1
|
Malaie S, Pourakbar L, Siavash Moghaddam S, Xiao J, Khezrnejad N. Phytoremediation of mercury-contaminated Soil by Vigna radiata L. plant in companion with bacterial and fungal biofertilizers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55549-55561. [PMID: 39231843 DOI: 10.1007/s11356-024-34910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mercury is one of the most toxic pollutants that has drawn the attention of scientists. This study investigates the phytoremediation capabilities of Vigna radiata L. in conjunction with microbial biostimulators. The inoculated seeds were cultivated in soil under controlled greenhouse conditions. The concentration of Hg, biomass, and photosynthetic pigments was investigated under amendment factor including EDTA, bacterial, fungal (Mycorrhiza and Trichoderma), biochar, and combined levels, as well as the pollution factor with three levels of HgCl2 as two factorial experiments. Results showed that Plant Growth-Promoting Microorganisms (PGPMs) influenced mercury absorption and distribution in different plant organs. Aside from biochar, all stimulators increased the plant's Hg concentration. Although EDTA greatly increased mercury accumulation in plants, it reduced biomass. Fungal and bacterial treatments increased total mercury in the plant but decreased its concentration in the leaves. The combination of bacteria and fungi resulted in the highest mercury absorption, while the biochar in combination with PGPMs produced the greatest biomass. Analysis of mercury concentration in seeds indicated that V radiata effectively prevented its contamination in seeds. The results disclosed that microbial combinations of bacteria and fungi could increase the plant's potential to cope with heavy metal pollution. This improvement is due to the different roles of these two organisms, like nitrogen fixation by bacteria and phosphorus absorption by mycorrhiza fungi. Moreover, biochar as a soil amendment and microorganism carrier was noticed. Finally, considering the plant's inherent capacity to stabilize mercury in the roots, phytostabilization with the benefit of combined levels of biochar and microorganisms can be introduced as the best approach.
Collapse
Affiliation(s)
- Shirwan Malaie
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, 5756151818, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Nabi Khezrnejad
- Department of Plant Protection, Mahabad Branch, Islamic Azad University, Mahabad, Iran
| |
Collapse
|
2
|
Lelesz JÉ, Csajbók J, Molnár PI, Virág IC, Kutasy ET. Mitigating the Accumulation of Mercury (Hg) and Lead (Pb) through Humic Acid Application under Aquaponic Conditions Using Watercress ( Nasturtium officinale R. Br.) as a Model Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:2386. [PMID: 39273870 PMCID: PMC11396911 DOI: 10.3390/plants13172386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
In aquaponic farming, there is a potential risk that heavy metals will contaminate the water, which can lead to heavy metal accumulation in the plants. Our research investigated the accumulation of mercury (Hg) and lead (Pb) under aquaponic conditions and the effect of their increased presence on the uptake of other macro- and micronutrients using watercress (Nasturtium officinale) as a model plant. The potential modifying effect of humic acid on heavy metal accumulation was also investigated. Adding Hg and Pb increased the mercury and lead levels of the watercress plants to over 300 µg kg-1, while the addition of humic acid significantly reduced the concentration of both mercury and lead in the plants compared to plants treated with heavy metals alone, from 310.647 µg kg-1 to 196.320 µg kg-1 for Hg and from 313.962 µg kg-1 to 203.508 µg kg-1 for Pb. For Fe and Mn, higher values were obtained for the Hg + humic acid treatments (188.13 mg kg-1 and 6423.92 µg kg-1, respectively) and for the Pb + humic acid treatments (198.26 mg kg-1 and 6454.31 µg kg-1, respectively). Conversely, the Na, K, Cu levels were lower compared to those in plants treated with heavy metals alone. Our results demonstrated that watercress can accumulate mercury, leading to high levels, even above food safety standards, highlighting the importance of water quality control in aquaponic systems. Furthermore, these results suggest that watercress could be used as a natural filter in recirculation systems. The addition of humic acid significantly reduced the accumulation of heavy metals and altered the element content in the plant.
Collapse
Affiliation(s)
- Judit Éva Lelesz
- Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
| | - József Csajbók
- Department of Crop Production, Applied Ecology and Plant Breeding, Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
| | - Péter István Molnár
- Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
| | - István Csaba Virág
- Department of Crop Production, Applied Ecology and Plant Breeding, Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
| | - Erika Tünde Kutasy
- Department of Crop Production, Applied Ecology and Plant Breeding, Institute of Crop Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Str. 138, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
Wang J, Gao J, Zheng L, Fu Y, Ji L, Wang C, Yuan S, Yang J, Liu J, Li G, Wang P, Wang Y, Zheng X, Kang G. Abscisic acid alleviates mercury toxicity in wheat (Triticum aestivum L.) by promoting cell wall formation. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130947. [PMID: 36801712 DOI: 10.1016/j.jhazmat.2023.130947] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Mercury (Hg) is a heavy metal (HM) that affects crop growth and productivity. In a previous study, we found that application of exogenous abscisic acid (ABA) alleviated growth inhibition in Hg-stressed wheat seedlings. However, the physiological and molecular mechanisms underlying ABA-mediated Hg detoxification remained unclear. In this study, Hg exposure reduced the plant fresh and dry weights and root numbers. Exogenous ABA treatment significantly resumed the plant growth, increased the plant height and weight, and enriched the roots numbers and biomass. The application of ABA enhanced Hg absorption and raised the Hg levels in the roots. In addition, exogenous ABA decreased Hg-induced oxidative damage and significantly brought down the activities of antioxidant enzymes, such as SOD, POD and CAT. Global gene expression patterns in the roots and leaves exposed to HgCl2 and ABA treatments were examined via RNA-Seq. The data showed that genes related to ABA-mediated Hg detoxification were enriched in functions related to cell wall formation. Weighted gene co-expression network analysis (WGCNA) further indicated that the genes implicated in Hg detoxification were related to cell wall synthesis. Under Hg stress, ABA significantly induced expression of the genes encoding cell wall synthesis enzymes, regulated the activity of hydrolase, and increased the concentrations of cellulose and hemicellulose, hence promoting cell wall synthesis. Taken together, these results suggest that exogenous ABA could alleviate Hg toxicity in wheat by promoting cell wall formation and suppressing translocation of Hg from roots to shoots.
