrate that IFN-γ CAAR T cells may be a promising strategy to ameliorate nAIGA-associated infections by eliminating autoreactive B cells.
Collapse
Affiliation(s)
- Jhan-Jie Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Jing-Ya Ding
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yingxi Xu
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Han-Po Shih
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - You-Ning Lin
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsai-Yi Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Fang Lo
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, and Rheumatology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Shen Lin
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chen-Hsiang Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wen-Chi Huang
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yuag-Meng Liu
- Division of Infectious Diseases, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Zhi-Yuan Shi
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ya-Ting Chang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Soon-Hian Teh
- Division of Infectious Diseases, Department of Internal Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Chia-Huei Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Ping-Chih Ho
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Cheng-Lung Ku
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Elixiron Immunotherapeutics, Taipei, Taiwan
| |
Collapse
|
5
|
Schmitz EG, Griffith M, Griffith OL, Cooper MA. Identifying genetic errors of immunity due to mosaicism. J Exp Med 2025; 222:e20241045. [PMID: 40232243 PMCID: PMC11998702 DOI: 10.1084/jem.20241045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Inborn errors of immunity are monogenic disorders of the immune system that lead to immune deficiency and/or dysregulation in patients. Identification of precise genetic causes of disease aids diagnosis and advances our understanding of the human immune system; however, a significant portion of patients lack a molecular diagnosis. Somatic mosaicism, genetic changes in a subset of cells, is emerging as an important mechanism of immune disease in both young and older patients. Here, we review the current landscape of somatic genetic errors of immunity and methods for the detection and validation of somatic variants.
Collapse
Affiliation(s)
- Elizabeth G. Schmitz
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Obi L. Griffith
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Megan A. Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Fink DL, Etoori D, Hill R, Idilli O, Kartikapallil N, Payne O, Griffith S, Bradford HF, Mauri C, Kennedy PT, McCoy LE, Maini MK, Gill US. Auto-antibodies against interferons are common in people living with chronic hepatitis B virus infection and associate with PegIFNα non-response. JHEP Rep 2025; 7:101382. [PMID: 40276479 PMCID: PMC12018104 DOI: 10.1016/j.jhepr.2025.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background & Aims Type one (T1) and three interferons (T3IFNs) are implicated in chronic hepatitis B (CHB) immunopathogenesis. IFN remains the only licenced immune modulating therapy for CHB. We measured the prevalence of auto-antibodies (auto-Abs) against T1 and T3IFNs to examine the hypothesis that they impact HBV control and treatment response, as highlighted by COVID-19. Methods Our multi-centre retrospective longitudinal study accessed two CHB cohorts; auto-Ab levels and neutralisation status were measured against T1IFN and T3IFN. Associations were tested against HBV clinical parameters. Results Overall, 16.7% (46/276) of patients with CHB had any detectable anti-IFN auto-Abs at any time and 6.5% (18/276) anti-T3IFN auto-Abs, with a high incidence of PegIFNα-induced de novo auto-Abs (31.4%, 11/35). However, only a minority of auto-Ab-positive sera demonstrated neutralisation in vitro (4/46, 8.7%). Auto-Ab positivity correlated with higher median HBsAg levels (p = 0.0110). All individuals with detectable anti-T1IFN auto-Abs were PegIFNα non-responders. Conclusions Non-neutralising anti-IFN auto-Abs are common in CHB and associate with higher median HBsAg levels. Further prospective study of anti-cytokine auto-Abs in CHB are required to characterise the association with long-term outcomes. Impact and implications HBV and PegIFNα individually may induce broad autoreactivity associated with dysregulated antiviral immune responses. Auto-Ab screening prior to PegIFNα treatment or other immunotherapies may play a critical role in predicting treatment responses.
Collapse
Affiliation(s)
- Douglas L. Fink
- Infection and Immunity, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| | - David Etoori
- Institute for Global Health, University College London, London, UK
| | - Robert Hill
- Infection and Immunity, University College London, London, UK
| | - Orest Idilli
- Infection and Immunity, University College London, London, UK
| | | | - Olivia Payne
- Infection and Immunity, University College London, London, UK
| | - Sarah Griffith
- Infection and Immunity, University College London, London, UK
| | | | - Claudia Mauri
- Infection and Immunity, University College London, London, UK
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Laura E. McCoy
- Infection and Immunity, University College London, London, UK
| | - Mala K. Maini
- Infection and Immunity, University College London, London, UK
| | - Upkar S. Gill
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
de Melo BP, da Silva JAM, Rodrigues MA, Palmeira JDF, Saldanha-Araujo F, Argañaraz GA, Argañaraz ER. SARS-CoV-2 Spike Protein and Long COVID-Part 1: Impact of Spike Protein in Pathophysiological Mechanisms of Long COVID Syndrome. Viruses 2025; 17:617. [PMID: 40431629 PMCID: PMC12115690 DOI: 10.3390/v17050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
SARS-CoV-2 infection has resulted in more than 700 million cases and nearly 7 million deaths worldwide. Although vaccination efforts have effectively reduced mortality and transmission rates, a significant proportion of recovered patients-up to 40%-develop long COVID syndrome (LC) or post-acute sequelae of COVID-19 infection (PASC). LC is characterized by the persistence or emergence of new symptoms following initial SARS-CoV-2 infection, affecting the cardiovascular, neurological, respiratory, gastrointestinal, reproductive, and immune systems. Despite the broad range of clinical symptoms that have been described, the risk factors and pathogenic mechanisms behind LC remain unclear. This review, the first of a two-part series, is distinguished by the discussion of the role of the SARS-CoV-2 spike protein in the primary mechanisms underlying the pathophysiology of LC.
Collapse
Affiliation(s)
- Bruno Pereira de Melo
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Jhéssica Adriane Mello da Silva
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Mariana Alves Rodrigues
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Julys da Fonseca Palmeira
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratory of Hematology and Stem Cells (LHCT), Faculty of Health Sciences, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Gustavo Adolfo Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| | - Enrique Roberto Argañaraz
- Laboratory of Molecular Neurovirology, Department of Pharmacy, Faculty of Health Science, University of Brasília, Brasilia 70910-900, DF, Brazil
| |
Collapse
|
8
|
Martinez RJ, Hogquist KA. Sterile production of interferons in the thymus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf048. [PMID: 40184034 DOI: 10.1093/jimmun/vkaf048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
T-cell central tolerance is controlled by thymocyte TCR recognition of self-peptides presented by thymic APCs. While thymic epithelial cells are essential for T-cell central tolerance, a variety of other traditional APCs also play critical roles in T-cell selection. Similar to how peripheral APCs require activation to become effective, thymic APCs also require activation to become tolerogenic. Recent studies have identified IFNs as an essential factor for the activation and generation of an optimally tolerogenic thymic environment. In this review, we focus on interferon (IFN) production within the thymus and its effects on thymic APCs and developing thymocytes. We also examine the importance of T-cell tolerance to IFN itself as well as to interferon-stimulated proteins generated during peripheral immune responses.
