1
|
Paslawski W, Khosousi S, Hertz E, Markaki I, Boxer A, Svenningsson P. Large-scale proximity extension assay reveals CSF midkine and DOPA decarboxylase as supportive diagnostic biomarkers for Parkinson's disease. Transl Neurodegener 2023; 12:42. [PMID: 37667404 PMCID: PMC10476347 DOI: 10.1186/s40035-023-00374-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND There is a need for biomarkers to support an accurate diagnosis of Parkinson's disease (PD). Cerebrospinal fluid (CSF) has been a successful biofluid for finding neurodegenerative biomarkers, and modern highly sensitive multiplexing methods offer the possibility to perform discovery studies. Using a large-scale multiplex proximity extension assay (PEA) approach, we aimed to discover novel diagnostic protein biomarkers allowing accurate discrimination of PD from both controls and atypical Parkinsonian disorders (APD). METHODS CSF from patients with PD, corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), multiple system atrophy and controls, were analysed with Olink PEA panels. Three cohorts were used in this study, comprising 192, 88 and 36 cases, respectively. All samples were run on the Cardiovascular II, Oncology II and Metabolism PEA panels. RESULTS Our analysis revealed that 26 and 39 proteins were differentially expressed in the CSF of test and validation PD cohorts, respectively, compared to controls. Among them, 6 proteins were changed in both cohorts. Midkine (MK) was increased in PD with the strongest effect size and results were validated with ELISA. Another most increased protein in PD, DOPA decarboxylase (DDC), which catalyses the decarboxylation of DOPA (L-3,4-dihydroxyphenylalanine) to dopamine, was strongly correlated with dopaminergic treatment. Moreover, Kallikrein 10 was specifically changed in APD compared with both PD and controls, but unchanged between PD and controls. Wnt inhibitory factor 1 was consistently downregulated in CBS and PSP patients in two independent cohorts. CONCLUSIONS Using the large-scale PEA approach, we have identified potential novel PD diagnostic biomarkers, most notably MK and DDC, in the CSF of PD patients.
Collapse
Affiliation(s)
- Wojciech Paslawski
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shervin Khosousi
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ellen Hertz
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ioanna Markaki
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Adam Boxer
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
2
|
Stem Cells and Targeted Gene Therapy in Brain and Spinal Cord Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1394:137-152. [PMID: 36587386 DOI: 10.1007/978-3-031-14732-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The CNS tumors, in particular those with malignant characteristics, are prominent burdens around the world with high mortality and low cure rate. Given that, researchers were curious about novel treatments with promising effectiveness which resulted in shifting the dogmatism era of neurogenesis to the current concept of postnatal neurogenesis. Considering all existing stem cells, various strategies are available for treating CNS cancers, including hematopoietic stem cells transplantation, mesenchymal stem cells transplantation, neural stem cells (NSCs) transplantation, and using stem cells as genetic carriers called "suicide gene therapy". Despite some complications, this ongoing therapeutic method has succeeded in decreasing tumor volume, inhibiting tumor progression, and enhancing patients' survival. These approaches could lead to acceptable results, relatively better safety, and tolerable side effects compared to conventional chemo and radiotherapy. Accordingly, this treatment will be applicable to a wide range of CNS tumors in the near future. Furthermore, tumor genomic analysis and understanding of the underlying molecular mechanisms will help researchers determine patient selection criteria for targeted gene therapy.
Collapse
|
3
|
The promise of the TGF-β superfamily as a therapeutic target for Parkinson's disease. Neurobiol Dis 2022; 171:105805. [PMID: 35764291 DOI: 10.1016/j.nbd.2022.105805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
A large body of evidence underscore the regulatory role of TGF-β superfamily in the central nervous system. Components of the TGF-β superfamily modulate key events during embryonic brain development and adult brain tissue injury repair. With respect to Parkinson's disease (PD), TGF-ß signaling pathways are implicated in the differentiation, maintenance and synaptic function of the dopaminergic neurons, as well as in processes related to the activation state of astrocytes and microglia. In vitro and in vivo studies using toxin models, have interrogated on the dopaminotrophic and protective role of the TGF-β superfamily members. The evolution of genetic and animal models of PD that more closely recapitulate the disease condition has made possible the dissection of intracellular pathways in response to TGF-ß treatment. Although the first clinical trials using GDNF did not meet their primary endpoints, substantial work has been carried out to reappraise the TGF-β superfamily's clinical benefit.
Collapse
|
4
|
Goulding SR, Anantha J, Collins LM, Sullivan AM, O'Keeffe GW. Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease. Neural Regen Res 2022; 17:38-44. [PMID: 34100424 PMCID: PMC8451580 DOI: 10.4103/1673-5374.314290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/08/2021] [Accepted: 01/24/2021] [Indexed: 11/04/2022] Open
Abstract
Parkinson's disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson's disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson's disease. We discuss new work on growth/differentiation factor 5's mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson's disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Susan R. Goulding
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Jayanth Anantha
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Louise M. Collins
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aideen M. Sullivan
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W. O'Keeffe
- Department of Anatomy and Neuroscience, and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Goulding SR, Lévesque M, Sullivan AM, Collins LM, O'Keeffe GW. Quinacrine and Niclosamide Promote Neurite Growth in Midbrain Dopaminergic Neurons Through the Canonical BMP-Smad Pathway and Protect Against Neurotoxin and α-Synuclein-Induced Neurodegeneration. Mol Neurobiol 2021; 58:3405-3416. [PMID: 33713017 DOI: 10.1007/s12035-021-02351-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterised by nigrostriatal dopaminergic degeneration, and intracellular α-synuclein aggregation. Current pharmacological treatments are solely symptomatic so there is a need to identify agents that can slow or stop dopaminergic degeneration. One proposed class of therapeutics are neurotrophic factors which promote the survival of nigrostriatal dopaminergic neurons. However, neurotrophic factors need to be delivered directly to the brain. An alternative approach may be to identify pharmacological agents which can reach the brain to stimulate neurotrophic factor expression and/or their signalling pathways in dopaminergic neurons. BMP2 is a neurotrophic factor that is expressed in the human substantia nigra; exogenous BMP2 administration protects against dopaminergic degeneration in in vitro models of PD. In this study, we investigated the neurotrophic potential of two FDA-approved drugs, quinacrine and niclosamide, that are modulators of BMP2 signalling. We report that quinacrine and niclosamide, like BMP2, significantly increased neurite length, as a readout of neurotrophic action, in SH-SY5Y cells and dopaminergic neurons in primary cultures of rat ventral mesencephalon. We also show that these effects of quinacrine and niclosamide require the activation of BMP-Smad signalling. Finally, we demonstrate that quinacrine and niclosamide are neuroprotective against degeneration induced by the neurotoxins, MPP+ and 6-OHDA, and by viral-mediated overexpression of α-synuclein in vitro. Collectively, this study identifies two drugs, that are safe for use in patients' to 'are approved for human use, that exert neurotrophic effects on dopaminergic neurons through modulation of BMP-Smad signalling. This rationalises the further study of drugs that target the BMP-Smad pathway as potential neuroprotective pharmacotherapy for Parkinson's disease.
Collapse
Affiliation(s)
- Susan R Goulding
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Cervo Brain Research Centre, Université Laval, Quebec, QC, Canada
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Louise M Collins
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland.
- Department of Physiology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
6
|
Lorenzo PI, Martin Vazquez E, López-Noriega L, Fuente-Martín E, Mellado-Gil JM, Franco JM, Cobo-Vuilleumier N, Guerrero Martínez JA, Romero-Zerbo SY, Perez-Cabello JA, Rivero Canalejo S, Campos-Caro A, Lachaud CC, Crespo Barreda A, Aguilar-Diosdado M, García Fuentes E, Martin-Montalvo A, Álvarez Dolado M, Martin F, Rojo-Martinez G, Pozo D, Bérmudez-Silva FJ, Comaills V, Reyes JC, Gauthier BR. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity. Theranostics 2021; 11:6983-7004. [PMID: 34093866 PMCID: PMC8171100 DOI: 10.7150/thno.57237] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: We recently demonstrated that the 'Metabesity' factor HMG20A regulates islet beta-cell functional maturity and adaptation to physiological stress such as pregnancy and pre-diabetes. HMG20A also dictates central nervous system (CNS) development via inhibition of the LSD1-CoREST complex but its expression pattern and function in adult brain remains unknown. Herein we sought to determine whether HMG20A is expressed in the adult CNS, specifically in hypothalamic astrocytes that are key in glucose homeostasis and whether similar to islets, HMG20A potentiates astrocyte function in response to environmental cues. Methods: HMG20A expression profile was assessed by quantitative PCR (QT-PCR), Western blotting and/or immunofluorescence in: 1) the hypothalamus of mice exposed or not to either a high-fat diet or a high-fat high-sucrose regimen, 2) human blood leukocytes and adipose tissue obtained from healthy or diabetic individuals and 3) primary mouse hypothalamic astrocytes exposed to either high glucose or palmitate. RNA-seq and cell metabolic parameters were performed on astrocytes treated or not with a siHMG20A. Astrocyte-mediated neuronal survival was evaluated using conditioned media from siHMG20A-treated astrocytes. The impact of ORY1001, an inhibitor of the LSD1-CoREST complex, on HMG20A expression, reactive astrogliosis and glucose metabolism was evaluated in vitro and in vivo in high-fat high-sucrose fed mice. Results: We show that Hmg20a is predominantly expressed in hypothalamic astrocytes, the main nutrient-sensing cell type of the brain. HMG20A expression was upregulated in diet-induced obesity and glucose intolerant mice, correlating with increased transcript levels of Gfap and Il1b indicative of inflammation and reactive astrogliosis. Hmg20a transcript levels were also increased in adipose tissue of obese non-diabetic individuals as compared to obese diabetic patients. HMG20A silencing in astrocytes resulted in repression of inflammatory, cholesterol biogenesis and epithelial-to-mesenchymal transition pathways which are hallmarks of reactive astrogliosis. Accordingly, HMG20A depleted astrocytes exhibited reduced mitochondrial bioenergetics and increased susceptibility to apoptosis. Neuron viability was also hindered in HMG20A-depleted astrocyte-derived conditioned media. ORY1001 treatment rescued expression of reactive astrogliosis-linked genes in HMG20A ablated astrocytes while enhancing cell surface area, GFAP intensity and STAT3 expression in healthy astrocytes, mimicking the effect of HMG20A. Furthermore, ORY1001 treatment protected against obesity-associated glucose intolerance in mice correlating with a regression of hypothalamic HMG20A expression, indicative of reactive astrogliosis attenuation with improved health status. Conclusion: HMG20A coordinates the astrocyte polarization state. Under physiological pressure such as obesity and insulin resistance that induces low grade inflammation, HMG20A expression is increased to induce reactive astrogliosis in an attempt to preserve the neuronal network and re-establish glucose homeostasis. Nonetheless, a chronic metabesity state or functional mutations will result in lower levels of HMG20A, failure to promote reactive astrogliosis and increase susceptibility of neurons to stress-induced apoptosis. Such effects could be reversed by ORY1001 treatment both in vitro and in vivo, paving the way for a new therapeutic approach for Type 2 Diabetes Mellitus.
