1
|
Garone C, De Giorgio F, Carli S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J Transl Med 2024; 22:238. [PMID: 38438847 PMCID: PMC10910780 DOI: 10.1186/s12967-024-05041-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/25/2024] [Indexed: 03/06/2024] Open
Abstract
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
Collapse
Affiliation(s)
- C Garone
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
| | - F De Giorgio
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - S Carli
- Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Mormone E, Iorio EL, Abate L, Rodolfo C. Sirtuins and redox signaling interplay in neurogenesis, neurodegenerative diseases, and neural cell reprogramming. Front Neurosci 2023; 17:1073689. [PMID: 36816109 PMCID: PMC9929468 DOI: 10.3389/fnins.2023.1073689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of Neural Stem Cells (NSCs) there are still mechanism to be clarified, such as the role of mitochondrial metabolism in the regulation of endogenous adult neurogenesis and its implication in neurodegeneration. Although stem cells require glycolysis to maintain their stemness, they can perform oxidative phosphorylation and it is becoming more and more evident that mitochondria are central players, not only for ATP production but also for neuronal differentiation's steps regulation, through their ability to handle cellular redox state, intracellular signaling, epigenetic state of the cell, as well as the gut microbiota-brain axis, upon dietary influences. In this scenario, the 8-oxoguanine DNA glycosylase (OGG1) repair system would link mitochondrial DNA integrity to the modulation of neural differentiation. On the other side, there is an increasing interest in NSCs generation, from induced pluripotent stem cells, as a clinical model for neurodegenerative diseases (NDs), although this methodology still presents several drawbacks, mainly related to the reprogramming process. Indeed, high levels of reactive oxygen species (ROS), associated with telomere shortening, genomic instability, and defective mitochondrial dynamics, lead to pluripotency limitation and reprogramming efficiency's reduction. Moreover, while a physiological or moderate ROS increase serves as a signaling mechanism, to activate differentiation and suppress self-renewal, excessive oxidative stress is a common feature of NDs and aging. This ROS-dependent regulatory effect might be modulated by newly identified ROS suppressors, including the NAD+-dependent deacetylase enzymes family called Sirtuins (SIRTs). Recently, the importance of subcellular localization of NAD synthesis has been coupled to different roles for NAD in chromatin stability, DNA repair, circadian rhythms, and longevity. SIRTs have been described as involved in the control of both telomere's chromatin state and expression of nuclear gene involved in the regulation of mitochondrial gene expression, as well as in several NDs and aging. SIRTs are ubiquitously expressed in the mammalian brain, where they play important roles. In this review we summarize the current knowledge on how SIRTs-dependent modulation of mitochondrial metabolism could impact on neurogenesis and neurodegeneration, focusing mainly on ROS function and their role in SIRTs-mediated cell reprogramming and telomere protection.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy,*Correspondence: Elisabetta Mormone, ;
| | | | - Lucrezia Abate
- Unitá Produttiva per Terapie Avanzate, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carlo Rodolfo
- Department of Biology, University of Rome Tor Vergata, Rome, Italy,Department of Paediatric Onco-Haematology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy,Carlo Rodolfo,
| |
Collapse
|
3
|
Ferreira AC, Sousa N, Bessa JM, Sousa JC, Marques F. Metabolism and adult neurogenesis: Towards an understanding of the role of lipocalin-2 and iron-related oxidative stress. Neurosci Biobehav Rev 2018; 95:73-84. [PMID: 30267731 DOI: 10.1016/j.neubiorev.2018.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
The process of generating new functional neurons in the adult mammalian brain occurs from the local neural stem and progenitor cells and requires tight control of the progenitor cell's activity. Several signaling pathways and intrinsic/extrinsic factors have been well studied over the last years, but recent attention has been given to the critical role of cellular metabolism in determining the functional properties of progenitor cells. Here, we review recent advances in the current understanding of when and how metabolism affects neural stem cell (NSC) behavior and subsequent neuronal differentiation and highlight the role of lipocalin-2 (LCN2), a protein involved in the control of oxidative stress, as a recently emerged regulator of NSC activity and neuronal differentiation.
Collapse
Affiliation(s)
- Ana Catarina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João M Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João Carlos Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Waschek JA, Cohen JR, Chi GC, Proszynski TJ, Niewiadomski P. PACAP Promotes Matrix-Driven Adhesion of Cultured Adult Murine Neural Progenitors. ASN Neuro 2017; 9:1759091417708720. [PMID: 28523979 PMCID: PMC5439654 DOI: 10.1177/1759091417708720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
New neurons are born throughout the life of mammals in germinal zones of the brain known as neurogenic niches: the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus. These niches contain a subpopulation of cells known as adult neural progenitor cells (aNPCs), which self-renew and give rise to new neurons and glia. aNPCs are regulated by many factors present in the niche, including the extracellular matrix (ECM). We show that the neuropeptide PACAP (pituitary adenylate cyclase-activating polypeptide) affects subventricular zone-derived aNPCs by increasing their surface adhesion. Gene array and reconstitution assays indicate that this effect can be attributed to the regulation of ECM components and ECM-modifying enzymes in aNPCs by PACAP. Our work suggests that PACAP regulates a bidirectional interaction between the aNPCs and their niche: PACAP modifies ECM production and remodeling, in turn the ECM regulates progenitor cell adherence. We speculate that PACAP may in this manner help restrict adult neural progenitors to the stem cell niche in vivo, with potential significance for aNPC function in physiological and pathological states.