Collapse
Affiliation(s)
- Ryan J Martinez
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
9
|
Pons S, Generenaz L, Gervais A, Puel A, Bastard P, Renard N, Guyot V, Vinit C, Zheng F, Brengel‐Pesce K, Saker K, Richard J, Mathian A, Amoura Z, Dorgham K, Gorochov G, Casanova J, Fleurie A, Trouillet‐Assant S. Rapid Detection of Anti-IFN-α2 Autoantibodies Using a New Automated VIDAS Assay Prototype. Eur J Immunol 2025; 55:e202451516. [PMID: 40223598 PMCID: PMC11995241 DOI: 10.1002/eji.202451516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025]
Abstract
Autoantibodies neutralizing Type I interferons increase the risk of severe viral diseases and are linked to autoimmune conditions. The automated VIDAS assay is suitable for anti-IFN-α2 IgGs quantification, offering a swift, reliable, user-friendly, single test for clinical management.
Collapse
Affiliation(s)
- Sylvie Pons
- Joint Research Unit Civils Hospices of Lyon‐bioMérieux, Hospices Civils de LyonLyon Sud HospitalPierre‐BéniteFrance
| | - Laurence Generenaz
- Joint Research Unit Civils Hospices of Lyon‐bioMérieux, Hospices Civils de LyonLyon Sud HospitalPierre‐BéniteFrance
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchThe Rockefeller UniversityNew YorkNew YorkUSA
- Laboratory of Human Genetics of Infectious DiseasesNecker BranchINSERM U1163Necker Hospital for Sick ChildrenParisFrance
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchThe Rockefeller UniversityNew YorkNew YorkUSA
- Laboratory of Human Genetics of Infectious DiseasesNecker BranchINSERM U1163Necker Hospital for Sick ChildrenParisFrance
- Imagine InstituteParis Cité UniversityParisFrance
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchThe Rockefeller UniversityNew YorkNew YorkUSA
- Laboratory of Human Genetics of Infectious DiseasesNecker BranchINSERM U1163Necker Hospital for Sick ChildrenParisFrance
- Imagine InstituteParis Cité UniversityParisFrance
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker Hospital for Sick ChildrenAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
| | - Nathalie Renard
- R&D Department of ImmunoassaysbioMérieux S.A.Marcy l'EtoileFrance
| | - Valerie Guyot
- R&D Department of ImmunoassaysbioMérieux S.A.Marcy l'EtoileFrance
| | - Cecile Vinit
- R&D Department of ImmunoassaysbioMérieux S.A.Marcy l'EtoileFrance
| | - Fei Zheng
- Joint Research Unit Civils Hospices of Lyon‐bioMérieux, Hospices Civils de LyonLyon Sud HospitalPierre‐BéniteFrance
| | - Karen Brengel‐Pesce
- Joint Research Unit Civils Hospices of Lyon‐bioMérieux, Hospices Civils de LyonLyon Sud HospitalPierre‐BéniteFrance
| | - Kahina Saker
- Joint Research Unit Civils Hospices of Lyon‐bioMérieux, Hospices Civils de LyonLyon Sud HospitalPierre‐BéniteFrance
| | - Jean‐Christophe Richard
- Intensive Care UnitCroix‐Rousse HospitalHospices Civils de LyonLyonFrance
- INSA‐Lyon, CNRS, INSERM, CREATIS UMR 5220, U1294Université de Lyon, Université Claude Bernard Lyon 1VilleurbanneFrance
| | - Alexis Mathian
- Assistance Publique–Hôpitaux de ParisSorbonne Université, Groupement Hospitalier Pitié–Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI‐Paris)ParisFrance
| | - Zahir Amoura
- Assistance Publique–Hôpitaux de ParisSorbonne Université, Groupement Hospitalier Pitié–Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI‐Paris)ParisFrance
| | - Karim Dorgham
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI‐Paris)ParisFrance
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI‐Paris)ParisFrance
- Département d'Immunologie, AP‐HPGroupement Hospitalier Pitié‐SalpêtrièreParisFrance
| | - Jean‐Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious DiseasesRockefeller BranchThe Rockefeller UniversityNew YorkNew YorkUSA
- Laboratory of Human Genetics of Infectious DiseasesNecker BranchINSERM U1163Necker Hospital for Sick ChildrenParisFrance
- Imagine InstituteParis Cité UniversityParisFrance
- Pediatric Hematology‐Immunology and Rheumatology UnitNecker Hospital for Sick ChildrenAssistance Publique‐Hôpitaux de Paris (AP‐HP)ParisFrance
- Howard Hughes Medical InstituteNew YorkNew YorkUSA
| | - Aurore Fleurie
- Joint Research Unit Civils Hospices of Lyon‐bioMérieux, Hospices Civils de LyonLyon Sud HospitalPierre‐BéniteFrance
| | - Sophie Trouillet‐Assant
- Joint Research Unit Civils Hospices of Lyon‐bioMérieux, Hospices Civils de LyonLyon Sud HospitalPierre‐BéniteFrance
- International Center of Research in Infectiology, Virpath teamLyon UniversityINSERM U1111, CNRS UMR 5308, ENS, UCBLLyonFrance
| |
Collapse
|
10
|
Framil M, García-Serrano L, Morandeira F, Luchoro JF, Antolí A, Gomez-Vazquez JL, Sierra-Fortuny À, Solanich X. Non-neutralizing anti-type I interferon autoantibodies could increase thrombotic risk in critical COVID-19 patients. Front Immunol 2025; 16:1556731. [PMID: 40165950 PMCID: PMC11955489 DOI: 10.3389/fimmu.2025.1556731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025] Open
Abstract
During the COVID-19 pandemic, approximately 15% of patients with severe COVID-19 pneumonia were reported to have neutralizing anti-type I interferon (IFN) autoantibodies, which impaired the antiviral response and led to a poorer prognosis. However, the physiological impact of non-neutralizing autoantibodies remains unclear. In our cohort of COVID-19 patients admitted to intensive care, the presence of non-neutralizing anti-type I IFN autoantibodies increased the risk of thrombotic complications, likely via a cytokine carrier mechanism, prolonging the half-life of cytokines and dysregulating vascular endothelial function. Previous studies have associated non-neutralizing anti-type I IFN autoantibodies with an increased risk of cardiovascular complications in autoimmune diseases like systemic lupus erythematosus, but their relevance in infectious diseases remains uncertain. Stratifying anti-type I IFN autoantibodies based on their neutralizing capacity may have clinical significance not only in terms of susceptibility to infectious diseases but also in predicting cardiovascular and thrombotic events.
