1
|
Yin X, Meng Y, Sun C, Zhao Y, Wang W, Zhao P, Wang M, Ren J, Yao J, Zhang L, Xia X. Investigation of anti-aging and anti-infection properties of Jingfang Granules using the Caenorhabditis elegans model. Biogerontology 2024; 25:433-445. [PMID: 37572203 DOI: 10.1007/s10522-023-10058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.
Collapse
Affiliation(s)
- Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Yiwei Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Chenghong Sun
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China
| | - Yanqiu Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Weitao Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Mengmeng Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingli Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. LTD, Linyi, 276005, China.
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250013, China.
| |
Collapse
|
2
|
Alenezi H, Parnell G, Schibeci S, Ozkan J, Willcox M, White AJR, Carnt N. Ocular surface immune transcriptome and tear cytokines in corneal infection patients. Front Cell Infect Microbiol 2024; 14:1346821. [PMID: 38694515 PMCID: PMC11061372 DOI: 10.3389/fcimb.2024.1346821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Background Microbial keratitis is one of the leading causes of blindness globally. An overactive immune response during an infection can exacerbate damage, causing corneal opacities and vision loss. This study aimed to identify the differentially expressed genes between corneal infection patients and healthy volunteers within the cornea and conjunctiva and elucidate the contributing pathways to these conditions' pathogenesis. Moreover, it compared the corneal and conjunctival transcriptomes in corneal-infected patients to cytokine levels in tears. Methods Corneal and conjunctival swabs were collected from seven corneal infection patients and three healthy controls under topical anesthesia. RNA from seven corneal infection patients and three healthy volunteers were analyzed by RNA sequencing (RNA-Seq). Tear proteins were extracted from Schirmer strips via acetone precipitation from 38 cases of corneal infection and 14 healthy controls. The cytokines and chemokines IL-1β, IL-6, CXCL8 (IL-8), CX3CL1, IL-10, IL-12 (p70), IL-17A, and IL-23 were measured using an antibody bead assay. Results A total of 512 genes were found to be differentially expressed in infected corneas compared to healthy corneas, with 508 being upregulated and four downregulated (fold-change (FC) <-2 or > 2 and adjusted p <0.01). For the conjunctiva, 477 were upregulated, and 3 were downregulated (FC <-3 or ≥ 3 and adjusted p <0.01). There was a significant overlap in cornea and conjunctiva gene expression in patients with corneal infections. The genes were predominantly associated with immune response, regulation of angiogenesis, and apoptotic signaling pathways. The most highly upregulated gene was CXCL8 (which codes for IL-8 protein). In patients with corneal infections, the concentration of IL-8 protein in tears was relatively higher in patients compared to healthy controls but did not show statistical significance. Conclusions During corneal infection, many genes were upregulated, with most of them being associated with immune response, regulation of angiogenesis, and apoptotic signaling. The findings may facilitate the development of treatments for corneal infections that can dampen specific aspects of the immune response to reduce scarring and preserve sight.
Collapse
Affiliation(s)
- Heba Alenezi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Grant Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Stephen Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Jerome Ozkan
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J. R. White
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
- Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
- Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
3
|
Browne K, Kuppusamy R, Walsh WR, Black DS, Willcox MDP, Kumar N, Chen R. Antimicrobial Peptidomimetics Prevent the Development of Resistance against Gentamicin and Ciprofloxacin in Staphylococcus and Pseudomonas Bacteria. Int J Mol Sci 2023; 24:14966. [PMID: 37834415 PMCID: PMC10573972 DOI: 10.3390/ijms241914966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Bacteria readily acquire resistance to traditional antibiotics, resulting in pan-resistant strains with no available treatment. Antimicrobial resistance is a global challenge and without the development of effective antimicrobials, the foundation of modern medicine is at risk. Combination therapies such as antibiotic-antibiotic and antibiotic-adjuvant combinations are strategies used to combat antibiotic resistance. Current research focuses on antimicrobial peptidomimetics as adjuvant compounds, due to their promising activity against antibiotic-resistant bacteria. Here, for the first time we demonstrate that antibiotic-peptidomimetic combinations mitigate the development of antibiotic resistance in Staphylococcus aureus and Pseudomonas aeruginosa. When ciprofloxacin and gentamicin were passaged individually at sub-inhibitory concentrations for 10 days, the minimum inhibitory concentrations (MICs) increased up to 32-fold and 128-fold for S. aureus and P. aeruginosa, respectively. In contrast, when antibiotics were passaged in combination with peptidomimetics (Melimine, Mel4, RK758), the MICs of both antibiotics and peptidomimetics remained constant, indicating these combinations were able to mitigate the development of antibiotic-resistance. Furthermore, antibiotic-peptidomimetic combinations demonstrated synergistic activity against both Gram-positive and Gram-negative bacteria, reducing the concentration needed for bactericidal activity. This has significant potential clinical applications-including preventing the spread of antibiotic-resistant strains in hospitals and communities, reviving ineffective antibiotics, and lowering the toxicity of antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Katrina Browne
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia
| | - Rajesh Kuppusamy
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - William R. Walsh
- Surgical and Orthopaedic Research Laboratories (SORL), Prince of Wales Clinical School, Prince of Wales Hospital, University of New South Wales (UNSW), Randwick 2031, Australia
| | - David StC Black
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia
| |
Collapse
|
4
|
Konda N, Chakrabarti S, Garg P, Willcox MDP. Association of Single-Nucleotide Polymorphisms in Interleukin Genes with Microbial Keratitis in a South Indian Population. Pathogens 2022; 11:1387. [PMID: 36422638 PMCID: PMC9692714 DOI: 10.3390/pathogens11111387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND To examine the relationship between single-nucleotide polymorphisms (SNPs) in interleukin (IL) genes and keratitis and its clinical manifestations. METHODS SNPs in IL1B, IL6, CXCL8, IL10, and IL12B were analysed. Differences in frequencies of alleles, genotypes and haplotypes between cases and controls as well as associations between SNPs and clinical variables were calculated by χ2 tests with odds ratios. RESULTS The minor homologous genotype in IL1B rs16944 (p = 0.036; odds ratio (OR) = 2.063, 95% confidence interval (CI): 1.048-4.061) and CXCL8 rs4073 (p = 0.041; OR = 0.463, 95% CI: 0.224-0.956) and the heterologous genotypes in IL6 rs1800795 (p = 0.046; OR = 0.563, 95% CI: 0.326-0.972) and IL12B rs2569254 (p = 0.0446; OR = 0.557, 95% CI: 0.314-0.989) or rs730691 (p = 0.0051; OR = 0.451, 95% CI: 0.260-0.784) were associated with keratitis. The minor genotype of rs16944 was associated with severe infection (p = 0.046). The heterologous genotype in rs2569254 was associated with hospital admission, photophobia, and mode of contact lens wear (p ≤ 0.041). The heterologous genotype in rs730691 was associated with blurred vision, discharge, anterior chamber reaction, and mode of wear (p ≤ 0.047). CONCLUSIONS This study demonstrates that SNPs in IL1B and CXCL8 are associated with risk of developing keratitis. The study also found relationships between SNPs and clinical measures of keratitis. The potential for ethnic differences in frequency of SNPs and their association with keratitis should be followed up using different populations.
Collapse
Affiliation(s)
- Nagaraju Konda
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia
- Brien Holden Vision Institute, Sydney 2052, Australia
- School of Medical Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Subhabrata Chakrabarti
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Prashant Garg
- The Cornea Institute, L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
5
|
Zhang J, Conly J, McClure J, Wu K, Petri B, Barber D, Elsayed S, Armstrong G, Zhang K. A Murine Skin Infection Model Capable of Differentiating the Dermatopathology of Community-Associated MRSA Strain USA300 from Other MRSA Strains. Microorganisms 2021; 9:microorganisms9020287. [PMID: 33573328 PMCID: PMC7912111 DOI: 10.3390/microorganisms9020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
USA300 is a predominant and highly virulent community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain that is a leading cause of skin and soft tissue infections. We established a murine intradermal infection model capable of demonstrating dermatopathological differences between USA300 and other MRSA strains. In this model, USA300 induced dermonecrosis, uniformly presenting as extensive open lesions with a histologically documented profound inflammatory cell infiltrate extending below the subcutis. In contrast, USA400 and a colonizing control strain M92 caused only localized non-ulcerated skin infections associated with a mild focal inflammatory infiltrate. It was also determined that the dermonecrosis induced by USA300 was associated with significantly increased neutrophil recruitment, inhibition of an antibacterial response, and increased production of cytokines/chemokines associated with disease severity. These results suggest that induction of severe skin lesions by USA300 is related to over-activation of neutrophils, inhibition of host antibacterial responses, and selective alteration of host cytokine/chemokine profiles.
Collapse
Affiliation(s)
- Jack Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - John Conly
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - JoAnn McClure
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Kaiyu Wu
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Bjӧrn Petri
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Duane Barber
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
| | - Sameer Elsayed
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Western Ontario, London, ON N6A5C1, Canada
| | - Glen Armstrong
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
| | - Kunyan Zhang
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (J.Z.); (J.C.); (J.M.); (K.W.); (D.B.)
