1
|
Umar Z, Tang JW, Marshall BJ, Tay ACY, Wang L. Rapid diagnosis and precision treatment of Helicobacter pylori infection in clinical settings. Crit Rev Microbiol 2025; 51:369-398. [PMID: 38910506 DOI: 10.1080/1040841x.2024.2364194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/25/2024]
Abstract
Helicobacter pylori is a gram-negative bacterium that colonizes the stomach of approximately half of the worldwide population, with higher prevalence in densely populated areas like Asia, the Caribbean, Latin America, and Africa. H. pylori infections range from asymptomatic cases to potentially fatal diseases, including peptic ulcers, chronic gastritis, and stomach adenocarcinoma. The management of these conditions has become more difficult due to the rising prevalence of drug-resistant H. pylori infections, which ultimately lead to gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. In 1994, the International Agency for Research on Cancer (IARC) categorized H. pylori as a Group I carcinogen, contributing to approximately 780,000 cancer cases annually. Antibiotic resistance against drugs used to treat H. pylori infections ranges between 15% and 50% worldwide, with Asian countries having exceptionally high rates. This review systematically examines the impacts of H. pylori infection, the increasing prevalence of antibiotic resistance, and the urgent need for accurate diagnosis and precision treatment. The present status of precision treatment strategies and prospective approaches for eradicating infections caused by antibiotic-resistant H. pylori will also be evaluated.
Collapse
Affiliation(s)
- Zeeshan Umar
- Marshall Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Western Australia, China
| | - Barry J Marshall
- Marshall Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Western Australia, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Alfred Chin Yen Tay
- Marshall Laboratory of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong Province, China
- The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Crawley, Western Australia, China
- Marshall International Digestive Diseases Hospital, Zhengzhou University, Zhengzhou, Henan Province, China
- Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Division of Microbiology and Immunology, School of Biomedical Sciences, The University of Western Australia, Crawley, Western Australia, China
- Center for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, China
- School of Agriculture and Food Sustainability, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Kuang Z, Wu Y, Xie X, Zhao X, Chen H, Wu L, Gao H, Zhao H, Liang T, Zhang J, Li Y, Wu Q. Advances in Helicobacter pylori Antimicrobial Resistance Detection: From Culture-Based to Multi-Omics-Based Technologies. Helicobacter 2025; 30:e70007. [PMID: 39924349 DOI: 10.1111/hel.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 02/11/2025]
Abstract
Helicobacter pylori (H. pylori), a proven carcinogenic microbe, necessitates antimicrobial treatment once infected. However, H. pylori worldwide currently faces serious antibiotic resistance (AMR), requiring infected patients to undergo antibiotic susceptibility testing (AST) to guide therapy. Currently, the recommended ASTs for H. pylori are culture-based methods, which are time-consuming, complicated, and expensive, impeding their widespread application. With in-depth researches on the AMR mechanisms of H. pylori, specific gene mutations and novel proteins have been confirmed as the cause of AMR and can serve as targets of ASTs. Accordingly, molecular biology detection has been developed and tremendously shortened the time and reduced difficulty of AST. However, these assays still struggle to meet the enormous testing demand and need for even faster, simpler, and more accurate methods. In recent years, researchers have developed various new platforms based on biosensors, transcriptomics, proteomics, and single-cell analysis. This review introduces the AMR mechanisms of H. pylori and summarizes the current ASTs from the working principles to application characteristics. Additionally, we draw attention to the potentially applicable techniques for AST of H. pylori from DNA, RNA, protein, and cell perspectives. By systematically recapitulating the past, present, and future of AST for H. pylori, this review provides valuable insights for developing novel assays.
Collapse
Affiliation(s)
- Zupeng Kuang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuwei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinqiang Xie
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinyu Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiyuan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lei Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - He Gao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hui Zhao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tingting Liang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ying Li
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Ashkar Daw M, Azrad M, Peretz A. Associations between biofilm formation and virulence factors among clinical Helicobacter pylori isolates. Microb Pathog 2024; 196:106977. [PMID: 39321970 DOI: 10.1016/j.micpath.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Helicobacter pylori (H. pylori) causes several gastrointestinal diseases. Its virulence factors contributing to disease development include biofilm formation, cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) proteins that induce host tissue damage. In addition, urease activity enables H. pylori growth in the gastric acidic environment. This work aimed to characterize bacterial factors associated with biofilm production among 89 clinical H. pylori isolates, collected from patient gastric biopsies. METHODS Biofilm production was detected using the crystal violet method. PCR was performed to determine vacA genotype (s1m1, s1m2, s2m1 and s2m2) and cagA gene presence. Urease activity was measured via the phenol red method. Susceptibility to six antibiotics was assessed by the Etest method. RESULTS Most H. pylori isolates produced biofilm. No association was found between biofilm-formation capacity and cagA presence or vacA genotype. Urease activity levels varied across isolates; no association was found between biofilm-formation and urease activity. Clarithromycin resistance was measured in 49 % of the isolates. Isolates susceptible to tetracycline were more commonly strong biofilm producers. In contrast, a significantly higher rate of strong biofilm producers was observed among resistant isolates to amoxicillin, levofloxacin and rifampicin, compared to susceptible isolates. Non-biofilm producers were more common among isolates sensitive to rifampicin and metronidazole, compared to resistant isolates. CONCLUSIONS Further studies are needed to understand the factors that regulate biofilm production in order to search for treatments for H. pylori biofilm destruction.
Collapse
Affiliation(s)
- Mariam Ashkar Daw
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel.
| | - Maya Azrad
- Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| | - Avi Peretz
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Clinical Microbiology Laboratory, Tzafon Medical Center, Poriya, Tiberias, 1528001, Israel(1).
| |
Collapse
|
4
|
Fauzia KA, Effendi WI, Alfaray RI, Malaty HM, Yamaoka Y, Mifthussurur M. Molecular Mechanisms of Biofilm Formation in Helicobacter pylori. Antibiotics (Basel) 2024; 13:976. [PMID: 39452242 PMCID: PMC11504965 DOI: 10.3390/antibiotics13100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biofilm formation in Helicobacter pylori (H. pylori) helps bacteria survive antibiotic exposure and supports bacterial colonization and persistence in the stomach. Most of the published articles have focused on one aspect of the biofilm. Therefore, we conducted the current study to better understand the mechanism of biofilm formation, how the biofilm contributes to antibiotic resistance, and how the biofilm modifies the medication delivery mechanism. METHODS We conducted a literature review analysis of the published articles on the Helicobacter pylori biofilm between 1998 and 2024 from the PubMed database to retrieve eligible articles. After applying the inclusion and exclusion criteria, two hundred and seventy-three articles were eligible for our study. RESULTS The results showed that biofilm formation starts as adhesion and progresses through micro-colonies, maturation, and dispersion in a planktonic form. Moreover, specific genes modulate each phase of biofilm formation. Few studies have shown that mechanisms, such as quorum sensing and diffusible signal factors, enhance coordination among bacteria when switching from biofilm to planktonic states. Different protein expressions were also observed between planktonic and biofilm strains, and the biofilm architecture was supported by exopolysaccharides, extracellular DNA, and outer membrane vesicles. CONCLUSIONS This infrastructure is responsible for the increased survival of bacteria, especially in harsh environments or in the presence of antibiotics. Therefore, understanding the biofilm formation for H. pylori is crucial. This study illustrates biofilm formation in H. pylori to help improve the treatment of H. pylori infection.
Collapse
Grants
- XXXX Universitas Airlangga
- DK62813 NIH HHS
- 26640114, 221S0002, 16H06279, 15H02657 and 16H05191, 18KK0266, 19H03473, 21H00346, 22H02871, and 23K24133 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- XXXXX Japan Society for the Promotion of Science Institutional Program for Young Researcher Overseas Visits and the Strategic Funds for the Promotion of Science and Technology Agency (JST)
- xxxx Japanese Government (MEXT) scholarship
- xxxx Japan Agency for Medical Research and Development (AMED) [e-ASIA JRP]
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Bogor 16915, Indonesia;
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
| | - Hoda M. Malaty
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Mifthussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Wu X, Wu D, Cui G, Lee KH, Yang T, Zhang Z, Liu Q, Zhang J, Chua EG, Chen Z. Association Between Biofilm Formation and Structure and Antibiotic Resistance in H. pylori. Infect Drug Resist 2024; 17:2501-2512. [PMID: 38933776 PMCID: PMC11199321 DOI: 10.2147/idr.s468126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Background Persistent infections caused by Helicobacter pylori (H. pylori), which are resistant to antibiotic treatment, pose a growing global public health concern. Biofilm formation is known to be associated with persistent infections due to its role in enhancing antimicrobial resistance and the tolerance of many pathogenic bacteria. Objective This study aims to evaluate the biofilm formation of clinical isolates of H. pylori and its impact on antibiotic eradication. Methods The thickness, morphology, and structure of biofilms derived from nine H. pylori strains were examined using confocal laser scanning microscopy, scanning electron microscopy, and transmission electron microscopy. Subsequently, the susceptibility of both planktonic and biofilm bacteria was assessed through the determination of minimum inhibitory concentration and minimum biofilm eradication concentration for amoxicillin, clarithromycin, levofloxacin, and tetracycline. Results The results revealed varying biofilm thicknesses and densities among the strains, characterised by the presence of numerous filaments intertwining and connecting bacterial cells. Additionally, several cases exhibited susceptibility based on MIC measurements but resistance according to MBEC measurements, with MBEC indicating a higher resistance rate. Pearson Correlation analysis demonstrated a positive correlation between biofilm thickness and MBEC results (0 < r < 1), notably significant for amoxicillin (r = 0.801, P = 0.009) and tetracycline (r = 0.696, P = 0.037). Conclusion Different strains of H. pylori exhibit variations in their capacity to release outer membrane vesicles (OMVs) and form biofilms. Biofilm formation can influence the effectiveness of amoxicillin and tetracycline in eradicating susceptible bacterial strains.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Daoyan Wu
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Khui Hung Lee
- Helicobacter Research Laboratory, the Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Tingxiu Yang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhengrong Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jinbao Zhang
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Eng Guan Chua
- Helicobacter Research Laboratory, the Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou & Joint Laboratory of Helicobacter Pylori and Intestinal Microecology of Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, People’s Republic of China
- Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|
6
|
Zheng Y, Zhang S, Zhang T, Teng X, Ling X, Li B, Xiao G, Huang S. A Bifidobacterium animalis subsp. lactis strain that can suppress Helicobacter pylori: isolation, in vitro and in vivo validation. Lett Appl Microbiol 2024; 77:ovae005. [PMID: 38242846 DOI: 10.1093/lambio/ovae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The administration of probiotics is an effective approach for treatment of Helicobacter pylori, which is associated with human gastrointestinal diseases and cancers. To explore more effective probiotics for H. pylori infection elimination, bacteria from infant feces were screened in this study. We successfully isolated the Bifidobacterium animalis subsp. lactis strains and evaluated its efficacy to inhibit H. pylori growth in vitro and in vivo. The results showed that a B. animalis strain (named BB18) sustained a high survival rate after incubation in gastric juice. The rapid urease test suggested that B. animalis BB18 reduced pathogen loads in H. pylori-infected Mongolian gerbils. Alleviation of H. pylori infection-induced gastric mucosa damage and decreased levels inflammatory cytokines were observed after the B. animalis BB18 administration. These findings demonstrated that B. animalis BB18 can inhibit H. pylori infection both in vitro and in vivo, suggesting its potential application for the prevention and eradication therapy of H. pylori infection.