Collapse
Affiliation(s)
- Mario Framil
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
- Immunology Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Lydia García-Serrano
- Immunology Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Francisco Morandeira
- Immunology Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | - Juan Francisco Luchoro
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Arnau Antolí
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| | | | | | - Xavier Solanich
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
11
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
12
|
Al Qureshah F, Le Pen J, de Weerd NA, Moncada-Velez M, Materna M, Lin DC, Milisavljevic B, Vianna F, Bizien L, Lorenzo L, Lecuit M, Pommier JD, Keles S, Ozcelik T, Pedraza-Sanchez S, de Prost N, El Zein L, Hammoud H, Ng LFP, Halwani R, Saheb Sharif-Askari N, Lau YL, Tam AR, Singh N, Bhattad S, Berkun Y, Chantratita W, Aguilar-López R, Shahrooei M, Abel L, Bastard P, Jouanguy E, Béziat V, Zhang P, Rice CM, Cobat A, Zhang SY, Hertzog PJ, Casanova JL, Zhang Q. A common form of dominant human IFNAR1 deficiency impairs IFN-α and -ω but not IFN-β-dependent immunity. J Exp Med 2025; 222:e20241413. [PMID: 39680367 DOI: 10.1084/jem.20241413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
Autosomal recessive deficiency of the IFNAR1 or IFNAR2 chain of the human type I IFN receptor abolishes cellular responses to IFN-α, -β, and -ω, underlies severe viral diseases, and is globally very rare, except for IFNAR1 and IFNAR2 deficiency in Western Polynesia and the Arctic, respectively. We report 11 human IFNAR1 alleles, the products of which impair but do not abolish responses to IFN-α and -ω without affecting responses to IFN-β. Ten of these alleles are rare in all populations studied, but the remaining allele (P335del) is common in Southern China (minor allele frequency ≈2%). Cells heterozygous for these variants display a dominant phenotype in vitro with impaired responses to IFN-α and -ω, but not -β, and viral susceptibility. Negative dominance, rather than haploinsufficiency, accounts for this dominance. Patients heterozygous for these variants are prone to viral diseases, attesting to both the dominance of these variants clinically and the importance of IFN-α and -ω for protective immunity against some viruses.
Collapse
Affiliation(s)
- Fahd Al Qureshah
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology , Riyadh, Saudi Arabia
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Australia
| | - Marcela Moncada-Velez
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Daniel C Lin
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Université Paris Cité, Imagine Institute , Paris, France
| | - Baptiste Milisavljevic
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Fernanda Vianna
- Laboratório de Medicina Genômica Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
- Graduate Program in Medicine, Medical Sciences, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
- National Institute of Population Medical Genetics (INAGEMP) , Porto Alegre, Brazil
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Marc Lecuit
- Université Paris Cité, Imagine Institute , Paris, France
- Department of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, APHP, Institut Imagine, Paris, France
- Biology of Infection Unit, Institut Pasteur, Inserm U1117, Université Paris Cité, Paris, France
| | - Jean-David Pommier
- Biology of Infection Unit, Institut Pasteur, Inserm U1117, Université Paris Cité, Paris, France
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Tayfun Ozcelik
- Department of Molecular Biology and Genetics, Bilkent University, Bilkent-Ankara, Turkey
| | - Sigifredo Pedraza-Sanchez
- Unit of Biochemistry, National Institute for Medical Sciences and Nutrition Salvador Zubiran (INCMNSZ) , Mexico City, Mexico
| | - Nicolas de Prost
- Service de Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé de Créteil, Université Paris Est Créteil , Créteil Cedex, France
- INSERM U955, Team "Viruses, Hepatology, Cancer" , Créteil, France
| | - Loubna El Zein
- Biology Department, Lebanese University, Beirut, Lebanon
| | | | - Lisa F P Ng
- A*STAR Infectious Disease Labs, Agency for Science, Technology and Research , Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University , Singapore, Singapore
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah , Sharjah, UAE
- Prince Abdullah Bin Khalid Celiac Disease Research Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Yu Lung Lau
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Anthony R Tam
- Division of Infectious Diseases, Department of Medicine, School of Clinical Medicine, University of Hong Kong, Hong Kong, China
| | | | | | - Yackov Berkun
- Department of Pediatrics, Hadassah-Hebrew University Medical Center, Mount Scopus and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Raúl Aguilar-López
- Department of Surgery, Maternal and Child Hospital, Social Security Institute of the State of Mexico and Municipalities (ISSEMYM), Toluca, Mexico
| | - Mohammad Shahrooei
- Clinical and Diagnostic Immunology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Dr. Shahrooei's Laboratory , Tehran, Iran
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris , Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Australia
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
- Howard Hughes Medical Institute , New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute , Paris, France
| |
Collapse
|
13
|
Kholaiq H, Abdelmoumen Y, Moundir A, El Kettani A, Ailal F, Benhsaien I, Adnane F, Drissi Bourhanbour A, Amenzoui N, El Bakkouri J, Bousfiha AA. Human genetic and immunological determinants of SARS-CoV-2 infection and multisystem inflammatory syndrome in children. Clin Exp Immunol 2025; 219:uxae062. [PMID: 39028583 PMCID: PMC11771195 DOI: 10.1093/cei/uxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces pneumonia and acute respiratory failure in coronavirus disease 2019 (COVID-19) patients with inborn errors of immunity to type I interferon (IFN-I). The impact of SARS-CoV-2 infection varies widely, ranging from mild respiratory symptoms to life-threatening illness and organ failure, with a higher incidence in men than in women. Approximately 3-5% of critical COVID-19 patients under 60 and a smaller percentage of elderly patients exhibit genetic defects in IFN-I production, including X-chromosome-linked TLR7 and autosomal TLR3 deficiencies. Around 15-20% of cases over 70 years old, and a smaller percentage of younger patients, present with preexisting autoantibodies neutralizing type I interferons. Additionally, innate errors affecting the control of the response to type I interferon have been associated with pediatric multisystem inflammatory syndrome (MIS-C). Several studies have described rare errors of immunity, such as XIAP deficiency, CYBB, SOCS1, OAS1/2, and RNASEL, as underlying factors in MIS-C susceptibility. However, further investigations in expanded patient cohorts are needed to validate these findings and pave the way for new genetic approaches to MIS-C. This review aims to present recent evidence from the scientific literature on genetic and immunological abnormalities predisposing individuals to critical SARS-CoV-2 infection through IFN-I. We will also discuss multisystem inflammatory syndrome in children (MIS-C). Understanding the immunological mechanisms and pathogenesis of severe COVID-19 may inform personalized patient care and population protection strategies against future serious viral infections.