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N4N1, Canada; (B.P.); (S.E.); (G.A.)
- Department of Medicine, University of Calgary, Calgary, AB T2N4N1, Canada
- Centre for Antimicrobial Resistance, Alberta Health Services, Alberta Precision Laboratories, University of Calgary, Calgary, AB T2N4N1, Canada
- The Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1, Canada
- Correspondence: ; Tel.: +1-403-210-8484
| |
Collapse
|
6
|
Mrochen DM, Fernandes de Oliveira LM, Raafat D, Holtfreter S. Staphylococcus aureus Host Tropism and Its Implications for Murine Infection Models. Int J Mol Sci 2020; 21:E7061. [PMID: 32992784 PMCID: PMC7582387 DOI: 10.3390/ijms21197061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a pathobiont of humans as well as a multitude of animal species. The high prevalence of multi-resistant and more virulent strains of S. aureus necessitates the development of new prevention and treatment strategies for S. aureus infection. Major advances towards understanding the pathogenesis of S. aureus diseases have been made using conventional mouse models, i.e., by infecting naïve laboratory mice with human-adapted S.aureus strains. However, the failure to transfer certain results obtained in these murine systems to humans highlights the limitations of such models. Indeed, numerous S. aureus vaccine candidates showed promising results in conventional mouse models but failed to offer protection in human clinical trials. These limitations arise not only from the widely discussed physiological differences between mice and humans, but also from the lack of attention that is paid to the specific interactions of S. aureus with its respective host. For instance, animal-derived S. aureus lineages show a high degree of host tropism and carry a repertoire of host-specific virulence and immune evasion factors. Mouse-adapted S.aureus strains, humanized mice, and microbiome-optimized mice are promising approaches to overcome these limitations and could improve transferability of animal experiments to human trials in the future.
Collapse
Affiliation(s)
- Daniel M. Mrochen
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Liliane M. Fernandes de Oliveira
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Silva Holtfreter
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Strasse DZ 7, 17475 Greifswald, Germany; (L.M.F.d.O.); (D.R.); (S.H.)
| |
Collapse
|
7
|
Hume EB, Cole N, Khan S, Walsh BJ, Willcox MD. The role of staphopain a in Staphylococcus aureus keratitis. Exp Eye Res 2020; 193:107994. [PMID: 32147399 DOI: 10.1016/j.exer.2020.107994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a common bacterial isolate from cases of microbial keratitis. The virulence factors that contribute to its pathogenicity during this disease have not been fully resolved. The aim of the current study was to examine the effects of the extracellular protease Staphopain A on corneal virulence. Two strains were used, one Staph 38 that gives a high pathology score during keratitis and a less virulent strain ATCC 8325-4. The effect of inhibition of Staphopain by general or specific protease inhibitors on adhesion of strains to fibronectin-coated glass or PMMA was determined. This was followed by an analysis of the effect of Staphopain A on the ability of the bacteria to adhere to and invade corneal epithelial cells. Finally, the effect of inhibiting Staphopain A on pathogenesis in a mouse model of keratitis was studied. Staphopain A increased the adhesion of strains to fibronectin-coated substrata and inhibition of Staphopain A reduced adhesion. The inhibition of Staphopain A by staphostatin A significantly decreased both association with and invasion into human corneal epithelial cells by 15-fold for strain Saur38. Inhibition of Staphopain A significantly reduced the pathology associated with S. aureus keratitis, reducing the infecting numbers of bacteria from 1.8x105 to <1x104 cells/cornea (p ≤ 0.001), significantly reducing the corneal pathology score (p ≤ 0.038) and reducing the numbers of infiltrating PMNs. This study shows that Staphopain increases adhesion and invasion of corneal cells due to increasing fibronectin binding and its inhibition has a significant impact on pathogenicity of S. aureus during keratitis.
Collapse
Affiliation(s)
- Emma Bh Hume
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Nerida Cole
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Shamila Khan
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia
| | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW, 2113, Australia
| | - Mark Dp Willcox
- School of Optometry and Vision Science, The University of New South Wales, UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Yeung J, Gadjeva M, Geddes-McAlister J. Label-Free Quantitative Proteomics Distinguishes General and Site-Specific Host Responses to Pseudomonas aeruginosa Infection at the Ocular Surface. Proteomics 2020; 20:e1900290. [PMID: 31874121 PMCID: PMC7079286 DOI: 10.1002/pmic.201900290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/07/2019] [Indexed: 01/01/2023]
Abstract
Mass spectrometry-based proteomics enables the unbiased and sensitive profiling of cellular proteomes and extracellular environments. Recent technological and bioinformatic advances permit identifying dual biological systems in a single experiment, supporting investigation of infection from both the host and pathogen perspectives. At the ocular surface, Pseudomonas aeruginosa is commonly associated with biofilm formation and inflammation of the ocular tissues, causing damage to the eye. The interaction between P. aeruginosa and the immune system at the site of infection describes limitations in clearance of infection and enhanced pathogenesis. Here, the extracellular environment (eye wash) of murine ocular surfaces infected with a clinical isolate of P. aeruginosa is profiled and neutrophil marker proteins are detected, indicating neutrophil recruitment to the site of infection. The first potential diagnostic markers of P. aeruginosa-associated keratitis are also identified. In addition, the deepest murine corneal proteome to date is defined and proteins, categories, and networks critical to the host response are detected. Moreover, the first identification of bacterial proteins attached to the ocular surface is reported. The findings are validated through in silico comparisons and enzymatic profiling. Overall, the work provides comprehensive profiling of the host-pathogen interface and uncovers differences between general and site-specific host responses to infection.
Collapse
Affiliation(s)
- J. Yeung
- Molecular and Cellular Biology Department, University of Guelph, Guelph, Ontario, Canada
| | - M. Gadjeva
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - J. Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Yasir M, Dutta D, Willcox MDP. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One 2019; 14:e0215703. [PMID: 31356627 PMCID: PMC6663011 DOI: 10.1371/journal.pone.0215703] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 01/30/2023] Open
Abstract
Mel4 is a novel cationic peptide with potent activity against Gram-positive bacteria. The current study examined the anti-staphylococcal mechanism of action of Mel4 and its precursor peptide melimine. The interaction of peptides with lipoteichoic acid (LTA) and with the cytoplasmic membrane using DiSC(3)-5, Sytox green, Syto-9 and PI dyes were studied. Release of ATP and DNA/RNA from cells exposed to the peptides were determined. Bacteriolysis and autolysin-activated cell death were determined by measuring decreases in OD620nm and killing of Micrococcus lysodeikticus cells by cell-free media. Both peptides bound to LTA and rapidly dissipated the membrane potential (within 30 seconds) without affecting bacterial viability. Disturbance of the membrane potential was followed by the release of ATP (50% of total cellular ATP) by melimine and by Mel4 (20%) after 2 minutes exposure (p<0.001). Mel4 resulted in staphylococcal cells taking up PI with 3.9% cells predominantly stained after 150 min exposure, whereas melimine showed 34% staining. Unlike melimine, Mel4 did not release DNA/RNA. Cell-free media from Mel4 treated cells hydrolysed peptidoglycan and produced greater zones of inhibition against M. lysodeikticus lawn than melimine treated samples. These findings suggest that pore formation is unlikely to be involved in Mel4-mediated membrane destabilization for staphylococci, since there was no significant Mel4-induced PI staining and DNA/RNA leakage. It is likely that the S. aureus killing mechanism of Mel4 involves the release of autolysins followed by cell death. Whereas, membrane interaction is the primary bactericidal activity of melimine, which includes membrane depolarization, pore formation, release of cellular contents leading to cell death.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
- Ophthalmic Research Group, School of Health and Life Sciences, Aston University Birmingham, United Kingdom
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Putra I, Rabiee B, Anwar KN, Gidfar S, Shen X, Babalooee M, Ghassemi M, Afsharkhamseh N, Bakhsh S, Missiakas D, Nezamabadi A, Milani B, Eslani M, Djalilian AR. Staphylococcus aureus alpha-hemolysin impairs corneal epithelial wound healing and promotes intracellular bacterial invasion. Exp Eye Res 2019; 181:263-270. [PMID: 30822400 DOI: 10.1016/j.exer.2019.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
Colonization by Staphylococcus aureus (S. aureus) has been implicated in many infectious and wound healing disorders. This study was performed to characterize the pathogenic role of S. aureus alpha-hemolysin (alpha-toxin) in corneal epithelial wound healing and infectious keratitis in the setting of a corneal wound. The effect of wild-type and isogenic Hla mutant (α-hemolysin gene deleted) S. aureus bacteria and conditioned media on corneal epithelial wound healing was tested in vitro using a scratch assay and in vivo using a murine epithelial debridement model. The invasiveness of wild-type and Hla mutant S. aureus was evaluated in vitro in human corneal epithelial cells and in vivo in a murine model of infectious keratitis following total epithelial debridement. S. aureus and its conditioned media significantly delayed epithelial wound closure both in vitro (P < 0.05) and in vivo (P < 0.05). The effect of S. aureus on wound healing was significantly diminished with the Hla mutant strain (P < 0.05). Likewise, compared to the wild-type strain, the Hla mutant strain demonstrated significantly reduced ability to invade corneal epithelial cells in vitro (P < 0.05) and infect murine corneas following total epithelial debridement in vivo (P < 0.05). In conclusion, S. aureus alpha-hemolysin plays a major role in the pathologic modulation of corneal epithelial wound healing and the intracellular invasion of the bacteria. Limiting colonization by S. aureus and/or blocking alpha-hemolysin may provide a therapeutic approach for corneal wound healing and infectious disorders.
