1
|
Cirigliano SM, Fine HA. Bridging the gap between tumor and disease: Innovating cancer and glioma models. J Exp Med 2025; 222:e20220808. [PMID: 39626263 PMCID: PMC11614461 DOI: 10.1084/jem.20220808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Recent advances in cancer biology and therapeutics have underscored the importance of preclinical models in understanding and treating cancer. Nevertheless, current models often fail to capture the complexity and patient-specific nature of human tumors, particularly gliomas. This review examines the strengths and weaknesses of such models, highlighting the need for a new generation of models. Emphasizing the critical role of the tumor microenvironment, tumor, and patient heterogeneity, we propose integrating our advanced understanding of glioma biology with innovative bioengineering and AI technologies to create more clinically relevant, patient-specific models. These innovations are essential for improving therapeutic development and patient outcomes.
Collapse
Affiliation(s)
| | - Howard A. Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
3
|
Huang S, Ren L, Beck JA, Patkar S, Lillo Osuna MA, Cherukuri A, Mazcko C, Krum SA, LeBlanc AK. Comparative responses to demethylating therapy in animal models of osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4451060. [PMID: 38946977 PMCID: PMC11213205 DOI: 10.21203/rs.3.rs-4451060/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The demethylating agent decitabine (DAC) effectively inhibits tumor growth and metastasis by targeting ESR1 methylation to restore estrogen receptor alpha (ERα) signaling and promoting cellular differentiation in models of human osteosarcoma (OSA). Whether this pathway can be targeted in canine OSA patients is unknown. Methods Canine OSA tumor samples were tested for ERα expression and ESR1 promoter methylation. Human (MG63.3) and canine (MC-KOS) OSA cell lines and murine xenografts were treated with DAC in vitro and in vivo, respectively. Samples were assessed using mRNA sequencing and tissue immunohistochemistry. Results ESR1 is methylated in a subset of canine OSA patient samples and the MC-KOS cell line. DAC treatment led to enhanced differentiation as demonstrated by increased ALPL expression, and suppressed tumor growth in vitro and in vivo. Metastatic progression was inhibited, particularly in the MG63.3 model, which expresses higher levels of DNA methyltransferases DNMT1 and 3B. DAC treatment induced significant alterations in immune response and cell cycle pathways. Conclusion DAC treatment activates ERα signaling, promotes bone differentiation, and inhibits tumor growth and metastasis in human and canine OSA. Additional DAC-altered pathways and species- or individual-specific differences in DNMT expression may also play a role in DAC treatment of OSA.
Collapse
|
4
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
5
|
Kamolphiwong R, Kanokwiroon K, Wongrin W, Chaiyawat P, Klangjorhor J, Settakorn J, Teeyakasem P, Sangphukieo A, Pruksakorn D. Potential target identification for osteosarcoma treatment: Gene expression re-analysis and drug repurposing. Gene X 2023; 856:147106. [PMID: 36513192 DOI: 10.1016/j.gene.2022.147106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Survival rate of osteosarcoma has remained plateaued for the past three decades. New treatment is needed to improve survival rate. Drug repurposing, a method to identify new indications of previous drugs, which saves time and cost compared to the de novo drug discovery. Data mining from gene expression profile was carried out and new potential targets were identified by using drug repurposing strategy. Selected data were newly categorized as pathophysiology and metastasis groups. Data were normalized and calculated the differential gene expression. Genes with log fold change ≥ 2 and adjusted p-value ≤ 0.05 were selected as primary candidate genes (PCGs). PCGs were further enriched to determine the secondary candidate genes (SCGs) by protein interaction analysis, upstream transcription factor and related-protein kinase identification. PCGs and SCGs were further matched with gene targeted of corresponding drugs from the Drug Repurposing Hub. A total of 778 targets were identified (360 from PCGs, and 418 from SCGs). This newly identified KLHL13 is a new candidate target based on its molecular function. KLHL13 was upregulated in clinical samples. We found 256 drugs from matching processes (50anti-cancerand206non-anticancerdrugs). Clinical trials of anti-cancer drugs from 5 targets (CDK4, BCL-2, JUN, SRC, PIK3CA) are being performed for osteosarcoma treatment. Niclosamide and synthetic PPARɣ ligands are candidates for repurposing due to the possibility based on their mechanism and pharmacology properties. Re-analysis of gene expression profile could identify new potential targets, confirm a current implication, and expand the chance of repurposing drugs for osteosarcoma treatment.
Collapse
Affiliation(s)
- Rawikant Kamolphiwong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Kanyanatt Kanokwiroon
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Weerinrada Wongrin
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center, Department of Orthopaedics, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Thailand.
| |
Collapse
|
6
|
Dilley KN, Wong A, Kent MS, Steffey MA, Yellowley CE. Expression of Sex Hormone Receptors in Canine Osteosarcoma. Vet Sci 2022; 9:524. [PMID: 36288137 PMCID: PMC9609940 DOI: 10.3390/vetsci9100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 05/25/2024] Open
Abstract
Sex steroids regulate bone metabolism directly and indirectly through receptors on bone. Estrogen receptors (ER-∝, ER-β), progesterone receptor (PR), and androgen receptor (AR), have been previously identified on human osteosarcoma (OSA) cells, and are considered to influence tumor growth, but their expression and role in canine OSA is unknown. The aim of this study was to characterize sex hormone receptor expression levels in naturally occurring OSA tissue and in three canine OSA cell lines. The expression of ER-α, ER-β, PR, and AR was investigated using RT-PCR. PR expression levels were also quantified in OSA cells cultured under hypoxic conditions or in the presence of estradiol. The effects of progesterone on cell proliferation were quantified. Results demonstrated varying expression levels of these receptors in five OSA subtypes. OSA cell lines demonstrated high gene expression levels of PR and low gene expression levels of ER-α and ER-β and no gene expression of AR. PR expression was increased in OSA cells cultured under hypoxic conditions in a HIF-∝ independent manner. Interestingly, one cell line expressed very high levels of PR, expression of which decreased in response to estradiol. In addition, progesterone decreased OSA cell proliferation in this particular cell line. Further investigation of the role of sex steroids, particularly PR and its ligands, in regulation of canine OSA is recommended.
Collapse
Affiliation(s)
- Kristyn N. Dilley
- VCA Loomis Basin Veterinary Clinic, 3901 Sierra College Blvd, Loomis, CA 95650, USA
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Michael S. Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Michele A. Steffey
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| | - Clare E. Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, 1285 Veterinary Medicine Drive, Davis, CA 95616, USA
| |
Collapse
|
7
|
Wang JY, Chen CM, Chen CF, Wu PK, Chen WM. Suppression of Estrogen Receptor Alpha Inhibits Cell Proliferation, Differentiation and Enhances the Chemosensitivity of P53-Positive U2OS Osteosarcoma Cell. Int J Mol Sci 2021; 22:ijms222011238. [PMID: 34681897 PMCID: PMC8540067 DOI: 10.3390/ijms222011238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70–80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called “sun burst”. Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(−) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER−/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.