Collapse
Affiliation(s)
- Jinxi Wang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jie Gao
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Lanjie Zheng
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yihan Fu
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Li Ji
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Changyu Wang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Shasha Yuan
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jingyu Yang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Jin Liu
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Gezi Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengfei Wang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Yonghua Wang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China
| | - Xu Zheng
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Guozhang Kang
- The National Engineering Research Center for Wheat, College of Agronomy, Henan Agricultural University, Longzi Lake Campus, Zhengzhou 450046, China; The State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Peng D, Chen M, Su X, Liu C, Zhang Z, Middleton BA, Lei T. Mercury accumulation potential of aquatic plant species in West Dongting Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121313. [PMID: 36813101 DOI: 10.1016/j.envpol.2023.121313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
West Dongting Lake is a protected wetland with the potential for high levels of mercury release via wastewater and deposition from industry and agriculture during the last decade. To find out the ability of various plant species to accumulate mercury pollutants from soil and water, nine sites were studied in the downstream direction of the flow of the Yuan and Li Rivers, which are tributaries of the Yellow River flowing into West Dongting Lake, where mercury levels arere high in soil and plant tissues. The total mercury (THg) concentration in wetland soil was 0.078-1.659 mg/kg, which varied along the gradient of water flow along the river. According to canonical correspondence analysis and correlation analysis, there was a positive correlation between the soil THg concentration and the soil moisture in West Dongting Lake. There is high heterogeneity in the spatial distribution of soil THg concentration in West Dongting Lake, which may be related to the spatial heterogeneity of the soil moisture. Some plant species had higher THg concentrations in aboveground tissues (translocation factor >1), but none of these plant species fit the criteria as hyperaccumulators of mercury. And some species of the same ecological type (e.g., emergent, submergent, floating-leaved) exhibited very different strategies for mercury uptake. The concentrations of mercury in these species were lower than in other studies but these had relatively higher translocation factors. To phytoremediate soil mercury in West Dongting Lake, the regular harvest of plants could help remove mercury from soil and plant tissue.
Collapse
Affiliation(s)
- Dong Peng
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China; Nanjing University, School of Geography and Ocean Science, School of Atmospheric Sciences, 163 Xianlin Road, Qixia Distinct, Nanjing, 210023, PR China
| | - Mingzhu Chen
- Shenzhen BLY Landscape and Architecture Planning and Design Institute, Block A, West District of Tanglang Plaza, Fuguang Community, Taoyuan Street, Nanshan District, Shenzhen, PR China
| | - Xinyue Su
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China
| | - Chenchen Liu
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China
| | - Zhehao Zhang
- Forestry Bureau of Jiangshan Municipal, No.115, Fourth District of Jiangbin, Jiangshan, Quzhou City, Zhejiang Province, PR China
| | - Beth A Middleton
- U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA, 70506, USA
| | - Ting Lei
- Beijing Forestry University, School of Ecology and Nature Conservation, 35 Tsinghua East Road Haidian Distinct, Beijing, 100083, PR China; National Field Scientific Observation and Research Station of Dongting Lake Wetland Ecosystem, Hunan, 415904, PR China.
| |
Collapse
|
5
|
Addai-Arhin S, Novirsa R, Jeong H, Phan QD, Hirota N, Ishibashi Y, Shiratsuchi H, Arizono K. Mercury waste from artisanal and small-scale gold mining facilities: a risk to farm ecosystems-a case study of Obuasi, Ghana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4293-4308. [PMID: 35969344 DOI: 10.1007/s11356-022-22456-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Frequent discharge of mercury waste from artisanal and small-scale gold mining (ASGM) facilities into nearby farms may contaminate foodstuffs and the entire farms. High contamination levels may result in ecological risks to the soil, plants, animals, humans, and the entire farm ecosystem. This original research is the first study within the catchment areas that describes the effects of mercury waste on the entire farm ecosystem. In this study, the contamination levels and the associated ecological risks of farmland soils, plantains, and cassavas from farms sited near ASGM facilities in four communities around Obuasi, Ghana, were evaluated using the Hakanson (1980) model. Results showed that all samples except for the edible parts of plantains from Tweapease, Nyamebekyere, and Ahansonyewodea and plantain peels from Nyamebekyere and Ahansonyewodea were contaminated and may pose moderate to very high ecological risks. All farms were also contaminated and may pose considerable to very high ecological risks. The farms at Odumase were the highest contaminated with degree of contamination (Cdeg) above 20, while those at Ahansonyewodea were the least contaminated with Cdeg = 8.1. This meant that farms at Odumase may pose the highest potential ecological risk (Per) to plants, animals, humans, and the entire farm ecosystem since Per > 600, while the farms at Ahansonyewodea may pose the least ecological risks with Per = 324. There is, therefore, the need for strict control of ASGM activities in these study areas to preserve the integrity of the ecosystem.
Collapse
Affiliation(s)
- Sylvester Addai-Arhin
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
- Pharmaceutical Science Department, Faculty of Health Sciences, Kumasi Technical University, P.O. Box, 854, Kumasi, Ghana
| | - Randy Novirsa
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
| | - Huiho Jeong
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
| | - Quang Dinh Phan
- Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
| | - Nana Hirota
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
| | - Yasuhiro Ishibashi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
| | - Hideki Shiratsuchi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100, Tsukide, Higashi-Ku, Kumamoto, 862-8502, Japan.