Collapse
Affiliation(s)
- James A Waschek
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Joseph R Cohen
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gloria C Chi
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tomasz J Proszynski
- 2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Niewiadomski
- 1 Intellectual Development and Disabilities Research Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,2 Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,3 Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Gerashchenko D, Pasumarthi RK, Kilduff TS. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep. Sleep 2017; 40:3866746. [PMID: 28605546 DOI: 10.1093/sleep/zsx098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. Methods We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Results Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. Conclusions These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication.
Collapse
Affiliation(s)
| | - Ravi K Pasumarthi
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| |
Collapse
|
6
|
Prickle1 as positive regulator of oligodendrocyte differentiation. Neuroscience 2017; 364:107-121. [PMID: 28935237 DOI: 10.1016/j.neuroscience.2017.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023]
Abstract
Spontaneous neural repair from endogenous neural stem cells' (NSCs) niches occurs in response to central nervous system (CNS) injuries to only a limited extent. Uncovering the mechanisms that control neural repair and can be further manipulated to promote NSCs toward oligodendrocyte progenitors cells (OPCs) and myelinating oligodendrocytes is a major objective. In the current study, we describe high-throughput transcriptional changes in adult mouse subventricular zone (SVZ)-NSCs during differentiation in vitro. In order to identify myelin-specific transcriptional regulators among large transcriptional changes associated with differentiation, we have focused on transcripts encoding transcription factors and regulators showing expression profile that is highly correlated with expression of myelin-encoding genes. We have revealed previously undescribed effect of Prickle1 and Nfe2l3 transcriptional regulators that are positively correlated with expression of myelin basic protein (MBP). Using Prickle1 and Nfe2l3 silencing and immunocytochemistry approaches, we demonstrated that silencing of Prickle1 dramatically decreases differentiation to NG2+OPCs while Nfe2l3 moderately decreases as compared with control siRNA. Moreover, silencing of Prickle1 also decreases maturation of OPCs to MBP+ oligodendrocytes (OLs). Accordingly, overexpression of Prickle1 increases the differentiation of NSCs to CNPase+ pre-myelinating and myelinating MBP+ OLs. In particular, the necessity of Prickle1 for oligodendrocyte differentiation is demonstrated in purified OPCs cultures. Our findings demonstrate the role of Prickle1 in positive regulation of differentiation and maturation of oligodendrocytes suggesting that targeting Prickle1 in CNS injuries and particularly in demyelinating disease could promote generation of myelinating oligodendrocytes from endogenous niches to replenish damaged oligodendrocytes.
Collapse
|
7
|
|
8
|
Qi C, Zhang J, Chen X, Wan J, Wang J, Zhang P, Liu Y. Hypoxia stimulates neural stem cell proliferation by increasing HIF‑1α expression and activating Wnt/β-catenin signaling. ACTA ACUST UNITED AC 2017; 63:12-19. [PMID: 28838333 DOI: 10.14715/cmb/2017.63.7.2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/26/2023]
Abstract
Evidence indicates that after brain injury, neurogenesis is enhanced in regions such as hippocampus, striatum, and cortex. To study the role of hypoxia-inducible factor-1 (HIF‑1α) and Wnt signaling in cerebral ischemia/hypoxia-induced proliferation of neural stem cells (NSCs), we investigated the proliferation of NSCs, expression of HIF‑1α, and activation of Wnt signaling under conditions of pathologic hypoxia in vitro. NSCs were isolated from 30-day-old Sprague-Dawley rats and subjected to 0.3% oxygen in a microaerophilic incubation system. Cell proliferation was evaluated by measuring the diameter of neurospheres and by bromodeoxyuridine incorporation assays. Real-time quantitative PCR and Western blotting were used to detect mRNA and protein levels of HIF-1α, β-catenin, and cyclin D1 in the NSCs. The results showed that hypoxia increased NSC proliferation and the levels of HIF-1α, β‑catenin, and cyclin D1 (p < 0.05). Blockade of the Wnt signaling pathway decreased hypoxia-induced NSC proliferation, whereas activation of this pathway increased hypoxia-induced NSC proliferation (p < 0.05). Knockdown of HIF-1α with HIF-1α siRNA decreased β‑catenin nuclear translocation and cyclin D1 expression, and inhibited proliferation of NSCs (p < 0.05). These findings indicate that pathologic hypoxia stimulates NSC proliferation by increasing expression of HIF-1α and activating the Wnt/β-catenin signaling pathway. The data suggest that Wnt/β-catenin signaling may play a key role in NSC proliferation under conditions of pathologic hypoxia.
Collapse
Affiliation(s)
- C Qi
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - J Zhang
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - X Chen
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - J Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | - J Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | - P Zhang
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| | - Y Liu
- Institute of Neurobiology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061 China
| |
Collapse
|
9
|
Petri R, Pircs K, Jönsson ME, Åkerblom M, Brattås PL, Klussendorf T, Jakobsson J. let-7 regulates radial migration of new-born neurons through positive regulation of autophagy. EMBO J 2017; 36:1379-1391. [PMID: 28336683 DOI: 10.15252/embj.201695235] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023] Open
Abstract
During adult neurogenesis, newly formed olfactory bulb (OB) interneurons migrate radially to integrate into specific layers of the OB Despite the importance of this process, the intracellular mechanisms that regulate radial migration remain poorly understood. Here, we find that microRNA (miRNA) let-7 regulates radial migration by modulating autophagy in new-born neurons. Using Argonaute2 immunoprecipitation, we performed global profiling of miRNAs in adult-born OB neurons and identified let-7 as a highly abundant miRNA family. Knockdown of let-7 in migrating neuroblasts prevented radial migration and led to an immature morphology of newly formed interneurons. This phenotype was accompanied by a decrease in autophagic activity. Overexpression of Beclin-1 or TFEB in new-born neurons lacking let-7 resulted in re-activation of autophagy and restored radial migration. Thus, these results reveal a miRNA-dependent link between autophagy and adult neurogenesis with implications for neurodegenerative diseases where these processes are impaired.