Collapse
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence:
| | - Wei-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| |
Collapse
|
8
|
Abstract
Estrogen plays important roles in bone homeostasis throughout a person's life, including longitudinal bone growth, bone healing, and adaptation to mechanical forces. Estrogen exerts its action by binding to its multiple receptors in the cell membrane and cytoplasm. Until now at least three estrogen receptors (ER) have been reported: ER alpha (ERα), ER beta (ERβ), and G-protein coupled estrogen receptor 1 (GPER1) also known as GP30. Recently it has been observed that estrogen crosstalk with other signaling pathways helping to understand its wide effects in bone homeostasis. Abrupt loss of estrogen production experienced by menopausal women is associated with the rapid loss of bone mass ultimately leading to osteoporosis. The detrimental results during its absence with aging and the increased life expectancy of current and future generations make it of high importance to fully understand its mechanism of action. This review article aims to update on (1) the molecular mechanism of action of estrogen in the skeletal system, (2) ERs expression in different bone cells, (3) recent reported ER mutations resulting in pathological human conditions, and (4) role of estrogen signaling during bone healing.
Collapse
Affiliation(s)
- Nuria Lara-Castillo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, 650 East 25th Street, Kansas City, MO 64110, USA
| |
Collapse
|
9
|
Laffranchi Z, Milella M, Lombardo P, Langer R, Lösch S. Co-occurrence of malignant neoplasm and Hyperostosis Frontalis Interna in an Iron Age individual from Münsingen-Rain (Switzerland): A multi-diagnostic study. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 32:1-8. [PMID: 33176226 DOI: 10.1016/j.ijpp.2020.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To re-analyze one of the oldest cases of malignant bone neoplasm with different analytical techniques. MATERIAL The available skeletal remains of grave 138 (G138) from the Iron Age necropolis of Münsingen-Rain (Switzerland, 420-240 BC). METHODS The bones are analyzed by means of morphological, radiographic, histological, and biogeochemical methods. RESULTS The individual, a male aged between 35-50 years old, presents morphologically and radiographically a previously described coral-like bone neoformation on the proximal left humerus. The new analyses highlight previously undocumented coarse bone proliferation on the left scapula and lobular apposition on the endocranial surface of the frontal bone. The histological analysis of the humerus shows a 'lace-like' pattern of osteoid deposition without lamellation. CONCLUSIONS Our data support a diagnosis of osteoblastic malignant neoplasm, probably an osteosarcoma or, more likely, a dedifferentiated chondrosarcoma for the humerus and scapula, and of hyperostosis frontalis interna on the frontal. The co-presence of a malignant neoplasm and hyperostosis frontalis interna may be related to a hormonal imbalance, a possibility also suggested by atypical funerary treatment. SIGNIFICANCE This study confirms G138 as one of the oldest cases of malignant bone neoplasm, adds new paleopathological data on this individual, and demonstrates the advantages of a multidisciplinary approach. LIMITATIONS The discussion of the pathological changes is limited by the representation and preservation of the skeletal elements. SUGGESTION FOR FUTURE RESEARCH Biomolecular and protein biomarkers analyses may help to refine the diagnostic conclusions.
Collapse
Affiliation(s)
- Zita Laffranchi
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern. Sulgenauweg 40, CH-3007, Bern Switzerland.
| | - Marco Milella
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern. Sulgenauweg 40, CH-3007, Bern Switzerland.
| | - Paolo Lombardo
- Inselspital, Universitätsspital Bern, Universitätsinstitut für Diagnostische, Interventionelle und Pädiatrische Radiologie (DIPR). Freiburgstrasse 10, CH-3010, Bern Switzerland.
| | - Rupert Langer
- Institute of Pathology, University of Bern. Murtenstrasse 31, CH-3008, Bern Switzerland.
| | - Sandra Lösch
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern. Sulgenauweg 40, CH-3007, Bern Switzerland.
| |
Collapse
|
10
|
Motamed HR, Shariati M, Ahmadi R, Khatamsaz S, Mokhtari M. The apoptotic effects of progesterone on breast cancer (MCF-7) and human osteosarcoma (MG-636) cells. Physiol Int 2020; 107:406-418. [PMID: 33074834 DOI: 10.1556/2060.2020.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/13/2020] [Indexed: 11/19/2022]
Abstract
Purpose Progesterone has been reported to inhibit the proliferation of breast cancer and osteosarcoma cells; however, its inhibitory mechanism has not yet been clarified. The aim of the present study was to clarify the effects of progesterone on apoptosis in breast cancer (MCF-7) and human osteosarcoma (MG-63) cells. Materials and methods In this experimental study the cytotoxic effect of progesterone was measured in MCF-7 and MG-63 cells exposed to different concentrations of progesterone using MTT assay, and effective concentrations were identified. The expression levels of the Bax, P53 and Bcl-2 genes were evaluated by real-time PCR, and caspase-3, 8 and 9 activity levels were determined using a colorimetric method. Hoechst staining and flow cytometry were used to confirm apoptosis. The data were statistically analyzed using one-way analysis of variance (ANOVA) and independent-samples t-test. Results Compared to the control group, we observed a significant increase in the expression levels of the Bax and P53 genes and the activity levels of caspase-3 and 9, and a significant decrease in the expression level of the Bcl-2 gene in MCF-7 and MG-63 treated with effective concentration of progesterone. The caspase-8 activity level did not change significantly in treated MG-63 but increased in treated MCF-7 cells. Hoechst staining and flow cytometry results confirmed apoptosis in the cells exposed to effective concentration of progesterone. Conclusions The cytotoxic effect of progesterone on breast cancer and osteosarcoma cells was mediated by apoptotic pathways. In this context, progesterone triggers the extrinsic and intrinsic apoptotic pathways in MCF-7 cells and induces the intrinsic apoptotic pathway in MG-63 cells.
Collapse
Affiliation(s)
- H R Motamed
- 1Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Islamic Republic of Iran
| | - M Shariati
- 1Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Islamic Republic of Iran
| | - R Ahmadi
- 2Department of Biology, Hamedan Branch, Islamic Azad University, Hamedan, Islamic Republic of Iran.,3Avicenna International College, Budapest, Hungary
| | - S Khatamsaz
- 1Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Islamic Republic of Iran
| | - M Mokhtari
- 1Department of Biology, Kazerun Branch, Islamic Azad University, Kazerun, Islamic Republic of Iran
| |
Collapse
|
11
|
Franceschini N, Lam SW, Cleton-Jansen AM, Bovée JVMG. What's new in bone forming tumours of the skeleton? Virchows Arch 2020; 476:147-157. [PMID: 31741049 PMCID: PMC6969005 DOI: 10.1007/s00428-019-02683-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/12/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Bone tumours are difficult to diagnose and treat, as they are rare and over 60 different subtypes are recognised. The emergence of next-generation sequencing has partly elucidated the molecular mechanisms behind these tumours, including the group of bone forming tumours (osteoma, osteoid osteoma, osteoblastoma and osteosarcoma). Increased knowledge on the molecular mechanism could help to identify novel diagnostic markers and/or treatment options. Osteoid osteoma and osteoblastoma are bone forming tumours without malignant potential that have overlapping morphology. They were recently shown to carry FOS and-to a lesser extent-FOSB rearrangements suggesting that these tumours are closely related. The presence of these rearrangements could help discriminate these entities from other lesions with woven bone deposition. Osteosarcoma is a malignant bone forming tumour for which different histological subtypes are recognised. High-grade osteosarcoma is the prototype of a complex karyotype tumour, and extensive research exploring its molecular background has identified phenomena like chromothripsis and kataegis and some recurrent alterations. Due to lack of specificity, this has not led to a valuable novel diagnostic marker so far. Nevertheless, these studies have also pointed towards potential targetable drivers of which the therapeutic merit remains to be further explored.