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
6
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
7
|
Ran S, He T, Zhou X, Yin D. Effects of fulvic acid and humic acid from different sources on Hg methylation in soil and accumulation in rice. J Environ Sci (China) 2022; 119:93-105. [PMID: 35934469 DOI: 10.1016/j.jes.2022.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/15/2023]
Abstract
Humus is often used as an organic modifier to reduce the bioaccumulation of heavy metals in plants, but the effects of different humus components from different sources on the fate of mercury (Hg) in paddy fields are still unclear. Here, fulvic acid (FA) and humic acid (HA) extracted from composted straw (CS), composted cow dung (CCD), peat soil (PM) and lignite coal (LC) were used to understand their effects on the methylation and bioaccumulation of Hg in paddy soil by pot experiments. Amendments of both FA and HA largely increased the abundance of Hg-methylating microbes and low-molecular-weight organic matters (e.g, cysteine) in paddy soil. They were also found to change the aromaticity, molecular size and Chromophoric DOM concentration of DOM, and resulted in heterogeneous effects on migration and transformation of Hg. All the FA-amended treatments increased the mobility and methylation of Hg in soil and its absorption in roots. Nevertheless, FA from different sources have heterogeneous effects on transport of Hg between rice tissues. FA-CCD and FA-PM promoted the translocation of MeHg from roots to rice grains by 32.95% and 41.12%, while FA-CS and FA-LC significantly inhibited the translocation of inorganic Hg (IHg) by 52.65% and 66.06% and of MeHg by 46.65% and 36.23%, respectively. In contrast, all HA-amended treatments reduced the mobility of soil Hg, but promoted Hg methylation in soil. Among which, HA-CCD and HA-PM promoted the translocation of MeHg in rice tissues by 88.95% and 64.10%, while its accumulation in rice grains by 28.43% and 28.69%, respectively. In general, the application of some FA and HA as organic modifiers to reduce Hg bioaccumulation in rice is not feasible.
Collapse
Affiliation(s)
- Shu Ran
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang 550025, China.
| |
Collapse
|
8
|
Use of Biostimulants as a New Approach for the Improvement of Phytoremediation Performance—A Review. PLANTS 2022; 11:plants11151946. [PMID: 35893650 PMCID: PMC9332818 DOI: 10.3390/plants11151946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022]
Abstract
Environmental pollution is one of the most pressing global issues, and it requires priority attention. Environmental remediation techniques have been developed over the years and can be applied to polluted sites, but they can have limited effectiveness and high energy consumption and costs. Bioremediation techniques, on the other hand, represent a promising alternative. Among them, phytoremediation is attracting particular attention, a green methodology that relies on the use of plant species to remediate contaminated sites or prevent the dispersion of xenobiotics into the environment. In this review, after a brief introduction focused on pollution and phytoremediation, the use of plant biostimulants (PBs) in the improvement of the remediation effectiveness is proposed. PBs are substances widely used in agriculture to raise crop production and resistance to various types of stress. Recent studies have also documented their ability to counteract the deleterious effects of pollutants on plants, thus increasing the phytoremediation efficiency of some species. The works published to date, reviewed and discussed in the present work, reveal promising prospects in the remediation of polluted environments, especially for heavy metals, when PBs derived from humic substances, protein and amino acid hydrolysate, inorganic salts, microbes, seaweed, plant extracts, and fungi are employed.
Collapse
|
9
|
Kaewnok N, Sirirak J, Jungsuttiwong S, Wongnongwa Y, Kamkaew A, Petdum A, Panchan W, Sahasithiwat S, Sooksimuang T, Charoenpanich A, Wanichacheva N. Detection of hazardous mercury ion using [5]helicene-based fluorescence probe with "TurnON" sensing response for practical applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126242. [PMID: 34329012 DOI: 10.1016/j.jhazmat.2021.126242] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
A new fluorescence probe based on [5]helicene derivative (MT) was designed and synthesized. The chemical structure of the probe was fully characterized by NMR, mass spectrometry and X-ray crystallography. MT which is the combination of thioamide[5]helicene with Schiff base-thiophene moiety, exhibited a high selectivity to detect Hg2+ through irreversible desulfurization reaction with "TurnON" fluorescence response and large Stokes shift of 110 nm in aqueous methanol solution. The detection limit of MT was 1.2 ppb (6.0 × 10-3 µM), which is lower than the limit of Hg2+ level in drinking water, as specified by WHO (6.0 ppb) and U.S. EPA (2.0 ppb). The Hg2+ detection range of the probe was 0.07-1.6 µM with good linearity. Under UV irradiation, MT possessed the capability to detect Hg2+ in diverse context of real samples, including drinking and sea waters, vegetable tissue and brain tumor cell. In addition, MT could be used as a paper test strip for monitoring and screening of Hg2+ contamination in environment.
Collapse
Affiliation(s)
- Nirawit Kaewnok
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Siriporn Jungsuttiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Yutthana Wongnongwa
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Anyanee Kamkaew
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Anuwut Petdum
- National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand
| | - Waraporn Panchan
- National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand
| | - Somboon Sahasithiwat
- National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand
| | - Thanasat Sooksimuang
- National Metal and Materials Technology Center (MTEC), Pathumthani 12120, Thailand
| | - Adisri Charoenpanich
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Nantanit Wanichacheva
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
10
|
Alcantara HJP, Jativa F, Doronila AI, Anderson CWN, Siegele R, Spassov TG, Sanchez-Palacios JT, Boughton BA, Kolev SD. Localization of mercury and gold in cassava (Manihot esculenta Crantz). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18498-18509. [PMID: 32193739 DOI: 10.1007/s11356-020-08285-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The potential of cassava (Manihot esculenta Crantz.) for simultaneous Hg and Au phytoextraction was explored by investigating Hg and Au localization in cassava roots through Micro-Proton Induced X-Ray Emission, High-Resolution Transmission Electron Microscopy (HR-TEM) and X-Ray Diffractometry (XRD). The effect of Hg and Au in the cyanogenic glucoside linamarin distribution was also investigated using Matrix Assisted Laser Desorption Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (MALDI-FT-ICR-MS) imaging. Hg was located mainly in the root vascular bundle of plants grown in 50 or 100 μmol L-1 Hg solutions. Au was localized in the epidermis and cortex or in the epidermis and endodermis for 50 and 100 μmol L-1 Au solutions, respectively. For 50 μmol L-1 solutions of both Hg and Au, the two metals were co-localized in the epidermis. When the Hg concentrations were increased to 100 μmol L-1, Au was still localized to a considerable extent in the epidermis while Hg was located in all root parts. HR-TEM and XRD revealed that Au nanoparticles were formed in cassava roots. MALDI-FT-ICR-MS imaging showed linamarin distribution in the roots of control and plants and metal-exposed plants thus suggesting that linamarin might be involved in Hg and Au uptake and distribution.