Collapse
Affiliation(s)
- Rebecca Petri
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Per Ludvik Brattås
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Thies Klussendorf
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Multiplex Analysis Using cDNA Transcriptomic Profiling. Methods Mol Biol 2016. [PMID: 27896762 DOI: 10.1007/978-1-4939-6730-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA microarrays contain microscopic DNA spots attached to a solid surface. Each spot contains picomolar levels of a specific DNA probe sequence and hybridization to the corresponding gene products can be detected and quantitated through the use of fluorescently labeled target DNA. In this format, DNA microarrays can be used to measure the expression level of thousands of genes in a single experiment. Here, we present a method to detect the mRNA transcriptional changes in neuronal precursor cells following differentiation using high density cDNA microarrays.
Collapse
|
11
|
Logan TT, Rusnak M, Symes AJ. Runx1 promotes proliferation and neuronal differentiation in adult mouse neurosphere cultures. Stem Cell Res 2015; 15:554-564. [PMID: 26473321 DOI: 10.1016/j.scr.2015.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury alters the signaling environment of the adult neurogenic niche and may activate unique proliferative cell populations that contribute to the post-injury neurogenic response. Runx1 is not normally expressed by adult neural stem or progenitor cells (NSPCs) but is induced in a subpopulation of putative NSPCs after brain injury in adult mice. In order to investigate the role of Runx1 in NSPCs, we established neurosphere cultures of adult mouse subventricular zone NSPCs. We show that Runx1 is basally expressed in neurosphere culture. Removal of the mitogen bFGF or addition of 1% FBS decreased Runx1 expression. Inhibition of endogenous Runx1 activity with either Ro5-3335 or shRNA-mediated Runx1 knockdown inhibited NSPC proliferation without affecting differentiation. Lentiviral mediated over-expression of Runx1 in neurospheres caused a significant change in cell morphology without reducing proliferation. Runx1-overexpressing neurospheres changed from floating spheres to adherent colonies or individual unipolar or bipolar cells. Flow cytometry analysis indicated that Runx1 over-expression produced a significant increase in expression of the neuronal marker TuJ1 and a minor increase in the astrocytic marker S100β. Thus, Runx1 expression drove adult NSPC differentiation, predominantly toward a neuronal lineage. These data suggest that Runx1 could be manipulated after injury to promote neuronal differentiation to facilitate repair of the CNS.
Collapse
Affiliation(s)
- T T Logan
- Department of Pharmacology and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - M Rusnak
- Department of Pharmacology and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - A J Symes
- Department of Pharmacology and Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
12
|
Lamour V, Henry A, Kroonen J, Nokin MJ, von Marschall Z, Fisher LW, Chau TL, Chariot A, Sanson M, Delattre JY, Turtoi A, Peulen O, Rogister B, Castronovo V, Bellahcène A. Targeting osteopontin suppresses glioblastoma stem-like cell character and tumorigenicityin vivo. Int J Cancer 2015; 137:1047-57. [DOI: 10.1002/ijc.29454] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/24/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Virginie Lamour
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège; Belgium
| | - Aurélie Henry
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège; Belgium
| | - Jérôme Kroonen
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège; Belgium
| | - Marie-Julie Nokin
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège; Belgium
| | | | - Larry W. Fisher
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS; Bethesda MD
| | - Tieu-Lan Chau
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège; Belgium
| | - Alain Chariot
- Laboratory of Medical Chemistry, GIGA-Signal Transduction, University of Liège; Belgium
| | - Marc Sanson
- UMR 975, INSERM-UPMC, GH Pitié-Salpêtrière; Paris
| | | | - Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège; Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège; Belgium
| | - Bernard Rogister
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liège; Belgium
- Stem Cells and Regenerative Medicine, GIGA-Development, University of Liège; Belgium
| | - Vincent Castronovo
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège; Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, University of Liège; Belgium
| |
Collapse
|
13
|
Multipotent stem cell factor UGS148 is a marker for tanycytes in the adult hypothalamus. Mol Cell Neurosci 2015; 65:21-30. [DOI: 10.1016/j.mcn.2015.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/12/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022] Open
|
14
|
Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen P, Ramalingam N, Sun G, Thu M, Norris M, Lebofsky R, Toppani D, Kemp DW, Wong M, Clerkson B, Jones BN, Wu S, Knutsson L, Alvarado B, Wang J, Weaver LS, May AP, Jones RC, Unger MA, Kriegstein AR, West JAA. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 2014; 32:1053-8. [PMID: 25086649 PMCID: PMC4191988 DOI: 10.1038/nbt.2967] [Citation(s) in RCA: 635] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/25/2014] [Indexed: 01/17/2023]
Abstract
Large-scale surveys of single-cell gene expression have the potential to reveal rare cell populations and lineage relationships, but require efficient methods for cell capture and mRNA sequencing1–4. Although cellular barcoding strategies allow parallel sequencing of single cells at ultra-low depths5, the limitations of shallow sequencing have not been directly investigated. By capturing 301 single cells from 11 populations using microfluidics and analyzing single-cell transcriptomes across downsampled sequencing depths, we demonstrate that shallow single-cell mRNA sequencing (~50,000 reads per cell) is sufficient for unbiased cell-type classification and biomarker identification. In developing cortex we identify diverse cell types including multiple progenitor and neuronal subtypes, and we identify EGR1 and FOS as previously unreported candidate targets of Notch signaling in human but not mouse radial glia. Our strategy establishes an efficient method for unbiased analysis and comparison of cell populations from heterogeneous tissue by microfluidic single-cell capture and low-coverage sequencing of many cells.
