1
|
Devi Karthikeyan P, Thomas R, Gunasekaran A, Tewari N, Upadhyay AD, Morankar R, Mathur VP, Bansal K. Penetration of Intracoronal Bleaching Agents Across a Calcium Silicate-Based Coronal Barrier in Pulpless Immature Permanent Teeth: An In Vitro Study. J ESTHET RESTOR DENT 2025; 37:571-576. [PMID: 39404155 DOI: 10.1111/jerd.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Tooth bleaching procedures on nonvital teeth have been performed for crown discoloration caused by regenerative endodontic therapy (RET). However, leakage of bleaching agents across the root canal can be detrimental. This study aimed to assess and compare the penetration levels of hydrogen peroxide (HP) from different bleaching agents across calcium silicate-based coronal barriers in immature permanent teeth. METHODS Fifty extracted single-rooted human teeth were randomly divided into four groups (n = 10): Group I (HH)-35% hydrogen peroxide (HP); Group II (SS)-a mixture of sodium perborate (SP) powder and saline; Group III (SH)-a mixture of SP powder and 30% HP liquid; Group IV (CP)-10% carbamide peroxide gel. The control group (Group V, CC) was treated with distilled water. The bleaching agent was replaced on the 4th day, and penetration analysis was performed on the 7th day using ferro thiocyanate (FTC) method and a UV-spectrophotometer at a wavelength of 480 nm. RESULTS Compared with the control group, the SH group (SP mixed with HP) showed a significant difference, indicating substantial HP penetration across the root canal space (p value < 0.0001). Intergroup comparisons also revealed a significant difference between the SS and SH groups (p value < 0.0001), suggesting that the SS group had less penetration. CONCLUSION Compared with other bleaching agents, SP mixed with saline/water resulted in the lowest HP penetration in the pulp canals of the RET-simulated tooth models. CLINICAL SIGNIFICANCE This study is the first to investigate HP penetration from different bleaching agents in teeth that have undergone RET, identifying the safest bleaching agent for use in these cases. This study also provides a foundation for further research to develop precise guidelines for nonvital tooth bleaching protocols in RET-treated teeth.
Collapse
Affiliation(s)
- Pavithra Devi Karthikeyan
- Department of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Rathika Thomas
- Department of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Abishek Gunasekaran
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nitesh Tewari
- Department of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Dutt Upadhyay
- Scientist II (Biostatistics), Clinical Research Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Rahul Morankar
- Department of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Prakash Mathur
- Department of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Bansal
- Department of Pediatric and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Gupta DN, Lonare S, Rani R, Singh A, Ghosh DK, Tomar S, Sharma AK. Comparative Analysis of Inhibitor Binding to Peroxiredoxins from Candidatus Liberibacter asiaticus and Its Host Citrus sinensis. Appl Biochem Biotechnol 2024; 196:5334-5353. [PMID: 38157153 DOI: 10.1007/s12010-023-04798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
The peroxiredoxins (Prxs), potential drug targets, constitute an important class of antioxidant enzymes present in both pathogen and their host. The comparative binding potential of inhibitors to Prxs from pathogen and host could be an important step in drug development against pathogens. Huanglongbing (HLB) is a most devastating disease of citrus caused by Candidatus Liberibacter asiaticus (CLa). In this study, the binding of conoidin-A (conoidin) and celastrol inhibitor molecules to peroxiredoxin of bacterioferritin comigratory protein family from CLa (CLaBCP) and its host plant peroxiredoxin from Citrus sinensis (CsPrx) was assessed. The CLaBCP has a lower specific activity than CsPrx and is efficiently inhibited by conoidin and celastrol molecules. The biophysical studies showed conformational changes and significant thermal stability of CLaBCP in the presence of inhibitor molecules as compared to CsPrx. The surface plasmon resonance (SPR) studies revealed that the conoidin and celastrol inhibitor molecules have a strong binding affinity (KD) with CLaBCP at 33.0 µM, and 18.5 µM as compared to CsPrx at 52.0 µM and 61.6 µM, respectively. The docked complexes of inhibitor molecules showed more structural stability of CLaBCP as compared to CsPrx during the run of molecular dynamics-based simulations for 100 ns. The present study suggests that the conoidin and celastrol molecules can be exploited as potential inhibitor molecules against the CLa to manage the HLB disease.
Collapse
Affiliation(s)
- Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
3
|
Gupta DN, Dalal V, Savita BK, Alam MS, Singh A, Gubyad M, Ghosh DK, Kumar P, Sharma AK. Biochemical characterization and structure-based in silico screening of potent inhibitor molecules against the 1 cys peroxiredoxin of bacterioferritin comigratory protein family from Candidatus Liberibacter asiaticus. J Biomol Struct Dyn 2022:1-13. [DOI: 10.1080/07391102.2022.2096118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vikram Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Anamika Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Kachimet, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Kachimet, Nagpur, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
4
|
Sakalli B, Basmaci F, Dalmizrak O. Evaluation of the penetration of intracoronal bleaching agents into the cervical region using different intraorifice barriers. BMC Oral Health 2022; 22:266. [PMID: 35773675 PMCID: PMC9248123 DOI: 10.1186/s12903-022-02300-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background The present study aimed to make a comparison between the effects of 35% hydrogen peroxide gel (HP) and sodium perborate with distilled water (SP) bleaching agents on the sealing characteristics of glass ionomer cement (GIC), TheraBase, ProRoot MTA and Biodentine intraorifice barriers. Methods One hundred and twelve single-rooted mandibular human premolar teeth extracted from young patients (14–25 years) were chosen. Root cement and cementoenamel junction (CEJ) of teeth were examined under a stereomicroscope at 10 × magnification to ensure there was no cement defect or dentin gap in CEJ. After the endodontic access cavities were opened on the occlusal surfaces of the teeth, the working length was determined. Instrumentation of each root canal was performed with a ProTaper Gold rotary system in the determined working length and filled with gutta-percha + AH Plus with a single cone technique using. Root fillings were removed 3 mm short of the CEJ and sealed with one of the following intraorifice barrier materials (n = 30/group): 1. GIC; 2. TheraBase; 3. ProProot-MTA; 4. Biodentine. In each of the sub-groups, either HP or SP was used to perform intracoronal bleaching on days 1, 4, and 7. All outer surfaces of the specimens except the 3 mm cervical region were covered with nail polish and modeling wax layers. Specimens were immersed in a 5 ml Eppendorf tube that contained 2 mL of distilled water. The penetration of peroxide release was measured using the colorimetric ferric thiocyanate method. Statistical analysis of the data was performed with Three-way ANOVA and Tukey’s test (P = 0.05). Results In the HP groups, GIC showed the greatest peroxide release when compared with other tested groups on day 1 (P < 0.05). Biodentine and ProRoot MTA displayed a significantly lower peroxide leakage when compared to GIC and TheraBase on days 1 and 4 (P < 0.05). While GIC and TheraBase were used, HP observed higher peroxide penetration when compared with SP on days 1 and 4 (P < 0.05). Conclusions Peroxide diffusion was significantly influenced by the kind of intracoronal bleaching agents and intraorifice barrier materials used.
Collapse
Affiliation(s)
- Bugce Sakalli
- Department of Endodontics, Faculty of Dentistry, Near East University, Near East Boulevard, Mersin 10, Turkey.
| | - Fatma Basmaci
- Department of Endodontics, Faculty of Dentistry, Near East University, Near East Boulevard, Mersin 10, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Mersin 10, Turkey
| |
Collapse
|
5
|
Dussert E, Tourret M, Dupuis C, Noblecourt A, Behra-Miellet J, Flahaut C, Ravallec R, Coutte F. Evaluation of Antiradical and Antioxidant Activities of Lipopeptides Produced by Bacillus subtilis Strains. Front Microbiol 2022; 13:914713. [PMID: 35794911 PMCID: PMC9251515 DOI: 10.3389/fmicb.2022.914713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 01/07/2023] Open
Abstract
This study investigated the antiradical and antioxidant potential of the three families of lipopeptides (i.e., surfactin, mycosubtilin, and plipastatin/fengycin) produced by Bacillus subtilis strains. The antiradical/antioxidant activities of highly purified lipopeptides were studied in acellular models using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide anion (O 2 . - ), hydrogen peroxide, (H2O2) and hydroxyl radical (HO.). At a lipopeptide concentration of 500 mg.L-1, the maximum inhibition of DPPH reached 22.88% (obtained for plipastatin). Moreover, the scavenging effects ofO 2 . - , H2O2, and HO. at the highest concentration tested (250 mg.L-1) were found to be 6, 21, and 3% for surfactin, 19, 9, and 15% for mycosubtilin, 21, 18, and 59% for plipastatin, 21, 31, and 61% for the mixture of surfactin/plipastatin, and 13, 16, and 15% for the mixture of surfactin/mycosubtilin, respectively. These results showed that plipastatin was the best candidate due to its antioxidant activities.