Collapse
Affiliation(s)
- Hannah Joy P Alcantara
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
- Institute of Biology, The University of the Philippines Diliman, 1101, Quezon City, Philippines
| | - Fernando Jativa
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Augustine I Doronila
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher W N Anderson
- Soil and Earth Sciences Group, Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand
| | - Rainer Siegele
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation (ANSTO), PMB1, Menai, NSW, 2234, Australia
| | - Tony G Spassov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kl.Ohridski", 1 James Bourchier Blvd., 1164, Sofia, Bulgaria
| | | | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Spas D Kolev
- School of Chemistry, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134749. [PMID: 32000322 DOI: 10.1016/j.scitotenv.2019.134749] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 05/09/2023]
Abstract
Environmental contamination by a non-essential and non-beneficial, although potentially toxic mercury (Hg), is becoming a great threat to the living organisms at a global scale. Owing to its various uses in numerous industrial processes, high amount of Hg is released into different environmental compartments. Environmental Hg contamination can result in food chain contamination, especially due to its accumulation in edible plant parts. Consumption of Hg-rich food is a key source of Hg exposure to humans. Since Hg does not possess any identified biological role and has genotoxic and carcinogenic potential, it is critical to monitor its biogeochemical behavior in the soil-plant system and its influence in terms of possible food chain contamination and human exposure. This review traces a plausible link among Hg levels, its chemical speciation and phytoavailability in soil, accumulation in plants, phytotoxicity and detoxification of Hg inside the plant. The role of different enzymatic (peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase) and non-enzymatic (glutathione, phytochelatins, proline and ascorbic acid) antioxidants has also been elucidated with respect to enhanced generation of reactive radicles and resulting oxidative stress. The review also outlines Hg build-up in edible plant tissues and associated health risks. The biogeochemical role of Hg in the soil-plant system and associated health risks have been described with well summarized and up-to-date data in 12 tables and 4 figures. We believe that this comprehensive review article and meta-analysis of Hg data can be greatly valuable for scientists, researchers, policymakers and graduate-level students.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari-61100, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, Queensland 4350, Australia
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058 Toulouse, cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326 Auzeville-Tolosane, France; Association Réseau-Agriville (http://reseau-agriville.com/), France
| |
Collapse
|
12
|
Sądej W, Żołnowski AC, Ciećko Z, Grzybowski Ł, Szostek R. Evaluation of the impact of soil contamination with mercury and application of soil amendments on the yield and chemical composition of Avena sativa L. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:82-96. [PMID: 31549913 DOI: 10.1080/10934529.2019.1667671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to determine the effect of soil contamination with Hg on the yield and chemical composition of Avena sativa L. Mercury was incorporated into soil in amounts: 0, 50, 100 and 150 mg Hg·kg-1of soil. Zeolite, lime and bentonite were used to alleviate the soil contamination. Plants cultivated in Hg-polluted soil showed growth inhibition even in the presence of bentonite, lime or zeolite. Under elevated doses of Hg, the yield of aerial mass and roots decreased. The soil amendments mitigated the adverse effect of contamination, with lime and bentonite having a more beneficial influence on the yield than zeolite. The incremental contamination with mercury led to an increase in the content of Hg in the biomass of the plants. A much higher content of Hg was found in roots than in aerial parts. The inactivating substances applied to soil to some extent limited the increase in the content of this metal in all plant organs. Lime proved to be most effective in this regard. An increase in the soil contamination with mercury caused an increased content of nitrogen and potassium in plant organs and a decrease content of phosphorus.
Collapse
Affiliation(s)
- Wiera Sądej
- Department of Environmental Chemistry, University of Warmia and Mazury, Olsztyn, Poland
| | - Andrzej C Żołnowski
- Department of Environmental Chemistry, University of Warmia and Mazury, Olsztyn, Poland
| | - Zdzisław Ciećko
- Department of Environmental Chemistry, University of Warmia and Mazury, Olsztyn, Poland
- Higher School of Ecology and Management in Warsaw, Poland
| | - Łukasz Grzybowski
- Viridor - Energy From Waste, Salmon Pastures Attercliffe Road, Sheffield, UK
| | - Radosław Szostek
- Department of Environmental Chemistry, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
13
|
Wang J, Shaheen SM, Swertz AC, Rennert T, Feng X, Rinklebe J. Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:687-693. [PMID: 30889465 DOI: 10.1016/j.jhazmat.2019.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/11/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
We investigated effects of the application of a sulfur-modified organoclay (SMOC) at doses of 1%, 3% and 5% (w/w) on the geochemical fractionation of mercury (Hg) and its accumulation by pea and corn in a polluted floodplain soil. Soil Hg was fractionated sequentially to five operationally defined fractions as follows: F1: water soluble Hg; F2: "human stomach acid" soluble Hg; F3: organo-chelated Hg; F4: elemental Hg; and F5: Hg-sulfur-compounds/residual Hg. The high dosage of SMOC caused a decrease of Hg in F3 (18%) and F5 (36-63%), and 6.7 fold increase of Hg in the mobile fraction (MF = F1+F2) as compared to control soil. The transformation of Hg from F5 to the MF in SMOC-treated soil might be due to the associated decrease of soil pH. Pea accumulated more Hg than corn. Mercury contents were larger in roots than in shoots of both plants and increased significantly by a factor of up to 11 by SMOC addition. The potential transformation of Hg from the hardly soluble to the MF by SMOC addition and the associated increase of Hg accumulation by plants imply a great potential of the SMOC for enhancing Hg phytoremediation.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, PR China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia.