Collapse
Affiliation(s)
- Alex A Pollen
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA. [3]
| | - Tomasz J Nowakowski
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA. [3]
| | - Joe Shuga
- 1] Fluidigm Corporation, South San Francisco, California, USA. [2]
| | - Xiaohui Wang
- 1] Fluidigm Corporation, South San Francisco, California, USA. [2]
| | - Anne A Leyrat
- Fluidigm Corporation, South San Francisco, California, USA
| | - Jan H Lui
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Nianzhen Li
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Brian Fowler
- Fluidigm Corporation, South San Francisco, California, USA
| | - Peilin Chen
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Gang Sun
- Fluidigm Corporation, South San Francisco, California, USA
| | - Myo Thu
- Fluidigm Corporation, South San Francisco, California, USA
| | - Michael Norris
- Fluidigm Corporation, South San Francisco, California, USA
| | | | | | - Darnell W Kemp
- Fluidigm Corporation, South San Francisco, California, USA
| | - Michael Wong
- Fluidigm Corporation, South San Francisco, California, USA
| | - Barry Clerkson
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Shiquan Wu
- Fluidigm Corporation, South San Francisco, California, USA
| | | | | | - Jing Wang
- Fluidigm Corporation, South San Francisco, California, USA
| | | | - Andrew P May
- Fluidigm Corporation, South San Francisco, California, USA
| | - Robert C Jones
- Fluidigm Corporation, South San Francisco, California, USA
| | - Marc A Unger
- Fluidigm Corporation, South San Francisco, California, USA
| | - Arnold R Kriegstein
- 1] Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA. [2] Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jay A A West
- Fluidigm Corporation, South San Francisco, California, USA
| |
Collapse
|
15
|
Rafalski VA, Mancini E, Brunet A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 2013; 125:5597-608. [PMID: 23420198 DOI: 10.1242/jcs.114827] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases.
Collapse
|
16
|
Logan TT, Villapol S, Symes AJ. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One 2013; 8:e59250. [PMID: 23555640 PMCID: PMC3605457 DOI: 10.1371/journal.pone.0059250] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/13/2013] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases neurogenesis in the forebrain subventricular zone (SVZ) and the hippocampal dentate gyrus (DG). Transforming growth factor-β (TGF-β) superfamily cytokines are important regulators of adult neurogenesis, but their involvement in the regulation of this process after brain injury is unclear. We subjected adult mice to controlled cortical impact (CCI) injury, and isolated RNA from the SVZ and DG at different post-injury time points. qPCR array analysis showed that cortical injury caused significant alterations in the mRNA expression of components and targets of the TGF-β, BMP, and activin signaling pathways in the SVZ and DG after injury, suggesting that these pathways could regulate post-injury neurogenesis. In both neurogenic regions, the injury also induced expression of Runt-related transcription factor-1 (Runx1), which can interact with intracellular TGF-β Smad signaling pathways. CCI injury strongly induced Runx1 expression in activated and proliferating microglial cells throughout the neurogenic regions. Runx1 protein was also expressed in a subset of Nestin- and GFAP-expressing putative neural stem or progenitor cells in the DG and SVZ after injury. In the DG only, these Runx1+ progenitors proliferated. Our data suggest potential roles for Runx1 in the processes of microglial cell activation and proliferation and in neural stem cell proliferation after TBI.
Collapse
Affiliation(s)
- Trevor T. Logan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aviva J. Symes
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Phasor fluorescence lifetime microscopy of free and protein-bound NADH reveals neural stem cell differentiation potential. PLoS One 2012; 7:e48014. [PMID: 23144844 PMCID: PMC3489895 DOI: 10.1371/journal.pone.0048014] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/24/2012] [Indexed: 12/03/2022] Open
Abstract
In the stem cell field there is a lack of non invasive and fast methods to identify stem cell’s metabolic state, differentiation state and cell-lineage commitment. Here we describe a label-free method that uses NADH as an intrinsic biomarker and the Phasor approach to Fluorescence Lifetime microscopy to measure the metabolic fingerprint of cells. We show that different metabolic states are related to different cell differentiation stages and to stem cell bias to neuronal and glial fate, prior the expression of lineage markers. Our data demonstrate that the NADH FLIM signature distinguishes non-invasively neurons from undifferentiated neural progenitor and stem cells (NPSCs) at two different developmental stages (E12 and E16). NPSCs follow a metabolic trajectory from a glycolytic phenotype to an oxidative phosphorylation phenotype through different stages of differentiation. NSPCs are characterized by high free/bound NADH ratio, while differentiated neurons are characterized by low free/bound NADH ratio. We demonstrate that the metabolic signature of NPSCs correlates with their differentiation potential, showing that neuronal progenitors and glial progenitors have a different free/bound NADH ratio. Reducing conditions in NPSCs correlates with their neurogenic potential, while oxidative conditions correlate with glial potential. For the first time we show that FLIM NADH metabolic fingerprint provides a novel, and quantitative measure of stem cell potential and a label-free and non-invasive means to identify neuron- or glial- biased progenitors.