Collapse
Affiliation(s)
- Halima Kholaiq
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Yousra Abdelmoumen
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abderrahmane Moundir
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Assiya El Kettani
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratory of Bacteriology, Virology and Hospital Hygiene, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Bacteriology and Virology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Fatima Ailal
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Adnane
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Asmaa Drissi Bourhanbour
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Naima Amenzoui
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Jalila El Bakkouri
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
- Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergies (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Clinical Immunology and Infectious Pediatrics Department, Abderrahim Harouchi Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
14
|
Gervais A, Bastard P, Bizien L, Delifer C, Tiberghien P, Rodrigo C, Trespidi F, Angelini M, Rossini G, Lazzarotto T, Conti F, Cassaniti I, Baldanti F, Rovida F, Ferrari A, Mileto D, Mancon A, Abel L, Puel A, Cobat A, Rice CM, Cadar D, Schmidt-Chanasit J, Scheid JF, Lemieux JE, Rosenberg ES, Agudelo M, Tangye SG, Borghesi A, Durand GA, Duburcq-Gury E, Valencia BM, Lloyd AR, Nagy A, MacDonald MM, Simonin Y, Zhang SY, Casanova JL. Auto-Abs neutralizing type I IFNs in patients with severe Powassan, Usutu, or Ross River virus disease. J Exp Med 2024; 221:e20240942. [PMID: 39485284 PMCID: PMC11533500 DOI: 10.1084/jem.20240942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Arboviral diseases are a growing global health concern. Pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) can underlie encephalitis due to West Nile virus (WNV) (∼40% of patients) and tick-borne encephalitis (TBE, due to TBE virus [TBEV]) (∼10%). We report here that these auto-Abs can also underlie severe forms of rarer arboviral infections. Auto-Abs neutralizing high concentrations of IFN-α2, IFN-β, and/or IFN-ω are present in the single case of severe Powassan virus (POWV) encephalitis studied, two of three cases of severe Usutu virus (USUV) infection studied, and the most severe of 24 cases of Ross River virus (RRV) disease studied. These auto-Abs are not found in any of the 137 individuals with silent or mild infections with these three viruses. Thus, auto-Abs neutralizing type I IFNs underlie an increasing list of severe arboviral diseases due to Flaviviridae (WNV, TBEV, POWV, USUV) or Togaviridae (RRV) viruses transmitted to humans by mosquitos (WNV, USUV, RRV) or ticks (TBEV, POWV).
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Céline Delifer
- Établissement Français du Sang, La Plaine Saint-Denis, France
| | | | - Chaturaka Rodrigo
- Faculty of Medicine, School of Biomedical Sciences, UNSW Australia, Sydney, Australia
| | - Francesca Trespidi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Micol Angelini
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
| | - Giada Rossini
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, Bologna, Italy
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Irene Cassaniti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Rovida
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alessandro Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Mileto
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Alessandro Mancon
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Johannes F. Scheid
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jacob E. Lemieux
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric S. Rosenberg
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales Sydney, Sydney, Australia
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Guillaume André Durand
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-Corsica Univ-IRD 190-Inserm 1207-IRBA), Marseille, France
| | - Emilie Duburcq-Gury
- Intensive Care Unit, Saint Philibert Hospital, Lille Catholic Hospitals, Lille, France
| | | | | | - Anna Nagy
- National Reference Laboratory for Viral Zoonoses, National Public Health Center, Budapest, Hungary
| | - Margaret M. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, EFS, Montpellier, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
15
|
Martin E, Latour S. [Interleukin 27: a key factor of the immune response to Epstein-Barr virus]. Med Sci (Paris) 2024; 40:982-985. [PMID: 39705573 DOI: 10.1051/medsci/2024169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Affiliation(s)
- Emmanuel Martin
- Laboratoire Activation lymphocytaire et susceptibilité au virus Epstein Barr, Inserm UMR 1163, Institut Imagine, université Paris Cité, Paris, France
| | - Sylvain Latour
- Laboratoire Activation lymphocytaire et susceptibilité au virus Epstein Barr, Inserm UMR 1163, Institut Imagine, université Paris Cité, Paris, France
| |
Collapse
|
16
|
Ocampo-Godinez JM, Kreins AY. Finding NEMO in the thymus. J Exp Med 2024; 221:e20241590. [PMID: 39432904 PMCID: PMC11497410 DOI: 10.1084/jem.20241590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Rosain et al. (https://doi.org/10.1084/jem.20231152) describe the association between anti-type I interferon autoantibodies and severe viral infections in patients with incontinentia pigmenti and heterozygous loss-of-function NEMO variants, suggesting a role for canonical NF-κB signaling in immune tolerance. The mechanisms behind this selective autoimmunity remain unclear.