Collapse
Affiliation(s)
- Natasja Franceschini
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands
| | - Suk Wai Lam
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, L1-Q, 2300 RC, Leiden, Netherlands.
| |
Collapse
|
12
|
Yang ZM, Yang MF, Yu W, Tao HM. Molecular mechanisms of estrogen receptor β-induced apoptosis and autophagy in tumors: implication for treating osteosarcoma. J Int Med Res 2019; 47:4644-4655. [PMID: 31526167 PMCID: PMC6833400 DOI: 10.1177/0300060519871373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The estrogen receptors α (ERα) and β (ERβ) are located in the nucleus and bind to estrogen to initiate transcription of estrogen-responsive genes. In a variety of tumor cells, ERβ has been shown to be a tumor suppressor. In particular, ERβ has anti-proliferative effects in osteosarcoma cells. Additionally, ERβ has been proven to regulate the apoptosis-related molecules IAP, BAX, caspase-3, and PARP, and to act on the NF-κB/BCL-2 pathway to induce apoptosis in tumors. Moreover, ERβ can regulate the expression of the autophagy associated markers LC3-I/LC-3II and p62 and induce autophagy in tumors by inhibiting the PI3K/AKT/mTOR pathway and activating the AMPK pathway. Here, we review the molecular mechanisms by which ERβ induces apoptosis and autophagy in a variety of tumors to further delineate more specific molecular mechanisms underlying osteosarcoma tumorigenesis and pathogenesis. Considering the broad involvement of ERβ in apoptosis, autophagy, and their interaction, it is plausible that the critical role of ERβ in inhibiting the proliferation and metastasis of osteosarcoma cells is closely related to its regulation of apoptosis and autophagy.
Collapse
Affiliation(s)
- Zheng-Ming Yang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Fei Yang
- Department of Emergency, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui-Min Tao
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Mahajan A, Burrewar M, Vaidya T, Gupta A. Oncology and pregnancy: Image wisely. CANCER RESEARCH, STATISTICS, AND TREATMENT 2019; 2:237. [DOI: 10.4103/crst.crst_56_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
14
|
Lillo Osuna MA, Garcia-Lopez J, El Ayachi I, Fatima I, Khalid AB, Kumpati J, Slayden AV, Seagroves TN, Miranda-Carboni GA, Krum SA. Activation of Estrogen Receptor Alpha by Decitabine Inhibits Osteosarcoma Growth and Metastasis. Cancer Res 2018; 79:1054-1068. [PMID: 30593524 DOI: 10.1158/0008-5472.can-18-1255] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/16/2018] [Accepted: 12/10/2018] [Indexed: 01/04/2023]
Abstract
Osteosarcoma is a malignant tumor in the bone, which originates from normal osteoblasts or osteoblast precursors. Normal osteoblasts express estrogen receptor alpha (ERα); however, osteosarcomas do not express ERα due to promoter DNA methylation. Here we show that treatment of 143B osteosarcoma cells with decitabine (DAC, 5-Aza-2'-deoxycytidine) induces expression of ERα and leads to decreased proliferation and concurrent induction of osteoblast differentiation. DAC exposure reduced protein expression of metastasis-associated markers VIMENTIN, SLUG, ZEB1, and MMP9, with a concurrent decrease in mRNA expression of known stem cell markers SOX2, OCT4, and NANOG. Treatment with 17β-estradiol (E2) synergized with DAC to reduce proliferation. Overexpression of ERα inhibited proliferation and induced osteoblast differentiation, whereas knockout of ERα by CRISPR/Cas9 prevented the effects of DAC. In an orthotopic model of osteosarcoma, DAC inhibited tumor growth and metastasis of 143B cells injected into the tibia of NOD SCID gamma mice. Furthermore, ERα overexpression reduced tumor growth and metastasis, and ERα knockout prevented the effects of DAC in vivo. Together, these experiments provide preclinical evidence that the FDA-approved DNA methylation inhibitor DAC may be repurposed to treat patients with osteosarcoma based on its efficacy to decrease proliferation, to induce osteoblast differentiation, and to reduce metastasis to visceral organs.Significance: These findings describe the effects of DNA methyltransferase inhibition on ERα and its potential role as a tumor suppressor in osteosarcoma.See related commentary by Roberts, p. 1034 See related article by El Ayachi and colleagues; Cancer Res 79(5);982-93.
Collapse
Affiliation(s)
- Maria Angeles Lillo Osuna
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jesus Garcia-Lopez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ikbale El Ayachi
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Iram Fatima
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jerusha Kumpati
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alexandria V Slayden
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Tiffany N Seagroves
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
15
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
16
|
Goncharov AI, Maslakova AA, Polikarpova AV, Bulanova EA, Guseva AA, Morozov IA, Rubtsov PM, Smirnova OV, Shchelkunova TA. Progesterone inhibits proliferation and modulates expression of proliferation-Related genes in classical progesterone receptor-negative human BxPC3 pancreatic adenocarcinoma cells. J Steroid Biochem Mol Biol 2017; 165:293-304. [PMID: 27449817 DOI: 10.1016/j.jsbmb.2016.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 03/03/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
Abstract
Recent studies suggest that progesterone may possess anti-tumorigenic properties. However, a growth-modulatory role of progestins in human cancer cells remains obscure. With the discovery of a new class of membrane progesterone receptors (mPRs) belonging to the progestin and adipoQ receptor gene family, it becomes important to study the effect of this hormone on proliferation of tumor cells that do not express classical nuclear progesterone receptors (nPRs). To identify a cell line expressing high levels of mPRs and lacking nPRs, we examined mRNA levels of nPRs and three forms of mPRs in sixteen human tumor cell lines of different origin. High expression of mPR mRNA has been found in pancreatic adenocarcinoma BxPC3 cells, while nPR mRNA has not been detected in these cells. Western blot analysis confirmed these findings at the protein level. We revealed specific binding of labeled progesterone in these cells with affinity constant similar to that of human mPR expressed in yeast cells. Progesterone at high concentration of 20 μM significantly reduced the mRNA levels of proliferation markers Ki67 and PCNA, as well as of cyclin D1, and increased the mRNA levels of cyclin dependent kinase inhibitors p21 and p27. Progesterone (1 μM and 20 μM) significantly inhibited proliferative activity of BxPC3 cells. These results point to anti-proliferative effects of the progesterone high concentrations on BxPC3 cells and suggest that activation of mPRs may mediate this action. Our data are a starting point for further investigations regarding the application of progesterone in pancreatic cancer.