Collapse
|
18
|
Potassium channel expression in adult murine neural progenitor cells. Neuroscience 2011; 180:19-29. [PMID: 21329741 DOI: 10.1016/j.neuroscience.2011.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/08/2011] [Accepted: 02/08/2011] [Indexed: 11/21/2022]
Abstract
Neural progenitor cells (NPCs) are a source of new neurons and glia in the adult brain. Most NPCs reside in the forebrain subventricular zone (SVZ) and in the subgranular zone of the dentate gyrus, where they contribute to plasticity in the adult brain. To use their potential for repair, it is essential to identify the molecules that regulate their growth, migration and differentiation. Potassium (K+) channels are promising molecule candidates for NPC regulation as they are important components of signal transduction and their diversity is ideal to cover the complex functions required for cell proliferation and differentiation. There is increasing evidence that K+ channels influence cell growth and neurogenesis, however, very little is known regarding K+ channel distribution in NPCs. We therefore explored the expression of a variety of voltage-gated (Kv), inwardly rectifying (Kir) and two-pore (K2P) K+ channels in the SVZ of adult mice and in neurosphere cultures of NPCs during growth and differentiation. Immunocytochemical analysis revealed a differential expression pattern of K+ channels in nestin+ SVZ precursor cells, early SVZ doublecortin+ neurons and (sub)ependymal cells. These findings were confirmed in neurosphere cultures at the protein and mRNA levels. The expression of some K+ channel proteins, such as Kir4.1, Kir6.1, TREK1 or TASK1, suggests a role of K+ channels in the complex regulation of NPC proliferation, maturation and differentiation.
Collapse
|
19
|
Chopp M, Zhang ZG. Enhancing Brain Reorganization and Recovery of Function after Stroke. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2010; 93:182-203. [PMID: 21056618 DOI: 10.1016/j.pneurobio.2010.10.007] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/20/2010] [Accepted: 10/28/2010] [Indexed: 12/26/2022]
Abstract
The adult mammalian brain contains a population of neural stem cells that can give rise to neurons, astrocytes, and oligodendrocytes and are thought to be involved in certain forms of memory, behavior, and brain injury repair. Neural stem cell properties, such as self-renewal and multipotency, are modulated by both cell-intrinsic and cell-extrinsic factors. Emerging evidence suggests that energy metabolism is an important regulator of neural stem cell function. Molecules and signaling pathways that sense and influence energy metabolism, including insulin/insulin-like growth factor I (IGF-1)-FoxO and insulin/IGF-1-mTOR signaling, AMP-activated protein kinase (AMPK), SIRT1, and hypoxia-inducible factors, are now implicated in neural stem cell biology. Furthermore, these signaling modules are likely to cooperate with other pathways involved in stem cell maintenance and differentiation. This review summarizes the current understanding of how cellular and systemic energy metabolism regulate neural stem cell fate. The known consequences of dietary restriction, exercise, aging, and pathologies with deregulated energy metabolism for neural stem cells and their differentiated progeny will also be discussed. A better understanding of how neural stem cells are influenced by changes in energy availability will help unravel the complex nature of neural stem cell biology in both the normal and diseased state.
Collapse
|
21
|
Yun SJ, Byun K, Bhin J, Oh JH, Nhung LTH, Hwang D, Lee B. Transcriptional regulatory networks associated with self-renewal and differentiation of neural stem cells. J Cell Physiol 2010; 225:337-47. [PMID: 20607797 DOI: 10.1002/jcp.22294] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neural stem cells (NSCs) are self-renewing, multipotent cells that can generate neurons, astrocytes, and oligodendrocytes of the nervous system. NSCs have been extensively studied because they can be used to treat impaired cells and tissues or improve regenerative power of degenerating cells in neurodegenerative diseases or spinal cord injuries. For successful clinical applications of NSCs, it is essential to understand the mechanisms underlying self-renewal and differentiation of NSCs, which involve complex interplays among key factors including transcription factors, epigenetic control, microRNAs, and signaling pathways. Despite numerous studies on such factors, a holistic view of their interplays during neural development still remains elusive. In this review, we present recently identified potential regulatory factors and their targets by genomics and proteomics technologies and then integrate them into regulatory networks that describe their complex interplays to achieve self-renewal and differentiation of NSCs.
Collapse
Affiliation(s)
- So Jeong Yun
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Characterization of novel monoclonal antibodies able to identify neurogenic niches and arrest neurosphere proliferation and differentiation. Neuroscience 2010; 169:1473-85. [PMID: 20580784 DOI: 10.1016/j.neuroscience.2010.04.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/10/2010] [Accepted: 04/24/2010] [Indexed: 11/23/2022]
Abstract
Two monoclonal antibodies (Nilo1 and Nilo2) were generated after immunization of hamsters with E13.5 olfactory bulb-derived mouse neurospheres. They are highly specific for neural stem and early progenitor cell surface antigens. Nilo positive cells present in the adult mouse subventricular zone (SVZ) were able to initiate primary neural stem cell cultures. Moreover, these antibodies added to neurosphere cultures induced proliferation arrest and interfered with their differentiation. In the lateral ventricles of adult mice, Nilo1 stained a cell subpopulation lining the ventricle and cells located in the SVZ, whereas Nilo2 stained a small population associated with the anterior horn of the SVZ at the beginning of the rostral migratory stream. Co-staining of Nilo1 or Nilo2 and neural markers demonstrated that Nilo1 identifies an early neural precursor subpopulation, whereas Nilo2 detects more differentiated neural progenitors. Thus, these antibodies identify distinct neurogenic populations within the SVZ of the lateral ventricle.