Collapse
Affiliation(s)
- Elodie Dussert
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Mélissa Tourret
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Chloé Dupuis
- Univ. Lille, UMRT 1158 BioEcoAgro - Métabolites secondaires d'origine microbienne, Institut Charles Viollette, Lille, France
| | | | - Josette Behra-Miellet
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Christophe Flahaut
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - Rozenn Ravallec
- Univ. Lille, Univ. Artois, UMRT 1158 BioEcoAgro - Bénéfice santé d'hydrolysats de protéines et coproduits agro-alimentaires, Institut Charles Viollette, Lille, France
| | - François Coutte
- Univ. Lille, UMRT 1158 BioEcoAgro - Métabolites secondaires d'origine microbienne, Institut Charles Viollette, Lille, France
- LIPOFABRIK, Lesquin, France
| |
Collapse
|
6
|
Gupta DN, Rani R, Kokane AD, Ghosh DK, Tomar S, Sharma AK. Characterization of a cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis and its potential role in protection from oxidative damage and wound healing. Int J Biol Macromol 2022; 209:1088-1099. [PMID: 35452700 DOI: 10.1016/j.ijbiomac.2022.04.086] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
In present work, the recombinant cytoplasmic 2-Cys peroxiredoxin from Citrus sinensis (CsPrx) was purified and characterized. The peroxidase activity was examined with different substrates using DTT, a non-physiological electron donor. The conformational studies, in oxidized and reduced states, were performed using circular dichroism (CD) and fluorescence measurement. The CD analysis showed higher α-helical content for reduced state of the protein. The thermal stability studies of CsPrx by Differential Scanning Calorimetry (DSC) showed that oxidized state is more stable as compared to the reduced state of CsPrx. In vitro studies showed that the CsPrx provides a protective shield against ROS and free radicals that participate in the degradation of plasmid DNA. The pre-treatment of 10 μM CsPrx provide almost 100% protection against peroxide-mediated cell killing in the Vero cells. CsPrx showed significant cell proliferation and wound healing properties. The superior morphology of viable cells and wound closure was found at 20 μM CsPrx treated for 12 h. The results demonstrated that CsPrx is a multifaceted protein with a significant role in cell proliferation, wound healing and protection against hydrogen peroxide-induced cellular damage. This could be the first report of a plant peroxiredoxin being characterized for biomedical applications.
Collapse
Affiliation(s)
- Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ruchi Rani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Amol D Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India.
| |
Collapse
|
7
|
Singh M, Verma Y, Rana SVS. Potential toxicity of nickel nano and microparticles on the reproductive system of female rats—a comparative time-dependent study. Toxicol Ind Health 2022; 38:234-247. [DOI: 10.1177/07482337221074762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increased application of engineered nanoparticles in different sectors viz. agriculture, commerce, industry, and medicine has raised serious public health issues. Nanoparticles of nickel have been increasingly used as catalysts, conductive pastes, adhesives, nanowires, and nanofilters. Human and animal exposure to these particles may cause toxicity in different organs/systems. Studies made in the past had demonstrated their toxicity in liver, kidney, and lungs. However, their reproductive effects remain poorly understood. Therefore, the present study on reproductive toxicity of nickel nanoparticles (<30 nm) was executed in female Wistar rats. A comparison of results obtained in nickel microparticle-treated rats was also made. Rats were administered nano and microparticles through gavage at a dosage of 5 mg/kg body weight each for two exposure periods; that is, 15 and 30 days. Ovaries removed from these rats were analyzed to study the effects of nickel bioaccumulation on synthesis of steroid hormones, lipid peroxidation, apoptosis, and oxidative stress. Structural changes were monitored through histopathological and ultrastructural observations. The present study showed exposure time-dependent differences in the toxicity of nickel nano and microparticles in the ovary of rats. Nano nickel was cumulative in the ovaries. It affected steroidogenesis. Further, increased generation of reactive oxygen species and enhanced oxidative stress may have contributed to cytotoxicity. It was concluded that exposure to nano nickel might induce irreversible damage in the ovaries of rat.
Collapse
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | - Suresh VS Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
8
|
Singh M, Verma Y, Rana SVS. Nephrotoxicity of nickel nano and microparticles in rat- a comparative, time dependent study with special reference to antioxidant defence system. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2048307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| | - S. V. S. Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, India
| |
Collapse
|
9
|
Singh M, Verma Y, Rana SVS. Attributes of oxidative stress in the reproductive toxicity of nickel oxide nanoparticles in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5703-5717. [PMID: 34424461 DOI: 10.1007/s11356-021-15657-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The nanoparticles of nickel are now being widely used in industrial, commercial, and biomedical applications. In recent years, health safety issues posed by them have aroused concerns among health scientists. The aim of the present study was to investigate the role of oxidative stress in male reproductive toxicity induced by nickel oxide nanoparticles in rats. Male Wistar rats (140-170 g) were administered with nickel oxide nanoparticles (NiONPs) (particles size <30 nm) (5 mg/kg body weight) by gavage for 30 days. Its effects on different parameters, viz., sperm count, motility, and morphology, were investigated. DNA damage in sperms was monitored through comet assay. All these observations indicated a spermicidal effect of NiONPs. Results on lipid peroxidation (MDA, H2O2, and NO) and oxidative stress (GSH, GPx, and catalase) thus studied in testes exhibited adverse effects of NiONPs. Histopathological results on male reproductive organs, viz., testis, epididymis, vas deferens, seminal vesicles, and prostate also demonstrated moderate to severe toxicity. A comparison of these results with those obtained on nickel oxide microparticle (NiOMP)-treated rats showed that NiONPs are more toxic than NiOMPs. Furthermore, NiONPs could create an imbalance between oxidants and antioxidants in the testes. It is concluded that redox imbalance in testes constitutes a major mechanism of NiONP-induced reproductive toxicity.
Collapse
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | | |
Collapse
|
10
|
Rani V, Verma Y, Rana SVS. Zinc Oxide Nanoparticles Ameliorate Dimethylnitrosamine-Induced Renal Toxicity in Rat. Appl Biochem Biotechnol 2021; 194:1699-1715. [PMID: 34855113 DOI: 10.1007/s12010-021-03689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Dimethylnitrosamine (DMN) is an established carcinogen. It is toxic to several organs, viz., the liver, kidney, and lungs, and immune system. Several drugs have been used in the past to modulate its toxicity using experimental animal models. The present study was designed to investigate the effect of zinc oxide nanoparticles (ZnONPs) on renal toxicity caused by DMN in laboratory rat. Since oxidative mechanisms are mainly involved in its toxicity, the proposed study focuses on the amelioration of oxidative stress response by ZnONPs, if any. The present results show that administration of ZnONPs (50 mg/kg body weight/rat) to DMN (2 μl/100 g body weight/rat)-treated rats diminuted the concentration of malonaldehyde, H2O2, and NO in the kidney. However, reduced glutathione (GSH) concentration increased after ZnONP treatment. Results on glutathione S-transferase and glutathione peroxidase favored its antioxidative effects. These results are supported by the recovery of oxidative DNA damage and less pronounced histopathological changes in the kidney. It is hypothesized that ZnONPs might be toxic to renal tissue; however, its strong therapeutic/antioxidative potential helps in ameliorating DMN-induced renal toxicity in rat.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - S V S Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
11
|
Rana K, Verma Y, Rana SVS. Possible Mechanisms of Liver Injury Induced by Cadmium Sulfide Nanoparticles in Rat. Biol Trace Elem Res 2021; 199:216-226. [PMID: 32342341 DOI: 10.1007/s12011-020-02128-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022]
Abstract
Cadmium is primarily utilized in the construction of particles known as quantum dots. Hepatotoxicity caused by microparticles of cadmium is very well known; however, toxicity of nanoparticles of cadmium is not well understood. The present study describes the toxicity of cadmium sulfide nanoparticles (CdSNPs) in the liver of rat. Adult Wistar rats were administered CdSNPs (10 mg/kg) on alternate days for 45 days. Serum enzymes (ALT, AST, ALP), biomarkers of lipid peroxidation (MDA, H2O2, and NO), and metallothionein concentration were determined. Histopathological and TEM observations were also made to record morphological changes. CdSNPs (10 mg/kg) induced significant changes in the structure and function of liver. Values of serum enzymes and reactive species increased significantly in rats treated with CdSNPs in comparison to CdS-treated rats. Histopathological observations showed extensive parenchymal degeneration. Ultrastructural studies exhibited proliferation of endoplasmic reticulum, microsomes, and lysosomes. It is concluded that NP-membrane interaction leads to the generation of reactive species that alter membrane integrity and induce oxidative stress. These events may activate cell death pathways in hepatocytes.
Collapse
Affiliation(s)
- Kavita Rana
- Department of Toxicology, Choudhary Charan Singh University, Meerut, UP, 250004, India
| | - Yeshvandra Verma
- Department of Toxicology, Choudhary Charan Singh University, Meerut, UP, 250004, India
| | - S V S Rana
- Department of Toxicology, Choudhary Charan Singh University, Meerut, UP, 250004, India.
| |
Collapse
|
12
|
Choi YE, Choi SI, Han X, Men X, Jang GW, Kwon HY, Kang SR, Han JS, Lee OKH. Radical Scavenging-Linked Anti-Adipogenic Activity of Aster scaber Ethanolic Extract and Its Bioactive Compound. Antioxidants (Basel) 2020; 9:antiox9121290. [PMID: 33339396 PMCID: PMC7766398 DOI: 10.3390/antiox9121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Aster scaber is a wild vegetable cultivated in Korea and is known to contain phytochemicals with various biological activities. The potential antioxidant and anti-obesity effects of A. scaber and their mechanism are yet to be reported. We evaluated the total phenolic, flavonoid, and proanthocyanidin contents and oxygen radical absorbance capacity of A. scaber ethanolic extract (ASE), and analyzed the major phenolic compounds of ASE. Antioxidant activity was measured at the chemical level through 2,2-diphenyl-1-picrylhydrazyl (DPPH), reducing power assay, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and fluorescence recovery after photobleaching (FRAP) assay. In addition, it was measured in vitro through inhibition of Reactive oxygen species (ROS) production in 3T3-L1 adipocyte, and inhibition of lipid accumulation was also evaluated. ASE reduced the expression of enzymes involved in the production of ROS and increased the expression of antioxidant enzymes that reduce increased ROS levels. They also reduced the expression of adipogenesis transcription factors that regulate adipocyte differentiation in relation to ROS production, inhibited the expression of lipogenesis-related genes related to fat accumulation through AMP-activated protein kinase (AMPK) activity, and increased expression of lipolysis-related genes. Thus, ASE containing CGA (chlorogenic acid) inhibits ROS production in 3T3-L1 adipocytes, owing to its strong antioxidant activity, and inhibits lipid accumulation caused by oxidative stress. The extract can be used as a potential functional food material for reducing oxidative stress and obesity.
