1
|
Lehtonen TK, Gilljam D, Veneranta L, Keskinen T, Bergenius Nord M. The ecology and fishery of the vendace (Coregonus albula) in the Baltic Sea. JOURNAL OF FISH BIOLOGY 2023; 103:1463-1475. [PMID: 37642401 DOI: 10.1111/jfb.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
Brackish water ecosystems often have high primary production, intermediate salinities, and fluctuating physical conditions and therefore provide challenging environments for many of their inhabitants. This is especially true of the Baltic Sea, which is a large body of brackish water under strong anthropogenic influence. One freshwater species that is able to cope under these conditions in the northern Baltic Sea is the vendace (Coregonus albula), a small salmonid fish. Here, we review the current knowledge of its ecology and fishery in this brackish water environment. The literature shows that, by competing for resources with other planktivores and being an important prey for a range of larger species, C. albula plays a notable role in the northern Baltic Sea ecosystem. It also sustains significant fisheries in the coastal waters of Sweden and Finland. We identify the need to better understand these C. albula populations in terms of the predator-prey interactions, distributions of anadromous and sea spawning populations and other putative (eco)morphs, extent of gene exchange between the populations, and effects of climate change on their future. In this regard, we recommend strengthening C. albula-related research and management efforts by improved collaboration and coordination between research institutions, other governmental agencies, and fishers, as well as by harmonization of fishery policies across national borders.
Collapse
Affiliation(s)
| | - David Gilljam
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Coastal Research, Öregrund, Sweden
| | | | | | - Mikaela Bergenius Nord
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| |
Collapse
|
2
|
Nali RC, Zamudio KR, Prado CPA. Hybridization despite elaborate courtship behavior and female choice in Neotropical tree frogs. Integr Zool 2023; 18:208-224. [PMID: 35041294 DOI: 10.1111/1749-4877.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanisms of hybridization can be elucidated by analyzing genotypes as well as phenotypes that could act as premating barriers, as the reproductive interactions among heterospecifics can alter the evolutionary history of species. In frogs, hybrids typically occur among species that reproduce explosively (in dense aggregations) with few opportunities for mate selection but are rare in species with elaborate courtship behaviors that may prevent erroneous mating. Using 21 microsatellite markers, we examined hybridization in the prolonged-breeding tree frogs Bokermannohyla ibitiguara and B. sazimai sampled within a contact zone in the Brazilian savanna (72 tadpoles; 74 adults). We also compared acoustic and morphological data. We confirmed both parental species genetically; STRUCTURE results confirmed 14 hybrids, 11 of which were second-generation according to NEWHYBRIDS, all with intermediate values of genetic dissimilarities compared to the parentals. Morphological and acoustic analyses revealed that hybrids showed variable but not necessarily intermediate phenotypes. Moreover, 2 hybrids exhibited call types different from parentals. The reproduction of B. ibitiguara involves territorial and aggressive males, elaborate courtships with acoustic and tactile stimuli, choosy females, and opportunistic strategies. Our study uncovers a rare case of viable hybridization among closely related frogs with such a combination of complex courtship behaviors and mate choice. We discuss the likely directionality and mechanisms behind this phenomenon, and highlight the importance of investigating hybridization even in species that show elaborate reproduction and female choice to advance our understanding of animal diversification.
Collapse
Affiliation(s)
- Renato C Nali
- Programa de Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Department of Integrative Biology, University of Texas, Austin, Texas, USA
| | - Cynthia P A Prado
- Programa de Pós-Graduação em Ecologia, Evolução e Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil.,Departamento de Morfologia e Fisiologia Animal, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, São Paulo, Brazil
| |
Collapse
|
3
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
4
|
Kozak N, Ahonen SA, Keva O, Østbye K, Taipale SJ, Hayden B, Kahilainen KK. Environmental and biological factors are joint drivers of mercury biomagnification in subarctic lake food webs along a climate and productivity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146261. [PMID: 34030265 DOI: 10.1016/j.scitotenv.2021.146261] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Subarctic lakes are getting warmer and more productive due to the joint effects of climate change and intensive land-use practices (e.g. forest clear-cutting and peatland ditching), processes that potentially increase leaching of peat- and soil-stored mercury into lake ecosystems. We sampled biotic communities from primary producers (algae) to top consumers (piscivorous fish), in 19 subarctic lakes situated on a latitudinal (69.0-66.5° N), climatic (+3.2 °C temperature and +30% precipitation from north to south) and catchment land-use (pristine to intensive forestry areas) gradient. We first tested how the joint effects of climate and productivity influence mercury biomagnification in food webs focusing on the trophic magnification slope (TMS) and mercury baseline (THg baseline) level, both derived from linear regression between total mercury (log10THg) and organism trophic level (TL). We examined a suite of environmental and biotic variables thought to explain THg baseline and TMS with stepwise generalized multiple regression models. Finally, we assessed how climate and lake productivity affect the THg content of top predators in subarctic lakes. We found biomagnification of mercury in all studied lakes, but with variable TMS and THg baseline values. In stepwise multiple regression models, TMS was best explained by negative relationships with food chain length, climate-productivity gradient, catchment properties, and elemental C:N ratio of the top predator (full model R2 = 0.90, p < 0.001). The model examining variation in THg baseline values included the same variables with positive relationships (R2 = 0.69, p = 0.014). Mass-standardized THg content of a common top predator (1 kg northern pike, Esox lucius) increased towards warmer and more productive lakes. Results indicate that increasing eutrophication via forestry-related land-use activities increase the THg levels at the base of the food web and in top predators, suggesting that the sources of nutrients and mercury should be considered in future bioaccumulation and biomagnification studies.