Collapse
Affiliation(s)
- Juan Moises Ocampo-Godinez
- Infection Immunity and Inflammation Research and Teaching Department, University College London Institute of Child Health, London, UK
| | - Alexandra Y. Kreins
- Infection Immunity and Inflammation Research and Teaching Department, University College London Institute of Child Health, London, UK
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Rosain J, Le Voyer T, Liu X, Gervais A, Polivka L, Cederholm A, Berteloot L, Parent AV, Pescatore A, Spinosa E, Minic S, Kiszewski AE, Tsumura M, Thibault C, Esnaola Azcoiti M, Martinovic J, Philippot Q, Khan T, Marchal A, Charmeteau-De Muylder B, Bizien L, Deswarte C, Hadjem L, Fauvarque MO, Dorgham K, Eriksson D, Falcone EL, Puel M, Ünal S, Geraldo A, Le Floc'h C, Li H, Rheault S, Muti C, Bobrie-Moyrand C, Welfringer-Morin A, Fuleihan RL, Lévy R, Roelens M, Gao L, Materna M, Pellegrini S, Piemonti L, Catherinot E, Goffard JC, Fekkar A, Sacko-Sow A, Soudée C, Boucherit S, Neehus AL, Has C, Hübner S, Blanchard-Rohner G, Amador-Borrero B, Utsumi T, Taniguchi M, Tani H, Izawa K, Yasumi T, Kanai S, Migaud M, Aubart M, Lambert N, Gorochov G, Picard C, Soudais C, L'Honneur AS, Rozenberg F, Milner JD, Zhang SY, Vabres P, Trpinac D, Marr N, Boddaert N, Desguerre I, Pasparakis M, Miller CN, Poziomczyk CS, Abel L, Okada S, Jouanguy E, Cheynier R, Zhang Q, Cobat A, Béziat V, Boisson B, Steffann J, Fusco F, Ursini MV, Hadj-Rabia S, Bodemer C, Bustamante J, Luche H, Puel A, Courtois G, Bastard P, Landegren N, Anderson MS, Casanova JL. Incontinentia pigmenti underlies thymic dysplasia, autoantibodies to type I IFNs, and viral diseases. J Exp Med 2024; 221:e20231152. [PMID: 39352576 PMCID: PMC11448874 DOI: 10.1084/jem.20231152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Human inborn errors of thymic T cell tolerance underlie the production of autoantibodies (auto-Abs) neutralizing type I IFNs, which predispose to severe viral diseases. We analyze 131 female patients with X-linked dominant incontinentia pigmenti (IP), heterozygous for loss-of-function (LOF) NEMO variants, from 99 kindreds in 10 countries. Forty-seven of these patients (36%) have auto-Abs neutralizing IFN-α and/or IFN-ω, a proportion 23 times higher than that for age-matched female controls. This proportion remains stable from the age of 6 years onward. On imaging, female patients with IP have a small, abnormally structured thymus. Auto-Abs against type I IFNs confer a predisposition to life-threatening viral diseases. By contrast, patients with IP lacking auto-Abs against type I IFNs are at no particular risk of viral disease. These results suggest that IP accelerates thymic involution, thereby underlying the production of auto-Abs neutralizing type I IFNs in at least a third of female patients with IP, predisposing them to life-threatening viral diseases.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Clinical Immunology Department, AP-HP, Saint-Louis Hospital, Paris, France
| | - Xian Liu
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Laura Polivka
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
- Reference Center for Mastocytosis (CEREMAST), Necker Hospital for Sick Children, AP-HP , Paris, France
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Laureline Berteloot
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Audrey V Parent
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Alessandra Pescatore
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Ezia Spinosa
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Snezana Minic
- Clinics of Dermatovenerology, Clinical Center of Serbia , Belgrade, Serbia
- School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Ana Elisa Kiszewski
- Section of Dermatology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Section of Pediatric Dermatology, Hospital da Criança Santo Antônio, Irmandade da Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Miyuki Tsumura
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Chloé Thibault
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Maria Esnaola Azcoiti
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Jelena Martinovic
- Unit of Fetal Pathology, Hospital Antoine Béclère, Paris Saclay University , Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | | | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Lillia Hadjem
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | | | - Karim Dorgham
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
| | - Daniel Eriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Emilia Liana Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montréal Clinical Research Institute (IRCM) , Montréal, Canada
- Department of Medicine, Montréal University, Montréal, Canada
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Sinem Ünal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Amyrath Geraldo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Sylvie Rheault
- Department of Medicine, Montréal University, Montréal, Canada
- Center of Research of the Geriatric University Institute of Montréal, University of Montréal , Montréal, Canada
| | - Christine Muti
- Department of Genetics, André Mignot Hospital, Versailles, France
| | | | - Anne Welfringer-Morin
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Ramsay L Fuleihan
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Marie Roelens
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Silvia Pellegrini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele , Milan, Italy
| | | | - Jean-Christophe Goffard
- Internal Medicine, Brussels University Hospital, Free University of Brussels, Anderlecht, Belgium
| | - Arnaud Fekkar
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Department of Parasitology Mycology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Aissata Sacko-Sow
- Department of Pediatrics, Jean Verdier Hospital, AP-HP, Bondy, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
- European Reference Network (ERN) for Rare and Undiagnosed Skin Disorders
| | - Stefanie Hübner
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg im Breisgau, Germany
| | - Géraldine Blanchard-Rohner
- Unit of Immunology, Vaccinology, and Rheumatology, Division of General Pediatrics, Department of Woman, Child, and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Blanca Amador-Borrero
- Internal Medicine Department, Lariboisière Hospital, AP-HP, University of Paris Cité, Paris, France
| | - Takanori Utsumi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Maki Taniguchi
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Hiroo Tani
- Department of Pediatrics, Hiroshima University Hospital, Hiroshima, Japan
- Department of Pediatrics, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sotaro Kanai
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Guy Gorochov
- Sorbonne University, Inserm, Centre for Immunology and Microbial Infections, CIMI-Paris , Paris, France
- Department of Immunology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Imagine Institute, University of Paris Cité , Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Paris, France
| | - Anne-Sophie L'Honneur
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Flore Rozenberg
- Department of Virology, University of Paris Cité and Cochin Hospital, AP-HP, Paris, France
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Pierre Vabres
- MAGEC Reference Center for Rare Skin Diseases, Dijon Bourgogne University Hospital, Dijon, France
| | - Dusan Trpinac
- Institute of Histology and Embryology, School of Medicine, University of Belgrade , Belgrade, Serbia
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University , Doha, Qatar
| | - Nathalie Boddaert
- Pediatric Radiology Department, Necker Hospital for Sick Children, Imagine Inserm Institute, U1163, AP-HP, Paris, France
| | - Isabelle Desguerre
- Departments of Pediatric Neurology, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | | | - Corey N Miller
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | | | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Satoshi Okada
- Hiroshima University Graduate School of Biomedical and Health Sciences , Hiroshima, Japan
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Rémi Cheynier
- University of Paris Cité, CNRS, Inserm, Institut Cochin , Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Julie Steffann
- Department of Genomic Medicine, Necker Hospital for Sick Children, AP-HP, University of Paris Cité, Paris, France
| | - Francesca Fusco
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Matilde Valeria Ursini
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso," IGB-CNR , Naples, Italy
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Christine Bodemer
- Department of Dermatology, Reference Center for Genodermatosis and Rare Skin Diseases (MAGEC), University of Paris Cité, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP) , Paris, France
| | - Hervé Luche
- Immunophenomics Center (CIPHE), Aix Marseille University, Inserm, CNRS , Marseille, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Gilles Courtois
- University Grenoble Alpes, CEA, Inserm , BGE UA13, Grenoble, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Center for Molecular Medicine, Department of Medicine (Solna), Karolinska Institute, Stockholm, Sweden
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco , San Francisco, CA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris Cité , Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute , New York, NY, USA
| |
Collapse
|
18
|
Crow YJ. CNS disease associated with enhanced type I interferon signalling. Lancet Neurol 2024; 23:1158-1168. [PMID: 39424561 PMCID: PMC7616788 DOI: 10.1016/s1474-4422(24)00263-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 10/21/2024]
Abstract
The ability to mount an interferon-mediated innate immune response is essential in protection against neurotropic viruses, but antiviral type I interferons also have neurotoxic potential. The production of type I interferons can be triggered by self-derived nucleic acids, and the brain can be susceptible to inappropriate upregulation of type I interferon signalling. Homoeostatic dysregulation of type I interferons has been implicated in rare inborn errors of immunity (referred to as type I interferonopathies) and more common neurodegenerative disorders (eg, Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis). Recent developments include new insights into the pathogenesis of these disorders that involve dysregulated type I interferon signalling, as well as advances in their diagnosis and management. The role of type I interferons in brain cellular health suggests the future therapeutic potential of approaches that target these interferons and their signalling.