Collapse
Affiliation(s)
- Ye-Eun Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (Y.-E.C.); (S.-I.C.); (X.H.); (X.M.); (G.-W.J.); (H.-Y.K.)
| | - Sun-Il Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (Y.-E.C.); (S.-I.C.); (X.H.); (X.M.); (G.-W.J.); (H.-Y.K.)
| | - Xionggao Han
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (Y.-E.C.); (S.-I.C.); (X.H.); (X.M.); (G.-W.J.); (H.-Y.K.)
| | - Xiao Men
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (Y.-E.C.); (S.-I.C.); (X.H.); (X.M.); (G.-W.J.); (H.-Y.K.)
| | - Gill-Woong Jang
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (Y.-E.C.); (S.-I.C.); (X.H.); (X.M.); (G.-W.J.); (H.-Y.K.)
| | - Hee-Yeon Kwon
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (Y.-E.C.); (S.-I.C.); (X.H.); (X.M.); (G.-W.J.); (H.-Y.K.)
| | - Seong-Ran Kang
- The Food Industry Promotional Agency of Korea, Iksan 54576, Korea; (S.-R.K.); (J.-S.H.)
| | - Jin-Soo Han
- The Food Industry Promotional Agency of Korea, Iksan 54576, Korea; (S.-R.K.); (J.-S.H.)
| | - OK-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (Y.-E.C.); (S.-I.C.); (X.H.); (X.M.); (G.-W.J.); (H.-Y.K.)
- Correspondence: ; Tel.: +82-33-250-6454; Fax: +82-33-259-5565
| |
Collapse
|
13
|
Explorative Screening of Bioactivities Generated by Plant-Based Proteins after In Vitro Static Gastrointestinal Digestion. Nutrients 2020; 12:nu12123746. [PMID: 33291464 PMCID: PMC7762166 DOI: 10.3390/nu12123746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal digestion of food proteins can generate peptides with a wide range of biological activities. In this study, we screened various potential bioactivities generated by plant-based proteins. Whey protein as an animal protein reference, five grades of pea protein, two grades of wheat protein, and potato, fava bean, and oat proteins were submitted to in vitro SGID. They were then tested in vitro for several bioactivities including measures on: (1) energy homeostasis through their ability to modulate intestinal hormone secretion, to inhibit DPP-IV activity, and to interact with opioid receptors; (2) anti-hypertensive properties through their ability to inhibit ACE activity; (3) anti-inflammatory properties in Caco-2 cells; (4) antioxidant properties through their ability to inhibit production of reactive oxygen species (ROS). Protein intestinal digestions were able to stimulate intestinal hormone secretion by enteroendocrine cells, to inhibit DPP-IV and ACE activities, to bind opioid receptors, and surprisingly, to decrease production of ROS. Neither pro- nor anti-inflammatory effects have been highlighted and some proteins lost their pro-inflammatory potential after digestion. The best candidates were pea, potato, and fava bean proteins.
Collapse
|
14
|
Vilchis-Landeros M, Guinzberg R, Riveros-Rosas H, Villalobos-Molina R, Piña E. Aquaporin 8 is involved in H 2 O 2 -mediated differential regulation of metabolic signaling by α 1 - and β-adrenoceptors in hepatocytes. FEBS Lett 2020; 594:1564-1576. [PMID: 32115689 DOI: 10.1002/1873-3468.13763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species participate in regulating intracellular signaling pathways. Herein, we investigated the reported opposite effects of hydrogen peroxide (H2 O2 ) on metabolic signaling mediated by activated α1 - and β-adrenoceptors (ARs) in hepatocytes. In isolated rat hepatocytes, stimulation of α1 -AR increases H2 O2 production via NADPH oxidase 2 (NOX2) activation. We find that the H2 O2 thus produced is essential for α1 -AR-mediated activation of the classical hepatic glycogenolytic, gluconeogenic, and ureagenic responses. However, H2 O2 inhibits β-AR-mediated activation of these metabolic responses. We show that H2 O2 mediates its effects on α1 -AR and β-AR by permeating cells through aquaporin 8 (AQP8) channels and promoting Ca2+ mobilization. Thus, our findings reveal a novel NOX2-H2 O2 -AQP8-Ca2+ signaling cascade acting downstream of α1 -AR in hepatocytes, which, by negatively regulating β-AR signaling, establishes negative crosstalk between the two pathways.
Collapse
Affiliation(s)
- Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Raquel Guinzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Rafael Villalobos-Molina
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Enrique Piña
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
15
|
Zhang H, Wang Z, Huang J, Cao J, Zhou Y, Zhou J. A Novel Thioredoxin-Dependent Peroxiredoxin (TPx-Q) Plays an Important Role in Defense Against Oxidative Stress and Is a Possible Drug Target in Babesia microti. Front Vet Sci 2020; 7:76. [PMID: 32133382 PMCID: PMC7040034 DOI: 10.3389/fvets.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 01/03/2023] Open
Abstract
Thioredoxin peroxidases (TPxs) are ubiquitous cysteine-based peroxidases that reduce peroxides as part of antioxidant defenses and redox signaling and are essential for Babesia microti protection against adverse environment agents like reactive oxygen species (ROS) and reactive nitrogen species (RNS). To better systematically understand TPxs, we identified a novel 2-Cys peroxiredoxin-Q (BmTPx-Q) of B. microti. The full-length BmTPx-Q gene is 653 bp that consists of an intact open reading frame of 594 bp that encodes a 197-amino acid protein. The predicted protein has a molecular weight of 22.3 kDa and an isoelectric point of 9.18. Moreover, BmTPx-Q showed low identity at the amino acid level to other peroxiredoxins (Prxs) among the currently known subfamilies. The recombinant BmTPx-Q protein (rBmTPx-Q) was expressed in Escherichia coli and purified with beads. The native protein BmTPx-Q was detected using mouse anti-BmTPx-Q polyclonal serum with western blotting and indirect immunofluorescence assay (IFA). In addition, enzyme activity was observed using nicotinamide adenine dinucleotide phosphate (NADPH) as substrate and triggered the NADPH-dependent reduction of the Trx/TrxR system. It was also discovered that BmTPx-Q mainly exists as a monomer whether under its native or functional states. In addition, when incubated with Chloroquine diphosphate salt for 24 h in vitro, the expression of BmTPx-Q showed a marked downward trend with the increase of drug concentration. These results suggest that B. microti uses BmTPx-Q to reduce and detoxify hydrogen peroxides to survive and proliferate inside the host. Furthermore, BmTPx-Q showed the lowest identity with host enzymes and could be a potential drug target for the development of novel strategies to control B. microti infection.
Collapse
Affiliation(s)
- Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhonghua Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jingwei Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
16
|
Zapata J, Meynard A, Anguita C, Espinoza C, Alvear P, Kumar M, Contreras-Porcia L. Non-Random Distribution and Ecophysiological Differentiation of Pyropia Species (Bangiales, Rhodophyta) Through Environmental Gradients. JOURNAL OF PHYCOLOGY 2019; 55:1140-1153. [PMID: 31295353 DOI: 10.1111/jpy.12900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Recently 18 Bangiales seaweed species were reported for the Chilean coast, including Pyropia orbicularis and Pyropia variabilis (large [LM] and green [GM] morphotypes). Porphyra/Pyropia spp. occur mainly in the upper intertidal where desiccation stress is triggered by tidal fluctuations. However, the influence of environmental and ecophysiological variables and seasonal differences on Porphyra/Pyropia (microhabitats) intertidal distributions is unknown. Accordingly, we determined (i) the effect of environmental variables (temperature [T], relative humidity [RH], and photosynthetically active radiation [PAR]) and season on distribution, and (ii) physiological (cellular activity and lipid peroxidation [LPX]) and molecular responses (antioxidant enzymes expression at biochemical and transcript level) to desiccation stress in both Pyropia species and morphotypes (common garden experiment, on flat rocky platforms). Multivariate analyses of coverage and abundance in relation to environmental variables revealed a significant effect of temperature on P. variabilis GM distribution, GM dominating almost exclusively on rocky walls (where lowest PAR and T values but maximum RH were registered). Conversely, Pyropia orbicularis and Pyropia variabilis LM were found in high abundance on flat rocky platforms in summer, LM and GM also dominating flat rocky platforms in winter and spring. LPX and catalase activity did not differed among species in summer, while in winter activity and transcription of cat were higher in P. orbicularis than P. variabilis. Results suggest that tolerance to environmental stresses such as temperature could regulate the occurrence of P. variabilis GM on rocky walls; conversely, abundances of P. variabilis and P. orbicularis on flat rocky platforms would be also regulated by other abiotic and/or biotic factors.