Collapse
Affiliation(s)
- Alexey I Goncharov
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Aitsana A Maslakova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Anna V Polikarpova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Elena A Bulanova
- ChemRar High-Tech Center, 2a-1 Rabochaya St., Khimki, Moscow Oblast 141400 Russia
| | - Alexandra A Guseva
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Ivan A Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991 Russia
| | - Petr M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991 Russia
| | - Olga V Smirnova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia
| | - Tatiana A Shchelkunova
- Lomonosov Moscow State University, Biological Faculty, Lenin Hills, 1/12, Moscow 119234, Russia.
| |
Collapse
|
17
|
Schooling CM, Houghton LC, Terry MB. Potential Intervention Targets in Utero and Early Life for Prevention of Hormone Related Cancers. Pediatrics 2016; 138:S22-S33. [PMID: 27940974 DOI: 10.1542/peds.2015-4268e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/24/2022] Open
Abstract
Hormone-related cancers have long been thought to be sensitive to exposures during key periods of sexual development, as shown by the vulnerability to such cancers of women exposed to diethylstilbestrol in utero. In addition to evidence from human studies, animal studies using new techniques, such as gene knockout models, suggest that an increasing number of cancers may be hormonally related, including liver, lung, and bladder cancer. Greater understanding of sexual development has also revealed the "mini-puberty" of early infancy as a key period when some sex hormones reach levels similar to those at puberty. Factors driving sex hormones in utero and early infancy have not been systematically identified as potential targets of intervention for cancer prevention. On the basis of sex hormone pathways, we identify common potentially modifiable drivers of sex hormones, including but not limited to factors such as obesity, alcohol, and possibly nitric oxide. We review the evidence for effects of modifiable drivers of sex hormones during the prenatal period and early infancy, including measured hormones as well as proxies, such as the second-to-fourth digit length ratio. We summarize the gaps in the evidence needed to identify new potential targets of early life intervention for lifelong cancer prevention.
Collapse
Affiliation(s)
- C Mary Schooling
- CUNY School of Public Health and Hunter College, New York, New York; .,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; and
| | - Lauren C Houghton
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
18
|
Androgen receptor CAG and GGN repeat length variation contributes more to the tumorigenesis of osteosarcoma. Oncotarget 2016; 7:68151-68155. [PMID: 27626686 PMCID: PMC5356545 DOI: 10.18632/oncotarget.11902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/13/2016] [Indexed: 12/05/2022] Open
Abstract
The androgen receptor (AR) is involved in the differentiation and growth of many cancers. We hypothesized that two microsatellite polymorphic variants, AR (CAG)n and (GGN)n repeats, were also associated with the development of Papillary thyroid cancer (PTC) and Osteosarcoma. In current study, we conducted two case-control studies in a Chinese population to investigate the possible relationship between these two AR repeat polymorphisms and the risk of PTC and Osteosarcoma. The AR CAG repeat length was significantly associated with both risk of PTC and Osteosarcoma. Subjects with shorter AR CAG repeats had a higher risk of developing PTC (OR = 1.47, 95% CI: 1.17–1.85, P = 0.001) and Osteosarcoma (OR = 1.53, 95% CI: 1.19–1.97, P = 9.2 × 10–4). Specifically, shorter GGN repeats also contribute a significant increased risk of Osteosarcoma (OR = 1.35, 95% CI: 1.03–1.77, P = 0.030). Our results contribute to a better understanding of the complex hormone related mechanisms underlying PTC and Osteosarcoma.
Collapse
|
19
|
Expression of estrogen and progesterone receptors across human malignancies: new therapeutic opportunities. Cancer Metastasis Rev 2016; 34:547-61. [PMID: 25543191 DOI: 10.1007/s10555-014-9543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen and progesterone receptors (ERs and PRs) are known for their prognostic as well as treatment predictive value in breast cancer. Although these receptors are differentially expressed in some other malignancies, and likely participate in the biology of those cancer types, the relevance to outcome and therapy is not well established. The use of ER as a highly effective therapeutic target in oncology was pioneered in breast cancer, and the lessons learned from its success could potentially benefit patients with several other malignancies in which hormone receptors are highly expressed. Indeed, there are several potent drugs available that target hormone receptors. These agents show incontrovertible evidence of benefit in patients with hormone receptor-positive breast cancer. It is conceivable that these drugs may have salutary effects in a variety of cancers other than those originating in the breast, based on the overexpression of hormone receptors in some patients, and the preclinical and clinical reports showing responses to these drugs in diverse cancers, albeit in small series or anecdotally. We therefore undertook a literature review in order to summarize the current data regarding the biologic and clinical implications of expression of estrogen and progesterone receptors in various malignancies and the possibilities for deployment of hormone manipulation beyond breast cancer.
Collapse
|
20
|
Miki Y, Hata S, Nagasaki S, Suzuki T, Ito K, Kumamoto H, Sasano H. Steroid and xenobiotic receptor-mediated effects of bisphenol A on human osteoblasts. Life Sci 2016; 155:29-35. [DOI: 10.1016/j.lfs.2016.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/27/2023]
|
21
|
Puvanesarajah V, Spiker AM, Shannon BA, Grundy M, Levin AS, Morris CD. Evaluation and management of the pregnant patient with suspected primary musculoskeletal tumor or metastatic carcinoma to bone. Surg Oncol 2016; 25:212-22. [PMID: 27566025 DOI: 10.1016/j.suronc.2016.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/20/2016] [Indexed: 01/26/2023]
Abstract
Primary musculoskeletal cancer and metastatic disease to bone in pregnant patients presents major treatment challenges. Although uncommon, musculoskeletal malignancies in pregnant women have been reported. When diagnosing and treating these patients, the mother's health must be managed appropriately while ensuring that fetal development is not deleteriously affected. Extensive radiographic imaging and more advanced techniques are often necessary to fully characterize the extent of disease. When possible, magnetic resonance imaging should be used instead of computed tomography to limit exposure of the conceptus to radiation. If treatment is needed, therapeutic radiation, chemotherapy, and surgery should be considered. Surgical resection is the foundation of treatment of early-stage primary bone tumors and soft-tissue sarcomas during pregnancy. With surgery, anesthesia and thromboprophylaxis are important considerations. If chemotherapy is required, administration should be avoided in the first trimester to limit harm to the fetus. Therapeutic radiation should similarly be avoided during the first trimester and often can be postponed until after delivery.
Collapse
Affiliation(s)
- Varun Puvanesarajah
- Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Andrea M Spiker
- Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Brett A Shannon
- Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Maureen Grundy
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Adam S Levin
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Carol D Morris
- Division of Orthopaedic Oncology, Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
22
|
|
23
|
Dias NJ, Selcer KW. Steroid sulfatase in the human MG-63 preosteoblastic cell line: Antagonistic regulation by glucocorticoids and NFκB. Mol Cell Endocrinol 2016; 420:85-96. [PMID: 26631368 DOI: 10.1016/j.mce.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Steroid sulfatase (STS) converts sulfated steroids into active forms in cells. Preosteoblastic cells possess STS, but its role and regulation in bone are unclear. We examined STS activity and gene expression during differentiation of human MG-63 preosteoblasts. STS activity and gene expression were decreased during differentiation in cells treated with osteogenic supplement containing dexamethasone (DEX). DEX also inhibited STS activity and expression in undifferentiated cells, and the glucocorticoid antagonist RU486 reversed DEX inhibition of STS. These data may have implications for glucocorticoid-induced osteoporosis. The NFκB activators lipopolysaccharide and phorbol myristate acetate increased STS expression in undifferentiated and differentiated MG-63 cells, while the NFκB inhibitor BAY-11-7082 partially blocked these responses. The antagonistic actions of glucocorticoids and NFkB on STS expression are similar to the regulation of inflammatory response proteins. We propose a model of STS regulation whereby inflammation leads to increased STS, resulting in increased estrogen, which modulates the inflammatory response.