Collapse
Affiliation(s)
- Natalia Kozak
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad veg 80, 2480 Koppang, Norway.
| | - Salla A Ahonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad veg 80, 2480 Koppang, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Brian Hayden
- Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland; Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, 99490 Kilpisjärvi, Finland
| |
Collapse
|
5
|
Caiza Guamba JC, Corredor D, Galárraga C, Herdoiza JP, Santillán M, Segovia-Salcedo MC. Geometry morphometrics of plant structures as a phenotypic tool to differentiate Polylepis incana Kunth. and Polylepis racemosa Ruiz & Pav. reforested jointly in Ecuador. NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1906138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
| | - Daniel Corredor
- Department of Life Sciences and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Cristina Galárraga
- Department of Life Sciences and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Jean Pierre Herdoiza
- Department of Life Sciences and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Michelle Santillán
- Department of Life Sciences and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - María C. Segovia-Salcedo
- Department of Life Sciences and Agriculture, Universidad De Las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| |
Collapse
|
6
|
Keva O, Taipale SJ, Hayden B, Thomas SM, Vesterinen J, Kankaala P, Kahilainen KK. Increasing temperature and productivity change biomass, trophic pyramids and community-level omega-3 fatty acid content in subarctic lake food webs. GLOBAL CHANGE BIOLOGY 2021; 27:282-296. [PMID: 33124178 DOI: 10.1111/gcb.15387] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Climate change in the Arctic is outpacing the global average and land-use is intensifying due to exploitation of previously inaccessible or unprofitable natural resources. A comprehensive understanding of how the joint effects of changing climate and productivity modify lake food web structure, biomass, trophic pyramid shape and abundance of physiologically essential biomolecules (omega-3 fatty acids) in the biotic community is lacking. We conducted a space-for-time study in 20 subarctic lakes spanning a climatic (+3.2°C and precipitation: +30%) and chemical (dissolved organic carbon: +10 mg/L, total phosphorus: +45 µg/L and total nitrogen: +1,000 µg/L) gradient to test how temperature and productivity jointly affect the structure, biomass and community fatty acid content (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) of whole food webs. Increasing temperature and productivity shifted lake communities towards dominance of warmer, murky-water-adapted taxa, with a general increase in the biomass of primary producers, and secondary and tertiary consumers, while primary invertebrate consumers did not show equally clear trends. This process altered various trophic pyramid structures towards an hour glass shape in the warmest and most productive lakes. Increasing temperature and productivity had negative fatty acid content trends (mg EPA + DHA/g dry weight) in primary producers and primary consumers, but not in secondary nor tertiary fish consumers. The massive biomass increment of fish led to increasing areal fatty acid content (kg EPA + DHA/ha) towards increasingly warmer, more productive lakes, but there were no significant trends in other trophic levels. Increasing temperature and productivity are shifting subarctic lake communities towards systems characterized by increasing dominance of cyanobacteria and cyprinid fish, although decreasing quality in terms of EPA + DHA content was observed only in phytoplankton, zooplankton and profundal benthos.
Collapse
Affiliation(s)
- Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Brian Hayden
- Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, NB, Canada
| | - Stephen M Thomas
- Department of Environmental Systems Science, Crowther Lab, Institute of Integrative Biology, ETH-Zürich, Zürich, Switzerland
- Department of Fish Ecology and Evolution, Center of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Jussi Vesterinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Paula Kankaala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Lammi, Finland
- Kilpisjärvi Biological Station, University of Helsinki, Kilpisjärvi, Finland
| |
Collapse
|
7
|
Ackiss AS, Larson WA, Stott W. Genotyping-by-sequencing illuminates high levels of divergence among sympatric forms of coregonines in the Laurentian Great Lakes. Evol Appl 2020; 13:1037-1054. [PMID: 32431751 PMCID: PMC7232772 DOI: 10.1111/eva.12919] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Effective resource management depends on our ability to partition diversity into biologically meaningful units. Recent evolutionary divergence, however, can often lead to ambiguity in morphological and genetic differentiation, complicating the delineation of valid conservation units. Such is the case with the "coregonine problem," where recent postglacial radiations of coregonines into lacustrine habitats resulted in the evolution of numerous species flocks, often with ambiguous taxonomy. The application of genomics methods is beginning to shed light on this problem and the evolutionary mechanisms underlying divergence in these ecologically and economically important fishes. Here, we used restriction site-associated DNA (RAD) sequencing to examine genetic diversity and differentiation among sympatric forms in the Coregonus artedi complex in the Apostle Islands of Lake Superior, the largest lake in the Laurentian Great Lakes. Using 29,068 SNPs, we were able to clearly distinguish among the three most common forms for the first time, as well as identify putative hybrids and potentially misidentified specimens. Population assignment rates for these forms using our RAD data were 93%-100% with the only mis-assignments arising from putative hybrids, an improvement from 62% to 77% using microsatellites. Estimates of pairwise differentiation (F ST: 0.045-0.056) were large given the detection of hybrids, suggesting that reduced fitness of hybrid individuals may be a potential mechanism for the maintenance of differentiation. We also used a newly built C. artedi linkage map to look for islands of genetic divergence among forms and found widespread differentiation across the genome, a pattern indicative of long-term drift, suggesting that these forms have been reproductively isolated for a substantial amount of time. The results of this study provide valuable information that can be applied to develop well-informed management strategies and stress the importance of re-evaluating conservation units with genomic tools to ensure they accurately reflect species diversity.