Collapse
Affiliation(s)
- Javier Zapata
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
- Center of Applied Ecology & Sustainability (CAPES), Santiago, Chile
| | - Cristóbal Anguita
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Camila Espinoza
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
| | - Paula Alvear
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
| | - Manoj Kumar
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Chile
- Center of Applied Ecology & Sustainability (CAPES), Santiago, Chile
| |
Collapse
|
17
|
Thapa M, Singh M, Ghosh CK, Biswas PK, Mukherjee A. Zinc sulphide nanoparticle (nZnS): A novel nano-modulator for plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:73-83. [PMID: 31277044 DOI: 10.1016/j.plaphy.2019.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 05/24/2023]
Abstract
In spite of extraordinary properties of zinc sulphide nanoparticle (nZnS), its role on plant system is not well understood, yet. Therefore, this study was aimed to assess the uptake, translocation and effects of nZnS in mung bean (Vigna radiata) plant at 0, 0.1, 0.5 and 1 mg L-1 concentrations. In this study, nZnS was synthesized by modified reflux method and physicochemical characterizations were conducted. The effects of nZnS on mung bean plant were determined by seed germination, growth parameters, membrane integrity and ROS-antioxidant defense assays. Our results showed that nZnS treatment has significantly increased seed germination, root-shoot length, pigment content and decreased lipid peroxidation. There were increased total antioxidant activity (TAA), DPPH and flavonoid contents found in treated plants. Also, nZnS treatment did not activate oxidative stress determined by SOD, CAT, CPX, APOX and GR activities. The uptake and translocation of nZnS in mung bean plants were determined by Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM), revelling that nZnS localized primarily in the vacuoles and chloroplasts. Besides, electron micrographs showed no alteration in cell structures between treated and control plants, further confirming that nZnS treatment has no phytotoxic effects. In vitro and in vivo studies on Zn release from nZnS were also determined using Inductively Coupled Plasma Mass Spectroscopy (ICPMS) and Energy Dispersive X-ray (EDX), which showed that the Zn release and particles uptake were concentration dependent. Overall, results of this study demonstrated the positive role of nZnS on growth and antioxidant defense responses in V. radiata at the experimental concentrations.
Collapse
Affiliation(s)
- Mala Thapa
- Biological Sciences Division, Indian Statistical Institute, Rose Villa, Giridih, 815 301, Jharkhand, India; Food Technology and Biochemical Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, 700032, India; Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, Haldia, 721657, West Bengal, India
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Prasanta Kumar Biswas
- Food Technology and Biochemical Engineering, Jadavpur University, 188 Raja S.C. Mallick Road, Kolkata, 700032, India
| | - Abhishek Mukherjee
- Biological Sciences Division, Indian Statistical Institute, Rose Villa, Giridih, 815 301, Jharkhand, India.
| |
Collapse
|
18
|
Teschke R. Microsomal Ethanol-Oxidizing System: Success Over 50 Years and an Encouraging Future. Alcohol Clin Exp Res 2019; 43:386-400. [PMID: 30667528 DOI: 10.1111/acer.13961] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 01/07/2023]
Abstract
Fifty years ago, in 1968, the pioneering scientists Charles S. Lieber and Leonore M. DeCarli discovered the capacity for liver microsomes to oxidize ethanol (EtOH) and named it the microsomal ethanol-oxidizing system (MEOS), which revolutionized clinical and experimental alcohol research. The last 50 years of MEOS are now reviewed and highlighted. Since its discovery and as outlined in a plethora of studies, significant insight was gained regarding the fascinating nature of MEOS: (i) MEOS is distinct from alcohol dehydrogenase and catalase, representing a multienzyme complex with cytochrome P450 (CYP) and its preferred isoenzyme CYP 2E1, NADPH-cytochrome P450 reductase, and phospholipids; (ii) it plays a significant role in alcohol metabolism at high alcohol concentrations and after induction due to prolonged alcohol use; (iii) hydroxyl radicals and superoxide radicals promote microsomal EtOH oxidation, assisted by phospholipid peroxides; (iv) new aspects focus on microsomal oxidative stress through generation of reactive oxygen species (ROS), with intermediates such as hydroxyethyl radical, ethoxy radical, acetyl radical, singlet radical, hydroxyl radical, alkoxyl radical, and peroxyl radical; (v) triggered by CYP 2E1, ROS are involved in the initiation and perpetuation of alcoholic liver injury, consequently shifting the previous nutrition-based concept to a clear molecular-based disease; (vi) intestinal CYP 2E1 induction and ROS are involved in endotoxemia, leaky gut, and intestinal microbiome modifications, together with hepatic CYP 2E1 and liver injury; (vii) circulating blood CYP 2E1 exosomes may be of diagnostic value; (viii) circadian rhythms provide high MEOS activities associated with significant alcohol metabolism and potential toxicity risks as a largely neglected topic; and (ix) a variety of genetic animal models are useful and have been applied elucidating mechanistic aspects of MEOS. In essence, MEOS along with its CYP 2E1 component currently explains several mechanistic steps leading to alcoholic liver injury and has a promising future in alcohol research.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology (RT), Department of Internal Medicine II, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| |
Collapse
|
19
|
Ornoy A, Weinstein-Fudim L, Tfilin M, Ergaz Z, Yanai J, Szyf M, Turgeman G. S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice. Neurotoxicol Teratol 2019; 71:64-74. [DOI: 10.1016/j.ntt.2018.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/21/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023]
|
20
|
Zoya A, Tewari RK, Mishra SK, Faisal SM, Ali S, Kumar A, Moin S. Sodium percarbonate as a novel intracoronal bleaching agent: assessment of the associated risk of cervical root resorption. Int Endod J 2018; 52:701-708. [DOI: 10.1111/iej.13035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/31/2018] [Indexed: 02/03/2023]
Affiliation(s)
- A. Zoya
- Department of Conservative Dentistry & Endodontics Dr. Ziauddin Ahmed Dental College & Hospital Aligarh Muslim University Aligarh India
| | - R. K. Tewari
- Department of Conservative Dentistry & Endodontics Dr. Ziauddin Ahmed Dental College & Hospital Aligarh Muslim University Aligarh India
| | - S. K. Mishra
- Department of Conservative Dentistry & Endodontics Dr. Ziauddin Ahmed Dental College & Hospital Aligarh Muslim University Aligarh India
| | - S. M. Faisal
- Interdisciplinary Biotechnology Unit Aligarh Muslim University Aligarh India
| | - S. Ali
- Department of Conservative Dentistry & Endodontics Dr. Ziauddin Ahmed Dental College & Hospital Aligarh Muslim University Aligarh India
| | - A. Kumar
- Department of Conservative Dentistry & Endodontics Dr. Ziauddin Ahmed Dental College & Hospital Aligarh Muslim University Aligarh India
| | - S. Moin
- Department of Biochemistry Jawaharlal Nehru Medical College Aligarh Muslim University Aligarh India
| |
Collapse
|
21
|
Ergaz Z, Weinstein-Fudim L, Ornoy A. High sucrose low copper diet in pregnant diabetic rats induces transient oxidative stress, hypoxia, and apoptosis in the offspring's liver. Birth Defects Res 2018; 110:1001-1015. [PMID: 29851303 DOI: 10.1002/bdr2.1341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Hyperglycemia-related oxidative stress and hypoxia are important mechanisms responsible for diabetes-induced embryopathy and other complications. High sucrose low copper diet (HSD), but not regular diet (RD), induces type 2 diabetes in the inbred Cohen diabetic sensitive (CDs) rats but not in the Sabra control rats. We recently demonstrated long-term changes of DNA methylation and gene expression in various groups of genes, including genes involved in oxidant-antioxidant activity in the liver of 2-4-week-old CDs offspring of diabetic dams. We now studied the postnatal effects of diabetes and/or HSD on several liver metabolic parameters in these offspring. METHODS we studied lipid peroxidation, activity of the antioxidants enzymes superoxide dismutase (SOD) and Catalase (CAT). By immunohistochemistry: protein oxidation by nitrotyrosine staining, hypoxia inducing factor1α (HIF1α), apoptosis [caspase 3, bcl-2-like protein (BAX)], proliferation [proliferating cell nuclear antigen (PCNA)] and NF-κB. RESULTS In the Sabra rats fed HSD only few, early and transitional changes were observed in lipid peroxidation, SOD and CAT activity. In the CDs fed HSD more significant changes in lipid and protein oxidation, HIF1α, apoptosis and proliferation were observed, persisting for longer. CONCLUSIONS The changes in the Sabra rats HSD were attributed to the pro-oxidant effects of the diet and those in the diabetic CDs to the HSD and maternal diabetes. In light of the DNA methylation changes in the liver of the CDs HSD, we presume that changes in gene expression are responsible for our findings, and that similar changes may lead to the metabolic syndrome at adulthood.
Collapse
Affiliation(s)
- Zivanit Ergaz
- Neonatology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.,Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Liza Weinstein-Fudim
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Asher Ornoy
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
22
|
Konkit M, Kim K, Kim JH, Kim W. Protective effects of Lactococcus chungangensis CAU 28 on alcohol-metabolizing enzyme activity in rats. J Dairy Sci 2018; 101:5713-5723. [PMID: 29681403 DOI: 10.3168/jds.2017-13992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
In this study, we investigated the beneficial effects of Lactococcus chungangensis CAU 28, a bacterial strain of nondairy origin, on alcohol metabolism in rats treated with ethanol, focusing on alcohol elimination and prevention of damage and comparing the effects with those observed for Lactococcus lactis ssp. lactis ATCC 19435. Male Sprague-Dawley rats were orally administered 20% ethanol and 3 substrates (freeze-dried cells, cream cheese, and yogurt) containing Lc. chungangensis CAU 28 or Lc. lactis ssp. lactis ATCC 19435, which were provided 1 h before or 1 h after ethanol ingestion. Blood samples were collected from the tail veins of the rats at 1, 3, 6, 12, and 24 h after ingestion of ethanol, Lc. chungangensis CAU 28 substrate, or Lc. lactis ssp. lactis ATCC 19435 substrate. Alcohol and acetaldehyde concentrations in the Lc. chungangensis CAU 28 substrate-treated rats were significantly reduced in a time-dependent manner compared with those in the Lc. lactis ssp. lactis ATCC 19435 substrate-treated rats. Among the experimental groups, treatment with cream cheese before ingestion of 20% ethanol was found to be the most effective method for reducing both alcohol and acetaldehyde levels in the blood. Alanine aminotransferase and aspartate aminotransferase activities in the Lc. chungangensis CAU 28 substrate-treated rats were significantly lower than those in the positive controls. Moreover, in the Lc. chungangensis CAU 28 cream cheese-treated group, rats showed a reduction of liver enzymes by up to 60%, with good effectiveness observed for both pre- and post-ethanol ingestion. These results suggested that intake of lactic acid bacteria, particularly in Lc. chungangensis CAU 28-supplemented dairy products, may reduce blood alcohol and acetaldehyde concentrations, thereby mitigating acute alcohol-induced hepatotoxicity by altering alcohol-metabolizing enzyme activities.