Collapse
Affiliation(s)
- Natasha J Dias
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Han NR, Park CL, Kim NR, Kim HY, Yoou MS, Nam SY, Moon PD, Jeong HJ, Kim HM. Protective effect of porcine placenta in a menopausal ovariectomized mouse. Reproduction 2015; 150:173-81. [PMID: 26047835 DOI: 10.1530/rep-15-0157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/05/2015] [Indexed: 01/13/2023]
Abstract
Menopause is a significant physiological phase that occurs as women's ovaries stop producing ovum and the production of estrogen declines. Human placenta and some amino acids are known to improve menopausal symptoms. In this study, we investigated that porcine placenta extract (PPE) and arginine (Arg), a main amino acid of PPE, would have estrogenic activities in ovariectomized (OVX) mice as a menopause mouse model, human breast cancer cell line (MCF-7) cells, and human osteoblast cell line (MG-63) cells. PPE or Arg significantly inhibited the body weight and increased the vagina weight compared to the OVX mice. PPE or Arg ameliorated the vaginal atrophy in the OVX mice. The levels of 17β-estradiol and the activities of alkaline phosphatase (ALP) were significantly increased by PPE or Arg in the serum of OVX mice. Trabecular bone parameters such as bone mineral density and porosity were also improved by PPE or Arg in the OVX mice. In the MCF-7 and MG-63 cells, PPE or Arg significantly increased the cell proliferation, estrogen receptor β mRNA expression, and estrogen-response elements luciferase activity. Finally, PPE or Arg increased the activations of ALP and extracellular signal-regulated kinase 1/2 in the MG-63 cells. These results indicate that PPE or Arg would have estrogenic and osteoblastic activity. Therefore, PPE or Arg may be useful as new pharmacological tools for treating menopausal symptoms including osteoporosis. Free Korean abstract: A Korean translation of this abstract is freely available at http://www.reproduction-online.org/content/150/3/173/suppl/DC1.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Chan-Lee Park
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Na-Rae Kim
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Hee-Yun Kim
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Myoung-Schook Yoou
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Sun-Young Nam
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Phil-Dong Moon
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Hyun-Ja Jeong
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| | - Hyung-Min Kim
- Department of PharmacologyCollege of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of KoreaDepartment of Food TechnologyInflammatory Disease Research Center, Hoseo University, 20, Hoseo-ro 79beon-gil, Baebang-eup, Asan, Chungcheongnam-do 336-795, Republic of Korea
| |
Collapse
|
25
|
Poos K, Smida J, Maugg D, Eckstein G, Baumhoer D, Nathrath M, Korsching E. Genomic heterogeneity of osteosarcoma - shift from single candidates to functional modules. PLoS One 2015; 10:e0123082. [PMID: 25848766 PMCID: PMC4388529 DOI: 10.1371/journal.pone.0123082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/27/2015] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS), a bone tumor, exhibit a complex karyotype. On the genomic level a highly variable degree of alterations in nearly all chromosomal regions and between individual tumors is observable. This hampers the identification of common drivers in OS biology. To identify the common molecular mechanisms involved in the maintenance of OS, we follow the hypothesis that all the copy number-associated differences between the patients are intercepted on the level of the functional modules. The implementation is based on a network approach utilizing copy number associated genes in OS, paired expression data and protein interaction data. The resulting functional modules of tightly connected genes were interpreted regarding their biological functions in OS and their potential prognostic significance. We identified an osteosarcoma network assembling well-known and lesser-known candidates. The derived network shows a significant connectivity and modularity suggesting that the genes affected by the heterogeneous genetic alterations share the same biological context. The network modules participate in several critical aspects of cancer biology like DNA damage response, cell growth, and cell motility which is in line with the hypothesis of specifically deregulated but functional modules in cancer. Further, we could deduce genes with possible prognostic significance in OS for further investigation (e.g. EZR, CDKN2A, MAP3K5). Several of those module genes were located on chromosome 6q. The given systems biological approach provides evidence that heterogeneity on the genomic and expression level is ordered by the biological system on the level of the functional modules. Different genomic aberrations are pointing to the same cellular network vicinity to form vital, but already neoplastically altered, functional modules maintaining OS. This observation, exemplarily now shown for OS, has been under discussion already for a longer time, but often in a hypothetical manner, and can here be exemplified for OS.
Collapse
Affiliation(s)
- Kathrin Poos
- Institute of Bioinformatics, University Hospital Münster, Münster, Germany
| | - Jan Smida
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Doris Maugg
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gertrud Eckstein
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Baumhoer
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Eberhard Korsching
- Institute of Bioinformatics, University Hospital Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
26
|
Grindstad T, Andersen S, Al-Saad S, Donnem T, Kiselev Y, Nordahl Melbø-Jørgensen C, Skjefstad K, Busund LT, Bremnes RM, Richardsen E. High progesterone receptor expression in prostate cancer is associated with clinical failure. PLoS One 2015; 10:e0116691. [PMID: 25723513 PMCID: PMC4344236 DOI: 10.1371/journal.pone.0116691] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prostate cancer is a highly heterogeneous disease and one of the leading causes of mortality in developed countries. Specific prognostic and predictive markers for prostate cancer patients are still lacking. A causal relationship between androgens and the development of prostate cancer is generally considered biologically plausible, but androgens are not the sole effector in the complexity of prostate carcinogenesis. The aim of this study was to evaluate the prognostic significance of progesterone receptor in tumor tissue of T1-3N0 prostate cancer patients undergoing prostatectomy. METHODS Tissue microarrays from 535 patients with prostate cancer were constructed. Duplicate cores of tumor cells and tumor stromal tissue from each resected specimen were extracted. Immunohistochemistry was used to evaluate the in-situ expression of progesterone receptor. RESULTS In univariate analyses, high tumor cell density (p = 0.006) and high tumor stromal cell density level (p = 0.045) of progesterone receptor were both significantly associated with tumor progression and clinical failure. In multivariate analysis, progesterone receptor expression in tumor cells was an independent negative prognostic factor for clinical failure (HR: 2.5, 95% CI: 1.2-5.2, p = 0.012). CONCLUSION High progesterone receptor density in tumor cells of the prostate cancer tumor is an independent negative prognostic factor for clinical failure.
