1
|
Xie W, Zhao Y, Deng X, Chen R, Qiang Z, García-Caparros P, Mao T, Qin T. GLABRA3-mediated trichome branching requires transcriptional repression of MICROTUBULE-DESTABILIZING PROTEIN25. PLANT PHYSIOLOGY 2024; 197:kiae563. [PMID: 39431560 DOI: 10.1093/plphys/kiae563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024]
Abstract
Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.
Collapse
Affiliation(s)
- Wenfei Xie
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yuang Zhao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xianwang Deng
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Ruixin Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Zhiquan Qiang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Pedro García-Caparros
- Department of Superior School Engineering, University of Almería, Ctra. Sacramento 04120, Almería, Spain
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Lyu X, Li P, Jin L, Yang F, Pucker B, Wang C, Liu L, Zhao M, Shi L, Zhang Y, Yang Q, Xu K, Li X, Hu Z, Yang J, Yu J, Zhang M. Tracing the evolutionary and genetic footprints of atmospheric tillandsioids transition from land to air. Nat Commun 2024; 15:9599. [PMID: 39505856 PMCID: PMC11541568 DOI: 10.1038/s41467-024-53756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Plant evolution is driven by key innovations of functional traits that enables their survivals in diverse ecological environments. However, plant adaptive evolution from land to atmospheric niches remains poorly understood. In this study, we use the epiphytic Tillandsioideae subfamily of Bromeliaceae as model plants to explore their origin, evolution and diversification. We provide a comprehensive phylogenetic tree based on nuclear transcriptomic sequences, indicating that core tillandsioids originated approximately 11.3 million years ago in the Andes. The geological uplift of the Andes drives the divergence of tillandsioids into tank-forming and atmospheric types. Our genomic and transcriptomic analyses reveal gene variations and losses associated with adaptive traits such as impounding tanks and absorptive trichomes. Furthermore, we uncover specific nitrogen-fixing bacterial communities in the phyllosphere of tillandsioids as potential source of nitrogen acquisition. Collectively, our study provides integrative multi-omics insights into the adaptive evolution of tillandsioids in response to elevated aerial habitats.
Collapse
Affiliation(s)
- Xiaolong Lyu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Li
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang Jin
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, China
| | - Feng Yang
- BGI Research, Sanya, 572025, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Mendelssohnstraße 4, Braunschweig, 38106, Germany
| | - Chenhao Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Linye Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Shi
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yutong Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qinrong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kuangtian Xu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhongyuan Hu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jinghua Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Jingquan Yu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
| | - Mingfang Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
3
|
Schmidt-Marcec S, Parish A, Smertenko T, Hickey M, Piette BMAG, Smertenko A. The microtubule-nucleating factor MACERATOR tethers AUGMIN7 to microtubules and governs phragmoplast architecture. THE PLANT CELL 2024; 36:1072-1097. [PMID: 38079222 PMCID: PMC11181950 DOI: 10.1093/plcell/koad304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 04/02/2024]
Abstract
The plant cytokinetic microtubule array, called the phragmoplast, exhibits higher microtubule dynamics in its center (midzone) than at the periphery (distal zone). This behavior is known as the axial asymmetry. Despite being a major characteristic of the phragmoplast, little is known about regulators of this phenomenon. Here we address the role of microtubule nucleation in axial asymmetry by characterizing MACERATOR (MACET) proteins in Arabidopsis thaliana and Nicotiana benthamiana with a combination of genetic, biochemical, and live-cell imaging assays, using photo-convertible microtubule probes, and modeling. MACET paralogs accumulate at the shrinking microtubule ends and decrease the tubulin OFF rate. Loss of MACET4 and MACET5 function abrogates axial asymmetry by suppressing microtubule dynamicity in the midzone. MACET4 also narrows the microtubule nucleation angle at the phragmoplast leading edge and functions as a microtubule tethering factor for AUGMIN COMPLEX SUBUNIT 7 (AUG7). The macet4 macet5 double mutant shows diminished clustering of AUG7 in the phragmoplast distal zone. Knockout of AUG7 does not affect MACET4 localization, axial asymmetry, or microtubule nucleation angle, but increases phragmoplast length and slows down phragmoplast expansion. The mce4-1 mce5 aug7-1 triple knockout is not viable. Experimental data and modeling demonstrate that microtubule nucleation factors regulate phragmoplast architecture and axial asymmetry directly by generating new microtubules and indirectly by modulating the abundance of free tubulin.
Collapse
Affiliation(s)
- Sharol Schmidt-Marcec
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Alyssa Parish
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Matthew Hickey
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
4
|
Luo Z, Gao M, Zhao X, Wang L, Liu Z, Wang L, Wang L, Zhao J, Wang J, Liu M. Anatomical observation and transcriptome analysis of branch-twisted mutations in Chinese jujube. BMC Genomics 2023; 24:500. [PMID: 37644409 PMCID: PMC10466873 DOI: 10.1186/s12864-023-09572-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Plant organs grow in a certain direction and organ twisted growth, a rare and distinctive trait, is associated with internal structure changes and special genes. The twisted branch mutant of Chinese jujube jujube, an important fruit tree native to China and introduced to nearly 50 countries, provides new typical materials for exploration of plant twisted growth. RESULTS In this study, the cytological characteristics and related genes of twisted branches in Chinese jujube were revealed by microscopy observation and transcriptome analysis. The unique coexistence of primary and secondary structures appeared in the twisted parts of branches, and special structures such as collateral bundle, cortical bundles, and internal phloem were formed. Ninety differentially expressed genes of 'Dongzao' and its twisted mutant were observed, in which ZjTBL43, ZjFLA11, ZjFLA12 and ZjIQD1 were selected as candidate genes. ZjTBL43 was homologous to AtTBL43 in Arabidopsis, which was involved in the synthesis and deposition of cellular secondary wall cellulose. The attbl43 mutant showed significant inflorescence stem bending growth. The transgenic lines of attbl43 with overexpression of ZjTBL43 were phenotypically normal.The branch twisted growth may be caused by mutations in ZjTBL43 in Chinese jujube. AtIQD10, AtFLA11 and AtFLA12 were homologous to ZjIQD1, ZjFLA11 and ZjFLA12, respectively. However, the phenotype of their function defect mutants was normal. CONCLUSION In summary, these findings will provide new insights into the plant organ twisted growth and a reference for investigation of controlling mechanisms of plant growth direction.
Collapse
Affiliation(s)
- Zhi Luo
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Mengjiao Gao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
5
|
Liu Y, Ma Y, Aray H, Lan H. Morphogenesis and cell wall composition of trichomes and their function in response to salt in halophyte Salsola ferganica. BMC PLANT BIOLOGY 2022; 22:551. [PMID: 36447160 PMCID: PMC9710055 DOI: 10.1186/s12870-022-03933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/08/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND To survive harsh environmental conditions, desert plants show various adaptions, such as the evolution of trichomes, which are protective epidermal protrusions. Currently, the morphogenesis and function of trichomes in desert plants are not well understood. Salsola ferganica is an annual halophyte distributed in cold deserts; at the seedling stage, its rod-shaped true leaves are covered with long and thick trichomes and are affected by habitat conditions. Therefore, we evaluated the trichomes on morphogenesis and cell wall composition of S. ferganica compared to Arabidopsis thaliana and cotton, related gene expression, and preliminary function in salt accumulation of the leaves. RESULTS The trichomes of S. ferganica were initiated from the epidermal primordium, followed by two to three rounds of cell division to form a multicellular trichome, while some genes associated with them were positively involved. Cell wall composition analysis showed that different polysaccharides including heavily methyl-esterified and fully de-esterified pectins (before maturation, probably in the primary wall), xyloglucans (in the mid-early and middle stages, probably in the secondary wall), and extensin (during the whole developmental period) were detected, which were different from those found in trichomes of Arabidopsis and cotton. Moreover, trichome development was affected by abiotic stress, and might accumulate salt from the mesophyll cells and secrete outside. CONCLUSIONS S. ferganica has multicellular, non-branched trichomes that undergo two to three rounds of cell division and are affected by abiotic stress. They have a unique cell wall composition which is different from that of Arabidopsis and cotton. Furthermore, several genes positively or negatively regulate trichome development. Our findings should contribute to our further understanding of the biogenesis and adaptation of plant accessory structures in desert plant species.
Collapse
Affiliation(s)
- Yanxia Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Yali Ma
- Xinjiang Education College, Urumqi, 830043, China
| | - Hanat Aray
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China.
| |
Collapse
|
6
|
Chen L, Tian N, Hu M, Sandhu D, Jin Q, Gu M, Zhang X, Peng Y, Zhang J, Chen Z, Liu G, Huang M, Huang J, Liu Z, Liu S. Comparative transcriptome analysis reveals key pathways and genes involved in trichome development in tea plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:997778. [PMID: 36212317 PMCID: PMC9546587 DOI: 10.3389/fpls.2022.997778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Trichomes, which develop from epidermal cells, are considered one of the important characteristics of the tea plant [Camellia sinensis (L.) O. Kuntze]. Many nutritional and metabolomic studies have indicated the important contributions of trichomes to tea products quality. However, understanding the regulation of trichome formation at the molecular level remains elusive in tea plants. Herein, we present a genome-wide comparative transcriptome analysis between the hairless Chuyeqi (CYQ) with fewer trichomes and the hairy Budiaomao (BDM) with more trichomes tea plant genotypes, toward the identification of biological processes and functional gene activities that occur during trichome development. In the present study, trichomes in both cultivars CYQ and BDM were unicellular, unbranched, straight, and soft-structured. The density of trichomes was the highest in the bud and tender leaf periods. Further, using the high-throughput sequencing method, we identified 48,856 unigenes, of which 31,574 were differentially expressed. In an analysis of 208 differentially expressed genes (DEGs) encoding transcription factors (TFs), five may involve in trichome development. In addition, on the basis of the Gene Ontology (GO) annotation and the weighted gene co-expression network analysis (WGCNA) results, we screened several DEGs that may contribute to trichome growth, including 66 DEGs related to plant resistance genes (PRGs), 172 DEGs related to cell wall biosynthesis pathway, 29 DEGs related to cell cycle pathway, and 45 DEGs related to cytoskeleton biosynthesis. Collectively, this study provided high-quality RNA-seq information to improve our understanding of the molecular regulatory mechanism of trichome development and lay a foundation for additional trichome studies in tea plants.