Collapse
Affiliation(s)
- Maytiya Konkit
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Kiyoung Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
23
|
Rana K, Verma Y, Rani V, Rana SVS. Renal toxicity of nanoparticles of cadmium sulphide in rat. CHEMOSPHERE 2018; 193:142-150. [PMID: 29128560 DOI: 10.1016/j.chemosphere.2017.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
During present investigations, renal toxicity of CdSNPs (cadmium sulphide nanoparticles) (ranged 5-9 nm) was estimated in rat employing specific parameters. Treatment on each alternate day for 45 days with CdSNPs (10 mg/kg b.w.) yielded significant increase in Cd-MT (cadmium metallothionein), lipid peroxidation and H2O2 generation in the kidney of rat in comparison to bulk cadmium. Concentration of creatinine also increased in urine of CdSNPs treated rats. Histopathological observations revealed extensive damage in proximal tubules. Ultrastructural studies showed mitochondrial, nuclear and ER (endoplasmic reticulum) changes. Finally, renal toxicity of CdSNPs was confirmed by loss of alkaline phosphatase from the brush border of proximal convoluted tubules. These observations conclude that CdSNPs manifest greater toxicity in kidney than cadmium sulphide bulk particles. These effects have been attributed to their specific physicochemical properties, greater potential to generate ROS and induction of oxidative stress and impairment of renal structure and function. Present observations suggest that commercial/industrial use of CdSNPs may pose serious renal health problems in man.
Collapse
Affiliation(s)
- Kavita Rana
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Yeshvandra Verma
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Varsha Rani
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India
| | - Suresh Vir Singh Rana
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
24
|
Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1032:15-35. [PMID: 30362088 DOI: 10.1007/978-3-319-98788-0_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (P450) enzymes are involved in the metabolism of carcinogens, as well as drugs, steroids, vitamins, and other classes of chemicals. P450s also oxidize ethanol, in particular P450 2E1. P450 2E1 oxidizes ethanol to acetaldehyde and then to acetic acid, roles also played by alcohol and aldehyde dehydrogenases. The role of P450 2E1 in cancer is complex in that P450 2E1 is also induced by ethanol, P450 2E1 is involved in the bioactivation and detoxication of a number of chemical carcinogens, and ethanol is an inhibitor of P450 2E1. Contrary to some literature, P450 2E1 expression and induction itself does not cause global oxidative stress in vivo, as demonstrated in studies using isoniazid treatment and gene deletion studies with rats and mice. However, a major fraction of P450 2E1 is localized in liver mitochondria instead of the endoplasmic reticulum, and studies with site-directed rat P450 2E1 mutants and natural human P450 2E1 N-terminal variants have shown that P450 2E1 localized in mitochondria is catalytically active and more proficient in producing reactive oxygen species and damage. The role of the mitochondrial oxidative stress in ethanol toxicity is still under investigation, as is the mechanism of altered electron transport to P450s that localize inside mitochondria instead of their typical endoplasmic reticulum environment.
Collapse
|
25
|
Rani V, Verma Y, Rana K, Rana SVS. Zinc oxide nanoparticles inhibit dimethylnitrosamine induced liver injury in rat. Chem Biol Interact 2017; 295:84-92. [PMID: 29024620 DOI: 10.1016/j.cbi.2017.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Dimethylnitrosamine (DMN) is a potent hepatotoxic, carcinogenic and mutagenic compound. It induces massive liver cell necrosis and death in experimental animals. Several drugs have been tested in the past for their protective behavior against DMN toxicity. However, it is for the first time that therapeutic intervention of ZnONPs (zinc oxide nanoparticles) has been studied against its toxicity. Present results show that a post treatment of ZnONPs (50 mg/kg) to DMN (2 μl/100 g body weight) treated rats reduces lipid peroxidation, oxidative stress and fibrosis in the liver. It diminishes serum ALT (alanine transaminases), AST (aspartate transaminases) and LDH (lactate dehydrogenase) showing improvement in liver function. Reduced values of proinflammatory cytokines viz. TNF-α and IL-12 also support its protective effects. Histopathological observations also indicate improvement in liver cell morphology. It is postulated that ZnONPs offer protection through selective toxicity to proliferating tissue including adenomatous islands formed in the liver. Zinc metallothionein (Zn-MT) induced by ZnONPs may also contribute in the amelioration of DMN induced toxic effects. Diminution of oxidative stress by ZnONPs remains to be the key mechanism involved in its protective effects. However, toxicity of ZnONPs in the liver needs to be monitored simultaneously.
Collapse
Affiliation(s)
- Varsha Rani
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India
| | - Yeshvandra Verma
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India
| | - Kavita Rana
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India
| | - Suresh Vir Singh Rana
- Toxicology Laboratory, Department of Zoology/Toxicology, Chaudhary Charan Singh University, Meerut 250004, India.
| |
Collapse
|
26
|
Lozoya-Gloria E, Cornejo-Corona I, Thapa HR, Browne DR, Devarenne TP. ROS Detection in Botryococcus braunii Colonies with CellROX Green Reagent. Bio Protoc 2017; 7:e2508. [PMID: 34541171 DOI: 10.21769/bioprotoc.2508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 11/02/2022] Open
Abstract
We analyzed the reactive oxygen species (ROS) accumulation in the colony-forming green microalga Botryococcus braunii in response to several stress inducers such as NaCl, NaHCO3, salicylic acid (SA), methyl jasmonate, and acetic acid. A staining assay using the fluorescent dye CellROX Green was used. CellROX Green is a fluorogenic probe used for measuring oxidative stress in live cells. The dye is weakly fluorescent inside cells in a reduced state but exhibits bright green photostable fluorescence upon oxidation by ROS and subsequent binding to DNA. The large amount of liquid hydrocarbons produced and excreted by B. braunii, creates a highly hydrophobic extracellular environment that makes difficult to study short times defense responses on this microalga. The procedure developed here allowed us to detect ROS in this microalga even within a short period of time (in minutes) after treatment of cells with different stress inducers.
Collapse
Affiliation(s)
| | | | - Hem R Thapa
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Daniel R Browne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
27
|
Watanabe A, Kaneko C, Hamada Y, Takeda K, Kimata S, Matsumoto T, Abe A, Tanaka N, Okada S, Uchino M, Satoh J, Nakagawa J, Niimura Y. Isolation of lactic acid bacteria exhibiting high scavenging activity for environmental hydrogen peroxide from fermented foods and its two scavenging enzymes for hydrogen peroxide. J GEN APPL MICROBIOL 2017; 62:75-82. [PMID: 27118075 DOI: 10.2323/jgam.62.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To obtain lactic acid bacteria that scavenge environmental hydrogen peroxide, we developed a specialized enrichment medium and successfully isolated Pediococcus pentosaceus Be1 strain from a fermented food. This strain showed vigorous environmental hydrogen peroxide scavenging activity over a wide range of hydrogen peroxide concentrations. High Mn-catalase and NADH peroxidase activities were found in the cell-free extract of the P. pentosaceus Be1 strain, and these two hydrogen peroxide scavenging enzymes were purified from the cell-free extract of the strain. Mn-catalase has been purified from several microorganisms by several researchers, and the NADH peroxidase was first purified from the original strain in this report. After cloning the genes of the Mn-catalase and the NADH peroxidase, the deduced amino acid sequences were compared with those of known related enzymes.
Collapse
Affiliation(s)
- Akio Watanabe
- Department of Bio-Science, Tokyo University of Agriculture
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The NADH oxidase family of enzymes catalyzes the oxidation of NADH by reducing molecular O2 to H2O2, H2O or both. In the protozoan parasite Giardia lamblia, the NADH oxidase enzyme (GlNOX) produces H2O as end product without production of H2O2. GlNOX has been implicated in the parasite metabolism, the intracellular redox regulation and the resistance to drugs currently used against giardiasis; therefore, it is an interesting protein from diverse perspectives. In this work, the GlNOX gene was amplified from genomic G. lamblia DNA and expressed in Escherichia coli as a His-Tagged protein; then, the enzyme was purified by immobilized metal affinity chromatography, characterized, and its properties compared with those of the endogenous enzyme previously isolated from trophozoites (Brown et al. in Eur J Biochem 241(1):155-161, 1996). In comparison with the trophozoite-extracted enzyme, which was scarce and unstable, the recombinant heterologous expression system and one-step purification method produce a stable protein preparation with high yield and purity. The recombinant enzyme mostly resembles the endogenous protein; where differences were found, these were attributable to methodological discrepancies or artifacts. This homogenous, pure and functional protein preparation can be used for detailed structural or functional studies of GlNOX, which will provide a deeper understanding of the biology and pathogeny of G. lamblia.