Collapse
Affiliation(s)
- Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Eugenia Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Esther Fuente-Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José M. Mellado-Gil
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Jaime M. Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José A. Guerrero Martínez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
| | - Jesús A. Perez-Cabello
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sabrina Rivero Canalejo
- Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville, Spain
| | - Antonio Campos-Caro
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Christian Claude Lachaud
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Alejandra Crespo Barreda
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Aguilar-Diosdado
- University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
- Endocrinology and Metabolism Department, University Hospital “Puerta del Mar”, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), Cádiz, Spain
| | - Eduardo García Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Spain
| | - Alejandro Martin-Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Manuel Álvarez Dolado
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gemma Rojo-Martinez
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Unidad de Gestión Clínica Intercentros de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - José C. Reyes
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
7
|
Lin Y, Zhou M, Dai W, Guo W, Qiu J, Zhang Z, Mo M, Ding L, Ye P, Wu Y, Zhu X, Wu Z, Xu P, Chen X. Bone-Derived Factors as Potential Biomarkers for Parkinson's Disease. Front Aging Neurosci 2021; 13:634213. [PMID: 33732138 PMCID: PMC7959739 DOI: 10.3389/fnagi.2021.634213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Parkinson’s disease (PD) and osteoporosis are both common aging diseases. It is reported that PD has a close relationship with osteoporosis and bone secretory proteins may be involved in disease progression. Objectives: To detect the bone-derived factors in plasma and cerebrospinal fluid (CSF) of patients with PD and evaluate their correlations with C-reaction protein (CRP) level, motor impairment, and Hoehn-Yahr (HY) stage of the disease. Methods: We included 250 PD patients and 250 controls. Levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), Sclerostin (SO), Bone morphogenetic protein 2 (BMP2), and Dickkopf-1 (DKK-1) in plasma and CSF were measured by custom protein antibody arrays. Data were analyzed using Mann–Whitney U-test and Spearman’s receptor activator of NF-κB (RANK) correlation. Results: Plasma levels of OCN and OPN were correlated with CRP levels and HY stage and motor impairment of PD. Furthermore, the plasma assessment with CSF detection may enhance their potential prediction on PD. Conclusions: OCN and OPN may serve as potential biomarkers for PD. The inflammation response may be involved in the cross-talk between the two factors and PD.
Collapse
Affiliation(s)
- Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D, Feng J. Review Cerebral Ischemic Tolerance and Preconditioning: Methods, Mechanisms, Clinical Applications, and Challenges. Front Neurol 2020; 11:812. [PMID: 33071923 PMCID: PMC7530891 DOI: 10.3389/fneur.2020.00812] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide, and it is increasing in prevalence. The limited therapeutic window and potential severe side effects prevent the widespread clinical application of the venous injection of thrombolytic tissue plasminogen activator and thrombectomy, which are regarded as the only approved treatments for acute ischemic stroke. Triggered by various types of mild stressors or stimuli, ischemic preconditioning (IPreC) induces adaptive endogenous tolerance to ischemia/reperfusion (I/R) injury by activating a multitude cascade of biomolecules, for example, proteins, enzymes, receptors, transcription factors, and others, which eventually lead to transcriptional regulation and epigenetic and genomic reprogramming. During the past 30 years, IPreC has been widely studied to confirm its neuroprotection against subsequent I/R injury, mainly including local ischemic preconditioning (LIPreC), remote ischemic preconditioning (RIPreC), and cross preconditioning. Although LIPreC has a strong neuroprotective effect, the clinical application of IPreC for subsequent cerebral ischemia is difficult. There are two main reasons for the above result: Cerebral ischemia is unpredictable, and LIPreC is also capable of inducing unexpected injury with only minor differences to durations or intensity. RIPreC and pharmacological preconditioning, an easy-to-use and non-invasive therapy, can be performed in a variety of clinical settings and appear to be more suitable for the clinical management of ischemic stroke. Hoping to advance our understanding of IPreC, this review mainly focuses on recent advances in IPreC in stroke management, its challenges, and the potential study directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Goulding SR, Sullivan AM, O'Keeffe GW, Collins LM. The potential of bone morphogenetic protein 2 as a neurotrophic factor for Parkinson's disease. Neural Regen Res 2020; 15:1432-1436. [PMID: 31997802 PMCID: PMC7059567 DOI: 10.4103/1673-5374.274327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disorder; it affects 1% of the population over the age of 65. The number of people with Parkinson's disease is set to rapidly increase due to changing demographics and there is an unmet clinical need for disease-modifying therapies. The pathological hallmarks of Parkinson's disease are the progressive degeneration of dopaminergic neurons in the substantia nigra and their axons which project to the striatum, and the aggregation of α-synuclein; these result in a range of debilitating motor and non-motor symptoms. The application of neurotrophic factors to protect and potentially regenerate the remaining dopaminergic neurons is a major area of research interest. However, this strategy has had limited success to date. Clinical trials of two well-known neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have reported limited efficacy in Parkinson's disease patients, despite these factors showing potent neurotrophic actions in animal studies. There is therefore a need to identify other neurotrophic factors that can protect against α-synuclein-induced degeneration of dopaminergic neurons. The bone morphogenetic protein (BMP) family is the largest subgroup of the transforming growth factor-β superfamily of proteins. BMPs are naturally secreted proteins that play crucial roles throughout the developing nervous system. Importantly, many BMPs have been shown to be potent neurotrophic factors for dopaminergic neurons. Here we discuss recent work showing that transcripts for the BMP receptors and BMP2 are co-expressed with several key markers of dopaminergic neurons in the human substantia nigra, and evidence for downregulation of BMP2 expression at distinct stages of Parkinson's disease. We also discuss studies that explored the effects of BMP2 treatment, in in vitro and in vivo models of Parkinson's disease. These studies found potent effects of BMP2 on dopaminergic neurites, which is important given that axon degeneration is increasingly recognized as a key early event in Parkinson's disease. Thus, the aim of this mini-review is to give an overview of the BMP family and the BMP-Smad signalling pathway, in addition to reviewing the available evidence demonstrating the potential of BMP2 for Parkinson's disease therapy.
Collapse
Affiliation(s)
- Susan R Goulding
- Department of Biological Sciences, Cork Institute of Technology; Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Louise M Collins
- Department of Anatomy and Neuroscience and Cork Neuroscience Centre; Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Goulding SR, Sullivan AM, O'Keeffe GW, Collins LM. Gene co-expression analysis of the human substantia nigra identifies BMP2 as a neurotrophic factor that can promote neurite growth in cells overexpressing wild-type or A53T α-synuclein. Parkinsonism Relat Disord 2019; 64:194-201. [PMID: 31000327 DOI: 10.1016/j.parkreldis.2019.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION α-synuclein-induced degeneration of dopaminergic neurons has been proposed to be central to the early progression of Parkinson's disease. This highlights the need to identify factors that are neuroprotective or neuroregenerative against α-synuclein-induced degeneration. Due to their potent neurotrophic effects on nigrostriatal dopaminergic neurons, we hypothesized that members of the bone morphogenetic protein (BMP) family have potential to protect these cells against α-synuclein. METHODS To identify the most relevant BMP ligands, we used unbiased gene co-expression analysis to identify all BMP family members having a significant positive correlation with five markers of dopaminergic neurons in the human substantia nigra (SN). We then tested the ability of lead BMPs to promote neurite growth in SH-SY5Y cells and in primary cultures of ventral mesencephalon (VM) dopaminergic neurons, treated with either 6-OHDA or MPP+, or overexpressing wild-type or A53T α-synuclein. RESULTS Only the expression of BMP2 was found to be significantly correlated with multiple dopaminergic markers in the SN. We found that BMP2 treatment promoted neurite growth in SH-SY5Y cells and in dopaminergic neurons. Moreover, BMP2 treatment promoted neurite growth in both SH-SY5Y cells and VM neurons, treated with the neurotoxins 6-OHDA or MPP+. Furthermore, BMP2 promoted neurite growth in cells overexpressing wild-type or A53T-α-synuclein. CONCLUSION These findings are important given that clinical trials of two neurotrophic factors, GDNF and neurturin, have failed to meet their primary endpoints. Our findings are a key first step in rationalising the further study of BMP2 as a potential neurotrophic factor in α-synuclein-based translational models of Parkinson's disease.