Collapse
Affiliation(s)
- Lan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Na Tian
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengqing Hu
- Xiangxi Academy of Agricultural Sciences, Jishou, China
| | - Devinder Sandhu
- United States Salinity Laboratory, United States Department of Agriculture, Agricultural Research Service, Riverside, CA, United States
| | - Qifang Jin
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Meiyi Gu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Xiangqin Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Ying Peng
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jiali Zhang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhenyan Chen
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Guizhi Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Mengdi Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Jianan Huang
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Shuoqian Liu
- Department of Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Zhang K, Shi W, Zheng X, Liu X, Wang L, Riemann M, Heintz D, Nick P. A rice tubulin tyrosine ligase like 12 regulates phospholipase D activity and tubulin synthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111155. [PMID: 35151438 DOI: 10.1016/j.plantsci.2021.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
All plant α-tubulins encode a C-terminal tyrosine. An elusive tubulin tyrosine carboxypeptidase can cleave off, and a tubulin tyrosine ligase (TTL) re-ligate this tyrosine. The biological function of this cycle remains unclear but may correlate with microtubule stability. To get insight into the functional context of this phenomenon, we used cold-induced elimination of microtubules as experimental model. In previous work, we had analysed a rice TTL-like 12 (OsTTLL12), the only potential candidate of plant TTL. To follow the effect of OsTTLL12 upon microtubule responses in vivo, we expressed OsTTLL12-RFP into tobacco BY-2 cells stably overexpressing NtTUA3-GFP. We found that overexpression of OsTTLL12-RFP made microtubules disappear faster in response to cold stress, accompanied with more rapid Ca2+ influx, culminating in reduced cold tolerance. Treatment with different butanols indicated that α-tubulin detyrosination/tyrosination differently interacts with phospholipase D (PLD) dependent signalling. In fact, rice PLDα1 decorated microtubules and increased detyrosinated α-tubulin. Unexpectedly, overexpression of the two proteins (OsTTLL12-RFP, NtTUA3-GFP) mutually regulated the accumulation of their transcripts, leading us to a model, where tubulin detyrosination feeds back upon tubulin transcripts and defines a subset of microtubules for interaction with PLD dependent stress signalling.
Collapse
Affiliation(s)
- Kunxi Zhang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Wenjing Shi
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xin Zheng
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Xuan Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, Centre National du Recherche Scientifique (CNRS-IBMP), Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
8
|
Kato S, Murakami M, Saika R, Soga K, Wakabayashi K, Hashimoto H, Yano S, Matsumoto S, Kasahara H, Kamada M, Shimazu T, Hashimoto T, Hoson T. Suppression of Cortical Microtubule Reorientation and Stimulation of Cell Elongation in Arabidopsis Hypocotyls under Microgravity Conditions in Space. PLANTS 2022; 11:plants11030465. [PMID: 35161447 PMCID: PMC8837939 DOI: 10.3390/plants11030465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022]
Abstract
How microgravity in space influences plant cell growth is an important issue for plant cell biology as well as space biology. We investigated the role of cortical microtubules in the stimulation of elongation growth in Arabidopsis (Arabidopsis thaliana) hypocotyls under microgravity conditions with the Resist Tubule space experiment. The epidermal cells in the lower half of the hypocotyls of wild-type Columbia were longer in microgravity than at on-orbit 1 g, which precipitated an increase in the entire hypocotyl length. In the apical region, cortical microtubules adjacent to the outer tangential wall were predominantly transverse to the long axis of the cell, whereas longitudinal microtubules were predominant in the basal region. In the 9th to 12th epidermal cells (1 to 3 mm) from the tip, where the modification of microtubule orientation from transverse to longitudinal directions (reorientation) occurred, cells with transverse microtubules increased, whereas those with longitudinal microtubules decreased in microgravity, and the average angle with respect to the transverse cell axis decreased, indicating that the reorientation was suppressed in microgravity. The expression of tubulin genes was suppressed in microgravity. These results suggest that under microgravity conditions, the expression of genes related to microtubule formation was downregulated, which may cause the suppression of microtubule reorientation from transverse to longitudinal directions, thereby stimulating cell elongation in Arabidopsis hypocotyls.
Collapse
Affiliation(s)
- Shiho Kato
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (S.K.); (M.M.); (R.S.); (K.S.); (K.W.)
| | - Mana Murakami
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (S.K.); (M.M.); (R.S.); (K.S.); (K.W.)
| | - Ryo Saika
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (S.K.); (M.M.); (R.S.); (K.S.); (K.W.)
| | - Kouichi Soga
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (S.K.); (M.M.); (R.S.); (K.S.); (K.W.)
| | - Kazuyuki Wakabayashi
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (S.K.); (M.M.); (R.S.); (K.S.); (K.W.)
| | - Hirofumi Hashimoto
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara 252-5210, Japan;
| | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan;
| | - Shohei Matsumoto
- Japan Manned Space Systems, Tokyo 100-0004, Japan; (S.M.); (H.K.)
| | - Haruo Kasahara
- Japan Manned Space Systems, Tokyo 100-0004, Japan; (S.M.); (H.K.)
| | | | | | - Takashi Hashimoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan;
| | - Takayuki Hoson
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan; (S.K.); (M.M.); (R.S.); (K.S.); (K.W.)
- Correspondence:
| |
Collapse
|
9
|
Colin L, Martin-Arevalillo R, Bovio S, Bauer A, Vernoux T, Caillaud MC, Landrein B, Jaillais Y. Imaging the living plant cell: From probes to quantification. THE PLANT CELL 2022; 34:247-272. [PMID: 34586412 PMCID: PMC8774089 DOI: 10.1093/plcell/koab237] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 05/20/2023]
Abstract
At the center of cell biology is our ability to image the cell and its various components, either in isolation or within an organism. Given its importance, biological imaging has emerged as a field of its own, which is inherently highly interdisciplinary. Indeed, biologists rely on physicists and engineers to build new microscopes and imaging techniques, chemists to develop better imaging probes, and mathematicians and computer scientists for image analysis and quantification. Live imaging collectively involves all the techniques aimed at imaging live samples. It is a rapidly evolving field, with countless new techniques, probes, and dyes being continuously developed. Some of these new methods or reagents are readily amenable to image plant samples, while others are not and require specific modifications for the plant field. Here, we review some recent advances in live imaging of plant cells. In particular, we discuss the solutions that plant biologists use to live image membrane-bound organelles, cytoskeleton components, hormones, and the mechanical properties of cells or tissues. We not only consider the imaging techniques per se, but also how the construction of new fluorescent probes and analysis pipelines are driving the field of plant cell biology.
Collapse
Affiliation(s)
- Leia Colin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Raquel Martin-Arevalillo
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Simone Bovio
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
- LYMIC-PLATIM imaging and microscopy core facility, Univ Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL-50 Avenue Tony Garnier, 69007 Lyon, France
| | - Amélie Bauer
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Marie-Cecile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Benoit Landrein
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, 69342 Lyon, France
| |
Collapse
|
10
|
Yu J, Hui Y, Chen J, Yu H, Gao X, Zhang Z, Li Q, Zhu S, Zhao T. Whole-genome resequencing of 240 Gossypium barbadense accessions reveals genetic variation and genes associated with fiber strength and lint percentage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3249-3261. [PMID: 34240238 DOI: 10.1007/s00122-021-03889-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/08/2021] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Genetic variation in a G. barbadense population was revealed using resquencing. GWAS on G.barbadense population identified several candidate genes associated with fiber strength and lint percentage. Gossypium barbadense is the second-largest cultivated cotton species planted in the world, which is characterized by high fiber quality. Here, we described the global pattern of genetic polymorphisms for 240 G. barbadense accessions based on the whole-genome resequencing. A total of 3,632,231 qualified single-nucleotide polymorphisms (SNPs) and 221,354 insertion-deletions (indels) were obtained. We conducted a genome-wide association study (GWAS) on 12 traits under four environments. Two traits with more stable associated variants, fiber strength and lint percentage, were chosen for further analysis. Three putative candidate genes, HD16 orthology (GB_D11G3437), WDL2 orthology (GB_D11G3460) and TUBA1 orthology (GB_D11G3471), on chromosome D11 were found to be associated with fiber strength, and one gene orthologous to Arabidopsis Receptor-like protein kinase HERK 1 (GB_A07G1034) was predicated to be the candidate gene for the lint percentage improvement. The identified genes may serve as promising targets for genetic engineering to accelerate the breeding process for G. barbadense and the high-density genome variation map constructed in this work may facilitate our understanding of the genetic architecture of cotton traits.
Collapse
Affiliation(s)
- Jingwen Yu
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yixuan Hui
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Jinhong Chen
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Hurong Yu
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Xinpeng Gao
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Zhaohui Zhang
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Qin Li
- Hainan Institute, Zhejiang University, Sanya, 572025, China
| | - Shuijin Zhu
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
| | - Tianlun Zhao
- Institute of Crop Science, College of Agriculture, Zhejiang University, Hangzhou, 310058, China.