Collapse
Affiliation(s)
- Yanick J Crow
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France.
| |
Collapse
|
19
|
Gervais A, Marchal A, Fortova A, Berankova M, Krbkova L, Pychova M, Salat J, Zhao S, Kerrouche N, Le Voyer T, Stiasny K, Raffl S, Schieber Pachart A, Fafi-Kremer S, Gravier S, Robbiani DF, Abel L, MacDonald MR, Rice CM, Weissmann G, Kamal Eldin T, Robatscher E, Erne EM, Pagani E, Borghesi A, Puel A, Bastard P, Velay A, Martinot M, Hansmann Y, Aberle JH, Ruzek D, Cobat A, Zhang SY, Casanova JL. Autoantibodies neutralizing type I IFNs underlie severe tick-borne encephalitis in ∼10% of patients. J Exp Med 2024; 221:e20240637. [PMID: 39316018 PMCID: PMC11448868 DOI: 10.1084/jem.20240637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Tick-borne encephalitis (TBE) virus (TBEV) is transmitted to humans via tick bites. Infection is benign in >90% of the cases but can cause mild (<5%), moderate (<4%), or severe (<1%) encephalitis. We show here that ∼10% of patients hospitalized for severe TBE in cohorts from Austria, Czech Republic, and France carry auto-Abs neutralizing IFN-α2, -β, and/or -ω at the onset of disease, contrasting with only ∼1% of patients with moderate and mild TBE. These auto-Abs were found in two of eight patients who died and none of 13 with silent infection. The odds ratios (OR) for severe TBE in individuals with these auto-Abs relative to those without them in the general population were 4.9 (95% CI: 1.5-15.9, P < 0.0001) for the neutralization of only 100 pg/ml IFN-α2 and/or -ω, and 20.8 (95% CI: 4.5-97.4, P < 0.0001) for the neutralization of 10 ng/ml IFN-α2 and -ω. Auto-Abs neutralizing type I IFNs accounted for ∼10% of severe TBE cases in these three European cohorts.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Astrid Marchal
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
| | - Andrea Fortova
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Michaela Berankova
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Lenka Krbkova
- Department of Children’s Infectious Diseases, University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Pychova
- Department of Infectious Diseases, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiri Salat
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Nacim Kerrouche
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Karin Stiasny
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | - Simon Raffl
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | | | - Samira Fafi-Kremer
- Institut de Virologie, Strasbourg University Hospital, Strasbourg University, INSERM Unité Mixte de Recherche (UMR) S1109, Strasbourg, France
| | - Simon Gravier
- Infectious Diseases Department, Hôpitaux Civils, Colmar, France
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M. Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gaia Weissmann
- Department of Pediatrics and Neonatology, F. Tappeiner Hospital, Merano, Italy
| | - Tarek Kamal Eldin
- Infectious Disease Unit, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Eva Robatscher
- Laboratory of Microbiology and Virology, SABES-ASDAA, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Elke Maria Erne
- Infectious Disease Unit, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Elisabetta Pagani
- Laboratory of Microbiology and Virology, SABES-ASDAA, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Bolzano, Italy
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, San Matteo Research Hospital, Pavia, Italy
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Aurélie Velay
- Institut de Virologie, Strasbourg University Hospital, Strasbourg University, INSERM Unité Mixte de Recherche (UMR) S1109, Strasbourg, France
| | - Martin Martinot
- Infectious Diseases Department, Hôpitaux Civils, Colmar, France
| | - Yves Hansmann
- CHU de Strasbourg, Service des Maladies Infectieuses et Tropicales, Strasbourg, France
| | - Judith H. Aberle
- Medical University of Vienna, Center for Virology, Vienna, Austria
| | - Daniel Ruzek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Science, České Budějovice, Czech Republic
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
20
|
Coelewij L, Adriani M, Dönnes P, Waddington KE, Ciurtin C, Havrdova EK, Farrell R, Nytrova P, Pineda-Torra I, Jury EC. Patients with multiple sclerosis who develop immunogenicity to interferon-beta have distinct transcriptomic and proteomic signatures prior to treatment which are associated with disease severity. Clin Immunol 2024; 267:110339. [PMID: 39137826 DOI: 10.1016/j.clim.2024.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Anti-drug antibodies (ADA) reduce the efficacy of immunotherapies in multiple sclerosis (MS) and are associated with increased disease progression risk. Blood biomarkers predicting immunogenicity to biopharmaceuticals represent an unmet clinical need. Patients with relapsing remitting (RR)MS were recruited before (baseline), three, and 12 (M12) months after commencing interferon-beta treatment. Neutralising ADA-status was determined at M12, and patients were stratified at baseline according to their M12 ADA-status (ADA-positive/ADA-negative). Patients stratified as ADA-positive were characterised by an early dampened response to interferon-beta (prior to serum ADA detection) and distinct proinflammatory transcriptomic/proteomic peripheral blood signatures enriched for 'immune response activation' including phosphoinositide 3-kinase-γ and NFκB-signalling pathways both at baseline and throughout the treatment course, compared to ADA-negative patients. These immunogenicity-associated proinflammatory signatures significantly overlapped with signatures of MS disease severity. Thus, whole blood molecular profiling is a promising tool for prediction of ADA-development in RRMS and could provide insight into mechanisms of immunogenicity.