Collapse
Affiliation(s)
- Susan R Goulding
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland; Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland.
| | - Louise M Collins
- Department of Anatomy and Neuroscience & Cork Neuroscience Centre, University College Cork, Cork, Ireland; Department of Physiology, University College Cork, Cork, Ireland.
| |
Collapse
|
11
|
Held A, Major P, Sahin A, Reenan RA, Lipscombe D, Wharton KA. Circuit Dysfunction in SOD1-ALS Model First Detected in Sensory Feedback Prior to Motor Neuron Degeneration Is Alleviated by BMP Signaling. J Neurosci 2019; 39:2347-2364. [PMID: 30659087 PMCID: PMC6433758 DOI: 10.1523/jneurosci.1771-18.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/24/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which the origin and underlying cellular defects are not fully understood. Although motor neuron degeneration is the signature feature of ALS, it is not clear whether motor neurons or other cells of the motor circuit are the site of disease initiation. To better understand the contribution of multiple cell types in ALS, we made use of a Drosophila Sod1G85R knock-in model, in which all cells harbor the disease allele. End-stage dSod1G85R animals of both sexes exhibit severe motor deficits with clear degeneration of motor neurons. Interestingly, earlier in dSod1G85R larvae, motor function is also compromised, but their motor neurons exhibit only subtle morphological and electrophysiological changes that are unlikely to cause the observed decrease in locomotion. We analyzed the intact motor circuit and identified a defect in sensory feedback that likely accounts for the altered motor activity of dSod1G85R We found cell-autonomous activation of bone morphogenetic protein signaling in proprioceptor sensory neurons which are critical for the relay of the contractile status of muscles back to the central nerve cord, completely rescues early-stage motor defects and partially rescue late-stage motor function to extend lifespan. Identification of a defect in sensory feedback as a potential initiating event in ALS motor dysfunction, coupled with the ability of modified proprioceptors to alleviate such motor deficits, underscores the critical role that nonmotor neurons play in disease progression and highlights their potential as a site to identify early-stage ALS biomarkers and for therapeutic intervention.SIGNIFICANCE STATEMENT At diagnosis, many cellular processes are already disrupted in the amyotrophic lateral sclerosis (ALS) patient. Identifying the initiating cellular events is critical for achieving an earlier diagnosis to slow or prevent disease progression. Our findings indicate that neurons relaying sensory information underlie early stage motor deficits in a Drosophila knock-in model of ALS that best replicates gene dosage in familial ALS (fALS). Importantly, studies on intact motor circuits revealed defects in sensory feedback before evidence of motor neuron degeneration. These findings strengthen our understanding of how neural circuit dysfunctions lead to neurodegeneration and, coupled with our demonstration that the activation of bone morphogenetic protein signaling in proprioceptors alleviates both early and late motor dysfunction, underscores the importance of considering nonmotor neurons as therapeutic targets.
Collapse
Affiliation(s)
- Aaron Held
- Department of Molecular Biology, Cell Biology and Biochemistry
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Paxton Major
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Asli Sahin
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Robert A Reenan
- Department of Molecular Biology, Cell Biology and Biochemistry
| | - Diane Lipscombe
- Department of Neuroscience, and
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry,
- The Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
12
|
Brodski C, Blaess S, Partanen J, Prakash N. Crosstalk of Intercellular Signaling Pathways in the Generation of Midbrain Dopaminergic Neurons In Vivo and from Stem Cells. J Dev Biol 2019; 7:jdb7010003. [PMID: 30650592 PMCID: PMC6473842 DOI: 10.3390/jdb7010003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
Dopamine-synthesizing neurons located in the mammalian ventral midbrain are at the center stage of biomedical research due to their involvement in severe human neuropsychiatric and neurodegenerative disorders, most prominently Parkinson’s Disease (PD). The induction of midbrain dopaminergic (mDA) neurons depends on two important signaling centers of the mammalian embryo: the ventral midline or floor plate (FP) of the neural tube, and the isthmic organizer (IsO) at the mid-/hindbrain boundary (MHB). Cells located within and close to the FP secrete sonic hedgehog (SHH), and members of the wingless-type MMTV integration site family (WNT1/5A), as well as bone morphogenetic protein (BMP) family. The IsO cells secrete WNT1 and the fibroblast growth factor 8 (FGF8). Accordingly, the FGF8, SHH, WNT, and BMP signaling pathways play crucial roles during the development of the mDA neurons in the mammalian embryo. Moreover, these morphogens are essential for the generation of stem cell-derived mDA neurons, which are critical for the modeling, drug screening, and cell replacement therapy of PD. This review summarizes our current knowledge about the functions and crosstalk of these signaling pathways in mammalian mDA neuron development in vivo and their applications in stem cell-based paradigms for the efficient derivation of these neurons in vitro.
Collapse
Affiliation(s)
- Claude Brodski
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
| | - Sandra Blaess
- Institute of Reconstructive Neurobiology, University of Bonn Medical Center, 53127 Bonn, Germany.
| | - Juha Partanen
- Faculty of Biological and Environmental Sciences, FIN00014-University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014 Helsinki, Finland.
| | - Nilima Prakash
- Department Hamm 2, Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Germany.
| |
Collapse
|
13
|
Chiu CC, Lu CS, Weng YH, Chen YL, Huang YZ, Chen RS, Cheng YC, Huang YC, Liu YC, Lai SC, Lin KJ, Lin YW, Chen YJ, Chen CL, Yeh TH, Wang HL. PARK14 (D331Y) PLA2G6 Causes Early-Onset Degeneration of Substantia Nigra Dopaminergic Neurons by Inducing Mitochondrial Dysfunction, ER Stress, Mitophagy Impairment and Transcriptional Dysregulation in a Knockin Mouse Model. Mol Neurobiol 2018; 56:3835-3853. [PMID: 30088174 DOI: 10.1007/s12035-018-1118-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/11/2018] [Indexed: 12/27/2022]
Abstract
PARK14 patients with homozygous (D331Y) PLA2G6 mutation display motor deficits of pure early-onset Parkinson's disease (PD). The aim of this study is to investigate the pathogenic mechanism of mutant (D331Y) PLA2G6-induced PD. We generated knockin (KI) mouse model of PARK14 harboring homozygous (D331Y) PLA2G6 mutation. Then, we investigated neuropathological and neurological phenotypes of PLA2G6D331Y/D331Y KI mice and molecular pathogenic mechanisms of (D331Y) PLA2G6-induced degeneration of substantia nigra (SN) dopaminergic neurons. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice displayed early-onset cell death of SNpc dopaminergic neurons. Lewy body pathology was found in the SN of PLA2G6D331Y/D331Y mice. Six-or nine-month-old PLA2G6D331Y/D331Y KI mice exhibited early-onset parkinsonism phenotypes. Disrupted cristae of mitochondria were found in SNpc dopaminergic neurons of PLA2G6D331Y/D331Y mice. PLA2G6D331Y/D331Y mice displayed mitochondrial dysfunction and upregulated ROS production, which may lead to activation of apoptotic cascade. Upregulated protein levels of Grp78, IRE1, PERK, and CHOP, which are involved in activation of ER stress, were found in the SN of PLA2G6D331Y/D331Y mice. Protein expression of mitophagic proteins, including parkin and BNIP3, was downregulated in the SN of PLA2G6D331Y/D331Y mice, suggesting that (D331Y) PLA2G6 mutation causes mitophagy dysfunction. In the SN of PLA2G6D331Y/D331Y mice, mRNA levels of eight genes that are involved in neuroprotection/neurogenesis were decreased, while mRNA levels of two genes that promote apoptotic death were increased. Our results suggest that PARK14 (D331Y) PLA2G6 mutation causes degeneration of SNpc dopaminergic neurons by causing mitochondrial dysfunction, elevated ER stress, mitophagy impairment, and transcriptional abnormality.
Collapse
Affiliation(s)
- Ching-Chi Chiu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chin-Song Lu
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsin Weng
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Ling Chen
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Ying-Zu Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chuan Liu
- Division of Sports Medicine, Taiwan Landseed Hospital, Taoyuan, Taiwan
| | - Szu-Chia Lai
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Jun Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Molecular Imaging Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yan-Wei Lin
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan.,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Jie Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Chao-Lang Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, No. 252, Wuxing St, Xinyi District, Taipei City, 110, Taiwan. .,School of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Hung-Li Wang
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taoyuan, Taiwan. .,Healthy Aging Research Center, Chang Gung University College of Medicine, Taoyuan, Taiwan. .,Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Department of Physiology and Pharmacology, Chang Gung University College of Medicine, No. 259, Wen-Hwa 1st Road, Kweishan, Taoyuan, 333, Taiwan.
| |
Collapse
|
14
|
Wu KJ, Yu S, Lee JY, Hoffer B, Wang Y. Improving Neurorepair in Stroke Brain Through Endogenous Neurogenesis-Enhancing Drugs. Cell Transplant 2018; 26:1596-1600. [PMID: 29113469 PMCID: PMC5680955 DOI: 10.1177/0963689717721230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stroke induces not only cell death but also neurorepair. De novo neurogenesis has been found in the subventricular zone of the adult mammalian brain days after stroke. Most of these newly generated cells die shortly after the insult. Recent studies have shown that pharmacological manipulation can improve the survival of endogenous neuroprogenitor cells and neural regeneration in stroke rats. As these drugs target the endogenous reparative processes that occur days after stroke, they may provide a prolonged window for stroke therapy. Here, we discuss endogenous neurogenesis-enhancing drugs and review the general status of stroke therapeutics in evaluating the field of pharmacotherapy for stroke.