Collapse
|
29
|
Zhang H, Wang Z, Gong H, Cao J, Zhou Y, Zhou J. Identification and functional study of a novel 2-cys peroxiredoxin (BmTPx-1) of Babesia microti. Exp Parasitol 2016; 170:21-27. [PMID: 27567985 DOI: 10.1016/j.exppara.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/19/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
Abstract
Babesia microti is an emerging human pathogen and the primary causative agent of human babesiosis in many regions of the world. Although the peroxiredoxins (Prxs) or thioredoxin peroxidases (TPx) enzymes of this parasite have been sequenced and annotated, their biological properties remain largely unknown. Prxs are a family of antioxidant enzymes that protect biological molecules against metabolically produced reactive oxygen species (ROS) and reduce hydrogen peroxide (H2O2) to water in both eukaryotes and prokaryotes. In this study, TPx-1 cDNA was cloned from B. microti (designated BmTPx-1). Recombinant BmTPx-1 (rBmTPx-1) was expressed in Escherichia coli as a histidine fusion protein and purified using Ni-NTA His bind resin. To test the defense capacity of enzymatic antioxidants against the effect of ROS, a mixed-function oxidation system was utilized with the recombinant BmTPx-1 protein. A decreased ability of rBmTPx-1 to donate electrons to the thioredoxin (Trx)/TrxR reductase system was clarified by reaction with H2O2. These results suggest that BmTPx-1 has a great impact on protecting parasites from oxidative stress in the erythrocytic stage.
Collapse
Affiliation(s)
- Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhonghua Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Haiyan Gong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
30
|
Guajardo E, Correa JA, Contreras-Porcia L. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. PLANTA 2016; 243:767-81. [PMID: 26687373 DOI: 10.1007/s00425-015-2438-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/23/2015] [Indexed: 05/10/2023]
Abstract
The hormone ABA regulates the oxidative stress state under desiccation in seaweed species; an environmental condition generated during daily tidal changes. Desiccation is one of the most important factors that determine the distribution pattern of intertidal seaweeds. Among most tolerant seaweed is Pyropia orbicularis, which colonizes upper intertidal zones along the Chilean coast. P. orbicularis employs diverse mechanisms of desiccation tolerance (DT) (among others, e.g., antioxidant activation, photoinhibition, and osmo-compatible solute overproduction) such as those used by resurrection plants and bryophytes. In these organisms, the hormone abscisic acid (ABA) plays an important role in regulating responses to water deficit, including gene expression and the activity of antioxidant enzymes. The present study determined the effect of ABA on the activation of antioxidant responses during desiccation in P. orbicularis and in the sensitive species Mazzaella laminarioides and Lessonia spicata. Changes in endogenous free and conjugated ABA, water content during the hydration-desiccation cycle, enzymatic antioxidant activities [ascorbate peroxidase (AP), catalase (CAT) and peroxiredoxine (PRX)], and levels of lipid peroxidation and cell viability were evaluated. The results showed that P. orbicularis had free ABA levels 4-7 times higher than sensitive species, which was overproduced during water deficit. Using two ABA inhibitors (sodium tungstate and ancymidol), ABA was found to regulate the activation of the antioxidant enzymes activities during desiccation. In individuals exposed to exogenous ABA the enzyme activity increased, concomitant with low lipid peroxidation and high cell viability. These results demonstrate the participation of ABA in the regulation of DT in seaweeds, and suggest that regulatory mechanisms with ABA signaling could be of great importance for the adaptation of these organisms to dehydration.
Collapse
Affiliation(s)
- Eduardo Guajardo
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile
| | - Juan A Correa
- Departamento de Ecología, and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- UMI 3614, Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, Roscoff, France
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, República 440, Santiago, Chile.
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Feldman M, Ginsburg I, Al-Quntar A, Steinberg D. Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm. Front Microbiol 2016; 7:140. [PMID: 26904013 PMCID: PMC4748032 DOI: 10.3389/fmicb.2016.00140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/25/2016] [Indexed: 12/11/2022] Open
Abstract
The small molecule, thiazolidinedione-8 (S-8) was shown to impair biofilm formation of various microbial pathogens, including the fungus Candida albicans and Streptococcus mutans. Previously, we have evaluated the specific molecular mode of S-8 action against C. albicans biofilm-associated pathogenicity. In this study we investigated the influence of S-8 on dual species, C. albicans-S. mutans biofilm. We show that in the presence of S-8 a reduction of the co-species biofilm formation occurred with a major effect on C. albicans. Biofilm biomass and exopolysaccharide (EPS) production were significantly reduced by S-8. Moreover, the agent caused oxidative stress associated with a strong induction of reactive oxygen species and hydrogen peroxide uptake inhibition by a mixed biofilm. In addition, S-8 altered symbiotic relationship between these species by a complex mechanism. Streptococcal genes associated with quorum sensing (QS) (comDE and luxS), EPS production (gtfBCD and gbpB), as well as genes related to protection against oxidative stress (nox and sodA) were markedly upregulated by S-8. In contrast, fungal genes related to hyphae formation (hwp1), adhesion (als3), hydrophobicity (csh1), and oxidative stress response (sod1, sod2, and cat1) were downregulated in the presence of S-8. In addition, ywp1 gene associated with yeast form of C. albicans was induced by S-8, which is correlated with appearance of mostly yeast cells in S-8 treated dual species biofilms. We concluded that S-8 disturbs symbiotic balance between C. albicans and S. mutans in dual species biofilm.
Collapse
Affiliation(s)
- Mark Feldman
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Isaac Ginsburg
- Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Abed Al-Quntar
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of JerusalemJerusalem, Israel; Institute of Drug Research, School of Pharmacy, The Hebrew University of JerusalemJerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|
32
|
Up-regulation of cytosolic tryparedoxin in Amp B resistant isolates of Leishmania donovani and its interaction with cytosolic tryparedoxin peroxidase. Biochimie 2016; 121:312-25. [DOI: 10.1016/j.biochi.2015.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/26/2015] [Indexed: 11/18/2022]
|
33
|
Ergaz Z, Neeman-azulay M, Weinstein-Fudim L, Weksler-Zangen S, Shoshani-Dror D, Szyf M, Ornoy A. Diabetes in the Cohen Rat Intensifies the Fetal Pancreatic Damage Induced by the Diabetogenic High Sucrose Low Copper Diet. ACTA ACUST UNITED AC 2016; 107:21-31. [DOI: 10.1002/bdrb.21169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/24/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Zivanit Ergaz
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
- Department of Neonatology; Hadassah Medical Center, Hebrew University of Jerusalem; Jerusalem Israel
| | - Meytal Neeman-azulay
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| | - Liza Weinstein-Fudim
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| | - Sarah Weksler-Zangen
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
- Diabetes Unit; Department of Internal Medicine; Hadassah Medical Center, Hebrew University of Jerusalem; Jerusalem Israel
| | - Dana Shoshani-Dror
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics; McGill University; Montreal Canada
| | - Asher Ornoy
- Laboratory of Teratology; Department of Medical Neurobiology; Hadassah Medical School, Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
34
|
Lee YM, Kim MJ, Kim Y, Kim H. Glutamine Deprivation Causes Hydrogen Peroxide-induced Interleukin-8 Expression via Jak1/Stat3 Activation in Gastric Epithelial AGS Cells. J Cancer Prev 2015; 20:179-84. [PMID: 26473156 PMCID: PMC4597806 DOI: 10.15430/jcp.2015.20.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. METHODS We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. RESULTS Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. CONCLUSIONS In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation.
Collapse
Affiliation(s)
- Yun Mi Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Mi Jung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Youngha Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
35
|
γ-Lindane Increases Microcystin Synthesis in Microcystis aeruginosa PCC7806. Mar Drugs 2015; 13:5666-80. [PMID: 26404326 PMCID: PMC4584347 DOI: 10.3390/md13095666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 11/17/2022] Open
Abstract
HCH factories, and the waste dumpsites associated to its production, have become a global environmental concern, and their runoff could pollute ground and surface waters with high levels of the pollutant. In this study, the influence of lindane (γ-HCH) on microcystin production has been investigated in Microcystis aeruginosa PCC7806. This toxic cyanobacterium is highly tolerant to γ-lindane (20 mg/L), and produces more toxin (microcystin) in the presence of the pollutant. Microcystis degrades γ-lindane and presence of γ-lindane induces genes involved in its own degradation (nirA). RT-PCRsq has been used to monitor changes in levels of transcripts encoded by the mcy operon (mcyD, mcyH and mcyJ), responsible for the microcystin synthesis machinery, as well as other genes involved in its transcriptional regulation, such as ntcA and fur family members. The presence of lindane in the culture media induces mcyD expression, as well as ntcA gene transcription, while other genes, such as mcyH, (putative ABC transporter), are downregulated. The amount of microcystin found in the cells and the culture media is higher when M. aeruginosa is treated with γ-lindane than in control cells. The results suggest that in a lindane polluted environment, Microcystis toxic strains may enhance their microcystin synthesis.
Collapse
|
36
|
Abstract
The oxidant scavenging ability (OSA) of catalase-rich Candida albicans is markedly enhanced by chlorhexidine digluconate (CHX), polymyxin B, the bile salt ursodeoxycholate and by lysophosphatidylcholine, which all act as detergents facilitating the penetration of oxidants and their intracellular decomposition. Quantifications of the OSA of Candida albicans were measured by a highly sensitive luminol-dependent chemiluminescence assay and by the Thurman's assay, to quantify hydrogen peroxide (H2O2). The OSA enhancing activity by CHX depends to some extent on the media on which candida grew. The OSA of candida treated by CHX was modulated by whole human saliva, red blood cells, lysozyme, cationic peptides and by polyphenols. Concentrations of CHX, which killed over 95 % of Candida albicans cells, did not affect the cells' abilities to scavenge reactive oxygen species (ROS). The OSA of Candida cells treated by CHX is highly refractory to H2O2 (50 mM) but is strongly inhibited by hypochlorous acid, lecithin, trypan blue and by heparin. We speculate that similarly to catalase-rich red blood cells, Candida albicans and additional catalase-rich microbiota may also have the ability to scavenge oxidants and thus can protect catalase-negative anaerobes and facultative anaerobes cariogenic streptococci against peroxide and thus secure their survival in the oral cavity.