Collapse
Affiliation(s)
- Thea Grindstad
- Dept. of Medical Biology, UiT - The Arctic University of Norway, Tromso, Norway
- * E-mail:
| | - Sigve Andersen
- Dept. of Clinical Medicine, UiT - The Arctic University of Norway, Tromso, Norway
- Dept. of Oncology, University Hospital of North Norway, Tromso, Norway
| | - Samer Al-Saad
- Dept. of Medical Biology, UiT - The Arctic University of Norway, Tromso, Norway
- Dept. of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Tom Donnem
- Dept. of Clinical Medicine, UiT - The Arctic University of Norway, Tromso, Norway
- Dept. of Oncology, University Hospital of North Norway, Tromso, Norway
| | - Yury Kiselev
- Dept. of Medical Biology, UiT - The Arctic University of Norway, Tromso, Norway
- Dept. of Pharmacy, UiT—The Arctic University of Norway, Tromso, Norway
| | | | - Kaja Skjefstad
- Dept. of Medical Biology, UiT - The Arctic University of Norway, Tromso, Norway
| | - Lill-Tove Busund
- Dept. of Medical Biology, UiT - The Arctic University of Norway, Tromso, Norway
- Dept. of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Roy M. Bremnes
- Dept. of Medical Biology, UiT - The Arctic University of Norway, Tromso, Norway
- Dept. of Clinical Medicine, UiT - The Arctic University of Norway, Tromso, Norway
| | - Elin Richardsen
- Dept. of Medical Biology, UiT - The Arctic University of Norway, Tromso, Norway
- Dept. of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
27
|
Dias NJ, Selcer KW. Steroid sulfatase mediated growth Sof human MG-63 pre-osteoblastic cells. Steroids 2014; 88:77-82. [PMID: 25042472 DOI: 10.1016/j.steroids.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 01/18/2023]
Abstract
Estrogen plays an important role in maintaining bone density. Postmenopausal women have low plasma estrogen, but have high levels of conjugated steroids, particularly estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS). Conversion of these precursors to active estrogens may help maintain bone density in postmenopausal women. The enzyme steroid sulfatase (STS) converts sulfated steroids into active forms in peripheral tissues. STS occurs in bone, but little is known about its role in bone function. In this study, we investigated STS activity and expression in the human MG-63 pre-osteoblastic cell line. We also tested whether sulfated steroids can stimulate growth of these cells. MG-63 cells and microsomes both possessed STS activity, which was blocked by the STS inhibitors EMATE and 667 Coumate. Further evidence for STS in these cells was provided by RT-PCR, using STS specific primers, which resulted in cDNA products of the predicted size. We then tested for growth of MG-63 cells in the presence of estradiol-17β, E1S and DHEAS. All three steroids stimulated MG-63 cell growth in a steroid-free basal medium. We also tested whether the cell growth induced by sulfated steroids could be blocked using a STS inhibitor (667 Coumate) or using an estrogen receptor blocker (ICI 182,780). Both compounds inhibited E1S-induced cell growth, indicating that E1S stimulates MG-63 cell growth through a mechanism involving both STS and the estrogen receptor. Finally, we demonstrated using RT-PCR that MG-63 cells contain mRNA for both estrogen receptor alpha and estrogen receptor beta. Our data reveal that STS is present in human pre-osteoblastic bone cells and that it can influence bone cell growth by converting inactive sulfated steroids to estrogenic forms that act via estrogen receptor alpha or beta.
Collapse
Affiliation(s)
- N J Dias
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - K W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Ouyang ZX, Li XA. Inhibitory effects of tamoxifen and doxorubicin, alone and in combination, on the proliferation of the MG63 human osteosarcoma cell line. Oncol Lett 2013; 6:970-976. [PMID: 24137447 PMCID: PMC3796417 DOI: 10.3892/ol.2013.1487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/10/2013] [Indexed: 12/02/2022] Open
Abstract
The present study aimed to compare the combined effect of tamoxifen (TAM) and doxorubicin (ADM) with the individual effects of TAM and ADM alone on the MG63 human osteosarcoma cell line. Estrogen receptor (ER) expression was detected in the MG63 cells using reverse transcription PCR. The morphological changes during the inhibition of cell growth were observed using an inverted microscope and a 3-(4, 5-dimethy1-2-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) colorimetric assay following the individual or combined addition of TAM and ADM. ERα and ERβ expression was detected in the MG63 cells. The typical apoptotic cell morphology was observed in all groups, with the exception of the control group. The MTT colorimetric analysis demonstrated that the rate of inhibition of cell proliferation in the combination group was significantly increased compared with that in the other groups (P<0.05). ERα and ERβ expression was detected in the MG63 human osteosarcoma cells. TAM and ADM alone were able to inhibit cell proliferation. The combination of TAM and ADM significantly enhanced the inhibitory effect, partly through the enhanced sensitivity of the cells to ADM by TAM, which caused the inhibition of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Zheng-Xiao Ouyang
- Department of Orthopaedics, Hunan Provincial Tumor Hospital and Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | | |
Collapse
|
29
|
Zuguchi M, Miki Y, Onodera Y, Fujishima F, Takeyama D, Okamoto H, Miyata G, Sato A, Satomi S, Sasano H. Estrogen receptor α and β in esophageal squamous cell carcinoma. Cancer Sci 2012; 103:1348-1355. [PMID: 22463081 PMCID: PMC7659275 DOI: 10.1111/j.1349-7006.2012.02288.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 12/21/2022] Open
Abstract
A gender difference has been reported in the morbidity of esophageal squamous cell carcinoma (ESCC). Estrogens have been proposed to play a role in this difference but the details have not yet been clarified. Therefore, in the present study, we examined the status of estrogen receptor (ER)α and ERβ in 90 Japanese ESCC patients. ERα and ERβ immunoreactivity was detected in the nuclei of ESCC cells (41.1 and 97.8%, respectively). There was a significant positive association between the ERβ H score and histological differentiation (P = 0.0403), TNM-pM (LYM) (P = 0.00164) and Ki67/MIB1 LI of carcinoma cells (P = 0.0497, r = 0.207). In addition, the ERβ status of carcinoma cells was significantly correlated with unfavorable clinical outcome of the patients. Multivariate analysis further revealed the ERβ status in carcinoma cells as an independent unfavorable prognostic factor of these patients. We further examined the effects of estrogen treatment on ESCC cell line (ECGI-10) transfected with ERα or ERβ in vitro. The number of ECGI-10 transfected with ERβ was increased by estradiol or ERβ specific agonist but estradiol did not exert any effect upon the cell number of ECGI-10 transfected with ERα. In summary, the results of the present study clearly demonstrate that the status of ERβ in ESCC was closely associated with the unfavorable prognosis, possibly through altering cell proliferation of carcinoma cells.
Collapse
Affiliation(s)
- Masashi Zuguchi
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mastrangelo G, Coindre JM, Ducimetière F, Dei Tos AP, Fadda E, Blay JY, Buja A, Fedeli U, Cegolon L, Frasson A, Ranchère-Vince D, Montesco C, Ray-Coquard I, Rossi CR. Incidence of soft tissue sarcoma and beyond. Cancer 2012; 118:5339-48. [DOI: 10.1002/cncr.27555] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/10/2012] [Accepted: 02/27/2012] [Indexed: 12/26/2022]
|
31
|
Ponnapakkam T, Katikaneni R, Nichols T, Tobin G, Sakon J, Matsushita O, Gensure RC. Prevention of chemotherapy-induced osteoporosis by cyclophosphamide with a long-acting form of parathyroid hormone. J Endocrinol Invest 2011; 34:e392-7. [PMID: 21750397 DOI: 10.3275/7864] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Most chemotherapeutics reduce bone mineral density (BMD) and increase risk for fractures by causing gonadal suppression, which in turn increases bone removal. Cyclophosphamide (CYP) also has a direct effect of inhibiting bone formation and removal, making the resulting bone loss particularly difficult to treat with antiresorptive therapy. AIM We tested whether a single dose of the anabolic agent PTH linked to a collagen binding domain (PTHCBD) could prevent the effects of CYP-induced bone loss. METHODS Mice received either buffer alone, CYP, or CYP+ PTH-CBD. BMD and alkaline phosphatase were measured every 2 weeks for a total of 8 weeks. RESULTS After 6 weeks, mice treated with CYP showed expected reductions in BMD (increase from baseline: 7.4 ± 6.9 vs 24.35 ± 4.86% in mice without chemotherapy, p<0.05) and decrease in alkaline phosphatase levels (42.78 ± 6.06 vs 60.62 ± 6.23 IU/l in mice without chemotherapy, p<0.05), consistent with osteoporosis from impaired bone formation. Administration of a single dose of PTH-CBD (320 μg/kg ip) prior to CYP treatment improved BMD (change from baseline: 23.4 ± 5.4 vs 7.4 ± 6.9%, CYP treatment alone, p<0.05) and increased alkaline phosphatase levels (50.14 ± 4.86 vs 42.78 ± 6.06 IU/l in CYP treatment alone, p<0.05). BMD values and alkaline phosphatase levels were restored to those seen in mice not receiving chemotherapy. CONCLUSIONS A single dose of PTHCBD prior to chemotherapy reversed CYP-induced suppression of bone formation and prevented CYP-induced bone loss in mice.