Collapse
Affiliation(s)
- Yanyi Zheng
- Wonderlab Innovation Centre for Healthcare, Shen,hen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Silu Zhang
- Wonderlab Innovation Centre for Healthcare, Shen,hen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | | | - Xin Teng
- Bluepha Co., Ltd., Shenzhen 518000, China
| | - Xueping Ling
- Department of Chemical and Biological Engineering, Xiamen University, Xiamen 361102, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa 850000, China
| | - Guoxun Xiao
- Wonderlab Innovation Centre for Healthcare, Shen,hen Porshealth Bioengineering Co., Ltd, Shenzhen 518000, China
| | - Song Huang
- Bluepha Co., Ltd., Shenzhen 518000, China
- Department of Chemical and Biological Engineering, Xiamen University, Xiamen 361102, China
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Fauzia KA, Aftab H, Miftahussurur M, Waskito LA, Tuan VP, Alfaray RI, Matsumoto T, Yurugi M, Subsomwong P, Kabamba ET, Akada J, Yamaoka Y. Genetic determinants of Biofilm formation of Helicobacter pylori using whole-genome sequencing. BMC Microbiol 2023; 23:159. [PMID: 37264297 PMCID: PMC10234030 DOI: 10.1186/s12866-023-02889-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Infection with Helicobacter pylori as the cause of gastric cancer is a global public health concern. In addition to protecting germs from antibiotics, biofilms reduce the efficacy of H. pylori eradication therapy. The nucleotide polymorphisms (SNPs) related with the biofilm forming phenotype of Helicobacter pylori were studied. RESULTS Fifty-six H. pylori isolate from Bangladeshi patients were included in this cross-sectional study. Crystal violet assay was used to quantify biofilm amount, and the strains were classified into high- and low-biofilm formers As a result, strains were classified as 19.6% high- and 81.4% low-biofilm formers. These phenotypes were not related to specific clades in the phylogenetic analysis. The accessories genes associated with biofilm from whole-genome sequences were extracted and analysed, and SNPs among the previously reported biofilm-related genes were analysed. Biofilm formation was significantly associated with SNPs of alpA, alpB, cagE, cgt, csd4, csd5, futB, gluP, homD, and murF (P < 0.05). Among the SNPs reported in alpB, strains encoding the N156K, G160S, and A223V mutations were high-biofilm formers. CONCLUSIONS This study revealed the potential role of SNPs in biofilm formation and proposed a method to detect mutation in biofilm from whole-genome sequences.
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka, 1000, Bangladesh
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
- Department of Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Vo Phuoc Tuan
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, 749000, Vietnam
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Takashi Matsumoto
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Michiyuki Yurugi
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Phawinee Subsomwong
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Aomori, Japan
| | - Evariste Tshibangu Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
- Research Center for Infectious Sciences, Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60115, Indonesia.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA.
- Borneo Medical and Health Research Centre, University Malaysia Sabah, Kota Kinabalu, Sabah, 88400, Malaysia.
- The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, 879-5593, Oita, Japan.
| |
Collapse
|
8
|
Isaeva GS, Isaeva R. Mechanisms of microbial interactions between probiotic microorganisms
and Helicobacter pylori. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2023; 25:225-238. [DOI: 10.36488/cmac.2023.3.225-238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Infection caused by Helicobacter pylori is currently one of the most common infection in the world, but the clinical picture can vary from asymptomatic manifestations to the development of stomach cancer. In order to eradicate the pathogen various regimens of antibacterial therapy have been proposed, but recent studies indicate a decrease in efficiency of this therapy due to the increasing rate of H. pylori resistance to antibiotics, the appearance of side effects, including the development of dysbiosis. One of the perspective directions of an alternative approach to the treatment of helicobacteriosis is probiotic therapy. The usage of probiotic therapy of H. pylori infection has two main directions. The first one is associated with the usage of probiotics to reduce the frequency of undesirable effects from the gastrointestinal tract during H. pylori antimicrobial therapy and the second one is the potentiation of the eradication effect due to the antagonistic effect on H. pylori. The purpose of this review was to summarize the latest data about the mechanisms of microbial interactions between probiotic microorganisms and H. pylori. The review examines the influence of H. pylori on the gastrointestinal microbiota, interspecific interactions of microorganisms in microbial consortia, mechanisms of antagonistic action of probiotic cultures on H. pylori, as well as the analysis of experience of using probiotics in the treatment of helicobacteriosis. At the same time, there will be many unresolved questions about the choice of the specific composition of the probiotic cocktail, dosage, duration of therapy, mechanisms of antimicrobial action of probiotics, as well as possible negative sides of this therapy, which requires further research.
Collapse
Affiliation(s)
- Guzel Sh. Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, Kazan State Medical University (Kazan, Russia)
| | - R.A. Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, Kazan State Medical University (Kazan, Russia)
| |
Collapse
|
9
|
Wang Y, Xu S, He Q, Sun K, Wang X, Zhang X, Li Y, Zeng J. Crosstalk between microbial biofilms in the gastrointestinal tract and chronic mucosa diseases. Front Microbiol 2023; 14:1151552. [PMID: 37125198 PMCID: PMC10133492 DOI: 10.3389/fmicb.2023.1151552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
The gastrointestinal (GI) tract is the largest reservoir of microbiota in the human body; however, it is still challenging to estimate the distribution and life patterns of microbes. Biofilm, as the predominant form in the microbial ecosystem, serves ideally to connect intestinal flora, molecules, and host mucosa cells. It gives bacteria the capacity to inhabit ecological niches, communicate with host cells, and withstand environmental stresses. This study intends to evaluate the connection between GI tract biofilms and chronic mucosa diseases such as chronic gastritis, inflammatory bowel disease, and colorectal cancer. In each disease, we summarize the representative biofilm makers including Helicobacter pylori, adherent-invasive Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. We address biofilm's role in causing inflammation and the pro-carcinogenic stage in addition to discussing the typical resistance, persistence, and recurrence mechanisms seen in vitro. Biofilms may serve as a new biomarker for endoscopic and pathologic detection of gastrointestinal disease and suppression, which may be a useful addition to the present therapy strategy.
Collapse
Affiliation(s)
- Yumeng Wang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shixi Xu
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kun Sun
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaorui Zhang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yuqing Li,
| | - Jumei Zeng
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jumei Zeng,
| |
Collapse
|
10
|
Metallic Nanoparticles as promising tools to eradicate H. pylori: A comprehensive review on recent advancements. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Hou C, Yin F, Wang S, Zhao A, Li Y, Liu Y. Helicobacter pylori Biofilm-Related Drug Resistance and New Developments in Its Anti-Biofilm Agents. Infect Drug Resist 2022; 15:1561-1571. [PMID: 35411160 PMCID: PMC8994595 DOI: 10.2147/idr.s357473] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is one of the most common pathogenic bacterium worldwide, infecting about 50% of the world's population. It is a major cause of several upper gastrointestinal diseases, including peptic ulcers and gastric cancer. The emergence of H. pylori resistance to antibiotics has been a major clinical challenge in the field of gastroenterology. In the course of H. pylori infection, some bacteria invade the gastric epithelium and are encapsulated into a self-produced matrix to form biofilms that protect the bacteria from external threats. Bacteria with biofilm structures can be up to 1000 times more resistant to antibiotics than planktonic bacteria. This implies that targeting biofilms might be an effective strategy to alleviate H. pylori drug resistance. Therefore, it is important to develop drugs that can eliminate or disperse biofilms. In recent years, anti-biofilm agents have been investigated as alternative or complementary therapies to antibiotics to reduce the rate of drug resistance. This article discusses the formation of H. pylori biofilms, the relationship between biofilms and drug resistance in H. pylori, and the recent developments in the research of anti-biofilm agents targeting H. pylori drug resistance.
Collapse
Affiliation(s)
- Chong Hou
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Fangxu Yin
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People’s Republic of China
| | - Song Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, People’s Republic of China
| | - Ailing Zhao
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Yingzi Li
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| | - Yipin Liu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264100, People’s Republic of China
| |
Collapse
|
12
|
Biofilm Formation by Pathogenic Bacteria: Applying a Staphylococcus aureus Model to Appraise Potential Targets for Therapeutic Intervention. Pathogens 2022; 11:pathogens11040388. [PMID: 35456063 PMCID: PMC9027693 DOI: 10.3390/pathogens11040388] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/02/2023] Open
Abstract
Carried in the nasal passages by up to 30% of humans, Staphylococcus aureus is recognized to be a successful opportunistic pathogen. It is a frequent cause of infections of the upper respiratory tract, including sinusitis, and of the skin, typically abscesses, as well as of food poisoning and medical device contamination. The antimicrobial resistance of such, often chronic, health conditions is underpinned by the unique structure of bacterial biofilm, which is the focus of increasing research to try to overcome this serious public health challenge. Due to the protective barrier of an exopolysaccharide matrix, bacteria that are embedded within biofilm are highly resistant both to an infected individual’s immune response and to any treating antibiotics. An in-depth appraisal of the stepwise progression of biofilm formation by S. aureus, used as a model infection for all cases of bacterial antibiotic resistance, has enhanced understanding of this complicated microscopic structure and served to highlight possible intervention targets for both patient cure and community infection control. While antibiotic therapy offers a practical means of treatment and prevention, the most favorable results are achieved in combination with other methods. This review provides an overview of S. aureus biofilm development, outlines the current range of anti-biofilm agents that are used against each stage and summarizes their relative merits.