Collapse
Affiliation(s)
- Ilham Putra
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Behnam Rabiee
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Khandaker N Anwar
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Sanaz Gidfar
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Xiang Shen
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Mehrdad Babalooee
- Division of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, 808 S. Wood St., Suite 888 (MC 735), Chicago, IL, 60612, United States
| | - Mahmood Ghassemi
- Division of Infectious Diseases, Department of Medicine, University of Illinois at Chicago, 808 S. Wood St., Suite 888 (MC 735), Chicago, IL, 60612, United States
| | - Neda Afsharkhamseh
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Saaquib Bakhsh
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, 920 East 58th St., CLSC 1117, Chicago, IL, 60637, United States
| | - Ali Nezamabadi
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Behrad Milani
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Medi Eslani
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States
| | - Ali R Djalilian
- Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W. Taylor St., L-213, Chicago, IL, 60612, United States.
| |
Collapse
|
11
|
In Vitro Antimicrobial Activity of Diacerein on 76 Isolates of Gram-Positive Cocci from Bacterial Keratitis Patients and In Vivo Study of Diacerein Eye Drops on Staphylococcus aureus Keratitis in Mice. Antimicrob Agents Chemother 2019; 63:AAC.01874-18. [PMID: 30718254 DOI: 10.1128/aac.01874-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/25/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial keratitis is an aggressive infectious corneal disease. With the continuing rise in antibiotic resistance and a decline in the discovery of new antibiotics, new antimicrobial drugs are now required. In the present study, we determined the antibacterial activity of diacerein, an anti-inflammatory drug, against 76 Gram-positive cocci isolated from bacterial keratitis patients in vitro and anti-Staphylococcus aureus activity in a mouse bacterial keratitis model in vivo The MICs of diacerein were tested using the broth microdilution method in vitro A BALB/c Staphylococcus aureus keratitis animal model was selected and the corneal clinical observation, viable bacteria, and hematoxylin-eosin and Gram staining of infected corneas were measured to evaluate the antibacterial efficacy of diacerein eye drops in vivo An in vivo eye irritation study was carried out by a modified Draize test in rabbits. Our in vitro results showed that diacerein possesses satisfactory antibacterial activity against the majority of Gram-positive cocci (60/76), including all 57 tested Staphylococcus spp. and 3 Enterococcus spp. The in vivo experiment showed that diacerein eye drops reduced bacterial load and improved ocular clinical scores after topical administration of diacerein drops on infected corneas. The ocular irritation test revealed that diacerein eye drop had excellent ocular tolerance. These results indicated that diacerein possesses in vivo anti-Staphylococcus aureus activity. We suggest that diacerein is a possible topically administered drug for Staphylococcus aureus-infected patients, especially those with ocular surface inflammatory disorders.
Collapse
|
12
|
Malachowa N, Kobayashi SD, Lovaglio J, DeLeo FR. Mouse Model of Staphylococcus aureus Skin Infection. Methods Mol Biol 2019; 1960:139-147. [PMID: 30798528 DOI: 10.1007/978-1-4939-9167-9_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial skin and soft tissue infections are abundant worldwide, and many are caused by Staphylococcus aureus. Indeed, S. aureus is the leading cause of skin and soft tissue infections in the USA. Here we describe a mouse model of skin and soft tissue infection induced by subcutaneous inoculation of S. aureus. This animal model can be used to investigate a number of factors related to the pathogenesis of skin and soft tissue infections, including strain virulence and the contribution of specific bacterial molecules to disease, and it can be employed to test the potential effectiveness of antibiotic therapies or vaccine candidates.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
13
|
Sunagar R, Kumar S, Namjoshi P, Rosa SJ, Hazlett KRO, Gosselin EJ. Evaluation of an outbred mouse model for Francisella tularensis vaccine development and testing. PLoS One 2018; 13:e0207587. [PMID: 30533047 PMCID: PMC6289435 DOI: 10.1371/journal.pone.0207587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/03/2018] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and the tools to assess these vaccines. Tularemia laboratory research has historically relied primarily upon a small number of inbred mouse strains, but the utility of such findings to outbred animals may be limited. Specifically, C57BL/6 mice are more susceptible than BALB/c mice to Ft infection and less easily protected against challenge with highly virulent type A Ft. Thus, depending on the inbred mouse strain used, one could be misled as to which immunogen(s)/vaccine will ultimately be effective in an outbred human population. Accordingly, we evaluated an outbred Swiss Webster (SW) mouse model in direct comparison to a well-established, inbred C57BL/6 mouse model. Mucosal vaccination with the live, attenuated Ft LVS superoxide dismutase (sodB) mutant demonstrated significantly higher protection in outbred SW mice compared to inbred C57BL/6 mice against Ft SchuS4 respiratory challenge. The protection observed in vaccinated outbred mice correlated with lower bacterial density, reduced tissue inflammation, and reduced levels of pro-inflammatory cytokine production. This protection was CD4+ and CD8+ T cell-dependent and characterized by lower titers of serum antibody (Ab) that qualitatively differed from vaccinated inbred mice. Enhanced protection of vaccinated outbred mice correlated with early and robust production of IFN-γ and IL-17A. Neutralizing Ab administered at the time of challenge revealed that IFN-γ was central to this protection, while IL-17A neutralization did not alter bacterial burden or survival. The present study demonstrates the utility of the outbred mouse as an alternative vaccination model for testing tularemia vaccines. Given the limited MHC repertoire in inbred mice, this outbred model is more analogous to the human in terms of immunological diversity.
Collapse
Affiliation(s)
- Raju Sunagar
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Sudeep Kumar
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Prachi Namjoshi
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Sarah J. Rosa
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Karsten R. O. Hazlett
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
| | - Edmund J. Gosselin
- Department of Immunology & Microbial Disease, Albany Medical College, Albany, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sunagar R, Kumar S, Rosa SJ, Hazlett KRO, Gosselin EJ. Differential In Vitro Cultivation of Francisella tularensis Influences Live Vaccine Protective Efficacy by Altering the Immune Response. Front Immunol 2018; 9:1594. [PMID: 30042767 PMCID: PMC6048226 DOI: 10.3389/fimmu.2018.01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and improved tools to assess these vaccines. Ft expresses distinct sets of antigens (Ags) in vivo as compared to those expressed in vitro. Importantly, Ft grown in brain-heart infusion medium (BHIM) more closely mimics the antigenic profile of macrophage-grown Ft when compared to Mueller-Hinton medium (MHM)-grown Ft. Thus, we predicted that when used as a live vaccine BHIM-grown Ft (BHIM-Ft) would provide better protection, as compared to MHM-Ft. We first determined if there was a difference in growth kinetics between BHIM and MHM-Ft. We found that BHIM-Ft exhibited an initial growth advantage ex vivo that manifests as slightly hastened intracellular replication as compared to MHM-Ft. We also observed that BHIM-Ft exhibited an initial growth advantage in vivo represented by rapid bacterial expansion and systemic dissemination associated with a slightly shorter mean survival time of naive animals. Next, using two distinct strains of Ft LVS (WT and sodB), we observed that mice vaccinated with live BHIM-Ft LVS exhibited significantly better protection against Ft SchuS4 respiratory challenge compared to MHM-Ft-immunized mice. This enhanced protection correlated with lower bacterial burden, reduced tissue inflammation, and reduced pro-inflammatory cytokine production late in infection. Splenocytes from BHIM-Ft sodB-immunized mice contained more CD4+, effector, memory T-cells, and were more effective at limiting intracellular replication of Ft LVS in vitro. Concurrent with enhanced killing of Ft LVS, BHIM-Ft sodB-immune splenocytes produced significantly higher levels of IFN-γ and IL-17A cytokines than their MHM-Ft sodB-immunized counterparts indicating development of a more effective T cell memory response when immunizing mice with BHIM-Ft.
Collapse
Affiliation(s)
- Raju Sunagar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Sarah J Rosa
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Karsten R O Hazlett
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Edmund J Gosselin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
15
|
McVicker G, Prajsnar TK, Foster SJ. Construction and Use of Staphylococcus aureus Strains to Study Within-Host Infection Dynamics. Methods Mol Biol 2018; 1736:17-27. [PMID: 29322455 DOI: 10.1007/978-1-4939-7638-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of the dynamics that occur during the course of a bacterial infection has been attempted using several methods. Here we discuss the construction of a set of antibiotic-resistant, otherwise-isogenic Staphylococcus aureus strains that can be used to observe the progress of systemic disease in a mouse model at various time-points postinfection. The strains can likewise be used to study the progression of infection in other animal infection models, such as the zebrafish embryo. Furthermore, the use of antibiotic resistance tags provides a convenient system with which to investigate the effect of antimicrobial chemotherapy during disease.