Collapse
Affiliation(s)
- Amanda S. Ackiss
- Wisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsin
| | - Wesley A. Larson
- U.S. Geological SurveyWisconsin Cooperative Fishery Research UnitCollege of Natural ResourcesUniversity of Wisconsin‐Stevens PointStevens PointWisconsin
| | - Wendylee Stott
- U.S. Geological SurveyGreat Lakes Science CenterAnn ArborMichigan
| |
Collapse
|
8
|
Thomas SM, Kainz MJ, Amundsen PA, Hayden B, Taipale SJ, Kahilainen KK. Resource polymorphism in European whitefish: Analysis of fatty acid profiles provides more detailed evidence than traditional methods alone. PLoS One 2019; 14:e0221338. [PMID: 31430331 PMCID: PMC6701781 DOI: 10.1371/journal.pone.0221338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Resource polymorphism—whereby ancestral generalist populations give rise to several specialised morphs along a resource gradient—is common where species colonise newly formed ecosystems. This phenomenon is particularly well documented in freshwater fish populations inhabiting postglacial lakes formed at the end of the last ice age. However, knowledge on how such differential exploitation of resources across contrasting habitats might be reflected in the biochemical compositions of diverging populations is still limited, though such patterns might be expected. Here, we aimed to assess how fatty acids (FA)—an important biochemical component of animal tissues—diverged across a polymorphic complex of European whitefish (Coregonus lavaretus) and their closely related monomorphic specialist congener vendace (Coregonus albula) inhabiting a series of six subarctic lakes in northern Fennoscandia. We also explored patterns of FA composition in whitefish’s predators and invertebrate prey to assess how divergence in trophic ecology between whitefish morphs would relate to biochemical profiles of their key food web associates. Lastly, we assessed how information on trophic divergence provided by differential FA composition compared to evidence of resource polymorphism retrieved from more classical stomach content and stable isotopic (δ13C, δ15N) information. Examination of stomach contents provided high-resolution information on recently consumed prey, whereas stable isotopes indicated broad-scale patterns of benthic-pelagic resource use differentiation at different trophic levels. Linear discriminant analysis based on FA composition was substantially more successful in identifying whitefish morphs and their congener vendace as distinct groupings when compared to the other two methods. Three major FA (myristic acid, stearic acid, and eicosadienoic acid) proved particularly informative, both in delineating coregonid groups, and identifying patterns of pelagic-benthic feeding throughout the wider food web. Myristic acid (14:0) content and δ13C ratios in muscle tissue were positively correlated across fish taxa, and together provided the clearest segregation of fishes exploiting contrasting pelagic and benthic niches. In general, our findings highlight the potential of FA analysis for identifying resource polymorphism in animal populations where this phenomenon occurs, and suggest that this technique may provide greater resolution than more traditional methods typically used for this purpose.