Collapse
Affiliation(s)
- Leda Coelewij
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Marsilio Adriani
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Pierre Dönnes
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom; SciCross AB, Skövde, Sweden
| | - Kirsty E Waddington
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Coziana Ciurtin
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom
| | - Eva Kubala Havrdova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 120 00, Czech Republic
| | - Rachel Farrell
- Department of Neuroinflammation, University College London, Institute of Neurology and National Hospital of Neurology and Neurosurgery, London WC1N 3BG, United Kingdom
| | - Petra Nytrova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, General University Hospital and First Faculty of Medicine, Charles University in Prague, 120 00, Czech Republic
| | - Inés Pineda-Torra
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom; Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Parque Científico y Tecnológico Cartuja 93 Avda. Américo Vespucio, 24 41092 Sevilla, Spain
| | - Elizabeth C Jury
- Division of Medicine, University College London, London WC1E 6JF, United Kingdom.
| |
Collapse
|
21
|
Gervais A, Le Floc'h C, Le Voyer T, Bizien L, Bohlen J, Celmeli F, Al Qureshah F, Masson C, Rosain J, Chbihi M, Lévy R, Castagnoli R, Rothenbuhler A, Jouanguy E, Zhang Q, Zhang SY, Béziat V, Bustamante J, Puel A, Bastard P, Casanova JL. A sensitive assay for measuring whole-blood responses to type I IFNs. Proc Natl Acad Sci U S A 2024; 121:e2402983121. [PMID: 39312669 PMCID: PMC11459193 DOI: 10.1073/pnas.2402983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Human inborn errors of the type I IFN response pathway and auto-Abs neutralizing IFN-α, -β, and/or -ω can underlie severe viral illnesses. We report a simple assay for the detection of both types of condition. We stimulate whole blood from healthy individuals and patients with either inborn errors of type I IFN immunity or auto-Abs against type I IFNs with glycosylated human IFN-α2, -β, or -ω. As controls, we add a monoclonal antibody (mAb) blocking the type I IFN receptors and stimulated blood with IFN-γ (type II IFN). Of the molecules we test, IP-10 (encoded by the interferon-stimulated gene (ISG) CXCL10) is the molecule most strongly induced by type I and type II IFNs in the whole blood of healthy donors in an ELISA-like assay. In patients with inherited IFNAR1, IFNAR2, TYK2, or IRF9 deficiency, IP-10 is induced only by IFN-γ, whereas, in those with auto-Abs neutralizing specific type I IFNs, IP-10 is also induced by the type I IFNs not neutralized by the auto-Abs. The measurement of type I and type II IFN-dependent IP-10 induction therefore constitutes a simple procedure for detecting rare inborn errors of the type I IFN response pathway and more common auto-Abs neutralizing type I IFNs.
Collapse
Affiliation(s)
- Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Corentin Le Floc'h
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris 75010, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
| | - Fatih Celmeli
- Division of Pediatric Allergy and Immunology, Antalya Education and Research Hospital, University of Medical Science, Antalya 07100, Türkiye
| | - Fahd Al Qureshah
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Cécile Masson
- Bioinformatics Core Facility, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marwa Chbihi
- Paris Cité University, Imagine Institute, Paris 75015, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia 27100, Italy
- Pediatric Clinic, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia 27100, Italy
| | - Anya Rothenbuhler
- Endocrinology and Diabetes for children, Reference Center for rare diseases of calcium and phosphate metabolism, OSCAR network, Platform of expertise for rare diseases of Paris Saclay Hospital, Bicêtre Paris Saclay Hospital, Le Kremlin-Bicêtre 94270, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris 75015, France
- Paris Cité University, Imagine Institute, Paris 75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065
- HHMI, New York, NY 10065
- Department of Pediatrics, Necker Hospital for Sick Children, Paris 75015, France
| |
Collapse
|
22
|
Le Voyer T, Maglorius Renkilaraj MRL, Moriya K, Pérez Lorenzo M, Nguyen T, Gao L, Rubin T, Cederholm A, Ogishi M, Arango-Franco CA, Béziat V, Lévy R, Migaud M, Rapaport F, Itan Y, Deenick EK, Cortese I, Lisco A, Boztug K, Abel L, Boisson-Dupuis S, Boisson B, Frosk P, Ma CS, Landegren N, Celmeli F, Casanova JL, Tangye SG, Puel A. Inherited human RelB deficiency impairs innate and adaptive immunity to infection. Proc Natl Acad Sci U S A 2024; 121:e2321794121. [PMID: 39231201 PMCID: PMC11406260 DOI: 10.1073/pnas.2321794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
We report two unrelated adults with homozygous (P1) or compound heterozygous (P2) private loss-of-function variants of V-Rel Reticuloendotheliosis Viral Oncogene Homolog B (RELB). The resulting deficiency of functional RelB impairs the induction of NFKB2 mRNA and NF-κB2 (p100/p52) protein by lymphotoxin in the fibroblasts of the patients. These defects are rescued by transduction with wild-type RELB complementary DNA (cDNA). By contrast, the response of RelB-deficient fibroblasts to Tumor Necrosis Factor (TNF) or IL-1β via the canonical NF-κB pathway remains intact. P1 and P2 have low proportions of naïve CD4+ and CD8+ T cells and of memory B cells. Moreover, their naïve B cells cannot differentiate into immunoglobulin G (IgG)- or immunoglobulin A (IgA)-secreting cells in response to CD40L/IL-21, and the development of IL-17A/F-producing T cells is strongly impaired in vitro. Finally, the patients produce neutralizing autoantibodies against type I interferons (IFNs), even after hematopoietic stem cell transplantation, attesting to a persistent dysfunction of thymic epithelial cells in T cell selection and central tolerance to some autoantigens. Thus, inherited human RelB deficiency disrupts the alternative NF-κB pathway, underlying a T- and B cell immunodeficiency, which, together with neutralizing autoantibodies against type I IFNs, confers a predisposition to viral, bacterial, and fungal infections.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris75010, France
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tamar Rubin
- Division of Pediatric Clinical Immunology and Allergy, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MBR3A 1S1, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Group of Inborn Errors of Immunity, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín050010, Colombia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaan Boztug
- St. Anna Children’s Cancer Research Institute, Vienna1090, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science, Antalya Education and Research Hospital, Antalya07100, Türkiye
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris75015, France
- HHMI, New York, NY10065
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| |
Collapse
|
23
|
Fernbach S, Mair NK, Abela IA, Groen K, Kuratli R, Lork M, Thorball CW, Bernasconi E, Filippidis P, Leuzinger K, Notter J, Rauch A, Hirsch HH, Huber M, Günthard HF, Fellay J, Kouyos RD, Hale BG. Loss of tolerance precedes triggering and lifelong persistence of pathogenic type I interferon autoantibodies. J Exp Med 2024; 221:e20240365. [PMID: 39017930 PMCID: PMC11253716 DOI: 10.1084/jem.20240365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024] Open
Abstract
Autoantibodies neutralizing type I interferons (IFN-Is) can underlie infection severity. Here, we trace the development of these autoantibodies at high-resolution using longitudinal samples from 1,876 well-treated individuals living with HIV over a 35-year period. Similar to general populations, ∼1.9% of individuals acquired anti-IFN-I autoantibodies as they aged (median onset ∼63 years). Once detected, anti-IFN-I autoantibodies persisted lifelong, and titers increased over decades. Individuals developed distinct neutralizing and non-neutralizing autoantibody repertoires at discrete times that selectively targeted combinations of IFNα, IFNβ, and IFNω. Emergence of neutralizing anti-IFNα autoantibodies correlated with reduced baseline IFN-stimulated gene levels and was associated with subsequent susceptibility to severe COVID-19 several years later. Retrospective measurements revealed enrichment of pre-existing autoreactivity against other autoantigens in individuals who later developed anti-IFN-I autoantibodies, and there was evidence for prior viral infections or increased IFN at the time of anti-IFN-I autoantibody triggering. These analyses suggest that age-related loss of self-tolerance prior to IFN-I immune-triggering poses a risk of developing lifelong functional IFN-I deficiency.