Collapse
Affiliation(s)
- Kuo-Jen Wu
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Seongjin Yu
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jea-Young Lee
- 2 University of South Florida Morsani College of Medicine, FL, USA
| | - Barry Hoffer
- 3 Case Western Reserve University, Cleveland, OH, USA
| | - Yun Wang
- 1 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
15
|
Yamamoto H, Kurachi M, Naruse M, Shibasaki K, Ishizaki Y. BMP4 signaling in NPCs upregulates Bcl-xL to promote their survival in the presence of FGF-2. Biochem Biophys Res Commun 2018; 496:588-593. [DOI: 10.1016/j.bbrc.2018.01.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022]
|
16
|
BMP/SMAD Pathway Promotes Neurogenesis of Midbrain Dopaminergic Neurons In Vivo and in Human Induced Pluripotent and Neural Stem Cells. J Neurosci 2018; 38:1662-1676. [PMID: 29321139 DOI: 10.1523/jneurosci.1540-17.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
The embryonic formation of midbrain dopaminergic (mDA) neurons in vivo provides critical guidelines for the in vitro differentiation of mDA neurons from stem cells, which are currently being developed for Parkinson's disease cell replacement therapy. Bone morphogenetic protein (BMP)/SMAD inhibition is routinely used during early steps of stem cell differentiation protocols, including for the generation of mDA neurons. However, the function of the BMP/SMAD pathway for in vivo specification of mammalian mDA neurons is virtually unknown. Here, we report that BMP5/7-deficient mice (Bmp5-/-; Bmp7-/-) lack mDA neurons due to reduced neurogenesis in the mDA progenitor domain. As molecular mechanisms accounting for these alterations in Bmp5-/-; Bmp7-/- mutants, we have identified expression changes of the BMP/SMAD target genes MSX1/2 (msh homeobox 1/2) and SHH (sonic hedgehog). Conditionally inactivating SMAD1 in neural stem cells of mice in vivo (Smad1Nes) hampered the differentiation of progenitor cells into mDA neurons by preventing cell cycle exit, especially of TH+SOX6+ (tyrosine hydroxylase, SRY-box 6) and TH+GIRK2+ (potassium voltage-gated channel subfamily-J member-6) substantia nigra neurons. BMP5/7 robustly increased the in vitro differentiation of human induced pluripotent stem cells and induced neural stem cells to mDA neurons by up to threefold. In conclusion, we have identified BMP/SMAD signaling as a novel critical pathway orchestrating essential steps of mammalian mDA neurogenesis in vivo that balances progenitor proliferation and differentiation. Moreover, we demonstrate the potential of BMPs to improve the generation of stem-cell-derived mDA neurons in vitro, highlighting the importance of sequential BMP/SMAD inhibition and activation in this process.SIGNIFICANCE STATEMENT We identify bone morphogenetic protein (BMP)/SMAD signaling as a novel essential pathway regulating the development of mammalian midbrain dopaminergic (mDA) neurons in vivo and provide insights into the molecular mechanisms of this process. BMP5/7 regulate MSX1/2 (msh homeobox 1/2) and SHH (sonic hedgehog) expression to direct mDA neurogenesis. Moreover, the BMP signaling component SMAD1 controls the differentiation of mDA progenitors, particularly to substantia nigra neurons, by directing their cell cycle exit. Importantly, BMP5/7 increase robustly the differentiation of human induced pluripotent and induced neural stem cells to mDA neurons. BMP/SMAD are routinely inhibited in initial stages of stem cell differentiation protocols currently being developed for Parkinson's disease cell replacement therapies. Therefore, our findings on opposing roles of the BMP/SMAD pathway during in vitro mDA neurogenesis might improve these procedures significantly.
Collapse
|
17
|
Meyers EA, Kessler JA. TGF-β Family Signaling in Neural and Neuronal Differentiation, Development, and Function. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022244. [PMID: 28130363 DOI: 10.1101/cshperspect.a022244] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signaling by the transforming growth factor β (TGF-β) family is necessary for proper neural development and function throughout life. Sequential waves of activation, inhibition, and reactivation of TGF-β family members regulate numerous elements of the nervous system from the earliest stages of embryogenesis through adulthood. This review discusses the expression, regulation, and function of TGF-β family members in the central nervous system at various developmental stages, beginning with induction and patterning of the nervous system to their importance in the adult as modulators of inflammatory response and involvement in degenerative diseases.
Collapse
Affiliation(s)
- Emily A Meyers
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
18
|
Yu SJ, Airavaara M, Wu KJ, Harvey BK, Liu HS, Yang Y, Zacharek A, Chen J, Wang Y. 9-cis retinoic acid induces neurorepair in stroke brain. Sci Rep 2017; 7:4512. [PMID: 28674431 PMCID: PMC5495771 DOI: 10.1038/s41598-017-04048-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/09/2017] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to examine the neurorestorative effect of delayed 9 cis retinoic acid (9cRA) treatment for stroke. Adult male rats received a 90-min right distal middle cerebral artery occlusion (dMCAo). Animals were separated into two groups with similar infarction sizes, based on magnetic resonance imaging on day 2 after dMCAo. 9cRA or vehicle was given via an intranasal route daily starting from day 3. Stroke rats receiving 9cRA post-treatment showed an increase in brain 9cRA levels and greater recovery in motor function. 9cRA enhanced the proliferation of bromodeoxyuridine (+) cells in the subventricular zone (SVZ) and lesioned cortex in the stroke brain. Using subventricular neurosphere and matrigel cultures, we demonstrated that proliferation and migration of SVZ neuroprogenitor cells were enhanced by 9cRA. Our data support a delayed and non-invasive drug therapy for stroke. Intranasal 9cRA can facilitate the functional recovery and endogenous repair in the ischemic brain.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Mikko Airavaara
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, USA
| | - H S Liu
- Intramural Research Program, National Institute on Drug Abuse, NIH, USA
| | - Yihong Yang
- Intramural Research Program, National Institute on Drug Abuse, NIH, USA
| | | | - Jieli Chen
- Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
19
|
Dewan SN, Wang Y, Yu S. Drug treatments that optimize endogenous neurogenesis as a therapeutic option for stroke. Brain Circ 2017; 3:152-155. [PMID: 30276317 PMCID: PMC6057687 DOI: 10.4103/bc.bc_20_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 01/28/2023] Open
Abstract
Cell death and neurogenesis have been examined after stroke in the subventricular zone of the adult mammalian brain. New research focuses on the use of drugs to improve the viability of neural progenitor cells in rats after stroke. The aim of the drugs is to lengthen the timeframe for stroke therapy by targeting the endogenous repair mechanism that follows injury. In this paper, we look at the broad state of stroke therapy to assess the effectiveness of endogenous neurogenesis-enhancing drugs on stroke. This paper is a review article. Referred literature in this paper has been listed in the reference section. The data sets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Shyam N Dewan
- Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan
| | - Seongjin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Taiwan
| |
Collapse
|
20
|
Abstract
Bone morphogenetic protein-7 (BMP7), a member of the transforming growth factor-β (TGF-β) superfamily, has various effects in many biological events. However, there is little information on BMP7 expression in the adult central nervous system (CNS). Therefore, we investigated BMP7 levels in the adult rat CNS using immunohistochemistry. Abundant BMP7 expression was seen in astrocytes throughout the CNS and strong BMP7 expression was also observed in neuropils of the gray matter. Furthermore, BMP7 expression was observed in several kinds of neurons, including oxytocin, dopaminergic and noradrenergic neurons. These data suggest that BMP7 is widely expressed throughout the adult CNS, and support the idea that BMP7 plays pivotal roles in the adult brain, as well as in the developing brain. BMP7 is expressed throughout the adult CNS, and abundantly expressed in astrocytes. BMP7 is also expressed in some kinds of neurons and axons.
Collapse
Key Words
- Astrocyte
- BMP, bone morphogenetic protein
- BMPR, bone morphogenetic protein receptor
- BSA, bovine serum albumin
- CNS, central nervous system
- CSPGs, chondroitin sulfate proteoglycans
- GFAP, glial fibrillary acidic protein
- IHC, immunohistochemistry
- IR, immunoreactivity
- Immunohistochemistry
- Neuron
- PB, phosphate buffer
- RT, room temperature
- SVZ, subventricular zone
- TGF-β, transforming growth factor β
- TTBS, Tris-buffered saline containing 0.05% Tween-20
Collapse
|
21
|
Chiang YH, Borlongan CV, Zhou FC, Hoffer BJ, Wang Y. Transplantation of Fetal Kidney Cells: Neuroprotection and Neuroregeneration. Cell Transplant 2017; 14:1-9. [PMID: 15789657 DOI: 10.3727/000000005783983304] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Various trophic factors in the transforming growth factor-β (TGF-β) superfamily have been reported to have neuroprotective and neuroregenerative effects. Intracerebral administration of glial cell line-derived neurotrophic factor (GDNF) or bone morphogenetic proteins (BMPs), both members of the TGF-β family, reduce ischemia- or 6-hydroxydopamine (6-OHDA)-induced injury in adult rat brain. Because BMPs and GDNF are highly expressed in fetal kidney cells, transplantation of fetal kidney tissue could serve as a cellular reservoir for such molecules and protect against neuronal injury induced by ischemia, neurotoxins, or reactive oxygen species. In this review, we discuss preclinical evidence for the efficacy of fetal kidney cell transplantation in neuroprotection and regeneration models.