Collapse
Affiliation(s)
- Stephen M. Thomas
- Department of Fish Ecology and Evolution, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
- * E-mail:
| | - Martin J. Kainz
- WasserCluster Lunz – Inter-University Centre for Aquatic Ecosystem Research, Aquatic Lipid and Ecotoxicology Research Group (LIPTOX), Lunz am See, Austria
| | - Per-Arne Amundsen
- Faculty of Biosciences, Fisheries and Economics, Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Sami J. Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Kimmo K. Kahilainen
- Inland Norway University of Applied Sciences, Department of Forestry and Wildlife Management, Koppang, Norway
| |
Collapse
|
9
|
Ahonen SA, Hayden B, Leppänen JJ, Kahilainen KK. Climate and productivity affect total mercury concentration and bioaccumulation rate of fish along a spatial gradient of subarctic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1586-1596. [PMID: 29801252 DOI: 10.1016/j.scitotenv.2018.04.436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Climate change is resulting in increased temperatures and precipitation in subarctic regions of Europe. These changes are extending tree lines to higher altitudes and latitudes, and enhancing tree growth enabling intensification of forestry into previously inhospitable subarctic regions. The combined effects of climate change and land-use intensification extend the warm, open-water season in subarctic lakes and increase lake productivity and may also increase leaching and methylation activity of mercury within the lakes. To assess the joint effects of climate and productivity on total mercury (THg) bioaccumulation in fish, we conducted a space-for-time substitution study in 18 tributary lakes of a subarctic watercourse forming a gradient from cold pristine oligotrophic lakes in the northern headwaters to warmer and increasingly human-altered mesotrophic and eutrophic systems in the southern lower reaches. Increasing temperature, precipitation, and lake productivity were predicted to elevate length- and age-adjusted THg concentrations, as well as THg bioaccumulation rate (the rate of THg bioaccumulation relative to length or age) in muscle tissue of European whitefish (Coregonus lavaretus), vendace (Coregonus albula), perch (Perca fluviatilis), pike (Esox lucius), roach (Rutilus rutilus) and ruffe (Gymnocephalus cernua). A significant positive relationship was observed between age-adjusted THg concentration and lake climate-productivity in vendace (r2 = 0.50), perch (r2 = 0.51), pike (r2 = 0.55) and roach (r2 = 0.61). Higher climate-productivity values of the lakes also had a positive linear (pike; r2 = 0.40 and whitefish; r2 = 0.72) or u-shaped (perch; r2 = 0.64 and ruffe; r2 = 0.50) relationship with THg bioaccumulation rate. Our findings of increased adjusted THg concentrations in planktivores and piscivores reveal adverse effects of warming climate and increasing productivity on these subarctic fishes, whereas less distinct trends in THg bioaccumulation rate suggest more complex underlying processes. Joint environmental stressors such as climate and productivity should be considered in ongoing and future monitoring of mercury concentrations.
Collapse
Affiliation(s)
- Salla A Ahonen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Canada
| | - Jaakko J Leppänen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland
| | - Kimmo K Kahilainen
- Faculty of Biosciences, Fisheries and Economics, The Norwegian College Fishery Science, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
10
|
Keva O, Hayden B, Harrod C, Kahilainen KK. Total mercury concentrations in liver and muscle of European whitefish (Coregonus lavaretus (L.)) in a subarctic lake - Assessing the factors driving year-round variation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1518-1528. [PMID: 28923342 DOI: 10.1016/j.envpol.2017.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Subarctic lakes are characterised by extreme seasonal variation in light and temperature which influences growth, maturation, condition and resource use of fishes. However, our understanding of how seasonal changes affect mercury concentrations of fishes is limited. We conducted a year-round study (3 ice-covered months, 3 open-water months) with open-water inter-annual aspect (3 years: samples from August/September), focusing on total mercury (THg) concentrations and ecological characteristics of a common freshwater fish, European whitefish (Coregonus lavaretus (L.)) from a subarctic lake. We measured THg concentrations from tissues with fast (liver, n = 164) and moderate (muscle, n = 225) turnover rates, providing information on THg dynamics over different temporal scales. In both tissues, lipid-corrected THg concentrations were highest in winter (liver: 1.70 ± 0.88 μg/g, muscle: 0.24 ± 0.05 μg/g) and lowest in summer (liver: 0.87 ± 0.72 μg/g, muscle: 0.19 ± 0.04 μg/g). THg concentrations increased in winter following the summer-autumn dietary shift to pelagic zooplankton and starvation after spawning. Whitefish THg concentrations decreased towards summer, and were associated with consumption of benthic macroinvertebrates and subsequent growth dilution. Mercury bioaccumulated in both tissues with age, both showing the strongest regression slopes in winter and lowest in summer. THg concentrations in liver and muscle tissue were correlated throughout the year, however the correlation was lowest in summer, indicating high metabolism during somatic growing season in summer and growth dilution. Multiple linear regression models explained 50% and 55% of the THg variation in liver and muscle both models dominated by seasonally-variable factors i.e. sexual maturity, δ13C, and condition factor. Seasonally varying bioaccumulation slopes and the higher level of intra-annual variation (21%) in whitefish THg concentration in muscle than the inter-annual accumulation (8%) highlight the importance of including seasonal factors in future THg studies.
Collapse
Affiliation(s)
- Ossi Keva
- Department of Environmental Sciences, University of Helsinki, P.O.Box 65, FIN-00014, Finland.