Collapse
|
23
|
Freese JL, Pino D, Pleasure SJ. Wnt signaling in development and disease. Neurobiol Dis 2009; 38:148-53. [PMID: 19765659 DOI: 10.1016/j.nbd.2009.09.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/01/2009] [Accepted: 09/10/2009] [Indexed: 12/26/2022] Open
Abstract
The Wnt signaling pathway is one of the central morphogenic signaling pathways regulating early vertebrate development. In recent years, it has become clear that the Wnt pathway also regulates many aspects of nervous system development from the patterning stage through the regulation of neural plasticity. In this review, we first present an overview of the components of the Wnt signaling pathway and then go on to discuss the literature describing the multitude of roles of Wnts in nervous system. In the latter portion of the review, we turn to the ways that defects in Wnt signaling lead to neurologic disease.
Collapse
Affiliation(s)
- Jennifer L Freese
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
24
|
Kunke D, Bryja V, Mygland L, Arenas E, Krauss S. Inhibition of canonical Wnt signaling promotes gliogenesis in P0-NSCs. Biochem Biophys Res Commun 2009; 386:628-33. [PMID: 19545542 DOI: 10.1016/j.bbrc.2009.06.084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/13/2009] [Indexed: 01/29/2023]
Abstract
Wnt signaling plays an essential role in the development of mammalian central nervous system. We investigated the impact of activation/inhibition of the Wnt signaling pathway on neuronal/glial differentiation in neurospheres derived from neonatal mouse forebrains. For short term alterations, neurospheres were stimulated with recombinant Wnt-3a, Wnt-5a and the Wnt inhibitor Dickkopf-1 (Dkk1). Furthermore, neurospheres were transduced with retroviral vectors encoding Wnt-3a, Wnt-7a and their inhibitors Dkk1 and soluble Frizzled related protein-5 (sFRP5). Long-term activation of Wnt pathway by Wnt-7a or by treatment with GSK3 inhibitors promoted a moderate increase of the neuronal differentiation and blocked gliogenesis. In contrast, Wnt pathway inhibition in neurospheres, induced by retroviral overexpression of either Dkk1 or sFRP5, robustly increased the gliogenesis at the expense of neurogenesis. In summary, our data demonstrate that activation or inhibition of Wnt/beta-catenin signaling in neurospheres regulates neuronal and glial differentiation, respectively. Thus, our results suggest that Wnt signaling may also contribute to regulate these processes in the neonatal brain.
Collapse
Affiliation(s)
- David Kunke
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet, 0027 Oslo, Norway.
| | | | | | | | | |
Collapse
|
25
|
Liu Y, Lacson R, Cassaday J, Ross DA, Kreamer A, Hudak E, Peltier R, McLaren D, Muñoz-Sanjuan I, Santini F, Strulovici B, Ferrer M. Identification of small-molecule modulators of mouse SVZ progenitor cell proliferation and differentiation through high-throughput screening. JOURNAL OF BIOMOLECULAR SCREENING 2009; 14:319-29. [PMID: 19403915 DOI: 10.1177/1087057109332596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adult mouse subventricular zone (SVZ) neural stem/progenitor cells are multipotent self-renewing cells that retain the capacity to generate the major cell types of the central nervous system in vitro and in vivo. The relative ease of expanding SVZ cells in culture as neurospheres makes them an ideal model for carrying out large-scale screening to identify compounds that regulate neural progenitor cell proliferation and differentiation. The authors have developed an adenosine triphosphate-based cell proliferation assay using adult SVZ cells to identify small molecules that activate or inhibit progenitor cell proliferation. This assay was miniaturized to a 1536-well format for high-throughput screening (HTS) of >1 million small-molecule compounds, and 325 and 581 compounds were confirmed as potential inducers of SVZ cell proliferation and differentiation, respectively. A number of these compounds were identified as having a selective proliferative and differentiation effect on SVZ cells versus mouse Neuro2a neuroblastoma cells. These compounds can potentially be useful pharmacological tools to modulate resident stem cells and neurogenesis in the adult brain. This study represents a novel application of primary somatic stem cells in the HTS of a large-scale compound library.
Collapse
Affiliation(s)
- Yaping Liu
- Department of Automated Biotechnology, Merck & Co., North Wales, Pennsylvania 19454, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M. In vitro Neurogenesis from Neural Progenitor Cells Isolated from the Hippocampus Region of the Brain of Adult Rats Exposed to Ethanol during Early Development through Their Alcohol-Drinking Mothers. Alcohol Alcohol 2009; 44:185-98. [DOI: 10.1093/alcalc/agn109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
27
|
Setting the conditions for efficient, robust and reproducible generation of functionally active neurons from adult subventricular zone-derived neural stem cells. Cell Death Differ 2008; 15:1847-56. [PMID: 19011641 DOI: 10.1038/cdd.2008.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although new culture conditions enable homogeneous and long-term propagation of radial glia-like neural stem (NS) cells in monolayer and serum-free conditions, the efficiency of the conversion of NS cells into terminally differentiated, functionally mature neurons is relatively limited and poorly characterized. We demonstrate that NS cells derived from adult mouse subventricular zone robustly develop properties of mature neurons when exposed to an optimized neuronal differentiation protocol. A high degree of cell viability was preserved. At 22 days in vitro, most cells (65%) were microtubule-associated protein 2(+) and coexpressed gamma-aminobutyric acid (GABA), GAD67, calbindin and parvalbumin. Nearly all neurons exhibited sodium, potassium and calcium currents, and 70% of them fired action potentials. These neurons expressed functional GABA(A) receptors, whereas activable kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartic acid receptors were present in approximately 80, 30 and 2% of cells, respectively. Antigenic and functional properties were efficiently and reliably reproduced across experiments and cell passages (up to 68). This is the first report showing a consistent and reproducible generation of large amounts of neurons from long-term passaged adult neural stem cells. Remarkably, the neuronal progeny carries a defined set of antigenic, biochemical and functional characteristics that make this system suitable for studies of NS cell biology as well as for genetic and chemical screenings.