Collapse
Affiliation(s)
- Yung-Hsiao Chiang
- Tri-Service General Hospital, National Defense Medical Center, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Targeting bone morphogenetic protein signalling in midbrain dopaminergic neurons as a therapeutic approach in Parkinson's disease. Neuronal Signal 2017; 1:NS20170027. [PMID: 32714578 PMCID: PMC7373244 DOI: 10.1042/ns20170027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by the degeneration of midbrain dopaminergic (mDA) neurons and their axons, and aggregation of α-synuclein, which leads to motor and late-stage cognitive impairments. As the motor symptoms of PD are caused by the degeneration of a specific population of mDA neurons, PD lends itself to neurotrophic factor therapy. The goal of this therapy is to apply a neurotrophic factor that can slow down, halt or even reverse the progressive degeneration of mDA neurons. While the best known neurotrophic factors are members of the glial cell line-derived neurotrophic factor (GDNF) family, their lack of clinical efficacy to date means that it is important to continue to study other neurotrophic factors. Bone morphogenetic proteins (BMPs) are naturally secreted proteins that play critical roles during nervous system development and in the adult brain. In this review, we provide an overview of the BMP ligands, BMP receptors (BMPRs) and their intracellular signalling effectors, the Smad proteins. We review the available evidence that BMP-Smad signalling pathways play an endogenous role in mDA neuronal survival in vivo, before outlining how exogenous application of BMPs exerts potent effects on mDA neuron survival and axon growth in vitro and in vivo. We discuss the molecular mechanisms that mediate these effects, before highlighting the potential of targeting the downstream effectors of BMP-Smad signalling as a novel neuroprotective approach to slow or stop the degeneration of mDA neurons in PD.
Collapse
|
23
|
Hegarty SV, Sullivan AM, O'Keeffe GW. Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth. Neurosci Lett 2017; 643:32-37. [PMID: 28188849 DOI: 10.1016/j.neulet.2017.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic protein 2 (BMP2) is a neurotrophic factor which induces the growth of midbrain dopaminergic (DA) neurons in vitro and in vivo, and its neurotrophic effects have been shown to be dependent on activation of BMP receptors (BMPRs) and Smad 1/5/8 signalling. However, the precise intracellular cascades that regulate BMP2-BMPR-Smad-signalling-induced neurite growth remain unknown. Endocytosis has been shown to regulate Smad 1/5/8 signalling and differentiation induced by BMPs. However, these studies were carried out in non-neural cells. Indeed, there are scant reports regarding the role of endocytosis in BMP-Smad signalling in neurons. To address this, and to further characterise the mechanisms regulating the neurotrophic effects of BMP2, the present study examined the role of dynamin-dependent endocytosis in BMP2-induced Smad signalling and neurite growth in the SH-SY5Y neuronal cell line. The activation, temporal kinetics and magnitude of Smad 1/5/8 signalling induced by BMP2 were significantly attenuated by dynasore-mediated inhibition of endocytosis in SH-SY5Y cells. Furthermore, BMP2-induced increases in neurite length and neurite branching in SH-SY5Y cells were significantly reduced following inhibition of dynamin-dependent endocytosis using dynasore. This study demonstrates that BMP2-induced Smad signalling and neurite growth is regulated by dynamin-dependent endocytosis in a model of human midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Allodi I, Hedlund E. Directed midbrain and spinal cord neurogenesis from pluripotent stem cells to model development and disease in a dish. Front Neurosci 2014; 8:109. [PMID: 24904255 PMCID: PMC4033221 DOI: 10.3389/fnins.2014.00109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022] Open
Abstract
Induction of specific neuronal fates is restricted in time and space in the developing CNS through integration of extrinsic morphogen signals and intrinsic determinants. Morphogens impose regional characteristics on neural progenitors and establish distinct progenitor domains. Such domains are defined by unique expression patterns of fate determining transcription factors. These processes of neuronal fate specification can be recapitulated in vitro using pluripotent stem cells. In this review, we focus on the generation of dopamine neurons and motor neurons, which are induced at ventral positions of the neural tube through Sonic hedgehog (Shh) signaling, and defined at anteroposterior positions by fibroblast growth factor (Fgf) 8, Wnt1, and retinoic acid (RA). In vitro utilization of these morphogenic signals typically results in the generation of multiple neuronal cell types, which are defined at the intersection of these signals. If the purpose of in vitro neurogenesis is to generate one cell type only, further lineage restriction can be accomplished by forced expression of specific transcription factors in a permissive environment. Alternatively, cell-sorting strategies allow for selection of neuronal progenitors or mature neurons. However, modeling development, disease and prospective therapies in a dish could benefit from structured heterogeneity, where desired neurons are appropriately synaptically connected and thus better reflect the three-dimensional structure of that region. By modulating the extrinsic environment to direct sequential generation of neural progenitors within a domain, followed by self-organization and synaptic establishment, a reductionist model of that brain region could be created. Here we review recent advances in neuronal fate induction in vitro, with a focus on the interplay between cell intrinsic and extrinsic factors, and discuss the implications for studying development and disease in a dish.
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
25
|
Hegarty SV, Collins LM, Gavin AM, Roche SL, Wyatt SL, Sullivan AM, O'Keeffe GW. Canonical BMP-Smad signalling promotes neurite growth in rat midbrain dopaminergic neurons. Neuromolecular Med 2014; 16:473-89. [PMID: 24682653 DOI: 10.1007/s12017-014-8299-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/07/2014] [Indexed: 01/01/2023]
Abstract
Ventral midbrain (VM) dopaminergic (DA) neurons project to the dorsal striatum via the nigrostriatal pathway to regulate voluntary movements, and their loss leads to the motor dysfunction seen in Parkinson's disease (PD). Despite recent progress in the understanding of VM DA neurogenesis, the factors regulating nigrostriatal pathway development remain largely unknown. The bone morphogenetic protein (BMP) family regulates neurite growth in the developing nervous system and may contribute to nigrostriatal pathway development. Two related members of this family, BMP2 and growth differentiation factor (GDF)5, have neurotrophic effects, including promotion of neurite growth, on cultured VM DA neurons. However, the molecular mechanisms regulating their effects on DA neurons are unknown. By characterising the temporal expression profiles of endogenous BMP receptors (BMPRs) in the developing and adult rat VM and striatum, this study identified BMP2 and GDF5 as potential regulators of nigrostriatal pathway development. Furthermore, through the use of noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy and Neuroscience, Biosciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
26
|
Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons. Mol Neurobiol 2014; 50:559-73. [PMID: 24504901 DOI: 10.1007/s12035-014-8639-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022]
Abstract
The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.
Collapse
|
27
|
Proschel C, Stripay JL, Shih CH, Munger JC, Noble MD. Delayed transplantation of precursor cell-derived astrocytes provides multiple benefits in a rat model of Parkinsons. EMBO Mol Med 2014; 6:504-18. [PMID: 24477866 PMCID: PMC3992077 DOI: 10.1002/emmm.201302878] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In addition to dopaminergic neuron loss, it is clear that Parkinson disease includes other pathological changes, including loss of additional neuronal populations. As a means of addressing multiple pathological changes with a single therapeutically-relevant approach, we employed delayed transplantation of a unique class of astrocytes, GDAs(BMP), that are generated in vitro by directed differentiation of glial precursors. GDAs(BMP) produce multiple agents of interest as treatments for PD and other neurodegenerative disorders, including BDNF, GDNF, neurturin and IGF1. GDAs(BMP) also exhibit increased levels of antioxidant pathway components, including levels of NADPH and glutathione. Delayed GDA(BMP) transplantation into the 6-hydroxydopamine lesioned rat striatum restored tyrosine hydroxylase expression and promoted behavioral recovery. GDA(BMP) transplantation also rescued pathological changes not prevented in other studies, such as the rescue of parvalbumin(+) GABAergic interneurons. Consistent with expression of the synaptic modulatory proteins thrombospondin-1 and 2 by GDAs(BMP), increased expression of the synaptic protein synaptophysin was also observed. Thus, GDAs(BMP) offer a multimodal support cell therapy that provides multiple benefits without requiring prior genetic manipulation.
Collapse
Affiliation(s)
- Christoph Proschel
- Department for Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
28
|
Terasaka T, Otsuka F, Tsukamoto N, Nakamura E, Inagaki K, Toma K, Ogura-Ochi K, Glidewell-Kenney C, Lawson MA, Makino H. Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells. Mol Cell Endocrinol 2013; 381:8-15. [PMID: 23880664 PMCID: PMC4079587 DOI: 10.1016/j.mce.2013.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/12/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022]
Abstract
Reproduction is integrated by interaction of neural and hormonal signals converging on hypothalamic neurons for controlling gonadotropin-releasing hormone (GnRH). Kisspeptin, the peptide product of the kiss1 gene and the endogenous agonist for the GRP54 receptor, plays a key role in the regulation of GnRH secretion. In the present study, we investigated the interaction between kisspeptin, estrogen and BMPs in the regulation of GnRH production by using mouse hypothalamic GT1-7 cells. Treatment with kisspeptin increased GnRH mRNA expression and GnRH protein production in a concentration-dependent manner. The expression levels of kiss1 and GPR54 were not changed by kisspeptin stimulation. Kisspeptin induction of GnRH was suppressed by co-treatment with BMPs, with BMP-4 action being the most potent for suppressing the kisspeptin effect. The expression of kisspeptin receptor, GPR54, was suppressed by BMPs, and this effect was reversed in the presence of kisspeptin. It was also revealed that BMP-induced Smad1/5/8 phosphorylation and Id-1 expression were suppressed and inhibitory Smad6/7 was induced by kisspeptin. In addition, estrogen induced GPR54 expression, while kisspeptin increased the expression levels of ERα and ERβ, suggesting that the actions of estrogen and kisspeptin are mutually enhanced in GT1-7 cells. Moreover, kisspeptin stimulated MAPKs and AKT signaling, and ERK signaling was functionally involved in the kisspeptin-induced GnRH expression. BMP-4 was found to suppress kisspeptin-induced GnRH expression by reducing ERK signaling activity. Collectively, the results indicate that the axis of kisspeptin-induced GnRH production is bi-directionally controlled, being augmented by an interaction between ERα/β and GPR54 signaling and suppressed by BMP-4 action in GT1-7 neuron cells.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bone morphogenetic protein-7 (BMP-7) mediates ischemic preconditioning-induced ischemic tolerance via attenuating apoptosis in rat brain. Biochem Biophys Res Commun 2013; 441:560-6. [DOI: 10.1016/j.bbrc.2013.10.121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022]
|
30
|
Hegarty SV, O'Keeffe GW, Sullivan AM. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog Neurobiol 2013; 109:28-41. [PMID: 23891815 DOI: 10.1016/j.pneurobio.2013.07.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023]
Abstract
The transcription factors, Smad1, Smad5 and Smad8, are the pivotal intracellular effectors of the bone morphogenetic protein (BMP) family of proteins. BMPs and their receptors are expressed in the nervous system (NS) throughout its development. This review focuses on the actions of Smad 1/5/8 in the developing NS. The mechanisms by which these Smad proteins regulate the induction of the neuroectoderm, the central nervous system (CNS) primordium, and finally the neural crest, which gives rise to the peripheral nervous system (PNS), are reviewed herein. We describe how, following neural tube closure, the most dorsal aspect of the tube becomes a signalling centre for BMPs, which directs the pattern of the development of the dorsal spinal cord (SC), through the action of Smad1, Smad5 and Smad8. The direct effects of Smad 1/5/8 signalling on the development of neuronal and non-neuronal cells from various neural progenitor cell populations are then described. Finally, this review discusses the neurodevelopmental abnormalities associated with the knockdown of Smad 1/5/8.