Collapse
Affiliation(s)
- Gareth McVicker
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Tomasz K Prajsnar
- Krebs Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Simon J Foster
- Krebs Institute, University of Sheffield, Sheffield, UK.
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
- Bateson Centre, University of Sheffield, Sheffield, UK.
| |
Collapse
|
16
|
Affiliation(s)
- Sanjay K Singh
- a Department of Biomedical Sciences , East Tennessee State University , Johnson City , USA
| |
Collapse
|
17
|
Blanchette KA, Prabhakara R, Shirtliff ME, Wenke JC. Inhibition of fracture healing in the presence of contamination by Staphylococcus aureus: Effects of growth state and immune response. J Orthop Res 2017; 35:1845-1854. [PMID: 28387956 DOI: 10.1002/jor.23573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/29/2017] [Indexed: 02/04/2023]
Abstract
Extremity injuries comprise a significant portion of trauma, affecting quality of life, financial burden, and return to duty. Bacterial contamination is commonly associated with failure to heal, despite antibiotic treatment, suggesting that additional therapies must be developed to combat these complications. Treatment failure is likely due to the presence of resistant microbial communities known as biofilms. Biofilm bacteria are able to elicit a direct inhibition of healing through a multitude of known factors. However, they likely also inhibit healing through alteration of the inflammatory response. As inflammation is a critical step in fracture healing, how the presence of biofilm bacteria shifts this response to one that is suboptimal for healing is an important consideration that is currently understudied. The profile of inflammatory factors in response to biofilm bacteria is unique and distinct from those induced during normal healing or by planktonic bacteria alone. This review will examine the presence of inflammatory factors during normal healing and those induced by contaminating bacteria, and will discuss how these differences may ultimately lead to nonunion. Specifically, this review will focus on the Th1/Th2/Th17 type inflammatory responses and how shifts in the balance of these responses during infection can lead to both ineffective clearance and disruption of fracture healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1845-1854, 2017.
Collapse
Affiliation(s)
- Krystle A Blanchette
- US Army Institute of Surgical Research, 3698 Chambers Pass STE B, JBSA Ft Sam, Houston 78234-7767, Texas
| | | | | | - Joseph C Wenke
- US Army Institute of Surgical Research, 3698 Chambers Pass STE B, JBSA Ft Sam, Houston 78234-7767, Texas
| |
Collapse
|
18
|
Zahir-Jouzdani F, Atyabi F, Mojtabavi N. Interleukin-6 participation in pathology of ocular diseases. ACTA ACUST UNITED AC 2017. [PMID: 28629694 DOI: 10.1016/j.pathophys.2017.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that affects a variety of cells in the body such as osteoclasts, hepatocytes, endothelial cells, epithelial cells, white and red blood cells and etc. Elevated levels of IL-6 have been detected in many ocular diseases. Studies show that IL-6 has a major role in the pathology of glaucoma, CRVO, macular edema, ocular neovascularization, posterior capsule opacity formation, keratitis, dry eye disease, allergic eye disease, ocular autoimmune disease, corneal chemical burn, ocular inflammation and so on. IL-6 does its effects through the classic or trans-signal pathways in cells. Blocking of IL-6 signal pathways via Tocilizumab or other chemicals and therapeutics will help to overcome complications related to ocular diseases.
Collapse
Affiliation(s)
- Forouhe Zahir-Jouzdani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14174, Iran.
| | | |
Collapse
|
19
|
García B, Merayo-Lloves J, Rodríguez D, Alcalde I, García-Suárez O, Alfonso JF, Baamonde B, Fernández-Vega A, Vazquez F, Quirós LM. Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens. Front Cell Infect Microbiol 2016; 6:173. [PMID: 27965938 PMCID: PMC5127826 DOI: 10.3389/fcimb.2016.00173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies.
Collapse
Affiliation(s)
- Beatriz García
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Biología Funcional, Universidad de OviedoOviedo, Spain
| | - Jesús Merayo-Lloves
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de Oviedo Oviedo, Spain
| | - David Rodríguez
- Departamento de Bioquímica y Biología Molecular, Universidad de OviedoOviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Universidad de OviedoOviedo, Spain
| | - Ignacio Alcalde
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de Oviedo Oviedo, Spain
| | - Olivia García-Suárez
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Morfología y Biología Celular, Universidad de OviedoOviedo, Spain
| | - José F Alfonso
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega Oviedo, Spain
| | - Begoña Baamonde
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de Oviedo Oviedo, Spain
| | - Andrés Fernández-Vega
- Fundación de Investigación Oftalmológica, Instituto Oftalmológico Fernández-Vega Oviedo, Spain
| | - Fernando Vazquez
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Biología Funcional, Universidad de OviedoOviedo, Spain; Departmento de Microbiología, Hospital Universitario Central de AsturiasOviedo, Spain
| | - Luis M Quirós
- Ophthalmology, Vision Sciences and Advanced Therapies Research Group, Instituto Universitario Fernández-Vega, Universidad de OviedoOviedo, Spain; Departmento de Biología Funcional, Universidad de OviedoOviedo, Spain
| |
Collapse
|
20
|
Pinnock A, Shivshetty N, Roy S, Rimmer S, Douglas I, MacNeil S, Garg P. Ex vivo rabbit and human corneas as models for bacterial and fungal keratitis. Graefes Arch Clin Exp Ophthalmol 2016; 255:333-342. [PMID: 27844206 PMCID: PMC5285415 DOI: 10.1007/s00417-016-3546-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In the study of microbial keratitis, in vivo animal models often require a large number of animals, and in vitro monolayer cell culture does not maintain the three-dimensional structure of the tissues or cell-to-cell communication of in vivo models. Here, we propose reproducible ex vivo models of single- and dual-infection keratitis as an alternative to in vivo and in vitro models. METHODS Excised rabbit and human corneoscleral rims maintained in organ culture were infected using 108 cells of Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans or Fusarium solani. The infection was introduced by wounding with a scalpel and exposing corneas to the microbial suspension or by intrastromal injection. Post-inoculation, corneas were maintained for 24 and 48 h at 37 °C. After incubation, corneas were either homogenised to determine colony-forming units (CFU)/cornea or processed for histological examination using routine staining methods. Single- and mixed-species infections were compared. RESULTS We observed a significant increase in CFU after 48 h compared to 24 h with S. aureus and P. aeruginosa. However, no such increase was observed in corneas infected with C. albicans or F. solani. The injection method yielded an approximately two- to 100-fold increase (p < 0.05) in the majority of organisms from infected corneas. Histology of the scalpel-wounded and injection models indicated extensive infiltration of P. aeruginosa throughout the entire cornea, with less infiltration observed for S. aureus, C. albicans and F. solani. The models also supported dual infections. CONCLUSIONS Both scalpel wounding and injection methods are suitable for inducing infection of ex vivo rabbit and human cornea models. These simple and reproducible models will be useful as an alternative to in vitro and in vivo models for investigating the detection and treatment of microbial keratitis, particularly when this might be due to two infective organisms.
Collapse
Affiliation(s)
| | | | - Sanhita Roy
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| | | | - Ian Douglas
- University of Sheffield, Sheffield, S10 2TA, UK
| | - Sheila MacNeil
- University of Sheffield, Sheffield, S10 2TA, UK.
- The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield, S3 7HQ, UK.
| | - Prashant Garg
- LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, India
| |
Collapse
|
21
|
Chen R, Cole N, Dutta D, Kumar N, Willcox MDP. Antimicrobial activity of immobilized lactoferrin and lactoferricin. J Biomed Mater Res B Appl Biomater 2016; 105:2612-2617. [PMID: 27758034 DOI: 10.1002/jbm.b.33804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/18/2022]
Abstract
Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p < 0.05) in nitrogen on the glass surface. The immobilization of both proteins slightly increased the overall hydrophobicity of the glass. Both lactoferrin and lactoferricin immobilized on glass significantly (p < 0.05) reduced the numbers of viable bacterial cells adherent to the glass. For P. aeruginosa, the immobilized proteins consistently increased the percentage of dead cells compared to the total cells adherent to the glass surfaces (p < 0.03). Lactoferrin and lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017.
Collapse
Affiliation(s)
- Renxun Chen
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Chemistry, University of New South Wales, Sydney, Australia
| | - Nerida Cole
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,School of Mathematical and Physical Sciences, University of Technology, Sydney, Australia
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Khan S, Cole N, Hume EB, Garthwaite LL, Nguyen-Khuong T, Walsh BJ, Willcox MD. Identification of pathogenic factors potentially involved in Staphylococcus aureus keratitis using proteomics. Exp Eye Res 2016; 151:171-8. [DOI: 10.1016/j.exer.2016.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 01/11/2023]
|
23
|
Abstract
INTRODUCTION Ocular infections remain an important cause of blindness worldwide and represent a challenging public health concern. In this regard, microbial keratitis due to fungal, bacterial, or viral infection can result in significant vision loss secondary to corneal scarring or surface irregularity. Left untreated corneal perforation and endophthalmitis can result, leading to loss of the eye. Rigorously studied animal models of disease pathogenesis have provided novel information that suggests new modes of treatment that may be efficacious clinically and emerging clinical data is supportive of some of these discoveries. AREAS COVERED This review focuses on advances in our understanding of disease pathogenesis in animal models and clinical studies and how these relate to improved clinical treatment. We also discuss a novel approach to treatment of microbial keratitis due to infection with these bacterial pathogens using PACK-CXL and recommend increased basic and clinical studies to address and refine the efficacy of this procedure. EXPERT COMMENTARY Because resistance to antibiotics has developed over time to these bacterial pathogens, caution must be exercised in treatment. Attractive novel modes of treatment that hold new promise for further investigation include lipid based therapy, as well as use of small molecules that bind deleterious specific host responsive molecules and use of microRNA based therapies.