| | - Ann-Christin Swertz
- University of Wuppertal, Faculty of Mechanical Engineering and Safety Engineering, Department of Safety Technology and Environmental Protection, Rainer-Gruenter-Straße, 42119 Wuppertal, Germany.
| | - Thilo Rennert
- Department of Soil Chemistry and Pedology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Emil-Wolff-Str. 27, 70599 Stuttgart, Germany.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, PR China.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Liu T, Wang J, Feng X, Zhang H, Zhu Z, Cheng S. Spectral insight into thiosulfate-induced mercury speciation transformation in a historically polluted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:938-944. [PMID: 30677959 DOI: 10.1016/j.scitotenv.2018.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
We studied the effect of different doses (0.5%, 2% and 5% (w/w)) of ammonium thiosulfate on mercury (Hg) speciation fractionation following its addition to the soil, as well as its accumulation by oilseed rape (Brassica napus L.), corn (Zea mays L.), and sweet potato (Ipomoea batatas L.), and compared them to a non-treated control in a historically polluted soil. The oilseed rape, corn, and sweet potato were planted consecutively in the same soils on days 30, 191, and 276, respectively after the addition of thiosulfate to the soil. The key results showed that bioavailable Hg contents in the rhizosphere soils ranged from 0.18 to 2.54 μg kg-1, 0.28 to 2.77 μg kg-1, and 0.24 to 2.22 μg kg-1, respectively, for the 0.5%, 2% and 5% thiosulfate treatments, which were close to the control soil (0.25 to 1.98 μg kg-1). The Hg L3-edge X-ray absorption near edge structure (XANES) results showed a tendency of the Hg speciation to transform from the Hg(SR)2 (initial soil, 56%; day-191 soil, 43%; day-276 soil, 46%, and day-356 soil, 16%) to nano particulated HgS (initial soil, 26%; day-191 soil, 42%; day-276 soil, 42%, and day-356 soil, 73%) with time in the soil treated with a 5% dose of thiosulfate. The Hg contents in the tissues of the crops, except for oilseed rape, were slightly affected by the addition of thiosulfate to the soil at all dosages, compared to the control. The addition of thiosulfate did not induce the movement of bioavailable Hg to the lower layer of the soil profile. We conclude a promotion of Hg immobilization by thiosulfate in the soil for over one year, offering a promising method for in-situ Hg remediation at Hg mining regions in China.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Zongqiang Zhu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
15
|
Lima FRD, Engelhardt MM, Vasques ICF, Martins GC, Cândido GS, Pereira P, Reis RHCL, Silva AO, Guilherme LRG, Marques JJ. Evaluation of mercury phytoavailability in Oxisols. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:483-491. [PMID: 30406589 DOI: 10.1007/s11356-018-3623-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Mercury is a metal which is potentially toxic for the environment. Many factors control its retention in the soil, such as cation exchange capacity, pH, clay content, organic matter, and redox potential. It is important to know the phytotoxic effects of soil Hg to prevent environmental contamination and its entry into the food chain. Several analytical methods are used to measure metal phytoavailability in soils, but none has been reported for Hg in Oxisols, the most common soil class in Brazil and a very important soil class throughout the tropics. The aim of this study was to select the chemical extractor that best correlated the Hg levels in plants and the Oxisols. The soils used were classified as Dystrophic Red-Yellow Oxisol (LVAd) and Dystroferric Red Oxisol (LVdf), which were collected in the 0-0.2-m soil layer. The species selected for cultivation were a monocotyledon, oat (Avena sativa L. cv. São Carlos) and a eudicotyledon, common bean (Phaseolus vulgaris L. cv. Madrepérola). Each test plot was composed of a 500 cm3 pot filled with soil samples contaminated with HgCl2. Treatments were arranged in a completely randomized design, with four replications. The experiment was conducted for 30 days. Mercury contents were separately extracted with the following extractors: USEPA 3051A, Mehlich-1, Mehlich-3, DTPA, and water. Mercury was determined by hydride generation atomic absorption spectroscopy. The extracted contents were correlated with the contents in the tissues of the plants' aerial part by the Pearson correlation. Although it is not considered a standard procedure to evaluate metal phytoavailable contents, the method that presented the best correlations between soil Hg and plant Hg was USEPA 3051A (r = 0.75*). As expected, the worst correlation was with water (r = 0.57* for common bean and r = 0,05ns for oat).
Collapse
Affiliation(s)
- Francielle R D Lima
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Mateus M Engelhardt
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Isabela C F Vasques
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | | | - Geraldo S Cândido
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Polyana Pereira
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Rayner H C L Reis
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | - Aline O Silva
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil
| | | | - João José Marques
- Soil Science Department, Universidade Federal de Lavras, Lavras, MG, 37200-000, Brazil.