Collapse
Affiliation(s)
- Shane V Hegarty
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
31
|
BMP2 and GDF5 induce neuronal differentiation through a Smad dependant pathway in a model of human midbrain dopaminergic neurons. Mol Cell Neurosci 2013; 56:263-71. [PMID: 23831389 DOI: 10.1016/j.mcn.2013.06.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/24/2013] [Accepted: 06/25/2013] [Indexed: 01/12/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease, and is characterised by the progressive degeneration of the nigrostriatal dopaminergic (DA) system. Current treatments are symptomatic, and do not protect against the DA neuronal loss. One of the most promising treatment approaches is the application of neurotrophic factors to rescue the remaining population of nigrostriatal DA neurons. Therefore, the identification of new neurotrophic factors for midbrain DA neurons, and the subsequent elucidation of the molecular bases of their effects, are important. Two related members of the bone morphogenetic protein (BMP) family, BMP2 and growth differentiation factor 5 (GDF5), have been shown to have neurotrophic effects on midbrain DA neurons both in vitro and in vivo. However, the molecular (signalling pathway(s)) and cellular (direct neuronal or indirect via glial cells) mechanisms of their effects remain to be elucidated. Using the SH-SH5Y human neuronal cell line, as a model of human midbrain DA neurons, we have shown that GDF5 and BMP2 induce neurite outgrowth via a direct mechanism. Furthermore, we demonstrate that these effects are dependent on BMP type I receptor activation of canonical Smad 1/5/8 signalling.
Collapse
|
32
|
Xu JH, Zhang TZ, Zhao YY, Wang JK, Yuan ZG. Protective effects of recombinant human bone morphogenetic protein-7 on focal cerebral ischemia-reperfusion injury. Int J Neurosci 2013; 123:375-84. [PMID: 23327662 DOI: 10.3109/00207454.2012.761614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study was to investigate the protective effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) on focal cerebral ischemia-reperfusion (IR) injuries and their underlying mechanisms. An intraluminal suture method was used to generate a middle cerebral artery occlusion model in rats, which was followed by reperfusion. A sham operation (SO) group underwent the procedure without occlusion, whereas an IR group and rhBMP-7 treated group (RT) underwent occlusion in the absence and presence of rhBMP-7 (250 μg/kg) administered via a femoral vein injection 30 minutes prior to reperfusion. Twenty-four hours after reperfusion, neurological function, brain water content and morphological alterations were examined. Apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assays, and immunohistochemical staining and Western blot assays were used to detect nuclear nuclear factor-kappa B (NF-κB) p65 expression. Compared with the SO group, IR rats showed a decrease in neurological function, an increase in brain water content, and pathological and morphological damage (p < 0.05). Higher levels of apoptosis were also detected in the infarct region area. In contrast, RT rats had reduced injury after IR. In addition, while immunohistochemical staining and western blot assays consistently detected increased expression of nuclear NF-κB after IR, these levels were reduced in the RT group. Administration of rhBMP-7 prior to reperfusion effectively inhibited the extent of IR injury by attenuating cerebral edema and ameliorating ultrastructural damage. The underlying mechanisms responsible for these observations potentially involve the inhibition of apoptosis induced by IR by rhBMP-7 via an NF-κB-related signaling cascade.
Collapse
Affiliation(s)
- Ji-Hong Xu
- Department of Anesthesiology, General Hospital of Shenyang Military Region, Shenyang, China
| | | | | | | | | |
Collapse
|
33
|
Cellular programming and reprogramming: sculpting cell fate for the production of dopamine neurons for cell therapy. Stem Cells Int 2012; 2012:412040. [PMID: 22988464 PMCID: PMC3441013 DOI: 10.1155/2012/412040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022] Open
Abstract
Pluripotent stem cells are regarded as a promising cell source to obtain human dopamine neurons in sufficient amounts and purity for cell replacement therapy. Importantly, the success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.
Collapse
|
34
|
Moriyama M, Moriyama H, Ueda A, Nishibata Y, Okura H, Ichinose A, Matsuyama A, Hayakawa T. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling. BMC Cell Biol 2012; 13:21. [PMID: 22870983 PMCID: PMC3465210 DOI: 10.1186/1471-2121-13-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 08/02/2012] [Indexed: 01/15/2023] Open
Abstract
Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs) in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12). Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO), resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2) and fibroblast growth factor 2 (FGF2) transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.
Collapse
Affiliation(s)
- Mariko Moriyama
- Pharmaceutical Research and Technology Institute, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Low gene expression of bone morphogenetic protein 7 in brainstem astrocytes in major depression. Int J Neuropsychopharmacol 2012; 15:855-68. [PMID: 21896235 DOI: 10.1017/s1461145711001350] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The noradrenergic locus coeruleus (LC) is the principal source of brain norepinephrine, a neurotransmitter thought to play a major role in the pathology of major depressive disorder (MDD) and in the therapeutic action of many antidepressant drugs. The goal of this study was to identify potential mediators of brain noradrenergic dysfunction in MDD. Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β superfamily, is a critical mediator of noradrenergic neuron differentiation during development and has neurotrophic and neuroprotective effects on mature catecholaminergic neurons. Real-time PCR of reversed transcribed RNA isolated from homogenates of LC tissue from 12 matched pairs of MDD subjects and psychiatrically normal control subjects revealed low levels of BMP7 gene expression in MDD. No differences in gene expression levels of other members of the BMP family were observed in the LC, and BMP7 gene expression was normal in the prefrontal cortex and amygdala in MDD subjects. Laser capture microdissection of noradrenergic neurons, astrocytes, and oligodendrocytes from the LC revealed that BMP7 gene expression was highest in LC astrocytes relative to the other cell types, and that the MDD-associated reduction in BMP7 gene expression was limited to astrocytes. Rats exposed to chronic social defeat exhibited a similar reduction in BMP7 gene expression in the LC. BMP7 has unique developmental and trophic actions on catecholamine neurons and these findings suggest that reduced astrocyte support for pontine LC neurons may contribute to pathology of brain noradrenergic neurons in MDD.
Collapse
|
36
|
Shin JA, Kang JL, Lee KE, Park EM. Different temporal patterns in the expressions of bone morphogenetic proteins and noggin during astroglial scar formation after ischemic stroke. Cell Mol Neurobiol 2012; 32:587-97. [PMID: 22297545 PMCID: PMC11498437 DOI: 10.1007/s10571-012-9806-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/17/2012] [Indexed: 01/15/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their antagonists have roles in scar formation and regeneration after central nervous system injuries. However, temporal changes in their expression during astroglial scar formation in the ischemic brain are unknown. Here, we examined protein levels of BMP2, BMP7, and their antagonist noggin in the ischemic brain up to 4 weeks after experimental stroke in mice. BMP2 and BMP7 levels were increased from 1 to 4 weeks in the ischemic brain, and their expression was associated with astrogliosis. BMP7 expression was more intense and co-localized in reactive astrocytes in the ischemic subcortex at 1 week. Noggin expression began to increase after 2 weeks and was further increased at 4 weeks only in the ischemic subcortex, but the intensity was weak compared to the intensity of BMPs. Noggin was co-localized mainly in activated microglia. These findings show that expression of BMPs and noggin differed over time, in intensity and in types of cell, and suggest that BMPs and noggin have different roles in the processes of glial scar formation and neurorestoration in the ischemic brain.