Collapse
|
13
|
Antibacterial and Sporicidal Activity Evaluation of Theaflavin-3,3'-digallate. Int J Mol Sci 2022; 23:ijms23042153. [PMID: 35216265 PMCID: PMC8877948 DOI: 10.3390/ijms23042153] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Theaflavin-3,3'-digallate (TFDG), a polyphenol derived from the leaves of Camellia sinensis, is known to have many health benefits. In this study, the antibacterial effect of TFDG against nine bacteria and the sporicidal activities on spore-forming Bacillus spp. have been investigated. Microplate assay, colony-forming unit, BacTiter-GloTM, and Live/Dead Assays showed that 250 µg/mL TFDG was able to inhibit bacterial growth up to 99.97%, while 625 µg/mL TFDG was able to inhibit up to 99.92% of the spores from germinating after a one-hour treatment. Binding analysis revealed the favorable binding affinity of two germination-associated proteins, GPR and Lgt (GerF), to TFDG, ranging from -7.6 to -10.3 kcal/mol. Semi-quantitative RT-PCR showed that TFDG treatment lowered the expression of gpr, ranging from 0.20 to 0.39 compared to the control in both Bacillus spp. The results suggest that TFDG not only inhibits the growth of vegetative cells but also prevents the germination of bacterial spores. This report indicates that TFDG is a promising broad-spectrum antibacterial and anti-spore agent against Gram-positive, Gram-negative, acid-fast bacteria, and endospores. The potential anti-germination mechanism has also been elucidated.
Collapse
|
14
|
Tshibangu-Kabamba E, Yamaoka Y. Helicobacter pylori infection and antibiotic resistance - from biology to clinical implications. Nat Rev Gastroenterol Hepatol 2021; 18:613-629. [PMID: 34002081 DOI: 10.1038/s41575-021-00449-x] [Citation(s) in RCA: 281] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori is a major human pathogen for which increasing antibiotic resistance constitutes a serious threat to human health. Molecular mechanisms underlying this resistance have been intensively studied and are discussed in this Review. Three profiles of resistance - single drug resistance, multidrug resistance and heteroresistance - seem to occur, probably with overlapping fundamental mechanisms and clinical implications. The mechanisms that have been most studied are related to mutational changes encoded chromosomally and disrupt the cellular activity of antibiotics through target-mediated mechanisms. Other biological attributes driving drug resistance in H. pylori have been less explored and this could imply more complex physiological changes (such as impaired regulation of drug uptake and/or efflux, or biofilm and coccoid formation) that remain largely elusive. Resistance-related attributes deployed by the pathogen cause treatment failures, diagnostic difficulties and ambiguity in clinical interpretation of therapeutic outcomes. Subsequent to the increasing antibiotic resistance, a substantial drop in H. pylori treatment efficacy has been noted globally. In the absence of an efficient vaccine, enhanced efforts are needed for setting new treatment strategies and for a better understanding of the emergence and spread of drug-resistant bacteria, as well as for improving diagnostic tools that can help optimize current antimicrobial regimens.
Collapse
Affiliation(s)
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan. .,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
16
|
Dihydrotanshinone I Is Effective against Drug-Resistant Helicobacter pylori In Vitro and In Vivo. Antimicrob Agents Chemother 2021; 65:AAC.01921-20. [PMID: 33318002 DOI: 10.1128/aac.01921-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a major global pathogen and has been implicated in gastritis, peptic ulcer, and gastric carcinoma. The efficacy of the extensive therapy of H. pylori infection with antibiotics is compromised by the development of drug resistance and toxicity toward human gut microbiota, which urgently demands novel and selective antibacterial strategies. The present study was mainly performed to assess the in vitro and in vivo effects of a natural herbal compound, dihydrotanshinone I (DHT), against standard and clinical H. pylori strains. DHT demonstrated effective antibacterial activity against H. pylori in vitro (MIC50/90, 0.25/0.5 μg/ml), with no development of resistance during continuous serial passaging. Time-kill curves showed strong time-dependent bactericidal activity for DHT. Also, DHT eliminated preformed biofilms and killed biofilm-encased H. pylori cells more efficiently than the conventional antibiotic metronidazole. In mouse models of multidrug-resistant H. pylori infection, dual therapy with DHT and omeprazole showed in vivo killing efficacy superior to that of the standard triple-therapy approach. Moreover, DHT treatment induces negligible toxicity against normal tissues and exhibits a relatively good safety index. These results suggest that DHT could be suitable for use as an anti-H. pylori agent in combination with a proton pump inhibitor to eradicate multidrug-resistant H. pylori.
Collapse
|
17
|
Genetic requirements and transcriptomics of Helicobacter pylori biofilm formation on abiotic and biotic surfaces. NPJ Biofilms Microbiomes 2020; 6:56. [PMID: 33247117 PMCID: PMC7695850 DOI: 10.1038/s41522-020-00167-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Biofilm growth is a widespread mechanism that protects bacteria against harsh environments, antimicrobials, and immune responses. These types of conditions challenge chronic colonizers such as Helicobacter pylori but it is not fully understood how H. pylori biofilm growth is defined and its impact on H. pylori survival. To provide insights into H. pylori biofilm growth properties, we characterized biofilm formation on abiotic and biotic surfaces, identified genes required for biofilm formation, and defined the biofilm-associated gene expression of the laboratory model H. pylori strain G27. We report that H. pylori G27 forms biofilms with a high biomass and complex flagella-filled 3D structures on both plastic and gastric epithelial cells. Using a screen for biofilm-defective mutants and transcriptomics, we discovered that biofilm cells demonstrated lower transcripts for TCA cycle enzymes but higher ones for flagellar formation, two type four secretion systems, hydrogenase, and acetone metabolism. We confirmed that biofilm formation requires flagella, hydrogenase, and acetone metabolism on both abiotic and biotic surfaces. Altogether, these data suggest that H. pylori is capable of adjusting its phenotype when grown as biofilm, changing its metabolism, and re-shaping flagella, typically locomotion organelles, into adhesive structures.
Collapse
|
18
|
Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl Microbiol Biotechnol 2020; 104:9891-9905. [PMID: 33052519 PMCID: PMC7666284 DOI: 10.1007/s00253-020-10945-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Abstract Helicobacter pylori, a member of Epsilonproteobacteria, is a Gram-negative microaerophilic bacterium that colonizes gastric mucosa of about 50% of the human population. Although most infections caused by H. pylori are asymptomatic, the microorganism is strongly associated with serious diseases of the upper gastrointestinal tract such as chronic gastritis, peptic ulcer, duodenal ulcer, and gastric cancer, and it is classified as a group I carcinogen. The prevalence of H. pylori infections varies worldwide. The H. pylori genotype, host gene polymorphisms, and environmental factors determine the type of induced disease. Currently, the most common therapy to treat H. pylori is the first line clarithromycin–based triple therapy or a quadruple therapy replacing clarithromycin with new antibiotics. Despite the enormous recent effort to introduce new therapeutic regimens to combat this pathogen, treatment for H. pylori still fails in more than 20% of patients, mainly due to the increased prevalence of antibiotic resistant strains. In this review we present recent progress aimed at designing new anti-H. pylori strategies to combat this pathogen. Some novel therapeutic regimens will potentially be used as an extra constituent of antibiotic therapy, and others may replace current antibiotic treatments. Key points • Attempts to improve eradication rate of H. pylori infection. • Searching for new drug targets in anti-Helicobacter therapies.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Marta Ilona Wojtyś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, Univeristy of Warsaw, Pasteura 5, 02-093, Warszawa, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.
| |
Collapse
|
19
|
Biofilm Formation and Antibiotic Resistance Phenotype of Helicobacter pylori Clinical Isolates. Toxins (Basel) 2020; 12:toxins12080473. [PMID: 32722296 PMCID: PMC7472329 DOI: 10.3390/toxins12080473] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
We evaluated biofilm formation of clinical Helicobacter pylori isolates from Indonesia and its relation to antibiotic resistance. We determined the minimum inhibition concentration (MIC) of amoxicillin, clarithromycin, levofloxacin, metronidazole and tetracycline by the Etest to measure the planktonic susceptibility of 101 H. pylori strains. Biofilms were quantified by the crystal violet method. The minimum biofilm eradication concentration (MBEC) was obtained by measuring the survival of bacteria in a biofilm after exposure to antibiotics. The majority of the strains formed a biofilm (93.1% (94/101)), including weak (75.5%) and strong (24.5%) biofilm-formers. Planktonic resistant and sensitive strains produced relatively equal amounts of biofilms. The resistance proportion, shown by the MBEC measurement, was higher in the strong biofilm group for all antibiotics compared to the weak biofilm group, especially for clarithromycin (p = 0.002). Several cases showed sensitivity by the MIC measurement, but resistance according to the MBEC measurements (amoxicillin, 47.6%; tetracycline, 57.1%; clarithromycin, 19.0%; levofloxacin, 38.1%; and metronidazole 38.1%). Thus, biofilm formation may increase the survival of H. pylori and its resistance to antibiotics. Biofilm-related antibiotic resistance should be evaluated with antibiotic susceptibility.
Collapse
|
20
|
Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A, Yousefimashouf R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life 2020; 72:1271-1285. [PMID: 32150327 DOI: 10.1002/iub.2266] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Biofilms are microbial communities established in the self-produced extracellular substances that include up to 80% of associated microbial infections. During biofilm formation, bacterial cells shift from the planktonic forms to aggregated forms surrounded by an extracellular polymeric substance. The bacterial biofilm shows resistance against immune reactions as well as antibiotics and is potentially able to cause disorders by both device-related and nondevice-related infections. The nondevice-related bacterial biofilm infections include dental plaque, urinary tract infections, cystic fibrosis, otitis media, infective endocarditis, tonsillitis, periodontitis, necrotizing fasciitis, osteomyelitis, infectious kidney stones, and chronic inflammatory diseases. In this review, we will summarize and examine the literature about bacterial biofilm infections unrelated to indwelling devices.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Shokri Moghadam
- Department of Microbiology, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Hojo F, Osaki T, Yonezawa H, Hanawa T, Kurata S, Kamiya S. Acanthamoeba castellanii supports extracellular survival of Helicobacter pylori in co-culture. J Infect Chemother 2020; 26:946-954. [PMID: 32448734 DOI: 10.1016/j.jiac.2020.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
This study aimed to demonstrate whether Helicobacter pylori is able to survive in co-culture with a protozoan, Acanthamoeba castellanii, in order to further investigate a possible aqueous environmental mode of transmission. Numbers of H. pylori in co-culture with A castellanii were assessed by colony forming unit (CFU) assay and cell morphology was observed by electron microscopy. Viable and intact H. pylori in co-culture were detected and the number of H. pylori in co-culture with A. castellanii was significantly higher than in bacterial single culture. It was also shown that co-culture of H. pylori with A. castellanii physically separated by a filter membrane negated this survival effect, suggesting that adherence of H. pylori to A. castellanii affects its survival. Scanning electron microscopy revealed helical forms of H. pylori in co-culture with A. castellanii, but not in single culture. These results imply that mutual interaction between H. pylori and A. castellanii in the environment is critical for survival of H. pylori. In addition, the H. pylori gene expression profile was found to differ between single and co-cultured cells using RNA-sequence analysis.