Collapse
|
28
|
Bilsland JG, Wheeldon A, Mead A, Znamenskiy P, Almond S, Waters KA, Thakur M, Beaumont V, Bonnert TP, Heavens R, Whiting P, McAllister G, Munoz-Sanjuan I. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology 2008; 33:685-700. [PMID: 17487225 DOI: 10.1038/sj.npp.1301446] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The receptor tyrosine kinase product of the anaplastic lymphoma kinase (ALK) gene has been implicated in oncogenesis as a product of several chromosomal translocations, although its endogeneous role in the hematopoietic and neural systems has remained poorly understood. We describe that the generation of animals homozygous for a deletion of the ALK tyrosine kinase domain leads to alterations in adult brain function. Evaluation of adult ALK homozygotes (HOs) revealed an age-dependent increase in basal hippocampal progenitor proliferation and alterations in behavioral tests consistent with a role for this receptor in the adult brain. ALK HO animals displayed an increased struggle time in the tail suspension test and the Porsolt swim test and enhanced performance in a novel object-recognition test. Neurochemical analysis demonstrates an increase in basal dopaminergic signalling selectively within the frontal cortex. Altogether, these results suggest that ALK functions in the adult brain to regulate the function of the frontal cortex and hippocampus and identifies ALK as a new target for psychiatric indications, such as schizophrenia and depression, with an underlying deregulated monoaminergic signalling.
Collapse
Affiliation(s)
- James G Bilsland
- Department of Molecular and Cellular Neuroscience, Merck Sharp and Dohme, The Neuroscience Research Centre, Essex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The subependymal zone (SEZ) of the lateral ventricles of the adult mouse brain hosts neurogenesis from a neural stem cell population with the morphology of astrocytes (termed type-B cells). Tenascin-C is a large extracellular matrix glycoprotein present in the SEZ that has been shown to regulate the development of embryonic neural stem cells and the proliferation and migration of early postnatal neural precursors. Here we show that tenascin-C is produced by type-B cells and forms a layer between SEZ and the adjacent striatum. Tenascin-C deficiency resulted in minor structural differences in and around the SEZ. However, the numbers of neural stem cells and their progeny remained unaffected, as did their regeneration after depletion of mitotic cells using the antimitotic drug cytosine-beta-D-arabinofuranoside. Our results reveal a remarkable ability of the adult neural stem cell niche to retain proper function even after the removal of major extracellular matrix molecules.
Collapse
|
30
|
Chi L, Gan L, Luo C, Lien L, Liu R. Temporal response of neural progenitor cells to disease onset and progression in amyotrophic lateral sclerosis-like transgenic mice. Stem Cells Dev 2007; 16:579-88. [PMID: 17784831 DOI: 10.1089/scd.2006.0120] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Regenerative medicine through neural stem cells (NSCs) or neural progenitor cells (NPCs) has been proposed as an alterative avenue for restoring neurological dysfunction in amyotrophic lateral sclerosis (ALS). It is critical to understand the organization and distribution of endogenous adult NPCs in response to motor neuron degeneration before regenerative medicine can be applied for ALS therapy. For this reason, we analyzed the temporal response of NPCs to motor neuron degeneration in the spinal cord and brain using nestin enhancer-driven LacZ reporter transgenic mice (pNes-Tg mice, control) and bi-transgenic mice containing both the nestin enhancer-driven LacZ reporter gene and mutant G93A-SOD1 gene (Bi-Tg mice). We observed an increase of NPCs in the dorsal horns of the spinal cord at the disease onset and progression stages in the Bi-Tg mice compared with that of age-matched pNes-Tg control mice. In contrast, an increase of NPCs in the ventral horns was detected at the disease progression stage. On the other hand, an increase of NPCs in the motor cortex at the disease-onset stage, but not at the disease progression stage, was detected. Furthermore, a decrease of NPCs in the lateral ventricle at the disease progression stage was observed, whereas no difference in the number of NPCs in the hippocampus was detected at the disease onset and progression stages. Some of the NPCs differentiate into neuron-like cells in response to motor neuron degeneration. The organization and distribution of endogenous adult NPCs in the ALS-like transgenic mice at the disease onset and progression stages provide fundamental bases for consideration of regenerative therapy of ALS by increasing de novo neurogenesis.
Collapse
Affiliation(s)
- Liying Chi
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | | | | | | | | |
Collapse
|
31
|
Barami K. Biology of the subventricular zone in relation to gliomagenesis. J Clin Neurosci 2007; 14:1143-9. [DOI: 10.1016/j.jocn.2007.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/05/2023]
|
32
|
Herrup K, Yang Y. Cell cycle regulation in the postmitotic neuron: oxymoron or new biology? Nat Rev Neurosci 2007; 8:368-78. [PMID: 17453017 DOI: 10.1038/nrn2124] [Citation(s) in RCA: 381] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adult CNS neurons are typically described as permanently postmitotic but there is probably nothing permanent about the neuronal cell cycle arrest. Rather, it appears that these highly differentiated cells must constantly keep their cell cycle in check. Relaxation of this vigilance leads to the initiation of a cell cycle and entrance into an altered and vulnerable state, often leading to death. There is evidence that neurons which are at risk of neurodegeneration are also at risk of re-initiating a cell cycle process that involves the expression of cell cycle proteins and DNA replication. Failure of cell cycle regulation might be a root cause of several neurodegenerative disorders and a final common pathway for others.