- Hainan Institute, Zhejiang University, Sanya, 572025, China.
| |
Collapse
|
11
|
Lucas JR. Appearance of microtubules at the cytokinesis to interphase transition in Arabidopsis thaliana. Cytoskeleton (Hoboken) 2021; 78:361-371. [PMID: 34569724 DOI: 10.1002/cm.21689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/06/2022]
Abstract
Microtubule arrays drastically reorganize during the cell cycle to facilitate specific events. Many cells contain a centrosome that dictates the assembly and organization of microtubule arrays. However, plant cells and many others do not contain centrosomes or discrete microtubule organizing centers. In plants, microtubules nucleate and polymerize from gamma-tubulin-containing complexes in the interphase cell cortex. During plant cell division, microtubules nucleate near nuclei to form the mitotic spindle and plant-specific phragmoplast required for cytokinesis. Therefore, during the plant cell cycle, microtubule nucleation shifts from cell cortex to the perinuclear region. While it is unclear how this shift occurs, previous studies observed microtubules that appeared to extend from nuclei into the cortex as cells transitioned into interphase in small cells. These data led to the hypothesis that microtubule nucleation complexes move from the nuclear surface to the cortex at the transition from cytokinesis into interphase. Here we document GFP labeled microtubules in living plant cells during the transition from cytokinesis to interphase. We observed apparent groups of microtubules spanning between the nucleus and cell cortex in large, vacuolated epidermal leaf cells. We also observed microtubules in the cell cortex that appeared separate from perinuclear-associated microtubules. While these cortical microtubules were not always seen, when present they were apparent before cytokinesis was complete and/or before nuclear-associated microtubules were obvious. These data add to and deepen the knowledge of microtubule reorganization at this cell cycle transition.
Collapse
Affiliation(s)
- Jessica R Lucas
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin, USA
| |
Collapse
|
12
|
Pozhvanov G, Sharova E, Medvedev S. Microgravity modelling by two-axial clinorotation leads to scattered organisation of cytoskeleton in Arabidopsis seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1062-1073. [PMID: 34372965 DOI: 10.1071/fp20225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Proper plant development in a closed ecosystem under weightlessness will be crucial for the success of future space missions. To supplement spaceflight experiments, such conditions of microgravity are modelled on Earth using a two-axial (2A) clinorotation, and in several fundamental studies resulted in the data on proteome and metabolome adjustments, embryo development, cell cycle regulation, etc. Nevertheless, our understanding of the cytoskeleton responses to the microgravity is still limited. In the present work, we study the adjustment of actin microfilaments (MFs) and microtubules (MTs) in Arabidopsis thaliana (L.) Heynh. seedlings under 2A clinorotation. Modelled microgravity resulted in not only the alteration of seedlings phenotype, but also a transient increase of the hydrogen peroxide level and in the cytoskeleton adjustment. Using GFP-fABD2 and Lifeact-Venus transgenic lines, we demonstrate that MFs became 'scattered' in elongating root and hypocotyl cells under 2A clinorotation. In addition, in GFP-MAP4 and GFP-TUA6 lines the tubulin cytoskeleton had higher fractions of transverse MTs under 2A clinorotation. Remarkably, the first static gravistimulation of continuously clinorotated seedlings reverted MF organisation to a longitudinal one in roots within 30 min. Our data suggest that the 'scattered' organisation of MFs in microgravity can serve as a good basis for the rapid cytoskeleton conversion to a 'longitudinal' structure under the gravity force.
Collapse
Affiliation(s)
- Gregory Pozhvanov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7-9, St. Petersburg 199034, Russian Federation; and Laboratory of Analytical Phytochemistry, Komarov Botanical Institute, Russian Academy of Sciences, Professora Popova st. 2, St. Petersburg 197376, Russian Federation; and Herzen State Pedagogical University of Russia, 48 Moika Emb., St. Petersburg 191186, Russian Federation; and Corresponding authors. Emails: ;
| | - Elena Sharova
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7-9, St. Petersburg 199034, Russian Federation
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7-9, St. Petersburg 199034, Russian Federation; and Corresponding authors. Emails: ;
| |
Collapse
|
13
|
Eng RC, Schneider R, Matz TW, Carter R, Ehrhardt DW, Jönsson H, Nikoloski Z, Sampathkumar A. KATANIN and CLASP function at different spatial scales to mediate microtubule response to mechanical stress in Arabidopsis cotyledons. Curr Biol 2021; 31:3262-3274.e6. [PMID: 34107303 DOI: 10.1016/j.cub.2021.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 01/02/2023]
Abstract
Mechanical stress influences cell- and tissue-scale processes across all kingdoms. It remains challenging to delineate how mechanical stress, originating at these different length scales, impacts cell and tissue form. We combine growth tracking of cells, quantitative image analysis, as well as molecular and mechanical perturbations to address this problem in pavement cells of Arabidopsis thaliana cotyledon tissue. We show that microtubule organization based on chemical signals and cell-shape-derived mechanical stress varies during early stages of pavement cell development and is mediated by the evolutionary conserved proteins, KATANIN and CLASP. However, we find that these proteins regulate microtubule organization in response to tissue-scale mechanical stress to different extents in the cotyledon epidermis. Our results further demonstrate that regulation of cotyledon form is uncoupled from the mechanical-stress-dependent control of pavement cell shape that relies on microtubule organization governed by subcellular mechanical stress.
Collapse
Affiliation(s)
- Ryan C Eng
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - René Schneider
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Timon W Matz
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Ross Carter
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - David W Ehrhardt
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA; Department of Biological Sciences, Stanford University, 260 Panama Street, Stanford, CA 94305, USA
| | - Henrik Jönsson
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, UK; Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, 223 62 Lund, Sweden
| | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
14
|
Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biol 2021; 19:93. [PMID: 33952264 PMCID: PMC8097969 DOI: 10.1186/s12915-021-01031-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Brassica oleracea includes several morphologically diverse, economically important vegetable crops, such as the cauliflower and cabbage. However, genetic variants, especially large structural variants (SVs), that underlie the extreme morphological diversity of B. oleracea remain largely unexplored. Results Here we present high-quality chromosome-scale genome assemblies for two B. oleracea morphotypes, cauliflower and cabbage. Direct comparison of these two assemblies identifies ~ 120 K high-confidence SVs. Population analysis of 271 B. oleracea accessions using these SVs clearly separates different morphotypes, suggesting the association of SVs with B. oleracea intraspecific divergence. Genes affected by SVs selected between cauliflower and cabbage are enriched with functions related to response to stress and stimulus and meristem and flower development. Furthermore, genes affected by selected SVs and involved in the switch from vegetative to generative growth that defines curd initiation, inflorescence meristem proliferation for curd formation, maintenance and enlargement, are identified, providing insights into the regulatory network of curd development. Conclusions This study reveals the important roles of SVs in diversification of different morphotypes of B. oleracea, and the newly assembled genomes and the SVs provide rich resources for future research and breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01031-2.
Collapse
|
15
|
Ishida T, Yoshimura H, Takekawa M, Higaki T, Ideue T, Hatano M, Igarashi M, Tani T, Sawa S, Ishikawa H. Discovery, characterization and functional improvement of kumamonamide as a novel plant growth inhibitor that disturbs plant microtubules. Sci Rep 2021; 11:6077. [PMID: 33758203 PMCID: PMC7988157 DOI: 10.1038/s41598-021-85501-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
The discovery and useful application of natural products can help improve human life. Chemicals that inhibit plant growth are broadly utilized as herbicides to control weeds. As various types of herbicides are required, the identification of compounds with novel modes of action is desirable. In the present study, we discovered a novel N-alkoxypyrrole compound, kumamonamide from Streptomyces werraensis MK493-CF1 and established a total synthesis procedure. Resulted in the bioactivity assays, we found that kumamonamic acid, a synthetic intermediate of kumamonamide, is a potential plant growth inhibitor. Further, we developed various derivatives of kumamonamic acid, including a kumamonamic acid nonyloxy derivative (KAND), which displayed high herbicidal activity without adverse effects on HeLa cell growth. We also detected that kumamonamic acid derivatives disturb plant microtubules; and additionally, that KAND affected actin filaments and induced cell death. These multifaceted effects differ from those of known microtubule inhibitors, suggesting a novel mode of action of kumamonamic acid, which represents an important lead for the development of new herbicides.
Collapse
Affiliation(s)
- Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.
| | - Haruna Yoshimura
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan
| | - Masatsugu Takekawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan
| | - Takashi Ideue
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | | | - Tokio Tani
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan.,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Hayato Ishikawa
- Graduate School of Science and Technology, Kumamoto University, Kurokami 2-39-1, Kumamoto, 860-8555, Japan. .,Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan. .,Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 263-8522, Japan.
| |
Collapse
|
16
|
Smertenko T, Turner G, Fahy D, Brew-Appiah RAT, Alfaro-Aco R, de Almeida Engler J, Sanguinet KA, Smertenko A. Brachypodium distachyon MAP20 functions in metaxylem pit development and contributes to drought recovery. THE NEW PHYTOLOGIST 2020; 227:1681-1695. [PMID: 31863702 DOI: 10.1111/nph.16383] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Pits are regions in the cell walls of plant tracheary elements that lack secondary walls. Each pit consists of a space within the secondary wall called a pit chamber, and a modified primary wall called the pit membrane. The pit membrane facilitates transport of solutions between vessel cells and restricts embolisms during drought. Here we analyzed the role of an angiosperm-specific TPX2-like microtubule protein MAP20 in pit formation using Brachypodium distachyon as a model system. Live cell imaging was used to analyze the interaction of MAP20 with microtubules and the impact of MAP20 on microtubule dynamics. MAP20-specific antibody was used to study expression and localization of MAP20 in different cell types during vascular bundle development. We used an artificial microRNAs (amiRNA) knockdown approach to determine the function of MAP20. MAP20 is expressed during the late stages of vascular bundle development and localizes around forming pits and under secondary cell wall thickenings in metaxylem cells. MAP20 suppresses microtubule depolymerization; however, unlike the animal TPX2 counterpart, MAP20 does not cooperate with the γ-tubulin ring complex in microtubule nucleation. Knockdown of MAP20 causes bigger pits, thinner pit membranes, perturbed vasculature development, lower reproductive potential and higher drought susceptibility. We conclude that MAP20 may contribute to drought adaptation by modulating pit size and pit membrane thickness in metaxylem.