| |
Collapse
|
16
|
Wang J, Anderson CWN, Xing Y, Fan Y, Xia J, Shaheen SM, Rinklebe J, Feng X. Thiosulphate-induced phytoextraction of mercury in Brassica juncea: Spectroscopic investigations to define a mechanism for Hg uptake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:986-993. [PMID: 30373044 DOI: 10.1016/j.envpol.2018.07.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
Thiosulphate is extensively used to enhance mercury (Hg) phytoextraction due to its efficient in prompting plant Hg uptake. However, the mechanism by which thiosulphate promotes Hg uptake is poorly understood. We determined the concentrations of Hg and potassium (K), and their spatial distribution, in the tissues of Brassica juncea grown in Hg-contaminated soils treated by thiosulphate and compared this to a non-treated soil (control). The spatial distribution of Hg and K was characterized using micro-X ray fluorescence spectroscopy. The subcellular localization and speciation of Hg in the root of plant treated by thiosulphate were elucidated using Transmission electron microscope coupled energy-dispersive X-ray (TEM-EDX) spectroscopy. Thiosulphate increased significantly the Hg concentration in the roots (mainly in the epidermis and xylem) and shoots (mainly in the vascular bundles), while Hg was accumulated in the root (mainly in the epidermis) of the control plant. Thiosulphate promoted the movement of Hg from the epidermis to the xylem of roots, with subsequent loading into the stem via vascular bundles. Thiosulphate decreased the K concentration in plant tissues, relative to the control plant, and we propose this is due to leakage of electrolyte from roots via increased plasma membrane permeability as a consequence of physiological damage caused by the added thiosulphate. Mercury was distributed mainly at the extracellular space in the roots and was shown by TEM-EDX to be predominately amorphous nano-clusters of HgS. We conclude that thiosulphate-promoted Hg accumulation in the plant may happen through increased plasma membrane permeability, a changed pathway of Hg movement within plants, and extracellular co-transportation of Hg-S complexes in the roots. Our results may underpin the ongoing development of phytomanagement as an environmental strategy for Hg contaminated soils around the world.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082, Guiyang, PR China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| | - Christopher W N Anderson
- Environmental Sciences, School of Agriculture and Environment, Massey University, 4442, Palmerston North, New Zealand.
| | - Ying Xing
- School of Chemistry and Materials Science, Guizhou Normal University, 550002, Guiyang, China
| | - Yuhong Fan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082, Guiyang, PR China
| | - Jicheng Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082, Guiyang, PR China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sabry M Shaheen
- University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082, Guiyang, PR China.
| |
Collapse
|
17
|
Beauvais-Flück R, Slaveykova VI, Skyllberg U, Cosio C. Molecular Effects, Speciation, and Competition of Inorganic and Methyl Mercury in the Aquatic Plant Elodea nuttallii. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8876-8884. [PMID: 29984984 DOI: 10.1021/acs.est.8b02124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mercury (Hg) remains hazardous in aquatic environments because of its biomagnification in food webs. Nonetheless, Hg uptake and impact in primary producers is still poorly understood. Here, we compared the cellular toxicity of inorganic and methyl Hg (IHg and MeHg, respectively) in the aquatic plant Elodea nuttallii. IHg and MeHg regulated contigs involved in similar categories (e.g., energy metabolism, development, transport, secondary metabolism), but MeHg regulated more contigs, supporting a higher molecular impact than IHg. At the organism level, MeHg induced antioxidants, while IHg decreased chlorophyll content. The uptake of Hg and expression of a subset of contigs was subsequently studied in complex media. Measured uptake pointed to a contrasted impact of cell walls and copper (Cu) on IHg and MeHg. Using a speciation modeling, differences in uptake were attributed to the differences in affinities of IHg and MeHg to organic matter in relation to Cu speciation. We also identified a distinct gene expression signature for IHg, MeHg, and Cu, further supporting different molecular toxicity of these trace elements. Our data provided fundamental knowledge on IHg and MeHg uptake in a key aquatic primary producer and confirmed the potential of transcriptomics to assess Hg exposure in environmentally realistic systems.
Collapse
Affiliation(s)
- Rébecca Beauvais-Flück
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| | - Vera I Slaveykova
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| | - Ulf Skyllberg
- Department of Forest Ecology and Management , Swedish University of Agricultural Sciences , 901 83 Umeå , Sweden
| | - Claudia Cosio
- Department F.-A. Forel for environmental and aquatic sciences, Earth and Environmental Sciences, Faculty of Sciences , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|
18
|
Xun Y, Feng L, Li Y, Dong H. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites. CHEMOSPHERE 2017; 189:161-170. [PMID: 28934656 DOI: 10.1016/j.chemosphere.2017.09.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Cyrtomium macrophyllum naturally grown in 225.73 mg kg-1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg-1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg-1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg-1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils.
Collapse
Affiliation(s)
- Yu Xun
- Department of Environmental Engineering and Sciences, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liu Feng
- Department of Environmental Engineering and Sciences, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Youdan Li
- Department of Environmental Engineering and Sciences, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haochen Dong
- Department of Environmental Engineering and Sciences, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
19
|
Chamba I, Rosado D, Kalinhoff C, Thangaswamy S, Sánchez-Rodríguez A, Gazquez MJ. Erato polymnioides - A novel Hg hyperaccumulator plant in ecuadorian rainforest acid soils with potential of microbe-associated phytoremediation. CHEMOSPHERE 2017; 188:633-641. [PMID: 28918247 DOI: 10.1016/j.chemosphere.2017.08.160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/17/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) accumulation capacity was assessed in three plant species (Axonopus compressus, Erato polymnioides, and Miconia zamorensis) that grow on soils polluted by artisanal small-scale gold mines in the Ecuadorian rainforest. Individuals of three species were collected at two sampling zones: i) an intensive zone (IZ, 4.8 mg Hg kg-1 of soil) where gold extraction continues to occur, and ii) a natural zone (NZ, 0.19 mg Hg kg-1 of soil). In addition, the percentage of arbuscular mycorrhizal fungi (AMF) colonization was determined in plant roots and seven fungal morphotypes isolated from rhizospheric soil. Results suggest a facilitation role of native and pollution adapted AMF on Hg phytoaccumulation. E.g., E. polymnioides increased Hg accumulation when growing with greater AMF colonization. We concluded that E. polymnioides is a good candidate for the design of microbe-assisted strategies for Hg remediation at gold mining areas. The consortia between E. polymnioides and the AMF isolated in this study could be instrumental to get a deeper understanding of the AMF role in Hg phytoaccumulation.