Collapse
Affiliation(s)
- Jin A. Shin
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 911-1 Mok6dong Yangcheon-gu, Seoul, 158-710 Republic of Korea
| | - Jihee Lee Kang
- Department of Physiology, Tissue Injury Defense Research Center, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 911-1 Mok6dong Yangcheon-gu, Seoul, 158-710 Republic of Korea
| | - Kyung-Eun Lee
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 911-1 Mok6dong Yangcheon-gu, Seoul, 158-710 Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, Ewha Medical Research Institute, School of Medicine, Ewha Womans University, 911-1 Mok6dong Yangcheon-gu, Seoul, 158-710 Republic of Korea
- Department of Brain & Cognitive Sciences, Brain Disease Research Institute, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750 Republic of Korea
| |
Collapse
|
37
|
Cai N, Kurachi M, Shibasaki K, Okano-Uchida T, Ishizaki Y. CD44-Positive Cells Are Candidates for Astrocyte Precursor Cells in Developing Mouse Cerebellum. THE CEREBELLUM 2011; 11:181-93. [DOI: 10.1007/s12311-011-0294-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Di Liddo R, Grandi C, Venturini M, Dalzoppo D, Negro A, Conconi MT, Parnigotto PP. Recombinant human TAT-OP1 to enhance NGF neurogenic potential: preliminary studies on PC12 cells. Protein Eng Des Sel 2010; 23:889-97. [PMID: 20889531 DOI: 10.1093/protein/gzq067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Osteogenic protein 1 (OP1), also known as bone morphogenic protein-7 (BMP7), is a multifunctional cytokine with demonstrated neurogenic potential. As the recombinant OP1 (rhOP1) was shown to provide axonal guidance cues and to prevent the reduction of dendritic growth in the injury-induced cortical cultures, it was suggested that an in vivo efficient rhOP1 delivery could enhance neurite growth and functional reconnectivity in the damaged brain. In the present work, we engineered a chimeric molecule in which rhBMP7 was fused to a protein transduction domain derived from HIV-1 TAT protein to deliver the denatured recombinant BMP7 into cells and obtain its chaperone-mediated folding, circumventing the expensive and not much efficient in vitro refolding procedures. When tested on rat PC12 cells, a widely used in vitro neurogenic differentiation model, the resulting fusion protein (rhTAT-OP1) demonstrated to enter fastly into the cells, lose HIV-TAT sequence and interact with membrane receptors activating BMP pathway by SMAD 1/5/8 phosphorylation. In comparison with nerve growth factor (NGF) and BMP7, it proved itself effective to induce the formation of more organized H and M neurofilaments. Moreover, if used in combination with NGF, it stimulated a significant (P < 0.05) and more precocious dendritic outgrowth with respect to NGF alone. These results indicate that rhTAT-OP1 fused with TAT transduction domain shows neurogenic activity and may be a promising enhancer factor in NGF-based therapies.
Collapse
Affiliation(s)
- R Di Liddo
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
39
|
Gonzalez-Perez O, Jauregui-Huerta F, Galvez-Contreras AY. Immune system modulates the function of adult neural stem cells. ACTA ACUST UNITED AC 2010; 6:167-173. [PMID: 21037937 DOI: 10.2174/157339510791823772] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New neurons are continuously produced in most, if not all, mammals. This Neurogenesis occurs only in discrete regions of the adult brain: the subventricular zone (SVZ) and the subgranular zone (SGZ). In these areas, there are neural stem cells (NSCs), multipotent and selfrenewing, which are regulated by a number of molecules and signaling pathways that control their cell fate choices, survival and proliferation rates. It was believed that growth and morphogenic factors were the unique mediators that controlled NSCs in vivo. Recently, chemokines and cytokines have been identified as important regulators of NSCs functions. Some of the most studied immunological effectors are leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), interferon-gamma (IFN-γ), insulin-like growth factor-1 (IGF-1), tumor necrosis factor alpha (TNF-α), and the chemokines MCP-1 and SDF-1. These substances exert a considerable regulation on proliferation, cell-fate choices, migration and survival of NSCs. Hence, the immune system is emerging as an important regulator of neurogenic niches in the adult brain, but further studies are necessary to fully establish the biological meaning of these neural effects.
Collapse
Affiliation(s)
- Oscar Gonzalez-Perez
- Neuroscience Laboratory, Psychology School, University of Colima, Colima, Mexico 28040
| | | | | |
Collapse
|
40
|
Barneda-Zahonero B, Miñano-Molina A, Badiola N, Fadó R, Xifró X, Saura CA, Rodríguez-Alvarez J. Bone morphogenetic protein-6 promotes cerebellar granule neurons survival by activation of the MEK/ERK/CREB pathway. Mol Biol Cell 2010; 20:5051-63. [PMID: 19846661 DOI: 10.1091/mbc.e09-05-0424] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been implicated in the generation and postnatal differentiation of cerebellar granule cells (CGCs). Here, we examined the eventual role of BMPs on the survival of these neurons. Lack of depolarization causes CGC death by apoptosis in vivo, a phenomenon that is mimicked in vitro by deprivation of high potassium in cultured CGCs. We have found that BMP-6, but not BMP-7, is able to block low potassium-mediated apoptosis in CGCs. The neuroprotective effect of BMP-6 is not accompanied by an increase of Smad translocation to the nucleus, suggesting that the canonical pathway is not involved. By contrast, activation of the MEK/ERK/CREB pathway by BMP-6 is necessary for its neuroprotective effect, which involves inhibition of caspase activity and an increase in Bcl-2 protein levels. Other pathways involved in the regulation of CGC survival, such as the c-Jun terminal kinase and the phosphatidylinositol 3-kinase (PI3K)-Akt/PKB, were not affected by BMP-6. Moreover, failure of BMP-7 to activate the MEK/ERK/CREB pathway could explain its inability to protect CGCs from low potassium-mediated apoptosis. Thus, this study demonstrates that BMP-6 acting through the noncanonical MEK/ERK/CREB pathway plays a crucial role on CGC survival.
Collapse
Affiliation(s)
- Bruna Barneda-Zahonero
- Institut de Neurociencies and Departament de Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Anitha M, Shahnavaz N, Qayed E, Joseph I, Gossrau G, Mwangi S, Sitaraman SV, Greene JG, Srinivasan S. BMP2 promotes differentiation of nitrergic and catecholaminergic enteric neurons through a Smad1-dependent pathway. Am J Physiol Gastrointest Liver Physiol 2010; 298:G375-83. [PMID: 20007850 PMCID: PMC2838511 DOI: 10.1152/ajpgi.00343.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bone morphogenetic protein (BMP) family is a class of transforming growth factor (TGF-beta) superfamily molecules that have been implicated in neuronal differentiation. We studied the effects of BMP2 and glial cell line-derived neurotrophic factor (GDNF) on inducing differentiation of enteric neurons and the signal transduction pathways involved. Studies were performed using a novel murine fetal enteric neuronal cell line (IM-FEN) and primary enteric neurons. Enteric neurons were cultured in the presence of vehicle, GDNF (100 ng/ml), BMP2 (10 ng/ml), or both (GDNF + BMP2), and differentiation was assessed by neurite length, markers of neuronal differentiation (neurofilament medium polypeptide and beta-III-tubulin), and neurotransmitter expression [neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase (TH), choline acetyltransferase (ChAT) and Substance P]. BMP2 increased the differentiation of enteric neurons compared with vehicle and GDNF-treated neurons (P < 0.001). BMP2 increased the expression of the mature neuronal markers (P < 0.05). BMP2 promoted differentiation of NPY-, nNOS-, and TH-expressing neurons (P < 0.001) but had no effect on the expression of cholinergic neurons (ChAT, Substance P). Neurons cultured in the presence of BMP2 have higher numbers of TH-expressing neurons after exposure to 1-methyl 4-phenylpyridinium (MPP(+)) compared with those cultured with MPP(+) alone (P < 0.01). The Smad signal transduction pathway has been implicated in TGF-beta signaling. BMP2 induced phosphorylation of Smad1, and the effects of BMP2 on differentiation of enteric neurons were significantly reduced in the presence of Smad1 siRNA, implicating the role of Smad1 in BMP2-induced differentiation. The effects of BMP2 on catecholaminergic neurons may have therapeutic implications in gastrointestinal motility disturbances.
Collapse
Affiliation(s)
| | | | | | | | - Gudrun Gossrau
- 3Department of Neurology, Department of Anaesthesiology, Medical School, University of Technology Dresden, Dresden, Germany
| | | | | | - James G. Greene
- 2Department of Neurology, Emory University, Atlanta, Georgia;
| | | |
Collapse
|
42
|
Lin SH, Liu CM, Liu YL, Fann CSJ, Hsiao PC, Wu JY, Hung SI, Chen CH, Wu HM, Jou YS, Liu SK, Hwang TJ, Hsieh MH, Chang CC, Yang WC, Lin JJ, Chou FHC, Faraone SV, Tsuang MT, Hwu HG, Chen WJ. Clustering by neurocognition for fine mapping of the schizophrenia susceptibility loci on chromosome 6p. GENES, BRAIN, AND BEHAVIOR 2009; 8:785-94. [PMID: 19694819 PMCID: PMC4286260 DOI: 10.1111/j.1601-183x.2009.00523.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosome 6p is one of the most commonly implicated regions in the genome-wide linkage scans of schizophrenia, whereas further association studies for markers in this region were inconsistent likely due to heterogeneity. This study aimed to identify more homogeneous subgroups of families for fine mapping on regions around markers D6S296 and D6S309 (both in 6p24.3) as well as D6S274 (in 6p22.3) by means of similarity in neurocognitive functioning. A total of 160 families of patients with schizophrenia comprising at least two affected siblings who had data for eight neurocognitive test variables of the continuous performance test (CPT) and the Wisconsin card sorting test (WCST) were subjected to cluster analysis with data visualization using the test scores of both affected siblings. Family clusters derived were then used separately in family-based association tests for 64 single nucleotide polymorphisms (SNPs) covering the region of 6p24.3 and 6p22.3. Three clusters were derived from the family-based clustering, with deficit cluster 1 representing deficit on the CPT, deficit cluster 2 representing deficit on both the CPT and the WCST, and a third cluster of nondeficit. After adjustment using false discovery rate for multiple testing, SNP rs13873 and haplotype rs1225934-rs13873 on BMP6-TXNDC5 genes were significantly associated with schizophrenia for the deficit cluster 1 but not for the deficit cluster 2 or nondeficit cluster. Our results provide further evidence that the BMP6-TXNDC5 locus on 6p24.3 may play a role in the selective impairments on sustained attention of schizophrenia.