Collapse
|
24
|
Abstract
Francisella tularensis (Ft) is a gram-negative intercellular pathogen and category A biothreat agent. However, despite 15 years of strong government investment and intense research focused on the development of a US Food and Drug Administration-approved vaccine against Ft, the primary goal remains elusive. This article reviews research efforts focused on developing an Ft vaccine, as well as a number of important factors, some only recently recognized as such, which can significantly impact the development and evaluation of Ft vaccine efficacy. Finally, an assessment is provided as to whether a US Food and Drug Administration-approved Ft vaccine is likely to be forthcoming and the potential means by which this might be achieved.
Collapse
Affiliation(s)
- Raju Sunagar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Sudeep Kumar
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Brian J Franz
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Edmund J Gosselin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
25
|
Karauzum H, Datta SK. Adaptive Immunity Against Staphylococcus aureus. Curr Top Microbiol Immunol 2016; 409:419-439. [PMID: 26919865 DOI: 10.1007/82_2016_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A complex interplay between host and bacterial factors allows Staphylococcus aureus to occupy its niche as a human commensal and a major human pathogen. The role of neutrophils as a critical component of the innate immune response against S. aureus, particularly for control of systemic infection, has been established in both animal models and in humans with acquired and congenital neutrophil dysfunction. The role of the adaptive immune system is less clear. Although deficiencies in adaptive immunity do not result in the marked susceptibility to S. aureus infection that neutrophil dysfunction imparts, emerging evidence suggests both T cell- and B cell-mediated adaptive immunity can influence host susceptibility and control of S. aureus. The contribution of adaptive immunity depends on the context and site of infection and can be either beneficial or detrimental to the host. Furthermore, S. aureus has evolved mechanisms to manipulate adaptive immune responses to its advantage. In this chapter, we will review the evidence for the role of adaptive immunity during S. aureus infections. Further elucidation of this role will be important to understand how it influences susceptibility to infection and to appropriately design vaccines that elicit adaptive immune responses to protect against subsequent infections.
Collapse
Affiliation(s)
- Hatice Karauzum
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Sandip K Datta
- Bacterial Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Proteomics in the Study of Bacterial Keratitis. Proteomes 2015; 3:496-511. [PMID: 28248282 PMCID: PMC5217394 DOI: 10.3390/proteomes3040496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
Bacterial keratitis is a serious ocular infection that can cause severe visual loss if treatment is not initiated at an early stage. It is most commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, or Serratia species. Depending on the invading organism, bacterial keratitis can progress rapidly, leading to corneal destruction and potential blindness. Common risk factors for bacterial keratitis include contact lens wear, ocular trauma, ocular surface disease, ocular surgery, lid deformity, chronic use of topical steroids, contaminated ocular medications or solutions, and systemic immunosuppression. The pathogenesis of bacterial keratitis, which depends on the bacterium-host interaction and the virulence of the invading bacterium, is complicated and not completely understood. This review highlights some of the proteomic technologies that have been used to identify virulence factors and the host response to infections of bacterial keratitis in order to understand the disease process and develop improved methods of diagnosis and treatment. Although work in this field is not abundant, proteomic technologies have provided valuable information toward our current knowledge of bacterial keratitis. More studies using global proteomic approaches are warranted because it is an important tool to identify novel targets for intervention and prevention of corneal damage caused by these virulent microorganisms.
Collapse
|
27
|
Zhang Z, Abdel-Razek O, Hawgood S, Wang G. Protective Role of Surfactant Protein D in Ocular Staphylococcus aureus Infection. PLoS One 2015; 10:e0138597. [PMID: 26398197 PMCID: PMC4580580 DOI: 10.1371/journal.pone.0138597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/01/2015] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is one of the most common pathogens causing keratitis. Surfactant protein D (SP-D) plays a critical role in host defense and innate immunity. In order to investigate the role of SP-D in ocular S. aureus infection, the eyes of wild-type (WT) and SP-D knockout (SP-D KO) C57BL/6 mice were infected with S. aureus (107 CFU/eye) in the presence and absence of cysteine protease inhibitor(E64).Bacterial counts in the ocular surface were examined 3, 6, 12, 24 hrs after infection. Bacterial phagocytosis by neutrophils and bacterial invasion in ocular epithelial cells were evaluated quantitatively. S. aureus-induced ocular injury was determined with corneal fluorescein staining. The results demonstrated that SP-D is expressed in ocular surface epithelium and the lacrimal gland; WT mice had increased clearance of S. aureus from the ocular surface (p<0.05) and reduced ocular injury compared with SP-D KO mice. The protective effects of SP-D include increased bacterial phagocytosis by neutrophils (p<0.05) and decreased bacterial invasion into epithelial cells (p<0.05) in WT mice compared to in SP-D KO mice. In the presence of inhibitor (E64), WT mice showed enhanced bacterial clearance (p<0.05) and reduced ocular injury compared to absent E64 while SP-D KO mice did not. Collectively, we concluded that SP-D protects the ocular surface from S. aureus infection but cysteine protease impairs SP-D function in this murine model, and that cysteine protease inhibitor may be a potential therapeutic agent in S. aureus keratitis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Surgery, The State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- Departments of Ophthalmology, Zhejiang Medical College Affiliated Zhejiang Hospital, Hangzhou, Zhejiang, P. R. China
| | - Osama Abdel-Razek
- Department of Surgery, The State University of New York, Upstate Medical University, Syracuse, New York, United States of America
| | - Samuel Hawgood
- Department of Pediatrics and the Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
| | - Guirong Wang
- Department of Surgery, The State University of New York, Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Zhou HY, Zhong W, Zhang H, Bi MM, Wang S, Zhang WS. Potential role of nuclear receptor ligand all-trans retinoic acids in the treatment of fungal keratitis. Int J Ophthalmol 2015; 8:826-32. [PMID: 26309886 DOI: 10.3980/j.issn.2222-395.2015.04.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 02/04/2015] [Indexed: 12/17/2022] Open
Abstract
Fungal keratitis (FK) is a worldwide visual impairment disease. This infectious fungus initiates the primary innate immune response and, later the adaptive immune response. The inflammatory process is related to a variety of immune cells, including macrophages, helper T cells, neutrophils, dendritic cells, and Treg cells, and is associated with proinflammatory, chemotactic and regulatory cytokines. All-trans retinoic acids (ATRA) have diverse immunomodulatory actions in a number of inflammatory and autoimmune conditions. These retinoids regulate the transcriptional levels of target genes through the activation of nuclear receptors. Retinoic acid receptor α (RAR α), retinoic acid receptor γ (RAR γ), and retinoid X receptor α (RXR α) are expressed in the cornea and immune cells. This paper summarizes new findings regarding ATRA in immune and inflammatory diseases and analyzes the perspective application of ATRA in FK.
Collapse
Affiliation(s)
- Hong-Yan Zhou
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Wei Zhong
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Hong Zhang
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Miao-Miao Bi
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Shuang Wang
- Department of Ophthalmology, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Wen-Song Zhang
- Department of Glaucoma, the Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
29
|
Abstract
Glycosaminoglycans (GAGs) have been shown to bind to a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi in vitro. GAGs are thought to promote pathogenesis by facilitating pathogen attachment, invasion, or evasion of host defense mechanisms. However, the role of GAGs in infectious disease has not been extensively studied in vivo and therefore their pathophysiological significance and functions are largely unknown. Here we describe methods to directly investigate the role of GAGs in infections in vivo using mouse models of bacterial lung and corneal infection. The overall experimental strategy is to establish the importance and specificity of GAGs, define the essential structural features of GAGs, and identify a biological activity of GAGs that promotes pathogenesis.