Collapse
Affiliation(s)
- Fuhito Hojo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan.
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Satoshi Kurata
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, Japan; Faculty of Health Sciences, Kyorin University, 181-8612, 5-4-1 Shimorenjaku, Mitaka, Tokyo, Japan
| |
Collapse
|
22
|
Yu M, Wang X, Ling F, Wang H, Zhang P, Shao S. Atractylodes lancea volatile oils attenuated helicobacter pylori NCTC11637 growth and biofilm. Microb Pathog 2019; 135:103641. [PMID: 31330262 DOI: 10.1016/j.micpath.2019.103641] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/03/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
Atractylodes lancea is a traditional Chinese perennial herb, which has been used for treating gastrointestinal diseases in traditional medicine. The aim of this study was to investigate the effect of Atractylodes lancea volatile oils on the planktonic growth and biofilm formation of Helicobacter pylori (H. pylori). Firstly, the minimal inhibitory concentration (MIC) of the volatile oils against H. pylori were determined using broth dilution method. SPSS17.0 was used to account 50% inhibiting concentration (IC50). Moreover, the anti-biofilm activity of the volatile oils was determined by crystal violet measurement and fluorescence microscope. Finally, gastric epithelial cells (GES-1 cells) were co-incubated with H. pylori with or without volatile oils treated. Real-time PCR and western blot were performed to detect the translocation of virulence factor Cag A. We found that Atractylodes lancea volatile oils inhibited the growth of H. pylori in a concentration dependent manner. The MIC and IC50 of volatile oils against H. pylori were 7.5 mg/mL and 2.181 mg/mL respectively. Fluorescence microscopy and crystal violet measurement indicated that volatile oils at sub-MIC concentration could reduce biofilm formation of H. pylori. In addition, volatile oils decreased the translocation of Cag A and reduced inflammatory cytokine IL-8 in GES-1 cells. Our results suggested that Atractylodes lancea volatile oils could be a potential compound of a novel class of H. pylori inhibitors with anti-H. pylori effects.
Collapse
Affiliation(s)
- Min Yu
- Department of Clinical Laboratory, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China; Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaochun Wang
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Ling
- Department of Clinical Laboratory, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, 215300, China
| | - Hua Wang
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Ping Zhang
- Department of Clinical Laboratory, The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Shihe Shao
- Department of Medical Microbiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
23
|
Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential Role of Biofilm Formation in the Development of Digestive Tract Cancer With Special Reference to Helicobacter pylori Infection. Front Microbiol 2019; 10:846. [PMID: 31110496 PMCID: PMC6501431 DOI: 10.3389/fmicb.2019.00846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria are highly social organisms that communicate via signaling molecules and can assume a multicellular lifestyle to build biofilm communities. Until recently, complications from biofilm-associated infection have been primarily ascribed to increased bacterial resistance to antibiotics and host immune evasion, leading to persistent infection. In this theory and hypothesis article we present a relatively new argument that biofilm formation has potential etiological role in the development of digestive tract cancer. First, we summarize recent new findings suggesting the potential link between bacterial biofilm and various types of cancer to build the foundation of our hypothesis. To date, evidence has been particularly convincing for colorectal cancer and its precursor, i.e., polyps, pointing to several key individual bacterial species, such as Bacteroides fragilis, Fusobacterium nucleatum, and Streptococcus gallolyticus subsp. Gallolyticus. Then, we further extend this hypothesis to one of the most common bacterial infection in humans, Helicobacter pylori (Hp), which is considered a major cause of gastric cancer. Thus far, there has been no direct evidence linking in vivo Hp gastric biofilm formation to gastric carcinogenesis. Yet, we synthesize the information to support an argument that biofilm associated-Hp is potentially more carcinogenic, summarizing biological characteristics of biofilm-associated bacteria. We also discuss mechanistic pathways as to how Hp or other biofilm-associated bacteria control biofilm formation and highlight recent findings on Hp genes that influence biofilm formation, which may lead to strain variability in biofilm formation. This knowledge may open a possibility of developing targeted intervention. We conclude, however, that this field is still in its infancy. To test the hypothesis rigorously and to link it ultimately to gastric pathologies (e.g., premalignant lesions and cancer), studies are needed to learn more about Hp biofilms, such as compositions and biological properties of extracellular polymeric substance (EPS), presence of non-Hp microbiome and geographical distribution of biofilms in relation to gastric gland types and structures. Identification of specific Hp strains with enhanced biofilm formation would be helpful not only for screening patients at high risk for sequelae from Hp infection, but also for development of new antibiotics to avoid resistance, regardless of its association with gastric cancer.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elena Kasamatsu
- Instituto de Investigaciones en Ciencias de la Salud, National University of Asunción, Asunción, Paraguay
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, Unidades Médicas de Alta Especialidad Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
24
|
Yonezawa H, Osaki T, Hojo F, Kamiya S. Effect of Helicobacter pylori biofilm formation on susceptibility to amoxicillin, metronidazole and clarithromycin. Microb Pathog 2019; 132:100-108. [PMID: 31034965 DOI: 10.1016/j.micpath.2019.04.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
The human gastric pathogen Helicobacter pylori forms biofilms in vitro and in vivo. We previously demonstrated that H. pylori biofilm formation in vitro decreased its susceptibility to clarithromycin (CAM). The aim of this study was to evaluate the effects of biofilm formation on amoxicillin (AMPC) and metronidazole (MNZ) susceptibility. In addition, we assessed the influence of biofilms of CAM resistant H. pylori on CAM susceptibility. It was shown that high levels of efflux pump gene transcripts were detected in biofilm cells of all H. pylori strains used in this study. H. pylori biofilm biomass was significantly decreased compared to initial biomass after treatment with the minimum inhibitory concentration (MIC) of AMPC. Similarly, the biofilm biomass of H. pylori decreased after treatment with MIC of MNZ, although the difference was not statistically significant. However, minimum bactericidal concentrations (MBCs) of AMPC or MNZ to biofilm cells were higher than those of planktonic cells. The biofilm biomasses of all of the CAM resistant strains were significantly decreased compared to initial biomass after treatment with 2x MIC of CAM. However, the viability of the CAM treated biofilm cells with 2x MIC of CAM was not significantly reduced compared to initial cell numbers with the exception of one strain. The viability of biofilm cells of all strains was higher than that of planktonic cells after treatment with various concentrations of CAM. These results indicate that biofilm cells were more resistant to these antibiotics than planktonic cells and that the assessment of the ability to form biofilms in H. pylori is important for eradication of this microorganism.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Fuhito Hojo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyorin University, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
25
|
Fontes LES, Martimbianco ALC, Zanin C, Riera R, Cochrane Upper GI and Pancreatic Diseases Group. N-acetylcysteine as an adjuvant therapy for Helicobacter pylori eradication. Cochrane Database Syst Rev 2019; 2:CD012357. [PMID: 30746681 PMCID: PMC6370586 DOI: 10.1002/14651858.cd012357.pub2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori (H pylori) is one of the most common pathogens to establish and cause infection in human beings, affecting about 50% of the world's population. Prevalence may be as high as 83% in Latin American countries and as low as 17% in North America. Approximately 20% of infected people will manifest disease; people at high risk include those who live in low- and middle-income countries with poor sanitary conditions, since the mechanism of transmission seems to be oral-oral or faecal-oral (mostly during infancy). There are several antibiotic regimens to treat the infection, but antibiotic resistance is growing around the world. New adjuvant drugs - such as probiotics, statins, curcumin, and N-acetylcysteine (NAC) - are being tested to enhance eradication rates.N-acetylcysteine can destabilise the biofilm structure; it also has synergic action with antibiotics, and bactericidal effects. In addition, NAC has antioxidant properties, and has a primary mucolytic effect by reducing the thickness of the gastric mucus layer, both of which may exert beneficial adjuvant effects on H pylori eradication. OBJECTIVES To assess the efficacy and safety of N-acetylcysteine as an adjuvant therapy to antibiotics for Helicobacter pylori eradication. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (1966 to April 2018), Embase (1988 to April 2018), CINAHL (1982 to April 2018), LILACS (1982 to April 2018), grey literature databases and trials registries. We handsearched the reference lists of relevant studies. We screened 726 articles and assessed 18 for eligibility. SELECTION CRITERIA We included randomised controlled trials (RCTs) of any antibiotic regimen plus NAC, in adults infected with H pylori. To be included, trials had to use a control consisting of the same antibiotic regimen with or without placebo. Outcomes of interest were eradication rates, and gastrointestinal, toxic, and allergic adverse events. Reporting of the primary outcomes listed here was not an inclusion criterion for the review. DATA COLLECTION AND ANALYSIS Two review authors independently reviewed and extracted data and completed the 'Risk of bias' assessments. A third review author independently confirmed the 'Risk of bias' assessments. We used Review Manager 5 software for data analysis. We contacted study authors if there was missing information. MAIN RESULTS We included eight RCTs (with a total of 559 participants) in this review. The studies recruited outpatients aged between 17 and 76 years who were referred to endoscopy centres in several different countries. The certainty of evidence was reduced for most outcomes due to the poor methodological quality of included studies; issues mainly related to the generation of allocation sequence, allocation concealment, and blinding (this last domain related specifically to adverse outcomes).We are uncertain whether the addition of NAC to antibiotics improves H pylori eradication rates, compared with the addition of placebo or no NAC (38.8% versus 49.1%, risk ratio (RR) 0.74, 95% confidence interval (CI) 0.51 to 1.08; participants = 559; studies = eight; very low-certainty evidence). A post-hoc sensitivity analysis, in which we removed studies that tested antibiotic regimens no longer recommended in clinical practice, showed that the addition of NAC may improve eradication rates compared to control (27.2% versus 37.6%, RR 0.71, 95% CI 0.53 to 0.94; participants = 397; published studies = five).We are uncertain whether NAC is associated with a higher risk of gastrointestinal adverse events compared to control (23.9% versus 18.9%, RR 1.25, 95% CI 0.85 to 1.85; participants = 336; studies = five; very low-certaintyevidence), or allergic adverse events (2% versus 0%, RR 2.98, 95% CI 0.32 to 27.74; participants = 336; studies = five; very low-certainty evidence). There were no reports of toxic adverse events amongst included studies. AUTHORS' CONCLUSIONS We are uncertain whether the addition of NAC to antibiotics improves H pylori eradication rates compared with the addition of placebo or no NAC. Due to the clinical, statistical and methodological heterogeneity found in included studies, and the uncertainty observed when analysing therapy subgroups, any possible beneficial effect of NAC should be regarded cautiously.We are uncertain whether NAC is associated with a higher risk of gastrointestinal or allergic adverse events compared with placebo or no NAC. There were no reports of toxic adverse events amongst the included studies.Further large, well-designed, randomised clinical studies should be conducted, with good reporting standards and appropriate collection of efficacy and safety outcomes, especially for current recommended antibiotic regimens.