Collapse
Affiliation(s)
- Tetyana Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Glenn Turner
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Deirdre Fahy
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Janice de Almeida Engler
- Institut Sophia Agrobiotech, Institut National de la Recherche Agronomique, Université Côte d'Azur, Centre National de la Recherche Scientifique, 06903, Sophia-Antipolis, France
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
17
|
Buschmann H, Borchers A. Handedness in plant cell expansion: a mutant perspective on helical growth. THE NEW PHYTOLOGIST 2020; 225:53-69. [PMID: 31254400 DOI: 10.1111/nph.16034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Many plant mutants are known that exhibit some degree of helical growth. This 'twisted' phenotype has arisen frequently in mutant screens of model organisms, but it is also found in cultivars of ornamental plants, including trees. The phenomenon, in many cases, is based on defects in cell expansion symmetry. Any complete model which explains the anisotropy of plant cell growth must ultimately explain how helical cell expansion comes into existence - and how it is normally avoided. While the mutations observed in model plants mainly point to the microtubule system, additional affected components involve cell wall functions, auxin transport and more. Evaluation of published data suggests a two-way mechanism underlying the helical growth phenomenon: there is, apparently, a microtubular component that determines handedness, but there is also an influence arising in the cell wall that feeds back into the cytoplasm and affects cellular handedness. This idea is supported by recent reports demonstrating the involvement of the cell wall integrity pathway. In addition, there is mounting evidence that calcium is an important relayer of signals relating to the symmetry of cell expansion. These concepts suggest experimental approaches to untangle the phenomenon of helical cell expansion in plant mutants.
Collapse
Affiliation(s)
- Henrik Buschmann
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49076, Osnabrück, Germany
| | - Agnes Borchers
- Botanical Institute, Biology and Chemistry Department, University of Osnabrück, 49076, Osnabrück, Germany
| |
Collapse
|
18
|
Fambrini M, Pugliesi C. The Dynamic Genetic-Hormonal Regulatory Network Controlling the Trichome Development in Leaves. PLANTS (BASEL, SWITZERLAND) 2019; 8:E253. [PMID: 31357744 PMCID: PMC6724107 DOI: 10.3390/plants8080253] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Plant trichomes are outgrowths developed from an epidermal pavement cells of leaves and other organs. Trichomes (also called 'hairs') play well-recognized roles in defense against insect herbivores, forming a physical barrier that obstructs insect movement and mediating chemical defenses. In addition, trichomes can act as a mechanosensory switch, transducing mechanical stimuli (e.g., insect movement) into physiological signals, helping the plant to respond to insect attacks. Hairs can also modulate plant responses to abiotic stresses, such as water loss, an excess of light and temperature, and reflect light to protect plants against UV radiation. The structure of trichomes is species-specific and this trait is generally related to their function. These outgrowths are easily analyzed and their origin represents an outstanding subject to study epidermal cell fate and patterning in plant organs. In leaves, the developmental control of the trichomatous complement has highlighted a regulatory network based on four fundamental elements: (i) genes that activate and/or modify the normal cell cycle of epidermal pavement cells (i.e., endoreduplication cycles); (ii) transcription factors that create an activator/repressor complex with a central role in determining cell fate, initiation, and differentiation of an epidermal cell in trichomes; (iii) evidence that underlines the interplay of the aforesaid complex with different classes of phytohormones; (iv) epigenetic mechanisms involved in trichome development. Here, we reviewed the role of genes in the development of trichomes, as well as the interaction between genes and hormones. Furthermore, we reported basic studies about the regulation of the cell cycle and the complexity of trichomes. Finally, this review focused on the epigenetic factors involved in the initiation and development of hairs, mainly on leaves.
Collapse
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
| |
Collapse
|
19
|
Schmidt S, Smertenko A. Identification and characterization of the land-plant-specific microtubule nucleation factor MACET4. J Cell Sci 2019; 132:jcs232819. [PMID: 31076517 DOI: 10.1242/jcs.232819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/01/2019] [Indexed: 12/23/2022] Open
Abstract
Here, we show that the embryophyte (land-plant)-specific protein MACERATOR4 (MACET4) binds microtubules in vitro and in vivo, promotes microtubule polymerization at sub-critical tubulin concentrations, decreases the lag phase in microtubule bulk polymerization assays, and colocalizes with microtubule nucleation sites. Furthermore, we find that MACET4 forms oligomers that induce aster formation in vitro in a manner that is similar to aster formation mediated by centrosomes and TPX2. MACET4 is expressed during cell division and accumulates at the microtubule nucleation regions of the plant-specific cytokinetic microtubule array, the phragmoplast. We found that MACET4 localizes to the preprophase band and the cortical division zone, but not the spindle. MACET4 appears as cytoplasmic foci in vivo and forms octamers in vitro Transient expression in tobacco leaf pavement cells results in labeling of shrinking plus- and minus-ends. MACET4 facilitates microtubule depolymerization by increasing the frequency of catastrophes in vivo and by suppressing rescues in vitro Microtubules formed in the presence of MACET4 in vitro are shorter, most likely due to the depletion of the free tubulin pool. Accordingly, MACET4 knockdown results in longer phragmoplasts. We conclude that the direct activity of MACET4 is in promoting microtubule nucleation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sharol Schmidt
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
20
|
Asada T. Preprophase-band positioning in isolated tobacco BY-2 cells: evidence for a principal role of nucleus-cell cortex interaction in default division-plane selection. PROTOPLASMA 2019; 256:721-729. [PMID: 30478505 DOI: 10.1007/s00709-018-01331-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
In some plant tissue types, new cross-walls tend to divide parental cells equally and to meet parental walls at right angles while tending to have minimal surface area. A previously proposed model that I call the reach model suggests that this feature originates from the tendency of premitotic division-plane selection or of the positioning of microtubule preprophase bands (PPBs) which predict the cortical division site, and that default division-plane selection involves nuclear centering and subsequent PPB microtubule assembly on the cell wall parts closest to the nucleus. In an initial effort to characterize truly default division-plane selection, the present study quantified division orientation and PPB positioning in protoplast-derived isolated elongate tobacco BY-2 cells. In this system, PPB-predicted and actual division planes were mostly oriented transversely, as predicted based on the reach model. Some sample elongate cells had asymmetric shapes that came from clear terminal-size differences and, in those cells, PPB-marked planes tended to be displaced from the centers of centrally located nuclei toward the narrower cell end, again as predicted based on the reach model. Such PPB positioning typically forecasted volumetrically asymmetric transverse division that would produce a smaller daughter cell from a parental cell part including the narrower cell end. These results provide experimental evidence that default division-plane selection tends to be close to or the same as the selection using the reach model's criterion, and that it does not use any criterion that specifically prioritizes the equality or verticality of division.
Collapse
Affiliation(s)
- Tetsuhiro Asada
- Department of Biological Science, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
21
|
Liang S, Yang X, Deng M, Zhao J, Shao J, Qi Y, Liu X, Yu F, An L. A New Allele of the SPIKE1 Locus Reveals Distinct Regulation of Trichome and Pavement Cell Development and Plant Growth. FRONTIERS IN PLANT SCIENCE 2019; 10:16. [PMID: 30733726 PMCID: PMC6353857 DOI: 10.3389/fpls.2019.00016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
The single-celled trichomes of Arabidopsis thaliana have long served as an elegant model for elucidating the mechanisms of cell differentiation and morphogenesis due to their unique growth patterns. To identify new components in the genetic network that governs trichome development, we carried out exhaustive screens for additional Arabidopsis mutants with altered trichome morphology. Here, we report one mutant, aberrantly branched trichome1-1 (abt1-1), with a reduced trichome branching phenotype. After positional cloning, a point mutation in the SPIKE1 (SPK1) gene was identified in abt1-1. Further genetic complementation experiments confirmed that abt1-1 is a new allele of SPK1, so abt1-1 was renamed as spk1-7 according to the literatures. spk1-7 and two other spk1 mutant alleles, covering a spectrum of phenotypic severity, highlighted the distinct responses of developmental programs to different SPK1 mutations. Although null spk1 mutants are lethal and show defects in plant stature, trichome and epidermal pavement cell development, only trichome branching is affected in spk1-7. Surprisingly, we found that SPK1 is involved in the positioning of nuclei in the trichome cells. Lastly, through double mutant analysis, we found the coordinated regulation of trichome branching between SPK1 and two other trichome branching regulators, ANGUSTIFOLIA (AN) and ZWICHEL (ZWI). SPK1 might serve for the precise positioning of trichome nuclei, while AN and ZWI contribute to the formation of branch points through governing the cMTs dynamics. In summary, this study presented a fully viable new mutant allele of SPK1 and shed new light on the regulation of trichome branching and other developmental processes by SPK1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fei Yu
- *Correspondence: Fei Yu, Lijun An,
| | - Lijun An
- *Correspondence: Fei Yu, Lijun An,
| |
Collapse
|
22
|
Möller B, Zergiebel L, Bürstenbinder K. Quantitative and Comparative Analysis of Global Patterns of (Microtubule) Cytoskeleton Organization with CytoskeletonAnalyzer2D. Methods Mol Biol 2019; 1992:151-171. [PMID: 31148037 DOI: 10.1007/978-1-4939-9469-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The microtubule cytoskeleton plays important roles in cell morphogenesis. To investigate the mechanisms of cytoskeletal organization, for example, during growth or development, in genetic studies, or in response to environmental stimuli, image analysis tools for quantitative assessment are needed. Here, we present a method for texture measure-based quantification and comparative analysis of global microtubule cytoskeleton patterns and subsequent visualization of output data. In contrast to other approaches that focus on the extraction of individual cytoskeletal fibers and analysis of their orientation relative to the growth axis, CytoskeletonAnalyzer2D quantifies cytoskeletal organization based on the analysis of local binary patterns. CytoskeletonAnalyzer2D thus is particularly well suited to study cytoskeletal organization in cells where individual fibers are difficult to extract or which lack a clearly defined growth axis, such as leaf epidermal pavement cells. The tool is available as ImageJ plugin and can be combined with publicly available software and tools, such as R and Cytoscape, to visualize similarity networks of cytoskeletal patterns.