Collapse
Affiliation(s)
- Irene Chamba
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110104 Loja, Ecuador.
| | - Daniel Rosado
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110104 Loja, Ecuador.
| | - Carolina Kalinhoff
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110104 Loja, Ecuador.
| | - Selvaraj Thangaswamy
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110104 Loja, Ecuador.
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, 110104 Loja, Ecuador.
| | - Manuel Jesús Gazquez
- Departamento de Física Aplicada, Escuela Superior de Ingeniería, Universidad de Cádiz, Campus de Puerto Real avenida, República Saharahui s/n, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
20
|
Guarino C, Sciarrillo R. The effectiveness and efficiency of phytoremediation of a multicontaminated industrial site: Porto Marghera (Venice Lagoon, Italy). CHEMOSPHERE 2017; 183:371-379. [PMID: 28554021 DOI: 10.1016/j.chemosphere.2017.05.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
The Venice Lagoon is worldwide considered as a typical example of the human impact on the surrounding ecosystem. The development of the industrial zone of Porto Marghera begun in 1917 as an extension of the Venice Port, in order to sustain activities related to oil and coal, as well as to exploit the railway system. Despite the recent decrease in the number of employees, Porto Marghera is still one of the most important chemical districts in Italy. This study reports early results from the ongoing in-situ phytoextraction of potentially toxic elements (Cd, Hg, Zn) within the industrial area of Porto Marghera. Two agronomic plant species with high annual biomass yield (Helianthus annuus L., Brassica juncea (L.) Czern.) were used. This paper also reports the microcosms and mesocosms tests to evaluate the efficacy of the treatments to be applied to the in-situ phytoextraction process of the polluted site. The combined use of EDTA and Ammonium Thiosulfate during phytoextraction increases the efficiency of Cd, Hg, Zn removal from contaminated soil.
Collapse
Affiliation(s)
- C Guarino
- University of Sannio, Department of Science and Technology, via Port'Arsa 11, 82100 Benevento, Italy
| | - R Sciarrillo
- University of Sannio, Department of Science and Technology, via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
21
|
Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil. N Biotechnol 2017; 38:74-83. [DOI: 10.1016/j.nbt.2016.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 06/15/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022]
|
22
|
Janowska B, Szymański K, Sidełko R, Siebielska I, Walendzik B. Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts. ENVIRONMENTAL RESEARCH 2017; 156:394-403. [PMID: 28407573 DOI: 10.1016/j.envres.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 02/28/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg-1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions.
Collapse
Affiliation(s)
- Beata Janowska
- Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Department of Waste Management, ul. Śniadeckich, 75-453 Koszalin, Poland.
| | - Kazimierz Szymański
- Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Department of Waste Management, ul. Śniadeckich, 75-453 Koszalin, Poland.
| | - Robert Sidełko
- Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Department of Waste Management, ul. Śniadeckich, 75-453 Koszalin, Poland.
| | - Izabela Siebielska
- Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Department of Waste Management, ul. Śniadeckich, 75-453 Koszalin, Poland.
| | - Bartosz Walendzik
- Koszalin University of Technology, Faculty of Civil Engineering, Environmental and Geodetic Sciences, Department of Waste Management, ul. Śniadeckich, 75-453 Koszalin, Poland.
| |
Collapse
|
23
|
Cozzolino V, De Martino A, Nebbioso A, Di Meo V, Salluzzo A, Piccolo A. Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:11312-11322. [PMID: 26931658 DOI: 10.1007/s11356-016-6337-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
In a greenhouse pot experiment, lettuce plants (Lactuca sativa L.) were grown in a Hg-contaminated sandy soil with and without inoculation with arbuscular mycorrhizal fungi (AMF) (a commercial inoculum containing infective propagules of Rhizophagus irregularis and Funneliformis mosseae) amended with different rates of a humic acid (0, 1, and 2 g kg(-1) of soil), with the objective of verifying the synergistic effects of the two soil treatments on the Hg tolerance of lettuce plants. Our results indicated that the plant biomass was significantly increased by the combined effect of AMF and humic acid treatments. Addition of humic matter to soil boosted the AMF effect on improving the nutritional plant status, enhancing the pigment content in plant leaves, and inhibiting both Hg uptake and Hg translocation from the roots to the shoots. This was attributed not only to the Hg immobilization by stable complexes with HA and with extraradical mycorrhizal mycelium in soil and root surfaces but also to an improved mineral nutrition promoted by AMF. This work indicates that the combined use of AMF and humic acids may become a useful practice in Hg-contaminated soils to reduce Hg toxicity to crops.
Collapse
Affiliation(s)
- V Cozzolino
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, Portici, 80055, Italy.
| | - A De Martino
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, Portici, 80055, Italy.
| | - A Nebbioso
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, Portici, 80055, Italy
| | - V Di Meo
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, Portici, 80055, Italy
| | - A Salluzzo
- ENEA, Italian National Agency for New Technologies, Energy and the Environment, Centre of Research of Portici, Naples, Italy
| | - A Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università 100, Portici, 80055, Italy
| |
Collapse
|
24
|
Swapna KS, Salim N, Chandra R, Puthur JT. Structural changes in response to bioaccumulation of iron and mercury in Chromolaena odorata (L.) King & Robins. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:551. [PMID: 26239568 DOI: 10.1007/s10661-015-4732-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
A comparative study was designed to elucidate the effect of iron and mercury on the morphological and anatomical changes as well as bioaccumulation potential in Chromolaena odorata. Plants were grown in half-strength Hoagland nutrient medium artificially contaminated with known quantities of HgCl2 (15 μM) and FeCl3 (1000 μM). Bioaccumulation of Hg and Fe was maximum in the root, and comparatively reduced bioaccumulation was recorded in the stem and leaves. Microscopic studies on morphology and anatomy revealed development of trichomes and lenticels on the stem and modified trichomes on leaves. Localized deposits of stained masses in various internal parts of the root, stem and leaf also were observed. Differential adaptation/strategy of C. odorata to attain tolerance towards Hg and Fe and phytoremediation potential of the plant is discussed.