Collapse
Affiliation(s)
- Luís Eduardo S Fontes
- Petrópolis Medical SchoolDepartment of Evidence‐Based Medicine, Intensive Care, GastroenterologyAv Barao do Rio Branco, 1003PetrópolisRJBrazil25680‐120
| | - Ana Luiza C Martimbianco
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeCochrane BrazilRua Borges Lagoa, 564 cj 63São PauloSPBrazil04038‐000
| | - Carolina Zanin
- Hospital Alcides CarneiroIntensive Care UnitPetrópolisRJBrazil
| | - Rachel Riera
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeCochrane BrazilRua Borges Lagoa, 564 cj 63São PauloSPBrazil04038‐000
| | | |
Collapse
|
26
|
Helicobacter pylori Biofilm Formation and Its Potential Role in Pathogenesis. Microbiol Mol Biol Rev 2018; 82:82/2/e00001-18. [PMID: 29743338 DOI: 10.1128/mmbr.00001-18] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite decades of effort, Helicobacter pylori infections remain difficult to treat. Over half of the world's population is infected by H. pylori, which is a major cause of duodenal and gastric ulcers as well as gastric cancer. During chronic infection, H. pylori localizes within the gastric mucosal layer, including deep within invaginations called glands; thanks to its impressive ability to survive despite the harsh acidic environment, it can persist for the host's lifetime. This ability to survive and persist in the stomach is associated with urease production, chemotactic motility, and the ability to adapt to the fluctuating environment. Additionally, biofilm formation has recently been suggested to play a role in colonization. Biofilms are surface-associated communities of bacteria that are embedded in a hydrated matrix of extracellular polymeric substances. Biofilms pose a substantial health risk and are key contributors to many chronic and recurrent infections. This link between biofilm-associated bacteria and chronic infections likely results from an increased tolerance to conventional antibiotic treatments as well as immune system action. The role of this biofilm mode in antimicrobial treatment failure and H. pylori survival has yet to be determined. Furthermore, relatively little is known about the H. pylori biofilm structure or the genes associated with this mode of growth. In this review, therefore, we aim to highlight recent findings concerning H. pylori biofilms and the molecular mechanism of their formation. Additionally, we discuss the potential roles of biofilms in the failure of antibiotic treatment and in infection recurrence.
Collapse
|
27
|
Isaeva G, Valieva R. Biological characteristics and virulence of Helicobacter pylori. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2018. [DOI: 10.36488/cmac.2018.1.14-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
This review summarizes the most recent data on the biological characteristics of Helicobacter pylori (morphological, cultural, biochemical). H. pylori pathogenicity factors promoting colonization, adhesion, biofilm formation, aggression, and cytotoxicity, their contribution to the pathogenesis of diseases as well as the possible relationships with various clinical outcomes are described in detail. The genetic heterogeneity of H. pylori strains which can determine different clinical manifestations and have significance for conducting epidemiological studies is also considered.
Collapse
Affiliation(s)
- G.Sh. Isaeva
- Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University (Kazan, Russia)
| | - R.I. Valieva
- Kazan Research Institute of Epidemiology and Microbiology; KazanState Medical University (Kazan, Russia)
| |
Collapse
|
28
|
Srivastava A, Gupta J, Kumar S, Kumar A. Gut biofilm forming bacteria in inflammatory bowel disease. Microb Pathog 2017; 112:5-14. [PMID: 28942174 DOI: 10.1016/j.micpath.2017.09.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Inflammatory bowel disease (IBD) symbolizes a group of intestinal disorders in which prolonged inflammation occur in the digestive tract (esophagus, large intestine, small intestine mouth, stomach). Both genetic and environmental factors (infections, stress, diet) are involved in the development of IBD. As we know that bacteria are found in the intestinal mucosa of human and clinical observations revealed bacterial biofilms associated with patients of IBD. Various factors and microbes are found to play an essential role in biofilm formation and mucosal colonization during IBD. Biofilm formation in the digestive tract is dependent on an extracellular matrix synthesized by the bacteria and it has an adverse effect on the immune response of the host. There is no satisfactory and safe treatment option for IBD. Therefore, the current research aims to disrupt biofilm in IBD and concentrates predominantly on improving the drug. Here, we review the literature on bacterial biofilm and IBD to gather new knowledge on the current understanding of biofilm formation in IBD, host immune deregulation and dysbiosis in IBD, molecular mechanism, bacteria involved in biofilm formation, current and future regimen. It is urgently required to plan new ways to control and eradicate bacteria in biofilms that will open up novel diagnostic and therapeutic avenues for IBD. This article includes the mechanism of signaling molecules with respect to the biofilm-related genes as well as the diagnostic methods and new technologies involved in the treatment of IBD.
Collapse
Affiliation(s)
- Ankita Srivastava
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Vill: Hadauri, Post: Tindola, Dist: Barabanki 225003, Uttar Pradesh, India
| | - Jaya Gupta
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Vill: Hadauri, Post: Tindola, Dist: Barabanki 225003, Uttar Pradesh, India
| | - Sunil Kumar
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Vill: Hadauri, Post: Tindola, Dist: Barabanki 225003, Uttar Pradesh, India.
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India.
| |
Collapse
|
29
|
Attaran B, Falsafi T. Identification of Factors Associated with Biofilm Formation Ability in the Clinical Isolates of Helicobacter pylori. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:58-66. [PMID: 28959353 PMCID: PMC5582254 DOI: 10.15171/ijb.1368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background
A few reports confirm the ability of Helicobacter pylori to form biofilm. However, conclusive data do not exist concerning the factors that favor this ability.
Objectives
Evaluation of the factors associated with the biofilm formation ability of H. pylori including bacterial, physical and chemical, and environmental factors was the research’s aim.
Materials and Methods H. pylori isolates from gastric biopsy specimens of patients infected chronically were screened for biofilm formation ability. Association of bacterial properties such as motility, auto-aggregation, cell hydrophobicity, and extracellular polymeric substances (EPS) with in vitro biofilm formation ability of H. pylori was evaluated. The effects of environmental factors such as growth-medium, temperature, oxygen-tension, pH, β-cyclodextrin, gastric secreted mucins, and sub-inhibitory concentration of amoxicillin were also evaluated.
Results
Ability of clinical H. pylori isolates to form biofilm in was quantitatively compared. The coccoid shape H. pylori cells were observed by scanning electron microscopy, the images were illustrative of the attachment of cells to form microcolony. The levels of hydrophobicity, motility and auto aggregation of two isolates with highest and lowest biofilm formation ability were the same. However, the signifi cant role of mucins (P < 0.05) in elevating the biofilm formation was observed. Other factors influencing biofilm formation were: pH, atmosphere and sub-MIC of antibiotics.
Conclusion
Mucins have a signifi cant role in elevating the biofilm formation, also pH, atmosphere and sub-MIC of antibiotics influence biofilm formation.
Collapse
Affiliation(s)
- Bahareh Attaran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak, Tehran, Iran
| | - Tahereh Falsafi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
30
|
Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion. J Bacteriol 2017; 199:JB.00729-16. [PMID: 28031283 PMCID: PMC5331671 DOI: 10.1128/jb.00729-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is one of the most common causes of bacterial infection in humans, and it forms biofilms on human gastric mucosal epithelium as well as on in vitro abiotic surfaces. Bacterial biofilm is critical not only for environmental survival but also for successful infection. We previously demonstrated that strain TK1402, which was isolated from a Japanese patient with duodenal and gastric ulcers, has high biofilm-forming ability in vitro relative to other strains. In addition, we showed that outer membrane vesicles (OMV) play an important role in biofilm formation. The aim of this study was to analyze which protein(s) in the OMV contributes to biofilm formation in TK1402. We obtained a spontaneous mutant strain derived from TK1402 lacking biofilm-forming ability. The protein profiles of the OMV were compared between this mutant strain and the wild type, and it was found that AlpB, an outer membrane protein in the OMV of the mutant strain, was markedly decreased compared to that of the wild type. Restoration of TK1402 alpB to the mutant strain fully recovered the ability to form biofilm. However, restoration with alpB from other strains demonstrated incomplete recovery of biofilm-forming ability. We therefore inferred that the variable region of AlpB (amino acid positions 121 to 146) was involved in TK1402 biofilm formation. In addition, diversification of the AlpB sequence was shown to affect the ability to adhere to AGS cells. These results demonstrate a new insight into the molecular mechanisms of host colonization by H. pylori. IMPORTANCE Bacterial biofilm is critical not only for environmental survival but also for successful infection. The mechanism of Helicobacter pylori adherence to host cells mediated by cell surface adhesins has been the focus of many studies, but little is known regarding factors involved in H. pylori biofilm formation. Our study demonstrated that AlpB plays an important role in biofilm formation and that this property depends upon the specific sequence of alpB. This in turn was shown to be important in the ability to adhere to gastric cells. We anticipate that these results will provide new insight into the molecular mechanisms of H. pylori colonization.
Collapse
|
31
|
Attaran B, Falsafi T, Ghorbanmehr N. Effect of biofilm formation by clinical isolates of Helicobacter pylori on the efflux-mediated resistance to commonly used antibiotics. World J Gastroenterol 2017; 23:1163-1170. [PMID: 28275296 PMCID: PMC5323441 DOI: 10.3748/wjg.v23.i7.1163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/11/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the role of biofilm formation on the resistance of Helicobacter pylori (H. pylori) to commonly prescribed antibiotics, the expression rates of resistance genes in biofilm-forming and planktonic cells were compared. METHODS A collection of 33 H. pylori isolates from children and adult patients with chronic infection were taken for the present study. The isolates were screened for biofilm formation ability, as well as for polymerase chain reaction (PCR) reaction with HP1165 and hp1165 efflux pump genes. Susceptibilities of the selected strains to antibiotic and differences between susceptibilities of planktonic and biofilm-forming cell populations were determined. Quantitative real-time PCR (qPCR) analysis was performed using 16S rRNA gene as a H. pylori-specific primer, and two efflux pumps-specific primers, hp1165 and hefA. RESULTS The strains were resistant to amoxicillin, metronidazole, and erythromycin, except for one strain, but they were all susceptible to tetracycline. Minimum bactericidal concentrations of antibiotics in the biofilm-forming cells were significantly higher than those of planktonic cells. qPCR demonstrated that the expression of efflux pump genes was significantly higher in the biofilm-forming cells as compared to the planktonic ones. CONCLUSION The present work demonstrated an association between H. pylori biofilm formation and decreased susceptibility to all the antibiotics tested. This decreased susceptibility to antibiotics was associated with enhanced functional activity of two efflux pumps: hp1165 and hefA.