Collapse
|
37
|
Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A. Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Proteomics 2015; 119:112-25. [PMID: 25682994 DOI: 10.1016/j.jprot.2015.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/16/2015] [Accepted: 01/29/2015] [Indexed: 11/17/2022]
Abstract
Peroxiredoxins (Prxs) have emerged as important factors linking reactive oxygen species (ROS) metabolism to redox-dependent signaling events. Together with ROS, nitric oxide (NO) is a free radical product of the cell metabolism that is essential in the signal transduction. S-Nitrosylation is emerging as a fundamental protein modification for the transduction of NO bioactivity. Using recombinant pea mitochondrial PsPrxII F (PrxII F), the effect of S-nitrosoglutathione (GSNO) and sodium nitroprusside dehydrate (SNP), which are known to mediate protein S-nitrosylation processes, was studied. S-Nitrosylation of the PrxII F was demonstrated using the biotin switch method and LC ESI-QTOF tandem MS analysis. S-nitrosylated PrxII F decreased its peroxidase activity and acquired a new transnitrosylase activity, preventing the thermal aggregation of citrate synthase (CS). For the first time, we demonstrate the dual function for PrxII F as peroxidase and transnitrosylase. This switch was accompanied by a conformational change of the protein that could favor the protein-protein interaction CS-PrxII F. The observed in vivo S-nitrosylation of PrxII F could probably function as a protective mechanism under oxidative and nitrosative stress, such as occurs under salinity. We conclude that we are dealing with a novel regulatory mechanism for this protein by NO. BIOLOGICAL SIGNIFICANCE S-Nitrosylation is a post-translational modification that is increasingly viewed as fundamental for the signal transduction role of NO in plants. This study demonstrates that S-nitrosylation of the mitochondrial peroxiredoxin PrxII F induces a conformational change in the protein and provokes a reduction in its peroxidase activity, while acquiring a novel function as transnitrosylase. The implication of this mechanism will increase our understanding of the role of posttranslational modifications in the protein function in plants under stress situations such as salinity, in which NO could act as signaling molecule.
Collapse
Affiliation(s)
- Daymi Camejo
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Ortiz-Espín
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Juan J Lázaro
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - María C Romero-Puertas
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Alfonso Lázaro-Payo
- EEZ-CSIC, Department of Biochemistry, Cellular and Molecular Biology of Plants, E-18080 Granada, Spain.
| | - Francisca Sevilla
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| | - Ana Jiménez
- CEBAS-CSIC, Department of Stress Biology and Plant Pathology, E-30100 Murcia, Spain.
| |
Collapse
|
38
|
Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A. Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2606-2617. [PMID: 25686266 DOI: 10.1021/jf504614w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Copper deficiency or toxicity in agricultural soil circumscribes a plant's growth and physiology, hampering photochemical and biochemical networks within the system. So far, copper sulfate (CS) has been used widely despite its toxic effect. To get around this long-standing problem, copper nanoparticles (CuNPs) have been synthesized, characterized, and tested on mung bean plants along with commercially available salt CS, to observe morphological abnormalities enforced if any. CuNPs enhanced photosynthetic activity by modulating fluorescence emission, photophosphorylation, electron transport chain (ETC), and carbon assimilatory pathway under controlled laboratory conditions, as revealed from biochemical and biophysical studies on treated isolated mung bean chloroplast. CuNPs at the recommended dose worked better than CS in plants in terms of basic morphology, pigment contents, and antioxidative activities. CuNPs showed elevated nitrogen assimilation compared to CS. At higher doses CS was found to be toxic to the plant system, whereas CuNP did not impart any toxicity to the system including morphological and/or physiological alterations. This newly synthesized polymer-encapsulated CuNPs can be utilized as nutritional amendment to balance the nutritional disparity enforced by copper imbalance.
Collapse
Affiliation(s)
- Saheli Pradhan
- †Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Prasun Patra
- §Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Kolkata 700098, India
| | - Shouvik Mitra
- †Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Kushal Kumar Dey
- #Department of Statistics, University of Chicago, Chicago, Illinois 60637, United States
| | - Satakshi Basu
- †Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sourov Chandra
- †Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Pratip Palit
- ⊥Plant Physiology Section, Central Research Institute for Jute and Allied Fibers, Indian Council of Agricultural Research, Barrackpore, Kolkata 700120, India
| | - Arunava Goswami
- †Biological Sciences Division, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
39
|
Santos F, Nequiz M, Hernández-Cuevas NA, Hernández K, Pineda E, Encalada R, Guillén N, Luis-García E, Saralegui A, Saavedra E, Pérez-Tamayo R, Olivos-García A. Maintenance of intracellular hypoxia and adequate heat shock response are essential requirements for pathogenicity and virulence ofEntamoeba histolytica. Cell Microbiol 2015; 17:1037-51. [DOI: 10.1111/cmi.12419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/05/2015] [Accepted: 01/16/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Fabiola Santos
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
- Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; México D.F. 11340 Mexico
| | - Mario Nequiz
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | | | - Kahory Hernández
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | - Erika Pineda
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Mexico D.F. 14080 Mexico
| | - Rusely Encalada
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Mexico D.F. 14080 Mexico
| | - Nancy Guillén
- Unité Biologie Cellulaire du Parasitisme; Institut Pasteur; Paris F-75015 France
- INSERM, U786; Paris F-75015 France
| | - Erika Luis-García
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | - Andrés Saralegui
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca Morelos 62250 Mexico
| | - Emma Saavedra
- Departamento de Bioquímica; Instituto Nacional de Cardiología Ignacio Chávez; Mexico D.F. 14080 Mexico
| | - Ruy Pérez-Tamayo
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| | - Alfonso Olivos-García
- Departamento de Medicina Experimental, Facultad de Medicina; Universidad Nacional Autónoma de México; Mexico D.F. 04510 Mexico
| |
Collapse
|
40
|
Physiochemical studies of sodium chloride on mungbean (Vigna radiata L. Wilczek) and its possible recovery with spermine and gibberellic acid. ScientificWorldJournal 2015; 2015:858016. [PMID: 25734186 PMCID: PMC4334978 DOI: 10.1155/2015/858016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 01/05/2023] Open
Abstract
The physiological and biochemical responses to increasing NaCl concentrations, along with low concentrations of gibberellic acid or spermine, either alone or in their combination, were studied in mungbean seedlings. In the test seedlings, the root-shoot elongation, biomass production, and the chlorophyll content were significantly decreased with increasing NaCl concentrations. Salt toxicity severely affected activities of different antioxidant enzymes and oxidative stress markers. Activities of antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT) increased significantly over water control. Similarly, oxidative stress markers such as proline, malondialdehyde (MDA), and hydrogen peroxide (H2O2) contents also increased as a result of progressive increase in salt stress. Combined application of NaCl along with low concentrations of either gibberellic acid (5 µM) or spermine (50 µM) in the test seedlings showed significant alterations, that is, drastic increase in seedling elongation, increased biomass production, increased chlorophyll content, and significant lowering in all the antioxidant enzyme activities as well as oxidative stress marker contents in comparison to salt treated test seedlings, leading to better growth and metabolism. Our study shows that low concentrations of either gibberellic acid or spermine will be able to overcome the toxic effects of NaCl stress in mungbean seedlings.
Collapse
|
41
|
Sein-Echaluce VC, González A, Napolitano M, Luque I, Barja F, Peleato ML, Fillat MF. Zur (FurB) is a key factor in the control of the oxidative stress response inAnabaenasp. PCC 7120. Environ Microbiol 2014; 17:2006-17. [DOI: 10.1111/1462-2920.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Violeta C. Sein-Echaluce
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - Mauro Napolitano
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Sevilla E-41092 Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis; CSIC-Universidad de Sevilla; Sevilla E-41092 Spain
| | - Francisco Barja
- Microbiology Unit; Botany and Plant Biology Department; University of Geneva; Ch. Des Embrouchis 10 Jussy-Geneva CH-1254 Switzerland
| | - M. Luisa Peleato
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular; Instituto de Biocomputación y Física de Sistemas Complejos; Universidad de Zaragoza; Zaragoza 50009 Spain
| |
Collapse
|
42
|
Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat. Toxicol Appl Pharmacol 2014; 276:220-30. [DOI: 10.1016/j.taap.2014.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 02/07/2023]
|
43
|
Song H, Her AS, Raso F, Zhen Z, Huo Y, Liu P. Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis. Org Lett 2014; 16:2122-5. [PMID: 24684381 PMCID: PMC3998768 DOI: 10.1021/ol5005438] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Indexed: 12/22/2022]
Abstract
OvoA in ovothiol biosynthesis is a mononuclear non-heme iron enzyme catalyzing the oxidative coupling between histidine and cysteine. It can also catalyze the oxidative coupling between hercynine and cysteine, yet with a different regio-selectivity. Due to the potential application of this reaction for industrial ergothioneine production, in this study, we systematically characterized OvoA by a combination of three different assays. Our studies revealed that OvoA can also catalyze the oxidation of cysteine to either cysteine sulfinic acid or cystine. Remarkably, these OvoA-catalyzed reactions can be systematically modulated by a slight modification of one of its substrates, histidine.