Collapse
Affiliation(s)
- Akiko Jinno
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Enders-461, Boston, MA, 02115, USA,
| | | |
Collapse
|
30
|
Cole N, Hume EBH, Khan S, Garthwaite L, Conibear TCR, Willcox MDP. The role of CXC chemokine receptor 2 in Staphylococcus aureus keratitis. Exp Eye Res 2014; 127:184-9. [PMID: 25107538 DOI: 10.1016/j.exer.2014.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a leading cause of corneal infection. CXC receptor 2 binding chemokines have been implicated in the pathogenesis of Pseudomonas aeruginosa keratitis. The role of this receptor in immune responses during Staphylococcus keratitis remains to be fully understood. Corneas of CXC receptor 2 knockout and wild-type mice (Cmkar -/- & Cmkar +/+) were scratched and 1 × 10(8) cfu/ml of strain Staph 38 applied. Twenty-four hours post-infection, mice were sacrificed and eyes harvested for enumeration of bacteria and measurement of myeloperoxidase levels. Production of inflammatory mediators, cellular adhesion molecules and chemokines in response to infection were investigated by ELISA, and PCR. 24 h after challenge with S. aureus, Cmkar -/- mice had developed a more severe response with a 50-fold higher bacterial load than WT mice. PMNs failed to penetrate the corneas of Cmkar -/- mice. However, concentrations of KC, MIP-2, IL-1β and IL-6 were significantly elevated (6-13 fold) in Cmkar-/- mice. The concentration of LTB4 was decreased (2 fold). Cmkar-/- mice failed to upregulate mRNA for VCAM-1 or PECAM-1 in response to infection, but had constitutively higher levels of ICAM-1. A lack of CXC receptor 2 lead to an inability to control bacterial numbers as a result of failure of PMNs to penetrate the cornea to the site of infection, even when chemokines were more highly produced. These results imply that CXCR2-mediated signaling through upregulation of adhesion molecules is essential to margination of PMNs in this infection model.
Collapse
Affiliation(s)
- Nerida Cole
- School of Chemistry and Forensic Science, University of Technology, Sydney, Ultimo 2007, Australia; School of Optometry, University of New South Wales, Sydney, 2052, Australia
| | - Emma B H Hume
- School of Optometry, University of New South Wales, Sydney, 2052, Australia; Brien Holden Vision Institute, UNSW, Sydney, 2052, Australia
| | - Shamila Khan
- School of Optometry, University of New South Wales, Sydney, 2052, Australia; Brien Holden Vision Institute, UNSW, Sydney, 2052, Australia
| | | | - Tim C R Conibear
- School of Optometry, University of New South Wales, Sydney, 2052, Australia; Brien Holden Vision Institute, UNSW, Sydney, 2052, Australia
| | - Mark D P Willcox
- School of Optometry, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
31
|
McVicker G, Prajsnar TK, Williams A, Wagner NL, Boots M, Renshaw SA, Foster SJ. Clonal expansion during Staphylococcus aureus infection dynamics reveals the effect of antibiotic intervention. PLoS Pathog 2014; 10:e1003959. [PMID: 24586163 PMCID: PMC3937288 DOI: 10.1371/journal.ppat.1003959] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population "bottleneck" whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus (MRSA) in the presence of β-lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where inappropriate usage leading to resistance may reduce the efficacy of life-saving drugs.
Collapse
Affiliation(s)
- Gareth McVicker
- Krebs Institute, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Tomasz K. Prajsnar
- Krebs Institute, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Alexander Williams
- Krebs Institute, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Nelly L. Wagner
- Krebs Institute, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Michael Boots
- Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Stephen A. Renshaw
- Krebs Institute, University of Sheffield, Western Bank, Sheffield, United Kingdom
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Infection and Immunity, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Simon J. Foster
- Krebs Institute, University of Sheffield, Western Bank, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Ho KKK, Chen R, Willcox MDP, Rice SA, Cole N, Iskander G, Kumar N. Quorum sensing inhibitory activities of surface immobilized antibacterial dihydropyrrolones via click chemistry. Biomaterials 2013; 35:2336-45. [PMID: 24345737 DOI: 10.1016/j.biomaterials.2013.11.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/22/2013] [Indexed: 11/17/2022]
Abstract
Device-related infection remains a major barrier to the use of biomaterial implants as life-saving devices. This study aims to examine the effectiveness and mechanism of action of surface attached dihydropyrrolones (DHPs), a quorum sensing (QS) inhibitor, against bacterial colonization. DHPs were covalently attached on glass surfaces via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) click reaction. The covalent attachment of DHP surfaces was confirmed by X-ray photoelectron spectroscopy (XPS) and contact angle measurements, and the antimicrobial efficacy of the DHP coatings was assessed by confocal laser scanning microscopy (CLSM) and image analysis. The results demonstrated that covalently bound DHP compounds are effective in reducing the adhesion by up to 97% (p < 0.05) for both Pseudomonas aeruginosa and Staphylococcus aureus. Furthermore, using the green fluorescent protein (Gfp)-based reporter technology, it is demonstrated that surface attached DHPs were able to repress the expression of a lasB-gfp reporter fusion of P. aeruginosa by 72% (p < 0.001) without affecting cell viability. This demonstrates the ability of the covalently bound QS inhibitor to inhibit QS and suggests the existence of a membrane-based pathway(s) for QS inhibition. Hence, strategies based on incorporation of QS inhibitors such as DHPs represent a potential approach for prevention of device-related infections.
Collapse
Affiliation(s)
- Kitty K K Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Scott A Rice
- School of Biotechnology and Biomolecular Sciences and The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW 2052, Australia; The Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Nerida Cole
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - George Iskander
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
33
|
McDermott AM. Antimicrobial compounds in tears. Exp Eye Res 2013; 117:53-61. [PMID: 23880529 PMCID: PMC3844110 DOI: 10.1016/j.exer.2013.07.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 01/30/2023]
Abstract
The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here.
Collapse
Affiliation(s)
- Alison M McDermott
- University of Houston, College of Optometry, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020, USA.
| |
Collapse
|
34
|
Increased resistance to Staphylococcus aureus endophthalmitis in BALB/c mice: Fas ligand is required for resolution of inflammation but not for bacterial clearance. Infect Immun 2013; 81:2217-25. [PMID: 23569113 DOI: 10.1128/iai.00405-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FasL was recently shown be required for bacterial clearance in C57BL/6 mice that express the FasL.1 allotype. The FasL.2 allotype is expressed in BALB/c mice and exhibits increased binding affinity to and increased cytotoxic activity against Fas(+) target cells. Therefore, we hypothesized that BALB/c mice would be more resistant to Staphylococcus aureus-induced endophthalmitis. To test this hypothesis, C57BL/6, BALB/c, and BALB(gld) mice received intravitreal injections of 2,500 CFU of S. aureus (RN6390). Clinical examinations, electroretinography (ERG), histology, and bacterial quantification were performed at 24, 48, 72, and 96 h postinjection. The myeloperoxidase (MPO) assay was used to quantitate neutrophil infiltration. At 96 h postinfection, 86% of C57BL/6 mice presented with complete destruction of the eye, compared to only 29% of BALB/c mice with complete destruction. To our surprise, in the absence of Fas ligand, BALB(gld) mice showed no difference in bacterial clearance compared to BALB/c mice. However, histology and ERG analysis revealed increased retinal damage and significant loss of retinal function. MPO analysis revealed equal numbers of neutrophils in BALB(gld) and BALB/c mice at 24 h postinfection. However, at 48 h, the neutrophil numbers remained significantly elevated in BALB(gld) mice, correlating with the increased retinal damage observed in BALB(gld) mice. We conclude that the increased resistance to S. aureus induced endophthalmitis in BALB/c mice is not dependent upon the FasL. However, in contrast to C57BL/6 mice, FasL is required for resolution of inflammation and protecting host tissue from nonspecific damage in BALB/c mice.
Collapse
|
35
|
Malachowa N, Kobayashi SD, Braughton KR, DeLeo FR. Mouse model of Staphylococcus aureus skin infection. Methods Mol Biol 2013; 1031:109-116. [PMID: 23824894 DOI: 10.1007/978-1-62703-481-4_14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial skin and soft tissue infections are abundant worldwide and many are caused by Staphylococcus aureus. Indeed, S. aureus is the leading cause of skin and soft tissue infections in the USA. Here, we describe a mouse model of skin and soft tissue infection induced by subcutaneous inoculation of S. aureus. This animal model can be used to investigate a number of factors related to the pathogenesis of skin and soft tissue infections, including strain virulence and the contribution of specific bacterial molecules to disease, and it can be employed to test the potential effectiveness of antibiotic therapies or vaccine candidates.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | |
Collapse
|
36
|
Polakowska K, Lis MW, Helbin WM, Dubin G, Dubin A, Niedziolka JW, Miedzobrodzki J, Wladyka B. The virulence of Staphylococcus aureus correlates with strain genotype in a chicken embryo model but not a nematode model. Microbes Infect 2012; 14:1352-62. [DOI: 10.1016/j.micinf.2012.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023]
|
37
|
Immune-activating properties of Panton-Valentine leukocidin improve the outcome in a model of methicillin-resistant Staphylococcus aureus pneumonia. Infect Immun 2012; 80:2894-904. [PMID: 22665379 DOI: 10.1128/iai.06360-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Panton-Valentine leukocidin (PVL) is a cytotoxin expressed by many methicillin-resistant Staphylococcus aureus (MRSA) strains that cause community-acquired infections (CA-MRSA). Its role in virulence however, is controversial, with clinical data suggesting that PVL-producing strains may cause less severe disease in humans. PVL is capable of lysing human white blood cells, but at sublytic amounts, PVL can activate protective host immunity in the absence of cell damage. The concentration-dependent reactions it elicits from host cells could be the reason for seemingly contradictory results about PVL's role in virulence. We hypothesized that a key to understanding PVL's action on host cells and, possibly, outcomes from infection is the amount of toxin present, a hypothesis previously supported in studies using a low-inoculum skin infection model, where low levels of PVL augmented innate immune resistance to infection. Here, we present additional data supporting this hypothesis using a mouse model of MRSA pneumonia, wherein we found increased virulence of isogenic Δpvl strains and further confirmed PVL's capacity to activate proinflammatory responses from mouse and human neutrophils and pulmonary cells. Activation was measured as the production of phosphorylated p38 mitogen-activated protein kinase (MAPK) and proinflammatory cytokines interleukin-8 (IL-8) and KC (from human and mouse cells, respectively), as well as the release of antibacterial factors. Conversely, PVL lowered the levels of tumor necrosis factor alpha (TNF-α) produced in active pulmonary infection, while low doses induced apoptosis, suggesting that PVL also has the capacity to regulate inflammation. Our data indicate that, independent of its cytotoxic effects, PVL also plays an important and positive immunomodulatory role during MRSA infections.