Collapse
Affiliation(s)
- Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nina K. Mair
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irene A. Abela
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kevin Groen
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kuratli
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Marie Lork
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Christian W. Thorball
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Paraskevas Filippidis
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Julia Notter
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andri Rauch
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans H. Hirsch
- Department of Biomedicine, Transplantation and Clinical Virology, University of Basel, Basel, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jacques Fellay
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roger D. Kouyos
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
García-Solís B, Tapia-Torres M, García-Soidán A, Hernández-Brito E, Martínez-Saavedra MT, Lorenzo-Salazar JM, García-Hernández S, Van Den Rym A, Mayani K, Govantes-Rodríguez JV, Gervais A, Bastard P, Puel A, Casanova JL, Flores C, Pérez de Diego R, Rodríguez-Gallego C. IgG4-related disease and B-cell malignancy due to an IKZF1 gain-of-function variant. J Allergy Clin Immunol 2024; 154:819-826. [PMID: 38579942 DOI: 10.1016/j.jaci.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Monoallelic loss-of-function IKZF1 (IKAROS) variants cause B-cell deficiency or combined immunodeficiency, whereas monoallelic gain-of-function (GOF) IKZF1 variants have recently been reported to cause hypergammaglobulinemia, abnormal plasma cell differentiation, autoimmune and allergic manifestations, and infections. OBJECTIVE We studied 7 relatives with autoimmune/inflammatory and lymphoproliferative manifestations to identify the immunologic disturbances and the genetic cause of their disease. METHODS We analyzed biopsy results and performed whole-exome sequencing and immunologic studies. RESULTS Disease onset occurred at a mean age of 25.2 years (range, 10-64, years). Six patients suffered from autoimmune/inflammatory diseases, 4 had confirmed IG4-related disease (IgG4-RD), and 5 developed B-cell malignancies: lymphoma in 4 and multiple myeloma in the remaining patient. Patients without immunosuppression were not particularly prone to infectious diseases. Three patients suffered from life-threatening coronavirus disease 2019 pneumonia, of whom 1 had autoantibodies neutralizing IFN-α. The recently described IKZF1 GOF p.R183H variant was found in the 5 affected relatives tested and in a 6-year-old asymptomatic girl. Immunologic analysis revealed hypergammaglobulinemia and high frequencies of certain lymphocyte subsets (exhausted B cells, effector memory CD4 T cells, effector memory CD4 T cells that have regained surface expression of CD45RA and CD28-CD57+ CD4+ and CD8+ T cells, TH2, and Tfh2 cells) attesting to immune dysregulation. Partial clinical responses to rituximab and corticosteroids were observed, and treatment with lenalidomide, which promotes IKAROS degradation, was initiated in 3 patients. CONCLUSIONS Heterozygosity for GOF IKZF1 variants underlies autoimmunity/inflammatory diseases, IgG4-RD, and B-cell malignancies, the onset of which may occur in adulthood. Clinical and immunologic data are similar to those for patients with unexplained IgG4-RD. Patients may therefore benefit from treatments inhibiting pathways displaying IKAROS-mediated overactivity.
Collapse
Affiliation(s)
- Blanca García-Solís
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - María Tapia-Torres
- Department of Hematology, La Palma University Hospital, Breña Alta, Spain
| | - Ana García-Soidán
- Department of Immunology, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain
| | - Elisa Hernández-Brito
- Department of Immunology, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain
| | | | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | | | - Ana Van Den Rym
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain
| | - Karan Mayani
- Department of Hematology, La Palma University Hospital, Breña Alta, Spain
| | | | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Department of Pediatrics, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain; Research Unit, Hospital Universitario Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Rebeca Pérez de Diego
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Innate Immunity Group, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, Spain; Interdepartmental Group of Immunodeficiencies, Madrid, Spain.
| | - Carlos Rodríguez-Gallego
- Department of Immunology, University Hospital of Gran Canaria Dr Negrin, Las Palmas de Gran Canaria, Spain; Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain; Department of Medical and Surgical Sciences, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
25
|
Cha H, Lee CM, Kim S, Kang CK, Choe PG, Jeon YK, Jo HJ, Kim NJ, Park WB, Kim HJ. Innate immune signatures in the nasopharynx after SARS-CoV-2 infection and links with the clinical outcome of COVID-19 in Omicron-dominant period. Cell Mol Life Sci 2024; 81:364. [PMID: 39172244 PMCID: PMC11342914 DOI: 10.1007/s00018-024-05401-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
While severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is characterized by impaired induction of interferons (IFNs) and IFN-stimulated genes (ISGs), the IFNs and ISGs in upper airway is essential to restrict the spread of respiratory virus. Here, we identified the prominent IFN and ISG upregulation in the nasopharynx (NP) of mild and even severe coronavirus disease 2019 (COVID-19) patients (CoV2+) in Omicron era and to compare their clinical outcome depending on the level of IFNs and ISGs. Whereas the induction of IFNB was minimal, transcription of IFNA, IFNG, and IFNLs was significantly increased in the NP of CoV2 + patients. IFNs and ISGs may be more upregulated in the NP of CoV2 + patients at early phases of infection according to viral RNA levels and this is observed even in severe cases. IFN-related innate immune response might be characteristic in macrophages and monocytes at the NP and the CoV2 + patients with higher transcription of IFNs and ISGs in the NP showed a correlation with good prognosis of COVID-19. This study presents that IFNs and ISGs may be upregulated in the NP, even in severe CoV2 + patients depending on viral replication during Omicron-dominant period and the unique IFN-responsiveness in the NP links with COVID-19 clinical outcomes.
Collapse
Affiliation(s)
- Hyunkyung Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Chan Mi Lee
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Sujin Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hyeon Jae Jo
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|