Collapse
Affiliation(s)
- T Ponnapakkam
- Department of Pediatric Endocrinology, Children's Hospital at Montefiore and Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Miki Y, Abe K, Suzuki S, Suzuki T, Sasano H. Suppression of estrogen actions in human lung cancer. Mol Cell Endocrinol 2011; 340:168-74. [PMID: 21354461 DOI: 10.1016/j.mce.2011.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 02/08/2011] [Accepted: 02/13/2011] [Indexed: 11/21/2022]
Abstract
Estrogen plays a critical role in female reproduction but has also been reported to have important roles in various target tissues expressing estrogen receptor (ER) α and/or ERβ in both male and female. ERs especially ERβ have been demonstrated to be present and functional in both normal human lung and its disorders including cancer. Non-small cell lung carcinomas (NSCLCs) are well-known to be composed of heterogeneous groups. Squamous cell carcinoma is the most common subtype in men, but adenocarcinoma is the most common histologic subtype in women. Therefore, sex steroid hormones such as estrogens have been considered to play some roles in NSCLC. In particular, results of several epidemiological analyses pointed out the association between physiological or artificial alterations of hormone status such as menstruation and postmenopausal administration of hormone replacement therapy and lung cancer risks or its development especially in female subjects. In NSCLC tissues, intratumoral estrogen synthesis via aromatase, which is a key enzyme in the estrogen synthesis involved in aromatization of androgens into estrogens, has recently become of clinical interest as a possible target of therapy. Therefore, in this review, we focused on the potential of an endocrine therapy in NSCLC using clinically available inhibitors of estrogen and aromatase actions.
Collapse
Affiliation(s)
- Yasuhiro Miki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | |
Collapse
|
33
|
Age-Period-Cohort Analysis of Primary Bone Cancer Incidence Rates in the United States (1976–2005). Cancer Epidemiol Biomarkers Prev 2011; 20:1770-7. [DOI: 10.1158/1055-9965.epi-11-0136] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
34
|
Yarber JL, Agulnik M. Targeted therapies in bone sarcomas: current approach and future directions. Expert Opin Investig Drugs 2011; 20:973-9. [PMID: 21510829 DOI: 10.1517/13543784.2011.577064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bone sarcomas are rare malignancies and once advanced, there is limited response to current chemotherapeutic regimens. Targeted therapies could have substantial impact on these diseases. AREAS COVERED Specific molecular targets of bone sarcomas are reviewed along with the various targeted therapies that have potential to change the outcome of these chemotherapy resistant diseases. EXPERT OPINION There are promising pathways identified that targeted inhibitors could provide better treatment options for metastatic bone sarcomas. There is a strong need for continued Phase II and III clinical trials investigating these molecularly targeted therapies.
Collapse
Affiliation(s)
- Jessica Lee Yarber
- Northwestern Memorial Hospital, Internal Medicine, Chicago, IL 60611, USA.
| | | |
Collapse
|
35
|
Svoboda M, Hamilton G, Thalhammer T. Steroid hormone metabolizing enzymes in benign and malignant human bone tumors. Expert Opin Drug Metab Toxicol 2010; 6:427-37. [PMID: 20102288 DOI: 10.1517/17425251003592129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
UNLABELLED IMPORTANCE IN THE FIELD: Primary bone tumors are considered as (sex steroid) hormone-dependent tumors. Osteosarcoma, osteoblastoma and bone cysts are preferentially found in males, while giant cell tumors are more common in females. Indeed, bone tumor development and progression are influenced by sex steroid hormones derived from in situ synthesis in bone cells. AREAS COVERED IN THIS REVIEW This review describes intracrine mechanisms for local formation of the biologically most active estrogen, 17beta-estradiol (E2), from circulating steroid precursors through the 'aromatase' (aromatization of androgens) and the 'sulfatase' (conversion of inactive estrone-sulfate) pathway. WHAT THE READER WILL GAIN The reader gains knowledge on both pathways and the enzymes, which contribute to the in situ availability of active hormones, namely 3beta-hydroxysteroid dehydrogenases, 17beta-hydroxysteroid dehydrogenases, aromatase, steroid sulfatases and sulfotransferases. An overview is given and the expression and function of these enzymes in bone tumors are discussed. TAKE HOME MESSAGE Knowledge on pathways for the in situ formation of E2 in bone cells may allow the identification of potential targets for i) novel endocrine therapeutic options in primary bone tumors and ii) future preventive interventions.
Collapse
Affiliation(s)
- Martin Svoboda
- Department of Pathophysiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | | | | |
Collapse
|
36
|
Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of beta1-integrin. J Bone Miner Res 2010; 25:627-39. [PMID: 19821775 PMCID: PMC3153398 DOI: 10.1359/jbmr.091008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogen and mechanical forces are positive regulators for osteoblast proliferation and bone formation. We investigated the synergistic effect of estrogen and flow-induced shear stress on signal transduction and gene expression in human osetoblast-like MG63 cells and primary osteoblasts (HOBs) using activations of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and expressions of c-fos and cyclooxygenase-2 (I) as readouts. Estrogen (17beta-estradiol, 10 nM) and shear stress (12 dyn/cm(2)) alone induced transient phosphorylations of ERK and p38 MAPK in MG63 cells. Pretreating MG63 cells with 17beta-estradiol for 6 hours before shearing augmented these shear-induced MAPK phosphorylations. Western blot and flow cytometric analyses showed that treating MG63 cells with 17beta-estradiol for 6 hrs induced their beta(1)-integrin expression. This estrogen-induction of beta(1)-integrin was inhibited by pretreating the cells with a specific antagonist of estrogen receptor ICI 182,780. Both 17beta-estradiol and shear stress alone induced c-fos and Cox-2 gene expressions in MG63 cells. Pretreating MG63 cells with 17beta-estradiol for 6 hrs augmented the shear-induced c-fos and Cox-2 expressions. The augmented effects of 17beta-estradiol on shear-induced MAPK phosphorylations and c-fos and Cox-2 expressions were inhibited by pretreating the cells with ICI 182,780 or transfecting the cells with beta(1)-specific small interfering RNA. Similar results on the augmented effect of estrogen on shear-induced signaling and gene expression were obtained with HOBs. Our findings provide insights into the mechanism by which estrogen augments shear stress responsiveness of signal transduction and gene expression in bone cells via estrogen receptor-mediated increases in beta(1)-integrin expression.