Collapse
Affiliation(s)
- Sheng-Hsiang Lin
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Zhunan, Taiwan
| | | | - Po-Chang Hsiao
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
| | - Jer-Yuarn Wu
- National Genotyping Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shuen-Iu Hung
- National Genotyping Center, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Han-Ming Wu
- Department of Mathematics, Tamkang University, Taipei, Taiwan
| | - Yuh-Shan Jou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shi K. Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Tzung J. Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming H. Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Wei-Chih Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Molecular Medicine Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Jia Lin
- Department of Psychiatry, Chimei Medical Center, Tainan, Taiwan
| | | | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, USA
- Center for Behavioral Genomics, Department of Psychiatry, University of California, San Diego, California, USA
| | - Hai-Gwo Hwu
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
| | - Wei J. Chen
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Genetic Epidemiology Core Laboratory, Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
43
|
Otani H, Otsuka F, Takeda M, Mukai T, Terasaka T, Miyoshi T, Inagaki K, Suzuki J, Ogura T, Lawson MA, Makino H. Regulation of GNRH production by estrogen and bone morphogenetic proteins in GT1-7 hypothalamic cells. J Endocrinol 2009; 203:87-97. [PMID: 19635757 PMCID: PMC2768486 DOI: 10.1677/joe-09-0065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Recent studies have shown that bone morphogenetic proteins (BMPs) are important regulators in the pituitary-gonadal endocrine axis. We here investigated the effects of BMPs on GNRH production controlled by estrogen using murine GT1-7 hypothalamic neuron cells. GT1-7 cells expressed estrogen receptor alpha (ERalpha; ESR1 as listed in MGI Database), ERbeta (ESR2 as listed in MGI Database), BMP receptors, SMADs, and a binding protein follistatin. Treatment with BMP2 and BMP4 had no effect on Gnrh mRNA expression; however, BMP6 and BMP7 significantly increased Gnrh mRNA expression as well as GnRH production by GT1-7 cells. Notably, the reduction of Gnrh expression caused by estradiol (E(2)) was restored by cotreatment with BMP2 and BMP4, whereas it was not affected by BMP6 or BMP7. E(2) activated extracellular signal-regulated kinase (ERK) 1/2 and stress-activated protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) signaling but did not activate p38-mitogen-activated protein kinase (MAPK) signaling in GT1-7 cells. Inhibition of ERK1/ERK2 reversed the inhibitory effect of estrogen on Gnrh expression, whereas SAPK/JNK inhibition did not affect the E(2) actions. Expression levels of Eralpha and Erbeta were reduced by BMP2 and BMP4, but were increased by BMP6 and BMP7. Treatment with an ER antagonist inhibited the E(2) effects on Gnrh suppression including reduction of E(2)-induced ERK phosphorylation, suggesting the involvement of genomic ER actions in Gnrh suppression. BMP2 and BMP4 also suppressed estrogen-induced phosphorylation of ERK1/ERK2 and SAPK/JNK signaling, suggesting that BMP2 and BMP4 downregulate estrogen effects by attenuating ER-MAPK signaling. Considering that BMP6 and BMP7 increased the expression of alpha1E-subunit of R-type calcium channel (Cacna1e), which is critical for GNRH secretion, it is possible that BMP6 and BMP7 directly stimulate GNRH release by GT1-7 cells. Collectively, a newly uncovered interaction of BMPs and ER may be involved in controlling hypothalamic GNRH production and secretion via an autocrine/paracrine mechanism.
Collapse
Affiliation(s)
- Hiroyuki Otani
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama City 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chiocco MJ, Harvey BK, Wang Y, Hoffer BJ. Neurotrophic factors for the treatment of Parkinson's disease. Parkinsonism Relat Disord 2009; 13 Suppl 3:S321-8. [PMID: 18267258 DOI: 10.1016/s1353-8020(08)70024-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive disorder with no known etiology. Pathologically, there is a loss of the dopaminergic neurons in the substantia nigra that project to the striatum. Current available therapies for PD are targeted to the restoration of striatal dopamine. These approaches may alleviate symptoms transiently, but fail to slow the progression of disease. One emergent therapeutic approach is the use of neurotrophic factors to halt or reverse the loss of dopaminergic neurons. There have been intensive research efforts both preclinically and clinically testing the efficacy and safety of neurotrophic factors for the treatment of PD. In this review, we discuss the neuroprotective and neuroregenerative properties of various trophic factors, both old and recent, and their status as therapeutic molecules for PD.
Collapse
Affiliation(s)
- Matthew J Chiocco
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
45
|
Roussa E, von Bohlen und Halback O, Krieglstein K. TGF-β in Dopamine Neuron Development, Maintenance and Neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 651:81-90. [DOI: 10.1007/978-1-4419-0322-8_8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Smidt MP. Specific vulnerability of substantia nigra compacta neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:39-47. [PMID: 20411766 DOI: 10.1007/978-3-211-92660-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The specific loss of substantia nigra compacta (SNc) neurons in Parkinson's disease (PD) has been the main driving force in initiating research efforts to unravel the apparent SNc-specific vulnerability. Initially, metabolic constraints due to high dopamine turnover have been the main focus in the attempts to solve this issue. Recently, it has become clear that fundamental differences in the molecular signature are adding to the neuronal vulnerability and provide specific molecular dependencies. Here, the different processes that define the molecular background of SNc vulnerability are summarized.
Collapse
Affiliation(s)
- Marten P Smidt
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Universiteitsweg 100, 3584, CG Utrecht, The Netherlands.
| |
Collapse
|
47
|
Apel C, Forlenza OV, de Paula VJR, Talib LL, Denecke B, Eduardo CP, Gattaz WF. The neuroprotective effect of dental pulp cells in models of Alzheimer's and Parkinson's disease. J Neural Transm (Vienna) 2008; 116:71-8. [PMID: 18972063 DOI: 10.1007/s00702-008-0135-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 10/05/2008] [Indexed: 11/28/2022]
Abstract
Aim of the present study was to investigate the neuroprotective effect of dental pulp cells (DPCs) in in vitro models of Alzheimer and Parkinson disease. Primary cultures of hippocampal and ventral mesencephalic neurons were treated for 24 h with amyloid beta (Abeta(1-42)) peptide 1-42 and 6-OHDA, respectively. DPCs isolated from adult rat incisors were previously cultured in tissue culture inserts and added to the neuron cultures 2 days prior to neurotoxin treatment. Cell viability was assessed by the MTT assay. The co-culture with DPCs significantly attenuated 6-OHDA and Abeta(1-42)-induced toxicity in primary cultures of mesencephalic and hippocampal neurons, and lead to an increase in neuronal viability in untreated cultures, suggesting a neurotrophic effect in both models. Furthermore, human dental pulp cells expressed a neuronal phenotype and produced the neurotrophic factors NGF, GDNF, BDNF, and BMP2 shown by microarray screening and antibody staining for the representative proteins. DPCs protected primary neurons in in vitro models of Alzheimer's and Parkinson's disease and can be viewed as possible candidates for studies on cell-based therapy.
Collapse
Affiliation(s)
- C Apel
- Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
48
|
BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 2008; 38:417-30. [PMID: 18501628 DOI: 10.1016/j.mcn.2008.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 11/21/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is involved in differentiation of neural precursor cells into astrocytes, but its contribution to angiogenesis is not well characterized. This study examines the role of BMP signaling through BMP type IA receptor (BMPRIA) in early neural development using a conditional knockout mouse model, in which Bmpr1a is selectively disrupted in telencephalic neural stem cells. The conditional mutant mice show a significant increase in the number of cerebral blood vessels and the level of vascular endothelial growth factor (VEGF) is significantly upregulated in the mutant astrocytes. The mutant mice also show leakage of immunoglobulin around cerebral microvessels in neonatal mice, suggesting a defect in formation of the blood-brain-barrier. In addition, astrocytic endfeet fail to encircle cortical blood vessels in the mutant mice. These results suggest that BMPRIA signaling in astrocytes regulates the expression of VEGF for proper cerebrovascular angiogenesis and has a role on in the formation of the blood-brain-barrier.
Collapse
|
49
|
Blunted amygdalar anti-inflammatory cytokine effector response to postnatal stress in prenatally stressed rats. Brain Res 2008; 1196:1-12. [DOI: 10.1016/j.brainres.2007.11.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 11/20/2022]
|
50
|
Bone morphogenetic protein-7 reduces toxicity induced by high doses of methamphetamine in rodents. Neuroscience 2007; 151:92-103. [PMID: 18082966 DOI: 10.1016/j.neuroscience.2007.10.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/10/2007] [Accepted: 11/07/2007] [Indexed: 11/20/2022]
Abstract
Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. We have previously demonstrated that pretreatment with bone morphogenetic protein 7 (BMP7) reduced 6-hydroxydopamine-mediated neurodegeneration in a rodent model of Parkinson's disease. In this study, we examined the neuroprotective effects of BMP7 against MA-mediated toxicity in dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase immunoreactivity (THir) while increasing terminal deoxynucleotidyl transferase-mediated dNTP nick end labeling. These toxicities were significantly antagonized by BMP7. Interaction of BMP7 and MA in vivo was first examined in CD1 mice. High doses of MA (10 mg/kgx4 s.c.) significantly reduced locomotor activity and THir in striatum. I.c.v. administration of BMP7 antagonized these changes. In BMP7 +/- mice, MA suppressed locomotor activity and reduced TH immunoreactivity in nigra reticulata to a greater degree than in wild type BMP7 +/+ mice, suggesting that deficiency in BMP7 expression increases vulnerability to MA insults. Since BMP7 +/- mice also carry a LacZ-expressing reporter allele at the BMP7 locus, the expression of BMP7 was indirectly measured through the enzymatic activity of beta-galactosidase (beta-gal) in BMP7 +/- mice. High doses of MA significantly suppressed beta-gal activity in striatum, suggesting that MA may inhibit BMP7 expression at the terminals of the nigrostriatal pathway. A similar effect was also found in CD1 mice in that high doses of MA suppressed BMP7 mRNA expression in nigra. In conclusion, our data indicate that MA can cause lesioning in the nigrostriatal dopaminergic terminals and that BMP7 is protective against MA-mediated neurotoxicity in central dopaminergic neurons.
Collapse
|