Collapse
|
32
|
Hanafi A, Lee WC, Loke MF, Teh X, Shaari A, Dinarvand M, Lehours P, Mégraud F, Leow AHR, Vadivelu J, Goh KL. Molecular and Proteomic Analysis of Levofloxacin and Metronidazole Resistant Helicobacter pylori. Front Microbiol 2016; 7:2015. [PMID: 28018334 PMCID: PMC5157799 DOI: 10.3389/fmicb.2016.02015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance in bacteria incurs fitness cost, but compensatory mechanisms may ameliorate the cost and sustain the resistance even under antibiotics-free conditions. The aim of this study was to determine compensatory mechanisms of antibiotic resistance in H. pylori. Five strains of levofloxacin-sensitive H. pylori were induced in vitro to develop resistance. In addition, four pairs of metronidazole-sensitive and -resistant H. pylori strains were isolated from patients carrying dual H. pylori populations that consist of both sensitive and resistant phenotypes. Growth rate, virulence and biofilm-forming ability of the sensitive and resistant strains were compared to determine effects of compensatory response. Proteome profiles of paired sensitive and resistant strains were analyzed by liquid chromatography/mass spectrophotometry (LC/MS). Although there were no significant differences in growth rate between sensitive and resistant pairs, bacterial virulence (in terms of abilities to induce apoptosis and form biofilm) differs from pair to pair. These findings demonstrate the complex and strain-specific phenotypic changes in compensation for antibiotics resistance. Compensation for in vitro induced levofloxacin resistance involving mutations of gyrA and gyrB was functionally random. Furthermore, higher protein translation and non-functional protein degradation capabilities in naturally-occuring dual population metronidazole sensitive-resistant strains may be a possible alternative mechanism underlying resistance to metronidazole without mutations in rdxA and frxA. This may explain the lack of mutations in target genes in ~10% of metronidazole resistant strains.
Collapse
Affiliation(s)
- Aimi Hanafi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Woon Ching Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of MalayaKuala Lumpur, Malaysia; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Xinsheng Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Ain Shaari
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Mojdeh Dinarvand
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Philippe Lehours
- Laboratoire de Bactériologie, Université de BordeauxBordeaux, France; Institut National de la Santé et de la Recherche Médicale U853Bordeaux, France
| | - Francis Mégraud
- Laboratoire de Bactériologie, Université de BordeauxBordeaux, France; Institut National de la Santé et de la Recherche Médicale U853Bordeaux, France
| | - Alex Hwong Ruey Leow
- Department of Medicine, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Ratthawongjirakul P, Thongkerd V, Chaicumpa W. The impacts of a fliD mutation on the biofilm formation of Helicobacter pylori. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Wang D, Gong YH, Yuan Y. Bacterial factors associated with Helicobacter pylori antibiotic resistance. Shijie Huaren Xiaohua Zazhi 2016; 24:4102-4109. [DOI: 10.11569/wcjd.v24.i29.4102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is the most widespread chronic bacterial infection and is closely associated with many diseases. In recent years, however, H. pylori is becoming increasingly difficult to eradicate due to the growing antibiotic resistance. Among the reasons for the failed eradication, some factors of H. pylori itself play a main role. H. pylori can resist antibiotics by producing inactivating enzymes, changing the drug targets, preventing oxidation-reduction electron transfer, decreasing membrane permeability and activating efflux pump, changing bacterial metabolic state and so on. Elucidating the mechanism of antibiotic resistance will be helpful in developing new targeted drugs to effectively eradicate H. pylori. Here, we review the bacteria factors associated with H. pylori antibiotic resistance.
Collapse
|
35
|
Ng CG, Loke MF, Goh KL, Vadivelu J, Ho B. Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiol 2016; 62:68-76. [PMID: 27889168 DOI: 10.1016/j.fm.2016.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 02/06/2023]
Abstract
To date, the exact route and mode of transmission of Helicobacter pylori remains elusive. The detection of H. pylori in food using molecular approaches has led us to postulate that the gastric pathogen may survive in the extragastric environment for an extended period. In this study, we show that H. pylori prolongs its survival by forming biofilm and micro-colonies on vegetables. The biofilm forming capability of H. pylori is both strain and vegetable dependent. H. pylori strains were classified into high and low biofilm formers based on their highest relative biofilm units (BU). High biofilm formers survived longer on vegetables compared to low biofilm formers. The bacteria survived better on cabbage compared to other vegetables tested. In addition, images captured on scanning electron and confocal laser scanning microscopes revealed that the bacteria were able to form biofilm and reside as micro-colonies on vegetable surfaces, strengthening the notion of possible survival of H. pylori on vegetables for an extended period of time. Taken together, the ability of H. pylori to form biofilm on vegetables (a common food source for human) potentially plays an important role in its survival, serving as a mode of transmission of H. pylori in the extragastric environment.
Collapse
Affiliation(s)
- Chow Goon Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Mun Fai Loke
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khean Lee Goh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bow Ho
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Singapore Precision Medicine Centre Pte Ltd, Singapore 608783, Singapore.
| |
Collapse
|
36
|
Servetas SL, Carpenter BM, Haley KP, Gilbreath JJ, Gaddy JA, Merrell DS. Characterization of Key Helicobacter pylori Regulators Identifies a Role for ArsRS in Biofilm Formation. J Bacteriol 2016; 198:2536-48. [PMID: 27432830 PMCID: PMC4999924 DOI: 10.1128/jb.00324-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Helicobacter pylori must be able to rapidly respond to fluctuating conditions within the stomach. Despite this need for constant adaptation, H. pylori encodes few regulatory proteins. Of the identified regulators, the ferric uptake regulator (Fur), the nickel response regulator (NikR), and the two-component acid response system (ArsRS) are each paramount to the success of this pathogen. While numerous studies have individually examined these regulatory proteins, little is known about their combined effect. Therefore, we constructed a series of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS. A growth curve analysis revealed minor variation in growth kinetics across the strains; these were most pronounced in the triple mutant and in strains lacking ArsS. Visual analysis showed that strains lacking ArsS formed large aggregates and a biofilm-like matrix at the air-liquid interface. Biofilm quantification using crystal violet assays and visualization via scanning electron microscopy (SEM) showed that all strains lacking ArsS or containing a nonphosphorylatable form of ArsR (ArsR-D52N mutant) formed significantly more biofilm than the wild-type strain. Molecular characterization of biofilm formation showed that strains containing mutations in the ArsRS pathway displayed increased levels of cell aggregation and adherence, both of which are key to biofilm development. Furthermore, SEM analysis revealed prevalent coccoid cells and extracellular matrix formation in the ArsR-D52N, ΔnikR ΔarsS, and Δfur ΔnikR ΔarsS mutant strains, suggesting that these strains may have an exacerbated stress response that further contributes to biofilm formation. Thus, H. pylori ArsRS has a previously unrecognized role in biofilm formation. IMPORTANCE Despite a paucity of regulatory proteins, adaptation is key to the survival of H. pylori within the stomach. While prior studies have focused on individual regulatory proteins, such as Fur, NikR, and ArsRS, few studies have examined the combined effect of these factors. Analysis of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS revealed a previously unrecognized role for the acid-responsive two-component system ArsRS in biofilm formation.
Collapse
Affiliation(s)
- Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kathryn P Haley
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Tennessee Valley Health Care Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
37
|
Fontes LES, Batista CS, Martimbianco ALC, Zanin CG, Riera R. N-acetylcysteine as an adjuvant therapy for Helicobacter pylori eradication. Hippokratia 2016. [DOI: 10.1002/14651858.cd012357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Luís Eduardo S Fontes
- Faculty of Medicine of Petropolis; Department of Internal Medicine/Gastroenterology; Rua Madalena Tagliaferro, 166 Petrópolis RS Brazil 25645-450
| | - Claudio S Batista
- Faculty of Medicine of Petropolis; Department of Gynecology and Obstetrics; Av Barao do Rio Branco, 1003 Petrópolis Rio de Janeiro Brazil 25.680-120
| | - Ana Luiza C Martimbianco
- Brazilian Cochrane Centre; Centro de Estudos em Medicina Baseada em Evidências e Avaliação Tecnológica em Saúde; Rua Borges Lagoa, 564 cj 63 São Paulo SP Brazil 04038-000
| | | | - Rachel Riera
- Brazilian Cochrane Centre; Centro de Estudos em Medicina Baseada em Evidências e Avaliação Tecnológica em Saúde; Rua Borges Lagoa, 564 cj 63 São Paulo SP Brazil 04038-000
| |
Collapse
|
38
|
Attaran B, Falsafi T, Moghaddam AN. Study of biofilm formation in C57Bl/6J mice by clinical isolates of Helicobacter pylori. Saudi J Gastroenterol 2016; 22:161-168. [PMID: 26997224 PMCID: PMC4817301 DOI: 10.4103/1319-3767.178529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIM Despite the significant number of studies on H. pylori pathogenesis, not much data has been published concerning its ability to form biofilm in the host stomach. This study aims to evaluate the potential of clinical isolates of H. pylori to form biofilm in C57BL/6J mice model. MATERIALS AND METHODS Two strains of H. pylori were selected from a collection of clinical isolates; one (19B), an efficient biofilm producer and the other (4B), with weak biofilm-forming ability. Mice infected through gastric avages were examined after one and two weeks. Colonization was determined by CFU and urease activity; the anti-H. pylori IgA was measured by ELISA, and chronic infections were evaluated by histopathology. Bacterial communities within mucosal sections were studied by immunofluorescence and scanning electron microscopy (SEM). RESULTS Successful infection was obtained by both test strains. Strain 19B with higher ability to form biofilm in vitro also showed a higher colonization rate in the mice stomach one week after infection. Difference (P < 0.05) in IgA titers was observed between the infected mice and the controls as well as between 19B and 4B infected mice, two weeks after the last challenge. Immunofluorescence and SEM results showed tightly colonizing H. pylori in stomach mucosal sections and in squamous and glandular epithelium. CONCLUSION H. pylori is able to form biofilm in the mouse stomach and induce IgA production, reflecting the same potential as in humans. Firm attachment of coccoid form bacteria to host cells suggests the importance of this state in biofilm formation by H. pylori. Occurrence of biofilm in squamous and glandular epithelium of the mouse stomach proposes that H. pylori can all parts of the upper gastrointestinal tract.