| | - Brian Hayden
- Department of Environmental Sciences, University of Helsinki, P.O.Box 65, FIN-00014, Finland; Kilpisjärvi Biological Station, Käsivarrentie 14622, FIN-99490 Kilpisjärvi, Finland; Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Chris Harrod
- Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile; Núcleo Milenio de Salmónidos Invasores, Concepción, Chile
| | - Kimmo K Kahilainen
- Department of Environmental Sciences, University of Helsinki, P.O.Box 65, FIN-00014, Finland; Kilpisjärvi Biological Station, Käsivarrentie 14622, FIN-99490 Kilpisjärvi, Finland
| |
Collapse
|
11
|
Kahilainen KK, Thomas SM, Nystedt EKM, Keva O, Malinen T, Hayden B. Ecomorphological divergence drives differential mercury bioaccumulation in polymorphic European whitefish (Coregonus lavaretus) populations of subarctic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1768-1778. [PMID: 28545204 DOI: 10.1016/j.scitotenv.2017.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Resource polymorphism, whereby ancestral trophic generalists undergo divergence into multiple specialist morphs, is common in salmonid fish populations inhabiting subarctic lakes. However, the extent to which such resource specialization into the three principal lake habitats (littoral, profundal, and pelagic) affects patterns of contaminant bioaccumulation remains largely unexplored. We assessed total mercury concentrations (THg) of European whitefish (Coregonus lavaretus (L.)) and their invertebrate prey in relation to potential explanatory variables across 6 subarctic lakes, of which three are inhabited by polymorphic (comprised of four morphs) and three by monomorphic populations. Among invertebrate prey, the highest THg concentrations were observed in profundal benthic macroinvertebrates, followed by pelagic zooplankton, with concentrations lowest in littoral benthic macroinvertebrates in both lake types. Broadly similar patterns were apparent in whitefish in polymorphic systems, where average age-corrected THg concentrations and bioaccumulation rates were the highest in pelagic morphs, intermediate in the profundal morph, and the lowest in the littoral morph. In monomorphic systems, age-corrected THg concentrations were generally lower, and showed pronounced lake-specific variation. In the polymorphic systems, we found significant relationships between whitefish muscle tissue THg concentration and gill raker count, resource use, lipid content and maximum length, whilst no such relationships were apparent in the monomorphic systems. Across all polymorphic lakes, the major variables explaining THg in whitefish were gill raker count and age, whereas in monomorphic systems, the factors were lake-specific. Whitefish resource polymorphism across the three main lake habitats therefore appears to have profound impacts on THg concentration and bioaccumulation rate. This highlights the importance of recognizing such intraspecific diversity in both future scientific studies and mercury monitoring programs.
Collapse
Affiliation(s)
- Kimmo K Kahilainen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland; Kilpisjärvi Biological Station, Käsivarrentie 14622, FIN-99490 Kilpisjärvi, Finland.
| | - Stephen M Thomas
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Elina K M Nystedt
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Ossi Keva
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Tommi Malinen
- Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FIN-00014, Finland
| | - Brian Hayden
- Canadian Rivers Institute, Biology Department, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
12
|
Ecological speciation in a generalist consumer expands the trophic niche of a dominant predator. Sci Rep 2017; 7:8765. [PMID: 28821736 PMCID: PMC5562900 DOI: 10.1038/s41598-017-08263-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/10/2017] [Indexed: 11/21/2022] Open
Abstract
Ecological speciation – whereby an ancestral founder species diversifies to fill vacant niches – is a phenomenon characteristic of newly formed ecosystems. Despite such ubiquity, ecosystem-level effects of such divergence remain poorly understood. Here, we compared the trophic niche of European whitefish (Coregonus lavaretus) and their predators in a series of contrasting subarctic lakes where this species had either diversified into four ecomorphologically distinct morphs or instead formed monomorphic populations. We found that the trophic niche of whitefish was almost three times larger in the polymorphic than in the monomorphic lakes, due to an increase in intraspecific specialisation. This trophic niche expansion was mirrored in brown trout (Salmo trutta), a major predator of whitefish. This represents amongst the first evidence for ecological speciation directly altering the trophic niche of a predator. We suggest such mechanisms may be a common and important – though presently overlooked – factor regulating trophic interactions in diverse ecosystems globally.
Collapse
|
13
|
Huuskonen H, Shikano T, Mehtätalo L, Kettunen J, Eronen R, Toiviainen A, Kekäläinen J. Anthropogenic environmental changes induce introgression in sympatric whitefish ecotypes. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Hudson AG, Lundsgaard-Hansen B, Lucek K, Vonlanthen P, Seehausen O. Managing cryptic biodiversity: Fine-scale intralacustrine speciation along a benthic gradient in Alpine whitefish ( Coregonus spp.). Evol Appl 2016; 10:251-266. [PMID: 28250810 PMCID: PMC5322408 DOI: 10.1111/eva.12446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022] Open
Abstract
Whitefish (Coregonus spp.) are an important catch for many freshwater fisheries, particularly in Switzerland. In support of this, supplemental stocking of whitefish species is carried out, despite lacking complete knowledge of the extent, distribution and origin of whitefish diversity in these lakes, potentially threatening local endemics via artificial gene flow. Here, we investigate phenotypic and genetic differentiation among coexisting whitefish species spawning along a depth gradient in a subalpine Swiss lake to better delineate intralacustrine whitefish biodiversity. We find depth‐related clines in adaptive morphology and in neutral genetic markers. This individual variation is structured in three distinct clusters with spatial overlap. Individual genetic distances correlate strongly with differences in growth rate and gill‐raker number, consistent with predictions of isolation‐by‐adaptation and ecological speciation. Genetic differentiation between species suggests reproductive isolation, despite demographic admixture on spawning grounds. Our results are consistent with clinal speciation resulting in three species coexisting in close ecological parapatry, one (C. sp. “benthic intermediate”) being previously unknown. A second unknown species spawning in close proximity was found to be of potential allochthonous origin. This study highlights the importance of taxonomically unbiased sampling strategies to both understand evolutionary mechanisms structuring biodiversity and to better inform conservation and fisheries management.