Collapse
Affiliation(s)
- Karl Herrup
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
33
|
Liu XS, Zhang ZG, Zhang RL, Gregg SR, Meng H, Chopp M. Comparison of in vivo and in vitro gene expression profiles in subventricular zone neural progenitor cells from the adult mouse after middle cerebral artery occlusion. Neuroscience 2007; 146:1053-61. [PMID: 17428613 PMCID: PMC1942046 DOI: 10.1016/j.neuroscience.2007.02.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Revised: 01/25/2007] [Accepted: 02/22/2007] [Indexed: 11/28/2022]
Abstract
Stroke stimulates neurogenesis in the adult rodent brain. The molecules that mediate stroke-induced neurogenesis are not definitely known. Using microarrays containing approximately 400 known genes associated with stem cell and angiogenesis, we compared transcriptional profiles of subventricular zone (SVZ) tissue with cultured neural progenitor cells isolated from the SVZ 7 days after ischemic stroke in the adult mouse. In SVZ tissue, we found that stroke upregulated 58 genes which are involved in multiple signaling pathways during embryonic development, suggesting that stroke recaptures embryonic molecular signals. In neural progenitor cells cultured in growth medium, 23 gene expressions were increased after stroke and 8 of 23 genes overlapped with upregulated genes in stroke SVZ tissue. Expression alterations of selected genes were confirmed by real-time RT-PCR and immunohistochemistry. These in vivo and in vitro data provide new insight into the genetic program of adult SVZ neural progenitor cells after stroke and demonstrate gene expression differences between SVZ tissue and cultured SVZ cells.
Collapse
Affiliation(s)
- Xian Shuang Liu
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Rui Lan Zhang
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Sara R. Gregg
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - He Meng
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI 48202
- Department of Physics, Oakland University, Rochester, MI 48309
| |
Collapse
|
34
|
Morris DC, Zhang ZG, Wang Y, Zhang RL, Gregg S, Liu XS, Chopp M. Wnt expression in the adult rat subventricular zone after stroke. Neurosci Lett 2007; 418:170-4. [PMID: 17400378 PMCID: PMC1994944 DOI: 10.1016/j.neulet.2007.03.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/16/2007] [Accepted: 03/10/2007] [Indexed: 10/23/2022]
Abstract
Neurogenesis occurs in adult brain neural progenitor cells (NPCs) located in the subventricular zone (SVZ) of the lateral ventricle and the subgrandular zone of the hippocampal dentate gyrus. After ischemic stroke, NPCs in the SVZ proliferate and migrate towards the ischemic boundary region to replenish damaged neurons. During development, the Wnt pathways contribute to stem cell maintenance and promote neurogenesis. We hypothesized that stroke up regulates Wnt family genes in SVZ cells. Non-ischemic and ischemic cultured SVZ cells and a single population of non-ischemic and ischemic SVZ cells isolated by laser capture microdissection (LCM) were analyzed for Wnt pathway expression using real-time RT-PCR and immunostaining. The number of neurospheres increased significantly (p<0.05) in SVZ cells derived from ischemic (32+/-4.7/rat) compared with the number in non-ischemic SVZ cells (18+/-3/rat). Wnt family gene mRNA levels were detected in SVZ cells isolated from both cultured and LCM SVZ cells, however there was no up regulation between non-ischemic and ischemic SVZ cells. Immunostaining on brain sections also demonstrated no up regulation of Wnt pathway protein between ischemic and non-ischemic SVZ cells. Expression of the Wnt family genes in SVZ cells support the hypothesis that the Wnt pathway may be involved in neurogenesis in the adult brain. However, ischemia does not up regulate Wnt family gene expression.
Collapse
Affiliation(s)
- Daniel C Morris
- Henry Ford Health Systems, Department of Emergency Medicine, CFP-2, 2799 West Grand Blvd, Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes during Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007; 16:143-65. [PMID: 17233554 DOI: 10.1089/scd.2006.00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of neural precursor cells (NPCs) represents a promising repair strategy for many neurological disorders. However, the molecular events and biological features that control NPC proliferation and their differentiation into neurons, astrocytes, and oligodendrocytes are unclear. In the present study, we used a comparative proteomics approach to identify proteins that were differentially regulated in NPCs after short-term differentiation. We also used a subcellular fractionation technique for enrichment of nuclei and other dense organelles to identify proteins that were not readily detected in whole cell extracts. In total, 115 distinct proteins underwent expression changes during NPC differentiation. Forty one of these were only identified following subcellular fractionation. These included transcription factors, RNA-processing factors, cell cycle proteins, and proteins that translocate between the nucleus and cytoplasm. Biological network analysis showed that the differentiation of NPCs was associated with significant changes in cell cycle and protein synthesis machinery. Further characterization of these proteins could provide greater insight into the mechanisms involved in regulation of neurogenesis in the adult central nervous system (CNS) and potentially identify points of therapeutic intervention.
Collapse
Affiliation(s)
- Kamran Salim
- Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex, CM20 2QR, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
36
|
Salim K, Guest PC, Skynner HA, Bilsland JG, Bonnert TP, McAllister G, Munoz-Sanjuan I. Identification of Proteomic Changes During Differentiation of Adult Mouse Subventricular Zone Progenitor Cells. Stem Cells Dev 2007. [DOI: 10.1089/scd.2007.16.ft-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|