Collapse
|
38
|
Sander G, Börner T, Kriegeskorte A, von Eiff C, Becker K, Mahabir E. Catheter colonization and abscess formation due to Staphylococcus epidermidis with normal and small-colony-variant phenotype is mouse strain dependent. PLoS One 2012; 7:e36602. [PMID: 22586482 PMCID: PMC3346766 DOI: 10.1371/journal.pone.0036602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/09/2012] [Indexed: 12/02/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) form a thick, multilayered biofilm on foreign bodies and are a major cause of nosocomial implant-associated infections. Although foreign body infection models are well-established, limited in vivo data are available for CoNS with small-colony-variant (SCV) phenotype described as causative agents in implant-associated infections. Therefore, we investigated the impact of the Staphylococcus epidermidis phenotype on colonization of implanted PVC catheters and abscess formation in three different mouse strains. Following introduction of a catheter subcutaneously in each flank of 8- to 12-week-old inbred C57BL/6JCrl (B6J), outbred Crl:CD1(ICR) (CD-1), and inbred BALB/cAnNCrl (BALB/c) male mice, doses of S. epidermidis O-47 wild type, its hemB mutant with stable SCV phenotype, or its complemented mutant at concentrations of 10(6) to 10(9) colony forming units (CFUs) were gently spread onto each catheter. On day 7, mice were sacrificed and the size of the abscesses as well as bacterial colonization was determined. A total of 11,500 CFUs of the complemented mutant adhered to the catheter in BALB/c followed by 9,960 CFUs and 9,900 CFUs from S. epidermidis wild type in BALB/c and CD-1, respectively. SCV colonization was highest in CD-1 with 9,500 CFUs, whereas SCVs were not detected in B6J. The minimum dose that led to colonization or abscess formation in all mouse strains was 10(7) or 10(8) CFUs of the normal phenotype, respectively. A minimum dose of 10(8) or 10(9) CFU of the hemB mutant with stable SCV phenotype led to colonization only or abscess formation, respectively. The largest abscesses were detected in BALB/c inoculated with wild type bacteria or SCV (64 mm(2) vs. 28 mm(2)). Our results indicate that colonization and abscess formation by different phenotypes of S. epidermidis in a foreign body infection model is most effective in inbred BALB/c followed by outbred CD-1 and inbred B6J mice.
Collapse
Affiliation(s)
- Gunnar Sander
- Comparative Medicine, Center for Molecular Medicine, University of Cologne, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Immobilization of antibacterial dihydropyrrol-2-ones on functional polymer supports to prevent bacterial infections in vivo. Antimicrob Agents Chemother 2011; 56:1138-41. [PMID: 22143522 DOI: 10.1128/aac.05814-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic-resistant Staphylococcus aureus is of great concern, as it causes a wide range of life-threatening infections. The current study demonstrates that dihydropyrrolone (DHP)-coated polyacrylamide substrates are effective in reducing the number of culturable clinical isolates of S. aureus in vitro in a dose-dependent manner and are able to reduce the pathogenic potential of staphylococcal infection in a subcutaneous infection model. Covalently bound DHPs therefore show great potential for use as an antimicrobial strategy in device-related applications.
Collapse
|
40
|
Köhler J, Breitbach K, Renner C, Heitsch AK, Bast A, van Rooijen N, Vogelgesang S, Steinmetz I. NADPH-oxidase but not inducible nitric oxide synthase contributes to resistance in a murine Staphylococcus aureus Newman pneumonia model. Microbes Infect 2011; 13:914-22. [PMID: 21635963 DOI: 10.1016/j.micinf.2011.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a pathogen that often causes severe nosocomial infections including pneumonia. The present study was designed to examine innate phagocyte mediated immune mechanisms using a previously described murine S. aureus Newman pneumonia model. We found that BALB/c mice represent a more susceptible mouse strain compared to C57BL/6 mice after intranasal S. aureus Newman challenge. Depletion experiments revealed that neutrophils are a crucial determinant for resistance whereas depletion of alveolar macrophages protected mice to some degree from acute pulmonary S. aureus challenge. C57BL/6 mice lacking the subunit gp91phox of the NADPH-oxidase (gp91phox⁻/⁻ mice) proved to be highly susceptible against the pathogen. In contrast, C57BL/6 inducible nitric oxidase synthase deficient (iNOS⁻/⁻) mice did not differ in their clinical outcome after infection. Neither bone marrow macrophages from iNOS-/- nor from gp91phox⁻/⁻ mice were impaired in controlling intracellular persistence of S. aureus. Our data suggest that neutrophil and NADPH-oxidase mediated mechanisms are essential components in protecting the host against pulmonary S. aureus Newman challenge. On contrary, macrophages as well as NO mediated mechanisms do not seem to play a critical role for resistance in this model.
Collapse
Affiliation(s)
- Jens Köhler
- Friedrich Loeffler Institute of Medical Microbiology, Ernst Moritz Arndt University Greifswald, Martin-Luther Str. 6, 17489 Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Klocke J, Barcia RN, Heimer S, Cario E, Zieske J, Gilmore MS, Ksander BR, Gregory MS. Spontaneous bacterial keratitis in CD36 knockout mice. Invest Ophthalmol Vis Sci 2011; 52:256-63. [PMID: 20847111 DOI: 10.1167/iovs.10-5566] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE CD36 is a Class B scavenger receptor that is constitutively expressed in the corneal epithelium and has been implicated in many homeostatic functions, including the homeostasis of the epidermal barrier. The aim of this study is to determine (1) whether CD36 is required for the maintenance of the corneal epithelial barrier to infection, and (2) whether CD36-deficient mice present with an increased susceptibility to bacterial keratitis. METHODS The corneas of CD36(-/-), TSP1(-/-), TLR2(-/-), and C57BL/6 WT mice were screened via slit lamp microscopy or ex vivo analysis. The epithelial tight junctions and mucin layer were assessed via LC-biotin and Rose Bengal staining, respectively. Bacterial quantification was performed on corneal buttons and GFP-expressing Staphylococcus aureus was used to study bacterial binding. RESULTS CD36(-/-) mice develop spontaneous corneal defects that increased in frequency and severity with age. The mild corneal defects were characterized by a disruption in epithelial tight junctions and the mucin layer, an infiltrate of macrophages, and increased bacterial binding. Bacterial quantification revealed high levels of Staphylococcus xylosus in the corneas of CD36(-/-) mice with severe defects, but not in wild-type controls. CONCLUSIONS CD36(-/-) mice develop spontaneous bacterial keratitis independent of TLR2 and TSP1. The authors conclude that CD36 is a critical component of the corneal epithelial barrier, and in the absence of CD36 the barrier breaks down, allowing bacteria to bind to the corneal epithelium and resulting in spontaneous keratitis. This is the first report of spontaneous bacterial keratitis in mice.
Collapse
Affiliation(s)
- Julia Klocke
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Animal models of bacterial keratitis. J Biomed Biotechnol 2011; 2011:680642. [PMID: 21274270 PMCID: PMC3022227 DOI: 10.1155/2011/680642] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/29/2010] [Accepted: 12/09/2010] [Indexed: 11/20/2022] Open
Abstract
Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades.
Collapse
|
43
|
Corneal Erosions, Bacterial Contamination of Contact Lenses, and Microbial Keratitis. Eye Contact Lens 2010; 36:340-5. [DOI: 10.1097/icl.0b013e3181f57b05] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Ho KKK, Cole N, Chen R, Willcox MDP, Rice SA, Kumar N. Characterisation and in vitro activities of surface attached dihydropyrrol-2-ones against Gram-negative and Gram-positive bacteria. BIOFOULING 2010; 26:913-921. [PMID: 21038151 DOI: 10.1080/08927014.2010.531463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial infection of biomedical devices is still a major barrier to their use. This is compounded by increasing antibiotic resistance. Here, the specific covalent attachment of a series of dihydropyrrol-2-one (DHP), analogues of bacterial quorum sensing inhibitors, to surfaces via a Michael-type addition reaction is described. Differences in efficiency of attachment related to the substituent groups were found by X-ray photoelectron spectroscopy. The physical characteristics of the surfaces were further explored by atomic force microscopy and contact angle measurements. The ability of these coatings to prevent the formation of a biofilm by Pseudomonas aeruginosa and Staphylococcus aureus was examined using confocal laser scanning microscopy and image analysis. The DHP-treated surfaces showed significant reductions in bacterial adhesion without increased killing for both strains of bacteria (p < 0.001). 5-Methylene-1-(prop-2-enoyl)-4-phenyl-dihydropyrrol-2-one was identified as having broad spectrum activity and consequently represents an excellent candidate for the development of novel surfaces for the prevention of biomedical device infections.