Collapse
Affiliation(s)
- Alan G Hudson
- Division of Aquatic Ecology & Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland; Department of Fish Ecology & Evolution Centre of Ecology, Evolution and Biogeochemistry Eawag Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland; School of Biological Sciences University of Bristol Bristol UK
| | - Baenz Lundsgaard-Hansen
- Division of Aquatic Ecology & Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland; Department of Fish Ecology & Evolution Centre of Ecology, Evolution and Biogeochemistry Eawag Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland
| | - Kay Lucek
- Division of Aquatic Ecology & Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland; Department of Fish Ecology & Evolution Centre of Ecology, Evolution and Biogeochemistry Eawag Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland; Department of Animal and Plant Sciences University of Sheffield Sheffield UK; Department of Environmental Sciences University of Basel Basel Switzerland
| | - Pascal Vonlanthen
- Division of Aquatic Ecology & Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland; Department of Fish Ecology & Evolution Centre of Ecology, Evolution and Biogeochemistry Eawag Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland; Aquabios GmbH, Les Fermes Cordast Switzerland
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution Institute of Ecology and Evolution University of Bern Bern Switzerland; Department of Fish Ecology & Evolution Centre of Ecology, Evolution and Biogeochemistry Eawag Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum Switzerland
| |
Collapse
|
15
|
Ravinet M, Hynes R, Poole R, Cross TF, McGinnity P, Harrod C, Prodöhl PA. Where the lake meets the sea: strong reproductive isolation is associated with adaptive divergence between lake resident and anadromous three-spined sticklebacks. PLoS One 2015; 10:e0122825. [PMID: 25874617 PMCID: PMC4397041 DOI: 10.1371/journal.pone.0122825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/14/2015] [Indexed: 11/28/2022] Open
Abstract
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.
Collapse
Affiliation(s)
- Mark Ravinet
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Rosaleen Hynes
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Russell Poole
- Marine Institute, Furnace, Newport, County Mayo, Ireland
| | - Tom F. Cross
- Aquaculture, Fisheries and Development Centre, School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Phil McGinnity
- Aquaculture, Fisheries and Development Centre, School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
| | - Chris Harrod
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paulo A. Prodöhl
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Kahilainen KK, Patterson WP, Sonninen E, Harrod C, Kiljunen M. Adaptive radiation along a thermal gradient: preliminary results of habitat use and respiration rate divergence among whitefish morphs. PLoS One 2014; 9:e112085. [PMID: 25405979 PMCID: PMC4236043 DOI: 10.1371/journal.pone.0112085] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Adaptive radiation is considered an important mechanism for the development of new species, but very little is known about the role of thermal adaptation during this process. Such adaptation should be especially important in poikilothermic animals that are often subjected to pronounced seasonal temperature variation that directly affects metabolic function. We conducted a preliminary study of individual lifetime thermal habitat use and respiration rates of four whitefish (Coregonus lavaretus (L.)) morphs (two pelagic, one littoral and one profundal) using stable carbon and oxygen isotope values of otolith carbonate. These morphs, two of which utilized pelagic habitats, one littoral and one profundal recently diverged via adaptive radiation to exploit different major niches in a deep and thermally stratified subarctic lake. We found evidence that the morphs used different thermal niches. The profundal morph had the most distinct thermal niche and consistently occupied the coldest thermal habitat of the lake, whereas differences were less pronounced among the shallow water pelagic and littoral morphs. Our results indicated ontogenetic shifts in thermal niches: juveniles of all whitefish morphs inhabited warmer ambient temperatures than adults. According to sampling of the otolith nucleus, hatching temperatures were higher for benthic compared to pelagic morphs. Estimated respiration rate was the lowest for benthivorous profundal morph, contrasting with the higher values estimated for the other morphs that inhabited shallower and warmer water. These preliminary results suggest that physiological adaptation to different thermal habitats shown by the sympatric morphs may play a significant role in maintaining or strengthening niche segregation and divergence in life-history traits, potentially contributing to reproductive isolation and incipient speciation.