Collapse
Affiliation(s)
- Heng Song
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachussetts 02215, United States
| | - Ampon Sae Her
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachussetts 02215, United States
| | - Fiona Raso
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachussetts 02215, United States
| | - Zhibin Zhen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachussetts 02215, United States
| | - Yuda Huo
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachussetts 02215, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachussetts 02215, United States
| |
Collapse
|
44
|
Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts. Inflamm Res 2014; 63:347-56. [PMID: 24413629 DOI: 10.1007/s00011-013-0706-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/23/2013] [Accepted: 12/30/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). MATERIALS We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. TREATMENT The cells were cultured with or without glutamine or GSH. METHODS ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. RESULTS While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and cultured without glutamine showed higher levels of ROS and IL-8 than those transfected with negative control siRNA; increased levels of ROS and IL-8 were suppressed by the treatment of glutamine. CONCLUSION Glutamine deprivation induces ROS production, NF-κB activation, and IL-8 expression as well as a reduction in GSH in A-T fibroblasts, all of which are attenuated by glutamine supplementation.
Collapse
|
45
|
Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13122-31. [PMID: 24144189 DOI: 10.1021/es402659t] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Manganese (Mn) is an essential element for plants which intervenes mainly in photosynthesis. In this study we establish that manganese nanoparticles (MnNP) work as a better micronutrient than commercially available manganese salt, MnSO4 (MS) at recommended doses on leguminous plant mung bean (Vigna radiata) under laboratory condition. At higher doses it does not impart toxicity to the plant unlike MS. MnNP-treated chloroplasts show greater photophosphorylation, oxygen evolution with respect to control and MS-treated chloroplasts as determined by biophysical and biochemical techniques. Water splitting by an oxygen evolving complex is enhanced by MnNP in isolated chloroplast as confirmed by polarographic and spectroscopic techniques. Enhanced activity of the CP43 protein of a photosystem II (PS II) Mn4Ca complex influenced better phosphorylation in the electron transport chain in the case of MnNP-treated chloroplast, which is evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and corresponding Western blot analysis. To the best of our knowledge this is the first report to augment photosynthesis using MnNP and its detailed correlation with different molecular, biochemical and biophysical parameters of photosynthetic pathways. At effective dosage, MnNP is found to be biosafe both in plant and animal model systems. Therefore MnNP would be a novel potential nanomodulator of photochemistry in the agricultural sector.
Collapse
Affiliation(s)
- Saheli Pradhan
- Biological Sciences Division, Indian Statistical Institute , 203 B.T. Road, Kolkata 700108, India
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
A peroxiredoxin cDNA from Taiwanofungus camphorata: role of Cys31 in dimerization. Mol Biol Rep 2013; 41:155-64. [PMID: 24194195 DOI: 10.1007/s11033-013-2848-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 10/29/2013] [Indexed: 01/19/2023]
Abstract
Peroxiredoxins (Prxs) play important roles in antioxidant defense and redox signaling pathways. A Prx isozyme cDNA (TcPrx2, 745 bp, EF552425) was cloned from Taiwanofungus camphorata and its recombinant protein was overexpressed. The purified protein was shown to exist predominantly as a dimer by sodium dodecyl sulfate-polyacrylamide gel electrolysis in the absence of a reducing agent. The protein in its dimeric form showed no detectable Prx activity. However, the protein showed increased Prx activity with increasing dithiothreitol concentration which correlates with dissociation of the dimer into monomer. The TcPrx2 contains two Cys residues. The Cys(60) located in the conserved active site is the putative active peroxidatic Cys. The role of Cys(31) was investigated by site-directed mutagenesis. The C31S mutant (C(31) → S(31)) exists predominantly as a monomer with noticeable Prx activity. The Prx activity of the mutant was higher than that of the corresponding wild-type protein by nearly twofold at 12 μg/mL. The substrate preference of the mutant was H2O2 > cumene peroxide > t-butyl peroxide. The Michaelis constant (K M) value for H2O2 of the mutant was 0.11 mM. The mutant enzyme was active under a broad pH range from 6 to 10. The results suggest a role of Cys(31) in dimerization of the TcPrx2, a role which, at least in part, may be involved in determining the activity of Prx. The C(31) residue does not function as a resolving Cys and therefore the TcPrx2 must follow the reaction mechanism of 1-Cys Prx. This TcPrx2 represents a new isoform of Prx family.
Collapse
|
47
|
Lovazzano C, Serrano C, Correa JA, Contreras-Porcia L. Comparative analysis of peroxiredoxin activation in the brown macroalgae Scytosiphon gracilis and Lessonia nigrescens (Phaeophyceae) under copper stress. PHYSIOLOGIA PLANTARUM 2013; 149:378-88. [PMID: 23489129 DOI: 10.1111/ppl.12047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 06/01/2023]
Abstract
Among thiol-dependent peroxidases (TDPs) peroxiredoxins (PRXs) standout, since they are enzymes capable of reducing hydrogen peroxide, alkylhydroperoxides and peroxynitrite, and have been detected in a proteomic study of the copper-tolerant species Scytosiphon gracilis. In order to determine the importance of these enzymes in copper-stress tolerance, TDP activity and type II peroxiredoxin (II PRX) protein expression were compared between the opportunistic S. gracilis and the brown kelp Lessonia nigrescens, a species absent from copper-impacted sites due to insufficient copper-tolerance mechanisms. Individuals of both species were cultured with increasing copper concentrations (0-300 µg l(-1) Cu) for 96 h and TDP activity and lipoperoxides (LPXs) were determined together with II PRX expression by immunofluorescence and Western blot analysis. The results showed that TDP activity was higher in S. gracilis than L. nigrescens in all copper concentrations, independent of the reducing agent used (dithiothreitol, thioredoxin or glutaredoxin). This activity was copper inhibited in L. nigrescens at lower copper concentrations (20 µg l(-1) Cu) compared to S. gracilis (100 µg l(-1) Cu). The loss of activity coincided in both species with an increase in LPX, which suggests that TDP may control LPX production. Moreover, II PRX protein levels increased under copper stress only in S. gracilis. These results suggest that in S. gracilis TDP, particularly type II peroxiredoxin (II PRX), acts as an active antioxidant barrier attenuating the LPX levels generated by copper, which is not the case in L. nigrescens. Thus, from an ecological point of view these results help explaining the inability of L. nigrescens to flourish in copper-enriched environments.
Collapse
Affiliation(s)
- Carlos Lovazzano
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile; Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
48
|
Shapira R, Rudnick S, Daniel B, Viskind O, Aisha V, Richman M, Ayasolla KR, Perelman A, Chill JH, Gruzman A, Rahimipour S. Multifunctional Cyclic d,l-α-Peptide Architectures Stimulate Non-Insulin Dependent Glucose Uptake in Skeletal Muscle Cells and Protect Them Against Oxidative Stress. J Med Chem 2013; 56:6709-18. [DOI: 10.1021/jm4005225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Renana Shapira
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Safra Rudnick
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Bareket Daniel
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Olga Viskind
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Vered Aisha
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | - Alex Perelman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Jordan H. Chill
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arie Gruzman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
49
|
Yoshigae Y, Kent UM, Hollenberg PF. Role of the highly conserved threonine in cytochrome P450 2E1: prevention of H2O2-induced inactivation during electron transfer. Biochemistry 2013; 52:4636-47. [PMID: 23750736 DOI: 10.1021/bi4004843] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly conserved threonine in the I-helix of cytochrome P450s has been suggested to play an important role in dioxygen activation, a critical step for catalytic turnover. However, subsequent studies with some P450s in which this highly conserved threonine was replaced by another residue such as alanine showed that significant catalytic activities were still retained when the variants were compared with the wild type enzymes. These results make the role of this residue unclear. We provide data here that suggest a novel role for this highly conserved threonine (Thr303) in the function of P450 2E1. We found that the P450 2E1 T303A mutant undergoes rapid autoinactivation in the reconstituted system during catalytic turnover when the electrons are provided by NADPH. This inactivation was much faster than that of the wild type P450 2E1 and was prevented by catalase. Both the P450 2E1 wild type and T303A mutants produce hydrogen peroxide during the incubations. The inactivation was accompanied by heme destruction with part of the heme becoming covalently attached to protein. The heme destruction was prevented by catalase or by the presence of substrate. Interestingly, this inactivation occurred much more rapidly in the presence of both an electron transfer system and hydrogen peroxide externally added to the enzyme. This accelerated inactivation during catalytic turnover was also found with a 2B4 T302A mutant, which corresponds to 2E1 T303A. Our results suggest that the conserved threonine in these P450s prevents rapid autoinactivation during the catalytic cycle and that this residue may be highly conserved in P450s since it allows them to remain catalytically active for longer periods of time.
Collapse
Affiliation(s)
- Yasushi Yoshigae
- Department of Pharmacology, The University of Michigan Medical School , 2301 MSRB III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5632, United States
| | | | | |
Collapse
|
50
|
Abstract
Peroxiredoxins (Prdxs) are a family of proteins which catalyze the reduction of H2O2 through the interaction of active site cysteine residues. Conserved within all plant and animal kingdoms, the function of these proteins is related to protection from oxidation or participation of signaling through degradation of H2O2. Peroxiredoxin 6 (Prdx6), a protein belonging to the class of 1-cys Prdxs, was identified in polymorphonuclear leukocytes or neutrophils, defined by amino acid sequence and activity, and found associated with a component of the NADPH oxidase (Nox2), p67(phox). Prdx6 plays an important role in neutrophil function and supports the optimal activity of Nox2. In this chapter, methods are described for determining the Prdx activity of Prdx6. In addition, the approach for assessing the effect of Prdx6 on Nox2 in the SDS-activated, cell-free system of NADPH oxidase activity is presented. Finally, the techniques for suppressing Prdx6 expression in phox-competent K562 cells and cultured myeloid cells with siRNA and shRNA methods are described. With these approaches, the role of Prdx6 in Nox2 activity can be explored with intact cells. The biochemical mechanisms of the Prdx6 effect on the NADPH oxidase can be investigated with the experimental strategies described.
Collapse
|