Collapse
Affiliation(s)
- Birgit Möller
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Luise Zergiebel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
| | - Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany.
| |
Collapse
|
23
|
Molines AT, Marion J, Chabout S, Besse L, Dompierre JP, Mouille G, Coquelle FM. EB1 contributes to microtubule bundling and organization, along with root growth, in Arabidopsis thaliana. Biol Open 2018; 7:bio.030510. [PMID: 29945874 PMCID: PMC6124560 DOI: 10.1242/bio.030510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Microtubules are involved in plant development and adaptation to their environment, but the sustaining molecular mechanisms remain elusive. Microtubule-end-binding 1 (EB1) proteins participate in directional root growth in Arabidopsis thaliana. However, a connection to the underlying microtubule array has not been established yet. We show here that EB1 proteins contribute to the organization of cortical microtubules in growing epidermal plant cells, without significant modulation of microtubule dynamics. Using super-resolution stimulated emission depletion (STED) microscopy and an original quantification approach, we also demonstrate a significant reduction of apparent microtubule bundling in cytoplasmic-EB1-deficient plants, suggesting a function for EB1 in the interaction between adjacent microtubules. Furthermore, we observed root growth defects in EB1-deficient plants, which are not related to cell division impairment. Altogether, our results support a role for EB1 proteins in root development, in part by maintaining the organization of cortical microtubules. This article has an associated First Person interview with the first author of the paper. Summary: EB1 proteins affect cortical-microtubule bundling and organization in Arabidopsis thaliana, without significant modulation of microtubule dynamics. They also participate in root growth, further linking microtubules to plant development.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Jessica Marion
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Salem Chabout
- Institut Jean-Pierre Bourgin (IJPB), INRA - AgroParisTech, 78026 Versailles Cedex, France
| | - Laetitia Besse
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Jim P Dompierre
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin (IJPB), INRA - AgroParisTech, 78026 Versailles Cedex, France
| | - Frédéric M Coquelle
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
24
|
Akita K, Hasezawa S, Higaki T. Cortical microtubules and fusicoccin response in clustered stomatal guard cells induced by sucrose solution immersion. PLANT SIGNALING & BEHAVIOR 2018; 13:e1454815. [PMID: 29557717 PMCID: PMC5933904 DOI: 10.1080/15592324.2018.1454815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/29/2023]
Abstract
We previously found that sucrose solution immersion treatment permitted ectopic guard cell differentiation, resulting in clustered stomatal guard cells. Using this system, we examined the effects of sucrose solution-induced stomatal clustering on guard cell cortical microtubules and the stomatal response to fusicoccin. Confocal observation revealed that the radial orientation of cortical microtubules was largely maintained in clustered guard cells. Outward movement of cortical microtubule plus-ends was also kept in the clustered guard cells. Fusicoccin treatment induced stomatal opening in both spaced and clustered stomata, although sucrose solution-treated guard cells had lower stomatal apertures. These results suggested that immersion treatment with sucrose solution perturbed the one-cell spacing of stomata but not the cortical microtubule organization required to open stomatal pores.
Collapse
Affiliation(s)
- Kae Akita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
25
|
Liao C, Weijers D. A toolkit for studying cellular reorganization during early embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:963-976. [PMID: 29383853 PMCID: PMC5887935 DOI: 10.1111/tpj.13841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 05/02/2023]
Abstract
Considerable progress has been made in understanding the influence of physical and genetic factors on the patterns of cell division in various model systems. However, how each of these factors directs changes in subcellular structures has remained unclear. Generic machineries for the execution of cell expansion and division have been characterized, but how these are influenced by genetic regulators and physical cell properties remains an open question. To a large degree, the complexity of growing post-embryonic tissues and a lack of precise predictability have prevented the extraction of rigid correlations between subcellular structures and future orientation of cell division. The Arabidopsis embryo offers an exquisitely predictable and simple model for studying such correlations, but so far the tools and methodology for studying subcellular structures in the early embryo have been lacking. Here, we describe a set of markers to visualize a range of subcellular structures in the early Arabidopsis embryo. We have designed a series of fluorescent cellular reporters optimized for embryos, and demonstrate the effectiveness of using these 'ACE' reporters with simple three-dimensional imaging procedures that preserve delicate cellular structures. We describe the ontogeny of subcellular structures in the early embryo and find that central/peripheral cell polarity is established much earlier than suspected. In addition, we show that the actin and microtubule cytoskeleton has distinct topologies in the embryo. These tools and methods will allow detailed analysis of the events of cellular reorganization that underlie morphogenesis in the Arabidopsis embryo.
Collapse
Affiliation(s)
- Che‐Yang Liao
- Laboratory of BiochemistryWageningen UniversityStippeneng 46708WE Wageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityStippeneng 46708WE Wageningenthe Netherlands
| |
Collapse
|
26
|
Liu X, Yang Q, Wang Y, Wang L, Fu Y, Wang X. Brassinosteroids regulate pavement cell growth by mediating BIN2-induced microtubule stabilization. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1037-1049. [PMID: 29329424 PMCID: PMC6018924 DOI: 10.1093/jxb/erx467] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/30/2017] [Indexed: 05/04/2023]
Abstract
Brassinosteroids (BRs), a group of plant steroid hormones, play important roles in regulating plant development. The cytoskeleton also affects key developmental processes and a deficiency in BR biosynthesis or signaling leads to abnormal phenotypes similar to those of microtubule-defective mutants. However, how BRs regulate microtubule and cell morphology remains unknown. Here, using liquid chromatography-tandem mass spectrometry, we identified tubulin proteins that interact with Arabidopsis BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative regulator of BR responses in plants. In vitro and in vivo pull-down assays confirmed that BIN2 interacts with tubulin proteins. High-speed co-sedimentation assays demonstrated that BIN2 also binds microtubules. The Arabidopsis genome also encodes two BIN2 homologs, BIN2-LIKE 1 (BIL1) and BIL2, which function redundantly with BIN2. In the bin2-3 bil1 bil2 triple mutant, cortical microtubules were more sensitive to treatment with the microtubule-disrupting drug oryzalin than in wild-type, whereas in the BIN2 gain-of-function mutant bin2-1, cortical microtubules were insensitive to oryzalin treatment. These results provide important insight into how BR regulates plant pavement cell and leaf growth by mediating the stabilization of microtubules by BIN2.
Collapse
Affiliation(s)
- Xiaolei Liu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Correspondence:
| | - Qin Yang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuan Wang
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Botany and Plant Science, University of California Riverside, Riverside, CA, USA
| | - Linhai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuelu Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Alqurashi M, Thomas L, Gehring C, Marondedze C. A Microsomal Proteomics View of H₂O₂- and ABA-Dependent Responses. Proteomes 2017; 5:proteomes5030022. [PMID: 28820483 PMCID: PMC5620539 DOI: 10.3390/proteomes5030022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/28/2017] [Accepted: 08/16/2017] [Indexed: 01/22/2023] Open
Abstract
The plant hormone abscisic acid (ABA) modulates a number of plant developmental processes and responses to stress. In planta, ABA has been shown to induce reactive oxygen species (ROS) production through the action of plasma membrane-associated nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases. Although quantitative proteomics studies have been performed to identify ABA- or hydrogen peroxide (H2O2)-dependent proteins, little is known about the ABA- and H2O2-dependent microsomal proteome changes. Here, we examined the effect of 50 µM of either H2O2 or ABA on the Arabidopsis microsomal proteome using tandem mass spectrometry and identified 86 specifically H2O2-dependent, and 52 specifically ABA-dependent proteins that are differentially expressed. We observed differential accumulation of proteins involved in the tricarboxylic acid (TCA) cycle notably in response to H2O2. Of these, aconitase 3 responded to both H2O2 and ABA. Additionally, over 30 proteins linked to RNA biology responded significantly to both treatments. Gene ontology categories such as ‘response to stress’ and ‘transport’ were enriched, suggesting that H2O2 or ABA directly and/or indirectly cause complex and partly overlapping cellular responses. Data are available via ProteomeXchange with identifier PXD006513.
Collapse
Affiliation(s)
- May Alqurashi
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Ludivine Thomas
- HM. Clause, rue Louis Saillant, Z.I. La Motte, BP83, 26802 Portes-lès-Valence, France.
| | - Chris Gehring
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno 74, 06121 Perugia, Italy.
| | - Claudius Marondedze
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge Tennis Court Road, Cambridge CB2 1QR, UK.
- Biological and Environmental Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/BIG, 17, avenue des Martyrs, 38054 Grenoble, France.
| |
Collapse
|
28
|
Takatani S, Ozawa S, Yagi N, Hotta T, Hashimoto T, Takahashi Y, Takahashi T, Motose H. Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Sci Rep 2017; 7:7826. [PMID: 28798328 PMCID: PMC5552743 DOI: 10.1038/s41598-017-08453-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022] Open
Abstract
Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.