Collapse
|
37
|
Eisinger-Mathason TK, Andrade J, Lannigan DA. RSK in tumorigenesis: connections to steroid signaling. Steroids 2010; 75:191-202. [PMID: 20045011 PMCID: PMC2823981 DOI: 10.1016/j.steroids.2009.12.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 12/23/2022]
Abstract
The Ser/Thr kinase family, RSK, has been implicated in numerous types of hormone-dependent and -independent cancers. However, there has been little consideration of RSKs as downstream mediators of steroid hormone non-genomic effects or of their ability to facilitate steroid receptor-mediated gene expression. Steroid hormone signaling can directly stimulate the MEK/ERK/RSK pathway to regulate cellular proliferation and survival in transformed cells. To date, multiple mechanisms of RSK and steroid hormone receptor-mediated proliferation/survival have been elucidated. For example, RSK enhances proliferation of breast and prostate cancer cells via its ability to control the levels of the estrogen receptor co-activator, cyclin D1. While in lung and other tumors RSK may control apoptosis via estrogen-mediated regulation of mitochondrial integrity. Thus the RSKs could be important anti-cancer therapeutic targets in many different transformed tissues. The recent discovery of RSK-specific inhibitors will advance our current understanding of RSK in transformation and drive these studies into animal and clinical models. In this review we explore the mechanisms associated with RSK in tumorigenesis and their relationship to steroid hormone signaling.
Collapse
Affiliation(s)
- T.S. Karin Eisinger-Mathason
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908
| | - Josefa Andrade
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908
| | - Deborah A. Lannigan
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908
- Corresponding author. Tel: +1 434 924 1152; 1+ 434 924 1236;
| |
Collapse
|
38
|
Buddingh EP, Anninga JK, Versteegh MIM, Taminiau AHM, Egeler RM, van Rijswijk CSP, Hogendoorn PCW, Lankester AC, Gelderblom H. Prognostic factors in pulmonary metastasized high-grade osteosarcoma. Pediatr Blood Cancer 2010; 54:216-21. [PMID: 19890902 DOI: 10.1002/pbc.22293] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Resection of pulmonary metastases has previously been reported to improve outcome in high-grade osteosarcoma (OS) patients. Factors influencing survival in OS patients with pulmonary metastases are important for clinical decision making. METHODS All 88 OS patients with pulmonary metastases either at diagnosis or during follow-up treated at the Leiden University Medical Center between January 1, 1990 and January 1, 2008 under the age of 40 were included in this study, including 79 cases of conventional, 8 cases of telangiectatic and 1 case of small cell OS. RESULTS In total, 56 of 88 patients with pulmonary metastases were treated by metastasectomy. Resectability of pulmonary metastases was the main prognostic factor. In patients with primary non-metastatic OS, a longer relapse free interval to pulmonary metastases was significantly associated with better survival (P = 0.02). Independent risk factors determining worse survival after metastasectomy in multivariate analysis were male sex (P = 0.05), higher number of pulmonary nodules (P = 0.03), and non-necrotic metastases (P = 0.04). Whether surgery for recurrent pulmonary metastases was performed did not influence survival. Histological subtype of the primary tumor, histological response in the primary tumor after neo-adjuvant chemotherapy, occurrence of local relapse, local resection or amputation of the primary tumor and age at diagnosis did not influence outcome. CONCLUSION This cohort of patients with detailed follow-up data enabled us to identify important risk factors determining survival in OS patients with pulmonary metastases. We demonstrate that after repeated metastasectomies, a subset of patients can be cured.
Collapse
Affiliation(s)
- Emilie P Buddingh
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sasano H, Miki Y, Nagasaki S, Suzuki T. In situestrogen production and its regulation in human breast carcinoma: From endocrinology to intracrinology. Pathol Int 2009; 59:777-89. [DOI: 10.1111/j.1440-1827.2009.02444.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Androgen receptor expression in gastrointestinal stromal tumor. Appl Immunohistochem Mol Morphol 2009; 17:146-50. [PMID: 19077908 DOI: 10.1097/pai.0b013e31818fcfde] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the expression of estrogen, progesterone, and androgen receptors in a large series of gastrointestinal stromal tumors. Clinical and pathologic data were reviewed in 427 cases of gastrointestinal stromal tumor and the expression of such hormone receptors was investigated by immunohistochemistry using tissue microarray technique. All tumors were negative for estrogen receptor expression. Progesterone and androgen receptors expression was observed in 5.4% and 17.6% of tumors, respectively. We found the higher average age at diagnosis, the lower frequency of tumors located in the small intestine, and the higher frequency of extragastrointestinal tumors to be statistically significant in the group of tumors with androgen receptor expression in contrast to the group showing no androgen receptor expression. There was no statistic difference between such groups regarding sex, tumor size, mitotic count, cell morphology, and risk of aggressive behavior. Considering that the expression of androgen receptors in gastrointestinal stromal tumors is not negligible, further studies are encouraged to establish the role of androgen deprivation therapy for gastrointestinal stromal tumors.
Collapse
|
41
|
Salas S, Jézéquel P, Campion L, Deville JL, Chibon F, Bartoli C, Gentet JC, Charbonnel C, Gouraud W, Voutsinos-Porche B, Brouchet A, Duffaud F, Figarella-Branger D, Bouvier C. Molecular characterization of the response to chemotherapy in conventional osteosarcomas: predictive value of HSD17B10 and IFITM2. Int J Cancer 2009; 125:851-60. [PMID: 19449377 DOI: 10.1002/ijc.24457] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The therapy regimen of high-grade osteosarcoma includes chemotherapy followed by surgical resection and postoperative chemotherapy. The degree of necrosis following definitive surgery remains the only reliable prognostic factor and is used to guide the choice of postoperative chemotherapy. The aim of this study was to find molecular markers able to classify patients with an osteosarcoma as good or poor responders to chemotherapy before beginning treatment. Gene expression screening of 20 nonmetastatic high-grade osteosarcoma patients was performed using cDNA microarray. Expression of selected relevant genes was validated using QRT-PCR. Immunohistochemistry on tissue microarrays sections of 73 biopsies was performed to investigate protein expression. Fluorescent in situ hybridization was performed for RPL8 gene. We have found that HSD17B10 gene expression was up-regulated in poor responders and that immunohistochemistry expression of HSD17B10 on biopsy before treatment was correlated to response to chemotherapy. Other results include correlation of IFITM2, IFITM3, and RPL8 gene expression to chemotherapy response. A statistical correlation was found between polysomy 8 or gain of RPL8 and good response to chemotherapy. These data suggest that HSD17B10, RPL8, IFITM2, and IFITM3 genes are involved in the response to the chemotherapy and that HSD17B10 may be a therapeutic target. RPL8 and IFITM2 may be useful in the assessment at diagnosis and for stratifying patients taking part in randomized trials.
Collapse
Affiliation(s)
- Sébastien Salas
- Service Oncologie Médicale, Hôpital de la Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|