Collapse
Affiliation(s)
- Kimmo Kalevi Kahilainen
- Kilpisjärvi Biological Station, University of Helsinki, Kilpisjärvi, Finland
- Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - William Paul Patterson
- Department of Geological Sciences, Saskatchewan, Isotope Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Eloni Sonninen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Chris Harrod
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
| | - Mikko Kiljunen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
17
|
Guo Q. Plant hybridization: the role of human disturbance and biological invasion. DIVERS DISTRIB 2014. [DOI: 10.1111/ddi.12245] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Qinfeng Guo
- USDA FS; Eastern Forest Environmental Threat Assessment Center; 200 WT Weaver Blvd. Asheville NC 28804 USA
| |
Collapse
|
18
|
Dierking J, Phelps L, Præbel K, Ramm G, Prigge E, Borcherding J, Brunke M, Eizaguirre C. Anthropogenic hybridization between endangered migratory and commercially harvested stationary whitefish taxa (Coregonus spp.). Evol Appl 2014; 7:1068-83. [PMID: 25553068 PMCID: PMC4231596 DOI: 10.1111/eva.12166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/30/2014] [Indexed: 11/27/2022] Open
Abstract
Natural hybridization plays a key role in the process of speciation. However, anthropogenic (human induced) hybridization of historically isolated taxa raises conservation issues. Due to weak barriers to gene flow and the presence of endangered taxa, the whitefish species complex is an excellent study system to investigate the consequences of hybridization in conservation. We focused on three naturally reproductively isolated whitefish taxa in Germany: the endangered, anadromous North Sea houting (NSH) and Baltic houting (BH), which were reintroduced after local extinction, and the commercially stocked European whitefish (EW). To evaluate the genetic integrity of each taxon, source and reintroduced populations of NSH and BH, and EW populations were characterized based on two mitochondrial and 17 microsatellite loci. Additionally, we investigated gill raker counts as an adaptive phenotypic trait. Even though clear genetic and phenotypic differentiation confirmed the houtings as separate evolutionarily significant units, admixture analyses revealed an extensive hybrid zone. Hybridizations were introgressive, positively correlated with genetic diversity, and were reflected in the gill raker counts. The BH distribution range showed higher heterogeneity and stronger admixture than the NSH range. Erroneous stocking with non-native genotypes best explained these patterns, which pose challenges for the conservation of the endangered NSH and BH.
Collapse
Affiliation(s)
- Jan Dierking
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Luke Phelps
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany ; Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology Plön, Germany
| | - Kim Præbel
- Department of Arctic and Marine Biology, Faculty of Biosciences Fisheries and Economics, University of Tromsø Tromsø, Norway
| | - Gesine Ramm
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany ; Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| | - Enno Prigge
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Jost Borcherding
- General Ecology & Limnology, Ecological Research Station Grietherbusch, Zoological Institute of the University of Cologne Cologne, Germany
| | - Matthias Brunke
- Landesamt für Landwirtschaft, Umwelt und ländliche Räume (LLUR) Flintbek, Germany
| | - Christophe Eizaguirre
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| |
Collapse
|
19
|
Hayden B, Harrod C, Kahilainen KK. Dual fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. J Anim Ecol 2014; 83:1501-12. [PMID: 24738779 DOI: 10.1111/1365-2656.12233] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 04/10/2014] [Indexed: 11/30/2022]
Abstract
Ecological systems are often characterized as stable entities. However, basal productivity in most ecosystems varies between seasons, particularly in subarctic and polar areas. How this variability affects higher trophic levels or entire food webs remains largely unknown, especially in these high-latitude regions. We undertook a year-long study of benthic (macroinvertebrate) and pelagic (zooplankton) resource availability, along with short (day/days: stomach content)-, medium (month: liver δ(13)C and δ(15)N isotopes)- and long-term (season: muscle δ(13)C and δ(15)N isotopes) assessments of resource use by a generalist fish, the European whitefish, in a deep, oligotrophic, subarctic lake in northern Europe. Due to the long ice-covered winter period, we expected to find general benthic reliance throughout the year, but also a seasonal importance of zooplankton to the diet, somatic growth and gonadal development of whitefish. Benthic and pelagic resource availability varied between seasons: peak littoral benthic macroinvertebrate density occurred in mid-winter, whereas maximum zooplankton density was observed in summer. Whitefish stomach content revealed a reliance on benthic prey items during winter and pelagic prey in summer. A seasonal shift from benthic to pelagic prey was evident in liver isotope ratios, but muscle isotope ratios indicated a year-round reliance on benthic macroinvertebrates. Whitefish activity levels as well as somatic and gonadal growth all peaked during the summer, coinciding with the zooplankton peak and the warmest water temperature. Stable isotopes of muscle consistently depicted the most important resource, benthic macroinvertebrates, whereas short-term indicators, that is, diet and stable isotopes of liver, revealed the seasonal significance of pelagic zooplankton for somatic growth and gonad development. Seasonal variability in resource availability strongly influences consumer growth and reproduction and may also be important in other ecosystems facing pronounced annual weather fluctuations.