Collapse
Affiliation(s)
- Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Shinichiro Ozawa
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Noriyoshi Yagi
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takashi Hotta
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Takashi Hashimoto
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuichiro Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.
| |
Collapse
|
29
|
Higaki T, Takigawa-Imamura H, Akita K, Kutsuna N, Kobayashi R, Hasezawa S, Miura T. Exogenous Cellulase Switches Cell Interdigitation to Cell Elongation in an RIC1-dependent Manner in Arabidopsis thaliana Cotyledon Pavement Cells. PLANT & CELL PHYSIOLOGY 2017; 58:106-119. [PMID: 28011873 DOI: 10.1093/pcp/pcw183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/19/2016] [Indexed: 05/08/2023]
Abstract
Pavement cells in cotyledons and true leaves exhibit a jigsaw puzzle-like morphology in most dicotyledonous plants. Among the molecular mechanisms mediating cell morphogenesis, two antagonistic Rho-like GTPases regulate local cell outgrowth via cytoskeletal rearrangements. Analyses of several cell wall-related mutants suggest the importance of cell wall mechanics in the formation of interdigitated patterns. However, how these factors are integrated is unknown. In this study, we observed that the application of exogenous cellulase to hydroponically grown Arabidopsis thaliana cotyledons switched the interdigitation of pavement cells to the production of smoothly elongated cells. The cellulase-induced inhibition of cell interdigitation was not observed in a RIC1 knockout mutant. This gene encodes a Rho-like GTPase-interacting protein important for localized cell growth suppression via microtubule bundling on concave cell interfaces. Additionally, to characterize pavement cell morphologies, we developed a mathematical model that considers the balance between cell and cell wall growth, restricted global cell growth orientation, and regulation of local cell outgrowth mediated by a Rho-like GTPase-cytoskeleton system. Our computational simulations fully support our experimental observations, and suggest that interdigitated patterns form because of mechanical buckling in the absence of Rho-like GTPase-dependent regulation of local cell outgrowth. Our model clarifies the cell wall mechanics influencing pavement cell morphogenesis.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kae Akita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
- Research and Development Division, LPixel Inc., Bunkyo-ku, Tokyo, Japan
| | - Ryo Kobayashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan
| | - Takashi Miura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Zhao J, Xin H, Cao L, Huang X, Shi C, Zhao P, Fu Y, Sun MX. NtDRP is necessary for accurate zygotic division orientation and differentiation of basal cell lineage toward suspensor formation. THE NEW PHYTOLOGIST 2016; 212:598-612. [PMID: 27348863 DOI: 10.1111/nph.14060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/14/2016] [Indexed: 05/08/2023]
Abstract
Plant embryogenesis begins with an asymmetric division of the zygote, producing apical and basal cells with distinct cell fates. The asymmetric zygote division is thought to be critical for embryo pattern formation; however, the molecular mechanisms regulating this process, especially maintaining the accurate position and proper orientation of cell division plane, remain poorly understood. Here, we report that a dynamin-related protein in Nicotiana tabacum, NtDRP, plays a critical role in maintaining orientation of zygotic division plane. Down-regulation of NtDRP caused zygotic cell division to occur in different, incorrect orientations and resulted in disruption of suspensor formation, and even development of twin embryos. The basal cell lineage totally integrated with the apical cell lineage into an embryo-like structure, suggesting that NtDRP is essential to accurate zygotic division orientation and differentiation of basal cell lineage toward suspensor formation. We also reveal that NtDRP plays its role by modulating microtubule spatial organization and spindle orientation during early embryogenesis. Thus, we revealed that NtDRP is involved in orientation of the asymmetric zygotic division and differentiation of distinct suspensor and embryo domains, as well as subsequent embryo pattern formation.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Cell and Developmental Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Haiping Xin
- Department of Cell and Developmental Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, 430074, China
| | - Lingyan Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaorong Huang
- Department of Cell and Developmental Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Ce Shi
- Department of Cell and Developmental Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Peng Zhao
- Department of Cell and Developmental Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng-Xiang Sun
- Department of Cell and Developmental Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
31
|
Louveaux M, Rochette S, Beauzamy L, Boudaoud A, Hamant O. The impact of mechanical compression on cortical microtubules in Arabidopsis: a quantitative pipeline. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:328-342. [PMID: 27482848 PMCID: PMC5113706 DOI: 10.1111/tpj.13290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 05/18/2023]
Abstract
Exogenous mechanical perturbations on living tissues are commonly used to investigate whether cell effectors can respond to mechanical cues. However, in most of these experiments, the applied mechanical stress and/or the biological response are described only qualitatively. We developed a quantitative pipeline based on microindentation and image analysis to investigate the impact of a controlled and prolonged compression on microtubule behaviour in the Arabidopsis shoot apical meristem, using microtubule fluorescent marker lines. We found that a compressive stress, in the order of magnitude of turgor pressure, induced apparent microtubule bundling. Importantly, that response could be reversed several hours after the release of compression. Next, we tested the contribution of microtubule severing to compression-induced bundling: microtubule bundling seemed less pronounced in the katanin mutant, in which microtubule severing is dramatically reduced. Conversely, some microtubule bundles could still be observed 16 h after the release of compression in the spiral2 mutant, in which severing rate is instead increased. To quantify the impact of mechanical stress on anisotropy and orientation of microtubule arrays, we used the nematic tensor based FibrilTool ImageJ/Fiji plugin. To assess the degree of apparent bundling of the network, we developed several methods, some of which were borrowed from geostatistics. The final microtubule bundling response could notably be related to tissue growth velocity that was recorded by the indenter during compression. Because both input and output are quantified, this pipeline is an initial step towards correlating more precisely the cytoskeleton response to mechanical stress in living tissues.
Collapse
Affiliation(s)
- Marion Louveaux
- Laboratoire Reproduction et Développement des PlantesUniversité de LyonENS de LyonUCB Lyon 1CNRSINRAF‐69342LyonFrance
- Laboratoire Joliot‐CurieCNRSENS de LyonUCB Lyon 1Université de Lyon46 allée d'Italie69364Lyon Cedex 07France
| | - Sébastien Rochette
- Département Dynamiques de l'Environnement CôtierLaboratoire d’Écologie Benthique Côtière (LEBCO)IfremerCS 1007029280PlouzanéFrance
| | - Léna Beauzamy
- Laboratoire Reproduction et Développement des PlantesUniversité de LyonENS de LyonUCB Lyon 1CNRSINRAF‐69342LyonFrance
- Laboratoire Joliot‐CurieCNRSENS de LyonUCB Lyon 1Université de Lyon46 allée d'Italie69364Lyon Cedex 07France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des PlantesUniversité de LyonENS de LyonUCB Lyon 1CNRSINRAF‐69342LyonFrance
- Laboratoire Joliot‐CurieCNRSENS de LyonUCB Lyon 1Université de Lyon46 allée d'Italie69364Lyon Cedex 07France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des PlantesUniversité de LyonENS de LyonUCB Lyon 1CNRSINRAF‐69342LyonFrance
- Laboratoire Joliot‐CurieCNRSENS de LyonUCB Lyon 1Université de Lyon46 allée d'Italie69364Lyon Cedex 07France
| |
Collapse
|
32
|
Higaki T, Kutsuna N, Akita K, Takigawa-Imamura H, Yoshimura K, Miura T. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells. PLoS Comput Biol 2016; 12:e1004833. [PMID: 27054467 PMCID: PMC4824374 DOI: 10.1371/journal.pcbi.1004833] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/17/2016] [Indexed: 11/26/2022] Open
Abstract
Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Research and Development Division, LPixel Inc., Tokyo, Japan
| | - Kae Akita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisako Takigawa-Imamura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenji Yoshimura
- Department of Neurology, Osaka City General Hospital, Osaka, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Celler K, Fujita M, Kawamura E, Ambrose C, Herburger K, Holzinger A, Wasteneys GO. Microtubules in Plant Cells: Strategies and Methods for Immunofluorescence, Transmission Electron Microscopy, and Live Cell Imaging. Methods Mol Biol 2016; 1365:155-84. [PMID: 26498784 DOI: 10.1007/978-1-4939-3124-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are required throughout plant development for a wide variety of processes, and different strategies have evolved to visualize and analyze them. This chapter provides specific methods that can be used to analyze microtubule organization and dynamic properties in plant systems and summarizes the advantages and limitations for each technique. We outline basic methods for preparing samples for immunofluorescence labeling, including an enzyme-based permeabilization method, and a freeze-shattering method, which generates microfractures in the cell wall to provide antibodies access to cells in cuticle-laden aerial organs such as leaves. We discuss current options for live cell imaging of MTs with fluorescently tagged proteins (FPs), and provide chemical fixation, high-pressure freezing/freeze substitution, and post-fixation staining protocols for preserving MTs for transmission electron microscopy and tomography.
Collapse
Affiliation(s)
- Katherine Celler
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Miki Fujita
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Eiko Kawamura
- Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chris Ambrose
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Klaus Herburger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria
| | - Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestraße 15, 6020, Innsbruck, Austria.
| | | |
Collapse
|
34
|
Takatani S, Otani K, Kanazawa M, Takahashi T, Motose H. Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation. JOURNAL OF PLANT RESEARCH 2015; 128:875-91. [PMID: 26354760 DOI: 10.1007/s10265-015-0751-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/20/2015] [Indexed: 05/25/2023]
Abstract
Microtubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.