Collapse
Affiliation(s)
- Bahareh Attaran
- Department of Microbiology, School of Biology, Alzahra University, Tehran, Iran
| | - Tahereh Falsafi
- Department of Microbiology, School of Biology, Alzahra University, Tehran, Iran
| | | |
Collapse
|
39
|
Zhang L, Wu WKK, Gallo RL, Fang EF, Hu W, Ling TKW, Shen J, Chan RLY, Lu L, Luo XM, Li MX, Chan KM, Yu J, Wong VWS, Ng SC, Wong SH, Chan FKL, Sung JJY, Chan MTV, Cho CH. Critical Role of Antimicrobial Peptide Cathelicidin for Controlling Helicobacter pylori Survival and Infection. THE JOURNAL OF IMMUNOLOGY 2016; 196:1799-1809. [DOI: 10.4049/jimmunol.1500021] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The antimicrobial peptide cathelicidin is critical for protection against different kinds of microbial infection. This study sought to elucidate the protective action of cathelicidin against Helicobacter pylori infection and its associated gastritis. Exogenous cathelicidin was found to inhibit H. pylori growth, destroy the bacteria biofilm, and induce morphological alterations in H. pylori membrane. Additionally, knockdown of endogenous cathelicidin in human gastric epithelial HFE-145 cells markedly increased the intracellular survival of H. pylori. Consistently, cathelicidin knockout mice exhibited stronger H. pylori colonization, higher expression of proinflammatory cytokines IL-6, IL-1β, and ICAM1, and lower expression of the anti-inflammatory cytokine IL-10 in the gastric mucosa upon H. pylori infection. In wild-type mice, H. pylori infection also stimulated gastric epithelium-derived cathelicidin production. Importantly, pretreatment with bioengineered Lactococcus lactis that actively secretes cathelicidin significantly increased mucosal cathelicidin levels and reduced H. pylori infection and the associated inflammation. Moreover, cathelicidin strengthened the barrier function of gastric mucosa by stimulating mucus synthesis. Collectively, these findings indicate that cathelicidin plays a significant role as a potential natural antibiotic for H. pylori clearance and a therapeutic agent for chronic gastritis.
Collapse
Affiliation(s)
- Lin Zhang
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - William K. K. Wu
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
- §Department of Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, China
| | - Richard L. Gallo
- ¶Division of Dermatology, University of California, San Diego, La Jolla, CA 92093
| | - Evandro F. Fang
- ‖Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224
| | - Wei Hu
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Thomas K. W. Ling
- **Department of Microbiology, Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Jing Shen
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Ruby L. Y. Chan
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Lan Lu
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Xiao M. Luo
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Ming X. Li
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Kam M. Chan
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| | - Jun Yu
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Vincent W. S. Wong
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Siew C. Ng
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H. Wong
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Francis K. L. Chan
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Joseph J. Y. Sung
- *Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- †Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
- ‡CUHK Shenzhen Research Institute, Shenzhen 518057, China
| | - Matthew T. V. Chan
- §Department of Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, China
| | - Chi H. Cho
- #School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China; and
| |
Collapse
|
40
|
Wang L, Xie HZ, Liu YB, Wang BS, Zhang LY, Ye CH, Chen GF, Fu ZB, Liu CJ, Wen BS. Helicobacter pylori infection density and colonization depth in gastric mucosa: Influence on pathogenicity and drug resistance. Shijie Huaren Xiaohua Zazhi 2016; 24:347-354. [DOI: 10.11569/wcjd.v24.i3.347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To observe the influence of Helicobacter pylori (H. pylori) infection density and colonization depth in the gastric mucosa on the severity of gastric mucosal inflammation, in order to approach the pathogenicity and the mechanism of antibiotic resistance caused by the H. pylori biofilm.
METHODS: Gastric mucosal biopsy specimens were histopathologically studied in 158 patients with H. pylori positive chronic gastritis and peptic ulcer. The severity of gastric mucosa inflammation and the H. pylori infection density were evaluated using haematoxylin-eosin staining to explore the relationship between H. pylori infection density and the severity of gastric mucosa inflammation. The colonization of H. pylori in different layers of the gastric mucosa (gastric mucosa surface, gastric pits, and superficial glands) was observed by immunohistochemistry. The relationship between the H. pylori colonization depth and the severity of gastric mucosa inflammation was analyzed statistically.
RESULTS: H. pylori can colonize at the surface, pits and superficial glands of the gastric mucosa as revealed by immunohistochemistry. Of 158 gastric mucosa specimens, 41 had low H. pylori density (+) at the surface of the gastric mucosa, 38 had moderate H. pylori density (++), and 79 had high density (+++); the corresponding figures were 29, 42 and 74 at the pits, and 51, 51 and 39 at the superficial glands. There was a significant association between H. pylori density and the inflammatory severity at the surface and pits (P < 0.05), but not at the superficial glands (P > 0.05). Of 158 gastric mucosa specimens, 40 had low H. pylori density (+) at the surface of the gastric mucosa, 39 had moderate H. pylori density (++), and 79 had high density (+++); the corresponding figures were 29, 41 and 74 at the pits, and 48, 53 and 29 at the superficial glands. There were significant associations between H. pylori density and inflammatory activity at the surface, pits, and superficial glands (P < 0.05). Higher H. pylori density was associated with more severe mucosal inflammation.
CONCLUSION: H. pylori can colonize at the surface, pits and superficial glands of the gastric mucosa layer. There is a significant association between H. pylori infection density and the severity of gastric mucosa inflammation. H. pylori biofilm, which is formed depending on bacterial number (infection density), may participate in the pathogenicity and antibiotics resistance of H. pylori.
Collapse
|
41
|
Yonezawa H, Osaki T, Kamiya S. Biofilm Formation by Helicobacter pylori and Its Involvement for Antibiotic Resistance. BIOMED RESEARCH INTERNATIONAL 2015; 2015:914791. [PMID: 26078970 PMCID: PMC4452508 DOI: 10.1155/2015/914791] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/25/2014] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms are communities of microorganisms attached to a surface. Biofilm formation is critical not only for environmental survival but also for successful infection. Helicobacter pylori is one of the most common causes of bacterial infection in humans. Some studies demonstrated that this microorganism has biofilm forming ability in the environment and on human gastric mucosa epithelium as well as on in vitro abiotic surfaces. In the environment, H. pylori could be embedded in drinking water biofilms through water distribution system in developed and developing countries so that the drinking water may serve as a reservoir for H. pylori infection. In the human stomach, H. pylori forms biofilms on the surface of gastric mucosa, suggesting one possible explanation for eradication therapy failure. Finally, based on the results of in vitro analyses, H. pylori biofilm formation can decrease susceptibility to antibiotics and H. pylori antibiotic resistance mutations are more frequently generated in biofilms than in planktonic cells. These observations indicated that H. pylori biofilm formation may play an important role in preventing and controlling H. pylori infections. Therefore, investigation of H. pylori biofilm formation could be effective in elucidating the detailed mechanisms of infection and colonization by this microorganism.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
42
|
Gurunathan S, Jeong JK, Han JW, Zhang XF, Park JH, Kim JH. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. NANOSCALE RESEARCH LETTERS 2015; 10:35. [PMID: 25852332 PMCID: PMC4384991 DOI: 10.1186/s11671-015-0747-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/10/2015] [Indexed: 05/18/2023]
Abstract
Silver nanoparticles (AgNPs) are prominent group of nanomaterials and are recognized for their diverse applications in various health sectors. This study aimed to synthesize the AgNPs using the leaf extract of Artemisia princeps as a bio-reductant. Furthermore, we evaluated the multidimensional effect of the biologically synthesized AgNPs in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma (A549) cells. UV-visible (UV-vis) spectroscopy confirmed the synthesis of AgNPs. X-ray diffraction (XRD) indicated that the AgNPs are specifically indexed to a crystal structure. The results from Fourier transform infrared spectroscopy (FTIR) indicate that biomolecules are involved in the synthesis and stabilization of AgNPs. Dynamic light scattering (DLS) studies showed the average size distribution of the particle between 10 and 40 nm, and transmission electron microscopy (TEM) confirmed that the AgNPs were significantly well separated and spherical with an average size of 20 nm. AgNPs caused dose-dependent decrease in cell viability and biofilm formation and increase in reactive oxygen species (ROS) generation and DNA fragmentation in H. pylori and H. felis. Furthermore, AgNPs induced mitochondrial-mediated apoptosis in A549 cells; conversely, AgNPs had no significant effects on L132 cells. The results from this study suggest that AgNPs could cause cell-specific apoptosis in mammalian cells. Our findings demonstrate that this environmentally friendly method for the synthesis of AgNPs and that the prepared AgNPs have multidimensional effects such as anti-bacterial and anti-biofilm activity against H. pylori and H. felis and also cytotoxic effects against human cancer cells. This report describes comprehensively the effects of AgNPs on bacteria and mammalian cells. We believe that biologically synthesized AgNPs will open a new avenue towards various biotechnological and biomedical applications in the near future.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
- />GS Institute of Bio and Nanotechnology, Coimbatore, Tamilnadu India
| | - Jae-Kyo Jeong
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Jae Woong Han
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Xi-Feng Zhang
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Jung Hyun Park
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| | - Jin-Hoi Kim
- />Department of Animal Biotechnology, Konkuk University, 1 Hwayang-Dong, Gwanjgin-gu, 143-701 Seoul South Korea
| |
Collapse
|
43
|
Emami MH, Zobeiri M, Rahimi H, Arjomandi F, Daghagzadeh H, Adibi P, Hashemi J. N-acetyl cysteine as an adjunct to standard anti-Helicobacter pylori eradication regimen in patients with dyspepsia: A prospective randomized, open-label trial. Adv Biomed Res 2014; 3:189. [PMID: 25298958 PMCID: PMC4189211 DOI: 10.4103/2277-9175.140403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/12/2012] [Indexed: 12/29/2022] Open
Abstract
Background: Increasing antibiotic resistance of Helicobacter pylori (H. pylori) which is associated with diseases of the upper gastrointestinal tract, has made alternative treatments necessary. This study compares the efficacy of adding N-acetyl cysteine (NAC) to standard regimen for H. pylori eradication. Materials and Methods: We conducted a randomized, open-label trial, comparing the efficacy of 14 days of quadruple therapy with Amoxicillin, Bismuth citrate, Omeprazole, Clarithromycin (group A) versus 14 days of above regimen plus NAC (group B) in adult patients with dyspepsia. Primary objective was H. pylori eradication. Compliance and side effects were determined by questionnaires. Our analysis was by intention-to-treat (ITT) and per-protocol. This study is registered with www.IRCT.ir, number: IRCT201201078634N1. Result: A total of 121 participants aged 21-76 years with a mean age of 44.5 ± 14.1, and 52.9% female, were randomly allocated a treatment: 60 with 14-day standard therapy and 61 with 14-day standard therapy with NAC. The eradication rate in groups A and B with ITT analyses was 49/60 (81.7%; 95% [confidence intervals] CI = 71.6-91.8%) and 50/61 (82%; 95% CI = 72-91.9%), respectively (P = 0.96). In per-protocol analysis, the rate of H. pylori eradication in groups A and B was 45/54 (83.3%; 95% CI = 73.1-93.6%) and 45/53 (84.9%; 95% CI = 74.9-94.9%), respectively (P = 0.82). Minor well tolerated side effects were reported in 15 (34.9%) and 21 (35.6%) patients of groups A and B, respectively, and only one therapy cessation in group A was created. Conclusion: Standard 14-day triple-drug therapy with NAC is not preferable to standard drug regimens for H. pylori infection.