Collapse
Affiliation(s)
- Kitty K K Ho
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response. J Invest Dermatol 2010; 131:125-32. [PMID: 20882039 DOI: 10.1038/jid.2010.282] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus is the leading cause of bacterial skin infection. Once it overcomes the epithelial barrier, it either remains locally controlled or spreads in the dermis causing soft tissue infection. These different courses depend not only on its virulence factors, but also on the immune response of the infected individual. The goal of this study was to identify host factors that influence different outcomes. We, therefore, established comparative analysis of subcutaneous footpad infection with S. aureus (SH1000) in different inbred mouse strains. We found that C57BL/6 mice are more susceptible than BALB/c and DBA/2 mice, reflected by significantly higher footpad swelling and bacterial load, as well as increased dissemination of bacteria into inguinal lymph nodes and kidneys. This susceptibility was associated with lower influx of polymorphonuclear leukocytes (PMNs), but higher secretion of CXCL-2. Remarkably, resistance correlated with S. aureus-specific Th2-cell response in BALB/c and DBA/2 mice, whereas susceptible C57BL/6 mice generated a Th1-cell response. As Th1 cells are able to induce release of CXCL-2, and as CXCL-2 is able to increase the survival of S. aureus within PMNs, interactions between PMNs and Th1 or Th2 cells need to be considered as important mechanisms of resistance in murine soft tissue infection with S. aureus.
Collapse
|
46
|
Redfern RL, McDermott AM. Toll-like receptors in ocular surface disease. Exp Eye Res 2010; 90:679-87. [PMID: 20346359 PMCID: PMC2905230 DOI: 10.1016/j.exer.2010.03.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/05/2010] [Accepted: 03/16/2010] [Indexed: 12/12/2022]
Abstract
The ability of the ocular surface to mount an immune response is in part attributed to a family of proteins called toll-like receptors (TLRs). The latter are evolutionary conserved receptors that recognize and respond to various microbes and endogenous ligands. In addition to their recognition function, TLR activation triggers a complex signal transduction cascade that induces the production of inflammatory cytokines and co-stimulatory molecules, thus initiating innate and adaptive immunity. Toll-like receptor expression at the ocular surface is modulated during infection (e.g. Herpes simplex, bacterial keratitis and fungal keratitis) as well as during various inflammatory conditions (allergic conjunctivitis and dry-eye syndrome). Here recent findings regarding TLR expression and their involvement in various ocular surface diseases are discussed.
Collapse
Affiliation(s)
- Rachel L Redfern
- University of Houston, College of Optometry, 505 J. Davis Armistead Building, 4901 Calhoun Rd., Houston, TX 77204-2020, USA.
| | | |
Collapse
|
47
|
Chintakuntlawar AV, Chodosh J. Chemokine CXCL1/KC and its receptor CXCR2 are responsible for neutrophil chemotaxis in adenoviral keratitis. J Interferon Cytokine Res 2010; 29:657-66. [PMID: 19642907 DOI: 10.1089/jir.2009.0006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemic keratoconjunctivitis (EKC), caused by human adenovirus (HAdV), is one of the most common ocular infections and results in corneal inflammation and subepithelial infiltrates. Adenoviral keratitis causes significant morbidity to the patients, and is characterized by infiltration of leukocytes in the corneal stroma, and expression of chemokines. The exact role of these chemokines in adenoviral infection has not been studied due to lack of animal models. Here, we have characterized the role of chemokine CXCL1/KC and receptor CXCR2 in adenoviral keratitis using a novel mouse model. Analysis of chemokine expression, leukocyte infiltration, and development of keratitis was performed by ELISA, flow cytometry, and histopathology, respectively. Deficiency of CXCL1 and CXCR2 resulted in delayed infiltration of neutrophils, but not inflammatory monocytes in HAdV-37 corneal infection. CXCL1(-/-) mice showed decreased expression of CXCL2/MIP-2, but not CCL2/MCP-1. CXCR2(-/-) mice showed increased expression of CXCL1 and CXCL2, but not CCL2. Both CXCL1(-/-) and CXCR2(-/-) mice demonstrated keratitis similar to wild-type mice. In conclusion, both CXCL1 and CXCR2 play an important role in chemokine expression and neutrophil infiltration following adenoviral corneal infection, but have a redundant role in the development of keratitis.
Collapse
Affiliation(s)
- Ashish V Chintakuntlawar
- Molecular Pathogenesis of Eye Infection Research Center, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
48
|
Moyer AL, Ramadan RT, Novosad B, Astley R, Callegan MC. Bacillus cereus-induced permeability of the blood-ocular barrier during experimental endophthalmitis. Invest Ophthalmol Vis Sci 2009; 50:3783-93. [PMID: 19264886 PMCID: PMC2880527 DOI: 10.1167/iovs.08-3051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study was to determine to what extent blood-retinal barrier (BRB) permeability occurred during experimental Bacillus cereus endophthalmitis and whether tight junction alterations were involved in permeability. METHODS Mice were intravitreally injected with 100 colony-forming units of B. cereus, and eyes were analyzed at specific times after infection for permeability to fibrin and albumin, quantitation of intraocular plasma constituent leakage, production of inflammatory cytokines, and alterations in tight junction protein localization and expression at the level of the retinal pigment epithelium. RESULTS B. cereus induced the leakage of albumin and fibrin into the aqueous and vitreous humor by 8 hours after infection. BRB permeability occurred as early as 4 hours and increased 13.30-fold compared with uninfected controls by 8 hours. Production of proinflammatory cytokines IL-6, MIP-1alpha, IL-1beta, and KC increased over the course of infection. In the retina, ZO-1 disruption began by 4 hours and was followed by decreasing occludin and ZO-1 expression at 4 and 8 hours, respectively. Tubulin condensation and RPE65 degradation occurred by 12 hours. A quorum-sensing mutant B. cereus strain caused BRB permeability comparable to that of wild-type B. cereus. Wild-type and mutant B. cereus sterile supernatants induced blood-ocular barrier permeability similarly to that of wild-type infection. CONCLUSIONS These results indicate that BRB permeability occurs during the early stages of experimental B. cereus endophthalmitis, beginning as early as 4 hours after infection. Disruption of tight junctions at the level of the retinal pigment epithelium may contribute to barrier breakdown. Quorum-sensing dependent factors may not significantly contribute to BRB permeability.
Collapse
Affiliation(s)
- A. L. Moyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - R. T. Ramadan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - B. Novosad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - R. Astley
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - M. C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
49
|
Moore QC, McCormick CC, Norcross EW, Onwubiko C, Sanders ME, Fratkin J, McDaniel LS, O'Callaghan RJ, Marquart ME. Development of a Streptococcus pneumoniae keratitis model in mice. Ophthalmic Res 2009; 42:141-6. [PMID: 19628954 DOI: 10.1159/000229028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 04/16/2009] [Indexed: 11/19/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a common cause of bacterial keratitis, and models to examine the ocular pathogenesis of this bacterium would aid in efforts to treat pneumococcal keratitis. The aim of this study was to establish a murine model of pneumococcal keratitis. METHODS The corneas of A/J, BALB/c or C57BL/6 mice were scratched and topically infected with a clinical strain of S. pneumoniae. Slitlamp examination (SLE), enumeration of bacteria in the corneas and histology were performed. RESULTS Bacteria were recovered from the eyes of A/J mice on postinfection (PI) days 1 [1.96 +/- 0.61 log(10) colony-forming units (CFU)] and 3 (1.41 +/- 0.71 log(10) CFU). SLE scores were significantly higher in the infected A/J mice as compared to the BALB/c or C57BL/6 mice on PI day 3 (p < 0.0001) and steadily increased over time, reaching a maximal value of 3.00 +/- 0.35 on PI day 10. Histopathology revealed stromal edema and the influx of polymorphonuclear leukocytes on PI days 7 and 10, and corneal disruption on PI day 7. CONCLUSIONS S. pneumoniae keratitis was established in A/J mice, but not BALB/c or C57BL/6 mice.
Collapse
Affiliation(s)
- Quincy C Moore
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Miss. 39216, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Keijser S, Kurreeman F, de Keizer R, Dogterom-Ballering H, van der Lelij A, Jager M, Nibbering P. IL-10 promotor haplotypes associated with susceptibility to and severity of bacterial corneal ulcers. Exp Eye Res 2009; 88:1124-8. [DOI: 10.1016/j.exer.2009.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 01/22/2009] [Accepted: 01/30/2009] [Indexed: 11/24/2022]
|