Collapse
Affiliation(s)
- Shogo Takatani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Kento Otani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Mai Kanazawa
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Taku Takahashi
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
| |
Collapse
|
35
|
Bell JL, Burke IC, Neff MM. Genetic and biochemical evaluation of natural rubber from Eastern Washington prickly lettuce (Lactuca serriola L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:593-602. [PMID: 25513853 DOI: 10.1021/jf503934v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alternative sources of natural rubber are of importance due to economic, biological, and political threats that could diminish supplies of this resource. Prickly lettuce (Lactuca serriola L.) synthesizes long-chain natural rubber and was studied to determine underlying genetic and phenotypic characteristics of rubber biosynthesis. Genotypic and phenotypic analysis of an F2 segregating population using EST-SSR markers led to the discovery of genetic regions linked to natural rubber production. Interval mapping (IM) and multiple QTL mapping (MQM) identified several QTL in the mapping population that had significance based on LOD score thresholds. The discovered QTL and the corresponding local markers are genetic resources for understanding rubber biosynthesis in prickly lettuce and could be used in marker-assisted selection (MAS) breeding. Prickly lettuce is an excellent candidate for elucidating the rubber synthesis mechanism and has potential as a crop plant for rubber production.
Collapse
Affiliation(s)
- Jared L Bell
- Discovery Research, Dow Agrosciences, Indianapolis, Indiana, United States
| | | | | |
Collapse
|
36
|
Akita K, Higaki T, Kutsuna N, Hasezawa S. Quantitative analysis of microtubule orientation in interdigitated leaf pavement cells. PLANT SIGNALING & BEHAVIOR 2015; 10:e1024396. [PMID: 26039484 PMCID: PMC4622981 DOI: 10.1080/15592324.2015.1024396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Leaf pavement cells are shaped like a jigsaw puzzle in most dicotyledon species. Molecular genetic studies have identified several genes required for pavement cells morphogenesis and proposed that microtubules play crucial roles in the interdigitation of pavement cells. In this study, we performed quantitative analysis of cortical microtubule orientation in leaf pavement cells in Arabidopsis thaliana. We captured confocal images of cortical microtubules in cotyledon leaf epidermis expressing GFP-tubulinβ and quantitatively evaluated the microtubule orientations relative to the pavement cell growth axis using original image processing techniques. Our results showed that microtubules kept parallel orientations to the growth axis during pavement cell growth. In addition, we showed that immersion treatment of seed cotyledons in solutions containing tubulin polymerization and depolymerization inhibitors decreased pavement cell complexity. Treatment with oryzalin and colchicine inhibited the symmetric division of guard mother cells.
Collapse
Affiliation(s)
- Kae Akita
- Department of Integrated Biosciences; Graduate School of Frontier Sciences; The University of Tokyo; Kashiwanoha; Kashiwa, Chiba, Japan
- Correspondence to: K. Akita;
| | - Takumi Higaki
- Department of Integrated Biosciences; Graduate School of Frontier Sciences; The University of Tokyo; Kashiwanoha; Kashiwa, Chiba, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences; Graduate School of Frontier Sciences; The University of Tokyo; Kashiwanoha; Kashiwa, Chiba, Japan
- Research and Development Division; LPixel Inc.; Bunkyo-ku, Tokyo, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences; Graduate School of Frontier Sciences; The University of Tokyo; Kashiwanoha; Kashiwa, Chiba, Japan
| |
Collapse
|
37
|
Hamada T, Nagasaki-Takeuchi N, Kato T, Fujiwara M, Sonobe S, Fukao Y, Hashimoto T. Purification and characterization of novel microtubule-associated proteins from Arabidopsis cell suspension cultures. PLANT PHYSIOLOGY 2013; 163:1804-16. [PMID: 24134884 PMCID: PMC3850192 DOI: 10.1104/pp.113.225607] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant microtubules (MTs) play essential roles in cell division, anisotropic cell expansion, and overall organ morphology. Microtubule-associated proteins (MAPs) bind to MTs and regulate their dynamics, stability, and organization. Identifying the full set of MAPs in plants would greatly enhance our understanding of how diverse MT arrays are formed and function; however, few proteomics studies have characterized plant MAPs. Using liquid chromatography-tandem mass spectrometry, we identified hundreds of proteins from MAP-enriched preparations derived from cell suspension cultures of Arabidopsis (Arabidopsis thaliana). Previously reported MAPs, MT regulators, kinesins, dynamins, peroxisome-resident enzymes, and proteins implicated in replication, transcription, and translation were highly enriched. Dozens of proteins of unknown function were identified, among which 12 were tagged with green fluorescent protein (GFP) and examined for their ability to colocalize with MTs when transiently expressed in plant cells. Six proteins did indeed colocalize with cortical MTs in planta. We further characterized one of these MAPs, designated as BASIC PROLINE-RICH PROTEIN1 (BPP1), which belongs to a seven-member family in Arabidopsis. BPP1-GFP decorated interphase and mitotic MT arrays in transgenic Arabidopsis plants. A highly basic, conserved region was responsible for the in vivo MT association. Overexpression of BPP1-GFP stabilized MTs, caused right-handed helical growth in rapidly elongating tissues, promoted the formation of transverse MT arrays, and resulted in the outgrowth of epidermal cells in light-grown hypocotyls. Our high-quality proteome database of Arabidopsis MAP-enriched preparations is a useful resource for identifying novel MT regulators and evaluating potential MT associations of proteins known to have other cellular functions.
Collapse
|
38
|
Ivakov A, Persson S. Plant cell shape: modulators and measurements. FRONTIERS IN PLANT SCIENCE 2013; 4:439. [PMID: 24312104 PMCID: PMC3832843 DOI: 10.3389/fpls.2013.00439] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 05/19/2023]
Abstract
Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation.
Collapse
Affiliation(s)
- Alexander Ivakov
- *Correspondence: Alexander Ivakov and Staffan Persson, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany e-mail: ;
| | - Staffan Persson
- *Correspondence: Alexander Ivakov and Staffan Persson, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany e-mail: ;
| |
Collapse
|
39
|
Breviario D, Gianì S, Morello L. Multiple tubulins: evolutionary aspects and biological implications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:202-18. [PMID: 23662651 DOI: 10.1111/tpj.12243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 05/05/2023]
Abstract
Plant tubulin is a dimeric protein that contributes to formation of microtubules, major intracellular structures that are involved in the control of fundamental processes such as cell division, polarity of growth, cell-wall deposition, intracellular trafficking and communications. Because it is a structural protein whose function is confined to the role of microtubule formation, tubulin may be perceived as an uninteresting gene product, but such a perception is incorrect. In fact, tubulin represents a key molecule for studying fundamental biological issues such as (i) microtubule evolution (also with reference to prokaryotic precursors and the formation of cytomotive filaments), (ii) protein structure with reference to the various biochemical features of members of the FstZ/tubulin superfamily, (iii) isoform variations contributed by the existence of multi-gene families and various kinds of post-translational modifications, (iv) anti-mitotic drug interactions and mode of action, (v) plant and cell symmetry, as determined using a series of tubulin mutants, (vi) multiple and sophisticated mechanisms of gene regulation, and (vii) intron molecular evolution. In this review, we present and discuss many of these issues, and offer an updated interpretation of the multi-tubulin hypothesis.
Collapse
Affiliation(s)
- Diego Breviario
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20133 Milano, Italy.
| | | | | |
Collapse
|
40
|
Cao L, Wang L, Zheng M, Cao H, Ding L, Zhang X, Fu Y. Arabidopsis AUGMIN subunit8 is a microtubule plus-end binding protein that promotes microtubule reorientation in hypocotyls. THE PLANT CELL 2013; 25:2187-201. [PMID: 23735294 PMCID: PMC3723620 DOI: 10.1105/tpc.113.113472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plant cells, cortical microtubules provide tracks for cellulose-synthesizing enzymes and regulate cell division, growth, and morphogenesis. The role of microtubules in these essential cellular processes depends on the spatial arrangement of the microtubules. Cortical microtubules are reoriented in response to changes in cell growth status and cell shape. Therefore, an understanding of the mechanism that underlies the change in microtubule orientation will provide insight into plant cell growth and morphogenesis. This study demonstrated that AUGMIN subunit8 (AUG8) in Arabidopsis thaliana is a novel microtubule plus-end binding protein that participates in the reorientation of microtubules in hypocotyls when cell elongation slows down. AUG8 bound to the plus ends of microtubules and promoted tubulin polymerization in vitro. In vivo, AUG8 was recruited to the microtubule branch site immediately before nascent microtubules branched out. It specifically associated with the plus ends of growing cortical microtubules and regulated microtubule dynamics, which facilitated microtubule reorientation when microtubules changed their growth trajectory or encountered obstacle microtubules during microtubule reorientation. This study thus reveals a novel mechanism underlying microtubule reorientation that is critical for modulating cell elongation in Arabidopsis.