Collapse
Affiliation(s)
- Mohammad Hassan Emami
- Poursina Hakim Research Center Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Zobeiri
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Fariba Arjomandi
- Department of Community Medicine, Islamic Azad University, Najafabad Branch, Iran
| | - Hamed Daghagzadeh
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Adibi
- Poursina Hakim Research Center Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jalal Hashemi
- Department of Gastroenterology and Liver Disease, Ahvaz University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Matsui H, Takahashi T, Murayama SY, Uchiyama I, Yamaguchi K, Shigenobu S, Matsumoto T, Kawakubo M, Horiuchi K, Ota H, Osaki T, Kamiya S, Smet A, Flahou B, Ducatelle R, Haesebrouck F, Takahashi S, Nakamura S, Nakamura M. Development of new PCR primers by comparative genomics for the detection of Helicobacter suis in gastric biopsy specimens. Helicobacter 2014; 19:260-71. [PMID: 24673878 DOI: 10.1111/hel.12127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although the infection rate of Helicobacter suis is significantly lower than that of Helicobacter pylori, the H. suis infection is associated with a high rate of gastric mucosa-associated lymphoid tissue (MALT) lymphoma. In addition, in vitro cultivation of H. suis remains difficult, and some H. suis-infected patients show negative results on the urea breath test (UBT). MATERIALS AND METHODS Female C57BL/6J mice were orally inoculated with mouse gastric mucosal homogenates containing H. suis strains TKY or SNTW101 isolated from a cynomolgus monkey or a patient suffering from nodular gastritis, respectively. The high-purity chromosomal DNA samples of H. suis strains TKY and SNTW101 were prepared from the infected mouse gastric mucosa. The SOLiD sequencing of two H. suis genomes enabled comparative genomics of 20 Helicobacter and 11 Campylobacter strains for the identification of the H. suis-specific nucleotide sequences. RESULTS Oral inoculation with mouse gastric mucosal homogenates containing H. suis strains TKY and SNTW101 induced gastric MALT lymphoma and the formation of gastric lymphoid follicles, respectively, in C57BL/6J mice. Two conserved nucleotide sequences among six H. suis strains were identified and were used to design diagnostic PCR primers for the detection of H. suis. CONCLUSIONS There was a strong association between the H. suis infection and gastric diseases in the C57BL/6 mouse model. PCR diagnosis using an H. suis-specific primer pair is a valuable method for detecting H. suis in gastric biopsy specimens.
Collapse
Affiliation(s)
- Hidenori Matsui
- Kitasato Institute for Life Sciences and Graduate School of Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
García A, Salas-Jara MJ, Herrera C, González C. Biofilm and Helicobacter pylori: From environment to human host. World J Gastroenterol 2014; 20:5632-5638. [PMID: 24914322 PMCID: PMC4024771 DOI: 10.3748/wjg.v20.i19.5632] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 11/16/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a Gram negative pathogen that selectively colonizes the human gastric epithelium. Over 50% of the world population is infected with H. pylori reaching up to 90% of infected individuals in developing countries. Nonetheless the increased impact upon public health care, its reservoir and the transmission pathway of the species has not been clearly established yet. Molecular studies allowed the detection of H. pylori in various aquatic environments, even forming biofilm in tap water distribution systems in several countries, suggesting a role of water as a possible reservoir of the pathogen. The persistence of human infection with H. pylori and the resistance of clinical isolates to commonly used antibiotics in eradication therapy have been related to the genetic variability of the species and its ability to develop biofilm, demonstrated both in vivo and in vitro experiments. Thus, during the last years, experimental work with this pathogen has been focused in the search for biofilm inhibitors and biofilm destabilizing agents. However, only two anti- H. pylori biofilm disrupting agents have been successfully used: Curcumin - a natural dye - and N-acetyl cysteine - a mucolytic agent used in respiratory diseases. The main goal of this review was to discuss the evidences available in the literature supporting the ability of H. pylori to form biofilm upon various surfaces in aquatic environments, both in vivo and in vitro. The results published and our own observations suggest that the ability of H. pylori to form biofilm may be important for surviving under stress conditions or in the spread of the infection among humans, mainly through natural water sources and water distribution systems.
Collapse
|
46
|
Helicobacter pylori. MICROBIOLOGY OF WATERBORNE DISEASES 2014. [DOI: 10.1016/b978-0-12-415846-7.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
47
|
Yonezawa H, Osaki T, Hanawa T, Kurata S, Ochiai K, Kamiya S. Impact of Helicobacter pylori biofilm formation on clarithromycin susceptibility and generation of resistance mutations. PLoS One 2013; 8:e73301. [PMID: 24039906 PMCID: PMC3765302 DOI: 10.1371/journal.pone.0073301] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/18/2013] [Indexed: 12/11/2022] Open
Abstract
The human gastric pathogen Helicobacter pylori forms biofilms in vitro and in vivo. The purpose of this study was to evaluate the effects of H. pylori biofilm formation in vitro on clarithromycin (CLR) susceptibility. CLR susceptibility of H. pylori intermediate (2-day) and mature (3-day) biofilms on glass coverslips was determined at concentrations from 0.03 to 0.5 µg/ml. H. pylori biofilm biomass was increased after treatment with CLR at minimum inhibitory concentration levels by up to 4-fold (2-day biofilm) and 16-fold (3-day biofilm). Minimum bactericidal concentrations of CLR against cells in a biofilm were higher (1.0 µg/ml) than that for planktonic cells (0.25 µg/ml). It was shown that the expression of efflux pump genes was significantly increased in biofilm cells. In addition, exposure of biofilms to CLR resulted in high level resistance generation compared to planktonic cells with increased resistance associated with the presence of a point mutation at either position 2142 or 2143 in the domain V loop of the 23S rRNA gene. These results demonstrate that H. pylori biofilm formation decreases the susceptibility to CLR and that H. pylori CLR resistance mutations are more frequently generated in biofilms than in planktonic cells.
Collapse
Affiliation(s)
- Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomoko Hanawa
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Kurata
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Kuniyasu Ochiai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
48
|
Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce. PLoS One 2013; 8:e57272. [PMID: 23451197 PMCID: PMC3579871 DOI: 10.1371/journal.pone.0057272] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica is a frequent contaminant of minimally-processed fresh produce linked to major foodborne disease outbreaks. The molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored. In our recent study, we showed that the expression of a putative stress regulatory gene, ycfR, was significantly induced in S. enterica upon exposure to chlorine treatment, a common industrial practice for washing and decontaminating fresh produce during minimal processing. Two additional genes, sirA involved in S. enterica biofilm formation and yigG of unknown function, were also found to be differentially regulated under chlorine stress. To further characterize the roles of ycfR, sirA, and yigG in S. enterica attachment and survival on fresh produce, we constructed in-frame deletions of all three genes in two different S. enterica serovars, Typhimurium and Saintpaul, which have been implicated in previous disease outbreaks linked to fresh produce. Bacterial attachment to glass and polystyrene microtiter plates, cell aggregation and hydrophobicity, chlorine resistance, and surface attachment to intact spinach leaf and grape tomato were compared among wild-type strains, single-gene deletion mutants, and their respective complementation mutants. The results showed that deletions of ycfR, sirA, and yigG reduced bacterial attachment to glass and polystyrene as well as fresh produce surface with or without chlorine treatment in both Typhimurium and Saintpaul. Deletion of ycfR in Typhimurium significantly reduced bacterial chlorine resistance and the attachment to the plant surfaces after chlorinated water washes. Deletions of ycfR in Typhimurium and yigG in Saintpaul resulted in significant increase in cell aggregation. Our findings suggest that ycfR, sirA, and yigG collectively contribute to S. enterica surface attachment and survival during post-harvest minimal processing of fresh produce.
Collapse
|
49
|
von Rosenvinge EC, O'May GA, Macfarlane S, Macfarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal diseases. Pathog Dis 2013; 67:25-38. [PMID: 23620117 DOI: 10.1111/2049-632x.12020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/12/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
The majority of bacteria live not planktonically, but as residents of sessile biofilm communities. Such populations have been defined as 'matrix-enclosed microbial accretions, which adhere to both biological and nonbiological surfaces'. Bacterial formation of biofilm is implicated in many chronic disease states. Growth in this mode promotes survival by increasing community recalcitrance to clearance by host immune effectors and therapeutic antimicrobials. The human gastrointestinal (GI) tract encompasses a plethora of nutritional and physicochemical environments, many of which are ideal for biofilm formation and survival. However, little is known of the nature, function, and clinical relevance of these communities. This review summarizes current knowledge of the composition and association with health and disease of biofilm communities in the GI tract.
Collapse
Affiliation(s)
- Erik C von Rosenvinge
- Department of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
50
|
Cammarota G, Sanguinetti M, Gallo A, Posteraro B. Review article: biofilm formation by Helicobacter pylori as a target for eradication of resistant infection. Aliment Pharmacol Ther 2012; 36:222-30. [PMID: 22650647 DOI: 10.1111/j.1365-2036.2012.05165.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/30/2012] [Accepted: 05/14/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Helicobacter pylori is one of the most common causes of bacterial infection in humans. Resistance of this infection to conventional therapies has suggested the role of a biofilm-growing bacterium, which is recalcitrant to many antimicrobial agents. AIM To review the current knowledge on biofilm formation by H. pylori and to discuss the implications of this behaviour in the context of human infections and their treatment. RESULTS Scanning electron microscopy analysis of gastric biopsies of infected patients demonstrated that H. pylori forms biofilm on the gastric mucosa epithelium. Adaptation to the biofilm environment may produce many persister cells, namely dormant cells, which are highly tolerant to antimicrobials that could account for the recalcitrance of H. pylori infections in vivo. Resistant H. pylori infection has become increasingly common with triple or quadruple therapy, even in the presence of H. pylori strains susceptible to all antibiotics. The mucolytic and thiol-containing antioxidant N-acetylcysteine, associated with antibiotics, was successfully used in clinic for therapy of patients with chronic respiratory tract infections. Consistently, N-acetylcysteine treatment prior to starting antibiotic therapy allowed the disappearance of gastric biofilm in all patients in whom H. pylori was eradicated. CONCLUSION Effective strategies targeting H. pylori biofilm infections are possible, through the use of substances degrading components of the biofilm.
Collapse
Affiliation(s)
- G Cammarota
- Department of Internal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | | | | |
Collapse
|