Collapse
Affiliation(s)
- Brian Hayden
- Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, FI-99490, Kilpisjärvi, Finland.,Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014, Helsinki, Finland
| | - Chris Harrod
- Department of Ecological Genetics, Max Planck Institute for Limnology, D-24302, Plön, Germany.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.,Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile
| | - Kimmo K Kahilainen
- Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, FI-99490, Kilpisjärvi, Finland.,Department of Environmental Sciences, University of Helsinki, PO Box 65, FI-00014, Helsinki, Finland
| |
Collapse
|
20
|
Scriber JM. Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes. INSECTS 2013; 5:1-61. [PMID: 26462579 PMCID: PMC4592632 DOI: 10.3390/insects5010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Comprising 50%-75% of the world's fauna, insects are a prominent part of biodiversity in communities and ecosystems globally. Biodiversity across all levels of biological classifications is fundamentally based on genetic diversity. However, the integration of genomics and phylogenetics into conservation management may not be as rapid as climate change. The genetics of hybrid introgression as a source of novel variation for ecological divergence and evolutionary speciation (and resilience) may generate adaptive potential and diversity fast enough to respond to locally-altered environmental conditions. Major plant and herbivore hybrid zones with associated communities deserve conservation consideration. This review addresses functional genetics across multi-trophic-level interactions including "invasive species" in various ecosystems as they may become disrupted in different ways by rapid climate change. "Invasive genes" (into new species and populations) need to be recognized for their positive creative potential and addressed in conservation programs. "Genetic rescue" via hybrid translocations may provide needed adaptive flexibility for rapid adaptation to environmental change. While concerns persist for some conservationists, this review emphasizes the positive aspects of hybrids and hybridization. Specific implications of natural genetic introgression are addressed with a few examples from butterflies, including transgressive phenotypes and climate-driven homoploid recombinant hybrid speciation. Some specific examples illustrate these points using the swallowtail butterflies (Papilionidae) with their long-term historical data base (phylogeographical diversity changes) and recent (3-decade) climate-driven temporal and genetic divergence in recombinant homoploid hybrids and relatively recent hybrid speciation of Papilio appalachiensis in North America. Climate-induced "reshuffling" (recombinations) of species composition, genotypes, and genomes may become increasingly ecologically and evolutionarily predictable, but future conservation management programs are more likely to remain constrained by human behavior than by lack of academic knowledge.
Collapse
Affiliation(s)
- Jon Mark Scriber
- Department of Entomology, Michigan State University, East Lansing, Michigan, MI 48824, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
21
|
Gratton P, Allegrucci G, Gandolfi A, Sbordoni V. Genetic differentiation and hybridization in two naturally occurring sympatric trout Salmo spp. forms from a small karstic lake. JOURNAL OF FISH BIOLOGY 2013; 82:637-657. [PMID: 23398073 DOI: 10.1111/jfb.12022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
In this study, multiple molecular markers [genotyping of 12 nuclear microsatellite loci and the protein-coding gene ldh-c1* plus sequencing of the mitochondrial DNA (mtDNA) control region] were employed to investigate the genetic structure of the two trout forms, Salmo cettii and Salmo fibreni, inhabiting Lake Posta Fibreno, central Italy. The two forms were found to share a unique mtDNA haplotype, belonging to a widespread Mediterranean haplogroup (AD). Bayesian clustering analyses showed that these two forms correspond to well-defined autochthonous gene pools. Genetic introgression between the two gene pools, however, was observed, whose frequency appears to correlate with the environmental features of the spawning sites. The interplay of selection for the spawning sites, philopatry and natural selection can be argued to maintain genetic differentiation despite the lack of complete reproductive isolation.
Collapse
Affiliation(s)
- P Gratton
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige (TN), Italy
| | | | | | | |
Collapse
|
22
|
Ravinet M, Prodöhl PA, Harrod C. Parallel and nonparallel ecological, morphological and genetic divergence in lake-stream stickleback from a single catchment. J Evol Biol 2012. [PMID: 23199201 DOI: 10.1111/jeb.12049] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parallel phenotypic evolution in similar environments has been well studied in evolutionary biology; however, comparatively little is known about the influence of determinism and historical contingency on the nature, extent and generality of this divergence. Taking advantage of a novel system containing multiple lake-stream stickleback populations, we examined the extent of ecological, morphological and genetic divergence between three-spined stickleback present in parapatric environments. Consistent with other lake-stream studies, we found a shift towards a deeper body and shorter gill rakers in stream fish. Morphological shifts were concurrent with changes in diet, indicated by both stable isotope and stomach contents analysis. Performing a multivariate test for shared and unique components of evolutionary response to the distance gradient from the lake, we found a strong signature of parallel adaptation. Nonparallel divergence was also present, attributable mainly to differences between river locations. We additionally found evidence of genetic substructuring across five lake-stream transitions, indicating that some level of reproductive isolation occurs between populations in these habitats. Strong correlations between pairwise measures of morphological, ecological and genetic distance between lake and stream populations supports the hypothesis that divergent natural selection between habitats drives adaptive divergence and reproductive isolation. Lake-stream stickleback divergence in Lough Neagh provides evidence for the deterministic role of selection and supports the hypothesis that parallel selection in similar environments may initiate parallel speciation.
Collapse
Affiliation(s)
- M Ravinet
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | | |
Collapse
|