Collapse
Affiliation(s)
- Lingyan Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Linhai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Min Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lian Ding
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
41
|
Hashimoto T. Dissecting the cellular functions of plant microtubules using mutant tubulins. Cytoskeleton (Hoboken) 2013; 70:191-200. [PMID: 23585382 DOI: 10.1002/cm.21099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 12/22/2022]
Abstract
α- and β-tubulins, the building blocks of the microtubule (MT) polymer, are encoded by multiple genes that are largely functionally redundant in plants. Null tubulin mutants are thus phenotypically indistinguishable from the wild type, but miss-sense or deletion mutations of critical amino acid residues that are important for the assembly, stability, or dynamics of the polymer disrupt the proper organization and function of the resultant MT arrays. Mutant tubulins co-assemble with wild-type tubulins into mutant MTs with compromised functions, and thus mechanistically act as dominant-negative MT poisons. Cortical MT arrays in interphase plant cells are most sensitive to tubulin mutations, and are transformed into helical structures or random orientation, which produce twisted or radially swollen cells. Mutant plants resistant to MT-targeted herbicides may possess tubulin mutations at the binding sites of the herbicides. Tubulin mutants are valuable tools for investigating how individual MTs are organized into particular patterns in cortical arrays, and for defining the functional contribution of MTs to various MT-dependent or -assisted cellular processes in plant cells.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
42
|
Xiong X, Xu D, Yang Z, Huang H, Cui X. A single amino-acid substitution at lysine 40 of an Arabidopsis thalianaα-tubulin causes extensive cell proliferation and expansion defects. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:209-220. [PMID: 23134282 DOI: 10.1111/jipb.12003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microtubules are highly dynamic cytoskeletal polymers of α/β-tubulin heterodimers that undergo multiple post-translational modifications essential for various cellular functions in eukaryotes. The lysine 40 (K40) is largely conserved in α-tubulins in many eukaryote species, and the post-translational modification by acetylation at K40 is critical for neuronal development in vertebrates. However, the biological function of K40 of α-tubulins in plants remains unexplored. In this study, we show in Arabidopsis thaliana that constitutive expression of mutated forms of α-tubulin6 (TUA6) at K40 (TUA6(K40A) or TUA6(K40Q) ), in which K40 is replaced by alanine or glutamine, result in severely reduced plant size. Phenotypic characterization of the 35S:TUA6(K40A) transgenic plants revealed that both cell proliferation and cell expansion were affected. Cytological and biochemical analyses showed that the accumulation of α- and β-tubulin proteins was significantly reduced in the transgenic plants, and the cortical microtubule arrays were severely disrupted, indicating that K40 of the plant α-tubulin is critical in maintaining microtubule stability. We also constructed 35S:TUA6(K40R) transgenic plants in which K40 of the engineered TUA6 protein is replaced by an arginine, and found that the 35S:TUA6(K40R) plants were phenotypically indistinguishable from the wild-type. Since lysine and arginine are similar in biochemical nature but arginine cannot be acetylated, these results suggest a structural importance for K40 of α-tubulins in cell division and expansion.
Collapse
Affiliation(s)
- Xue Xiong
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
43
|
Rho GTPase Signaling Activates Microtubule Severing to Promote Microtubule Ordering in Arabidopsis. Curr Biol 2013; 23:290-7. [DOI: 10.1016/j.cub.2013.01.022] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 01/16/2023]
|
44
|
Rosero A, Žárský V, Cvrčková F. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64. [PMID: 23202131 PMCID: PMC3542049 DOI: 10.1093/jxb/ers351] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin-microtubule cross-talk.
Collapse
Affiliation(s)
- Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 135, CZ 160 00 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Viničná 5, CZ 128 44 Praha 2, Czech Republic
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Live-Cell Imaging of Microtubules and Microtubule-Associated Proteins in Arabidopsis thaliana. Methods Cell Biol 2013. [DOI: 10.1016/b978-0-12-407757-7.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Higaki T, Kutsuna N, Hosokawa Y, Akita K, Ebine K, Ueda T, Kondo N, Hasezawa S. Statistical organelle dissection of Arabidopsis guard cells using image database LIPS. Sci Rep 2012; 2:405. [PMID: 22582142 PMCID: PMC3349934 DOI: 10.1038/srep00405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/30/2012] [Indexed: 12/27/2022] Open
Abstract
To comprehensively grasp cell biological events in plant stomatal movement, we have captured microscopic images of guard cells with various organelles markers. The 28,530 serial optical sections of 930 pairs of Arabidopsis guard cells have been released as a new image database, named Live Images of Plant Stomata (LIPS). We visualized the average organellar distributions in guard cells using probabilistic mapping and image clustering techniques. The results indicated that actin microfilaments and endoplasmic reticulum (ER) are mainly localized to the dorsal side and connection regions of guard cells. Subtractive images of open and closed stomata showed distribution changes in intracellular structures, including the ER, during stomatal movement. Time-lapse imaging showed that similar ER distribution changes occurred during stomatal opening induced by light irradiation or femtosecond laser shots on neighboring epidermal cells, indicating that our image analysis approach has identified a novel ER relocation in stomatal opening.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Petrovská B, Cenklová V, Pochylová Ž, Kourová H, Doskočilová A, Plíhal O, Binarová L, Binarová P. Plant Aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. THE NEW PHYTOLOGIST 2012; 193:590-604. [PMID: 22150830 DOI: 10.1111/j.1469-8137.2011.03989.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
• The conserved family of Aurora kinases has multiple functions during mitosis. The roles of plant Aurora kinases have been characterized using inhibitor treatments. • We down-regulated Aurora kinases in Arabidopsis thaliana using RNA interference (RNAi). We carried out a detailed phenotypic analysis of Aurora RNAi plants, biochemical and microscopic studies of AtAurora1 kinase together with AtTPX2 (targeting protein for Xklp2) and γ-tubulin. • Cell division defects were observed in plants with reduced expression of Aurora kinases. Furthermore, the maintenance of primary meristems was compromised and RNAi seedlings entered endoreduplication prematurely. AtAurora1, its activator AtTPX2, and γ-tubulin were associated with microtubules in vitro; they were attached to regrowing kinetochore microtubules and colocalized on spindle microtubules and with a subset of early phragmoplast microtubules. Only the AtAurora1 kinase was translocated to the area of the cell plate. • RNAi silencing of Aurora kinases showed that, in addition to their function in regulating mitosis, the kinases are required for maintaining meristematic activity and controlling the switch from meristematic cell proliferation to differentiation and endoreduplication. The colocalization and co-fractionation of AtAurora1 with AtTPX2, and γ-tubulin on microtubules in a cell cycle-specific manner suggests that AtAurora1 kinase may function to phosphorylate substrates that are critical to the spatiotemporal regulation of acentrosomal microtubule formation and organization.
Collapse
Affiliation(s)
- Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, v.v.i., Sokolovská 6, Olomouc 772 00, Czech Republic
| | - Věra Cenklová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Žaneta Pochylová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Hana Kourová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Anna Doskočilová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Ondřej Plíhal
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Lenka Binarová
- Institute of Experimental Botany, AS CR, v.v.i., Sokolovská 6, 772 00, Olomouc, Czech Republic
| | - Pavla Binarová
- Institute of Microbiology, AS CR, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
48
|
Wang S, Kurepa J, Hashimoto T, Smalle JA. Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1. THE PLANT CELL 2011; 23:3412-27. [PMID: 21954463 PMCID: PMC3203425 DOI: 10.1105/tpc.111.089920] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/30/2011] [Accepted: 09/12/2011] [Indexed: 05/18/2023]
Abstract
The dynamic instability of cortical microtubules (MTs) (i.e., their ability to rapidly alternate between phases of growth and shrinkage) plays an essential role in plant growth and development. In addition, recent studies have revealed a pivotal role for dynamic instability in the response to salt stress conditions. The salt stress response includes a rapid depolymerization of MTs followed by the formation of a new MT network that is believed to be better suited for surviving high salinity. Although this initial depolymerization response is essential for the adaptation to salt stress, the underlying molecular mechanism has remained largely unknown. Here, we show that the MT-associated protein SPIRAL1 (SPR1) plays a key role in salt stress-induced MT disassembly. SPR1, a microtubule stabilizing protein, is degraded by the 26S proteasome, and its degradation rate is accelerated in response to high salinity. We show that accelerated SPR1 degradation is required for a fast MT disassembly response to salt stress and for salt stress tolerance.
Collapse
Affiliation(s)
- Songhu Wang
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Jasmina Kurepa
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Jan A. Smalle
- Plant Physiology, Biochemistry, Molecular Biology Program, Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546
- Address correspondence to
| |
Collapse
|
49
|
Motose H, Hamada T, Yoshimoto K, Murata T, Hasebe M, Watanabe Y, Hashimoto T, Sakai T, Takahashi T. NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:993-1005. [PMID: 21605211 DOI: 10.1111/j.1365-313x.2011.04652.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
NimA-related kinase 6 (NEK6) has been implicated in microtubule regulation to suppress the ectopic outgrowth of epidermal cells; however, its molecular functions remain to be elucidated. Here, we analyze the function of NEK6 and other members of the NEK family with regard to epidermal cell expansion and cortical microtubule organization. The functional NEK6-green fluorescent protein fusion localizes to cortical microtubules, predominantly in particles that exhibit dynamic movement along microtubules. The kinase-dead mutant of NEK6 (ibo1-1) exhibits a disturbance of the cortical microtubule array at the site of ectopic protrusions in epidermal cells. Pharmacological studies with microtubule inhibitors and quantitative analysis of microtubule dynamics indicate excessive stabilization of cortical microtubules in ibo1/nek6 mutants. In addition, NEK6 directly binds to microtubules in vitro and phosphorylates β-tubulin. NEK6 interacts and co-localizes with NEK4 and NEK5 in a transient expression assay. The ibo1-3 mutation markedly reduces the interaction between NEK6 and NEK4 and increases the interaction between NEK6 and NEK5. NEK4 and NEK5 are required for the ibo1/nek6 ectopic outgrowth phenotype in epidermal cells. These results demonstrate that NEK6 homodimerizes and forms heterodimers with NEK4 and NEK5 to regulate cortical microtubule organization possibly through the phosphorylation of β-tubulins.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tominaga-Wada R, Ishida T, Wada T. New insights into the mechanism of development of Arabidopsis root hairs and trichomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:67-106. [PMID: 21199780 DOI: 10.1016/b978-0-12-385859-7.00002-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermis cell differentiation in Arabidopsis thaliana is a model system for understanding the mechanisms leading to the developmental end state of plant cells. Both root hairs and trichomes differentiate from epidermal cells and molecular genetic analyses using Arabidopsis mutants have demonstrated that the differentiation of root hairs and trichomes is regulated by similar molecular mechanisms. Molecular-genetic approaches have led to the identification of many genes that are involved in epidermal cell differentiation, most of which encode transcription factors that induce the expression of genes active in both root hair and trichome development. Control of cell growth after fate determination has also been studied using Arabidopsis mutants.
Collapse
Affiliation(s)
- Rumi Tominaga-Wada
- Interdisciplinary Research Organization, University of Miyazaki, Gakuen Kibanadai-nishi, Miyazaki, Japan
| | | | | |
Collapse
|