Collapse
Affiliation(s)
- K S Swapna
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O., Kerala, 673635, India
| | | | | | | |
Collapse
|
25
|
Zhu DW, Zhong H, Zeng QL, Yin Y. Prediction of methylmercury accumulation in rice grains by chemical extraction methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:1-9. [PMID: 25616007 DOI: 10.1016/j.envpol.2015.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/24/2014] [Accepted: 01/06/2015] [Indexed: 06/04/2023]
Abstract
To explore the possibility of using chemical extraction methods to predict phytoavailability/bioaccumulation of soil-bound MeHg, MeHg extractions by three widely-used extractants (CaCl2, DTPA, and (NH4)2S2O3) were compared with MeHg accumulation in rice grains. Despite of variations in characteristics of different soils, MeHg extracted by (NH4)2S2O3 (highly affinitive to MeHg) correlated well with grain MeHg levels. Thus (NH4)2S2O3 extraction, solubilizing not only weakly-bound and but also strongly-bound MeHg, may provide a measure of 'phytoavailable MeHg pool' for rice plants. Besides, a better prediction of grain MeHg levels was obtained when growing condition of rice plants was also considered. However, MeHg extracted by CaCl2 or DTPA, possibly quantifying 'exchangeable MeHg pool' or 'weakly-complexed MeHg pool' in soils, may not indicate phytoavailable MeHg or predict grain MeHg levels. Our results provided the possibility of predicting MeHg phytoavailability/bioaccumulation by (NH4)2S2O3 extraction, which could be useful in screening soils for rice cultivation in contaminated areas.
Collapse
Affiliation(s)
- Dai-Wen Zhu
- Nanjing University, School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People's Republic of China
| | - Huan Zhong
- Nanjing University, School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People's Republic of China.
| | - Qi-Long Zeng
- Institute of Botany, Jiangsu Province and The Chinese Academy of Sciences, Nanjing, Jiangsu Province, People's Republic of China
| | - Ying Yin
- Nanjing University, School of Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
26
|
Reis AT, Duarte AC, Henriques B, Coelho C, Lopes CB, Mieiro CL, Tavares DS, Ahmad I, Coelho JP, Rocha LS, Cruz N, Monteiro RJ, Rocha R, Rodrigues S, Pereira E. An international proficiency test as a tool to evaluate mercury determination in environmental matrices. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize? JOURNAL OF HAZARDOUS MATERIALS 2014; 266:141-66. [PMID: 24394669 DOI: 10.1016/j.jhazmat.2013.12.018] [Citation(s) in RCA: 948] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 05/17/2023]
Abstract
Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored.
Collapse
Affiliation(s)
- Nanthi Bolan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.
| | - Anitha Kunhikrishnan
- Chemical Safety Division, Department of Agro-Food Safety, National Academy of Agricultural Science, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Ramya Thangarajan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Adelaide, Australia
| | - Jurate Kumpiene
- Waste Science and Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå SE-97187, Sweden
| | - Jinhee Park
- Centre for Mined Land Rehabilitation, University of Queensland, St Lucia, Australia
| | - Tomoyuki Makino
- Soil Environmental Division, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki, Japan
| | - Mary Beth Kirkham
- Department of Agronomy, 2004 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, USA
| | - Kirk Scheckel
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 5995 Center Hill Avenue, Cincinnati, OH 45224, USA
| |
Collapse
|
28
|
Pant D, Singh P. Pollution due to hazardous glass waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2414-36. [PMID: 24281678 DOI: 10.1007/s11356-013-2337-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/04/2013] [Indexed: 05/16/2023]
Abstract
Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead.
Collapse
Affiliation(s)
- Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India,
| | | |
Collapse
|
29
|
Cui L, Feng X, Lin CJ, Wang X, Meng B, Wang X, Wang H. Accumulation and translocation of 198Hg in four crop species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:334-340. [PMID: 24173818 DOI: 10.1002/etc.2443] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/13/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
The uptake and transport of mercury (Hg) through vegetation play an important role in the biogeochemical cycling of Hg. However, quantitative information regarding Hg translocation in plants is poorly understood. In the present study, Hg uptake, accumulation, and translocation in 4 crops-rice (Oryza.sativa L.), wheat (Triticum L.), corn (Zea mays L.), and oilseed rape (Brassica campestris L.)-grown in Hoagland solution were investigated using a stable isotope ((198)Hg) tracing technique. The distribution of (198)Hg in root, stem, and leaf after uptake was quantified, and the release of (198)Hg into the air from crop leaf was investigated. It was found that the concentration of Hg accumulated in the root, stem, and leaf of rice increased linearly with the spiked (198)Hg concentration. The uptake equilibrium constant was estimated to be 2.35 mol Hg/g dry weight in rice root per mol/L Hg remaining in the Hoagland solution. More than 94% of (198)Hg uptake was accumulated in the roots for all 4 crops examined. The translocation to stem and leaf was not significant because of the absence of Hg(2+) complexes that facilitate Hg transport in plants. The accumulated (198)Hg in stem and leaf was not released from the plant at air Hg(0) concentration ranging from 0 ng/m(3) to 10 ng/m(3). Transfer factor data analysis showed that Hg translocation from stems to leaves was more efficient than that from roots to stems.
Collapse
Affiliation(s)
- Liwei Cui
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Lomonte C, Wang Y, Doronila A, Gregory D, Baker AJM, Siegele R, Kolev SD. Study of the spatial distribution of mercury in roots of vetiver grass (Chrysopogon zizanioides) by micro-pixe spectrometry. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:1170-82. [PMID: 24933909 DOI: 10.1080/15226514.2013.821453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Localization of Hg in root tissues of vetivergrass (Chrysopogon zizanioides) was investigated by micro-Proton Induced X-ray Emission (PIXE) spectrometry to gain a better understanding of Hg uptake and its translocation to the aerial plant parts. Tillers of C. zizanioides were grown in a hydroponic culture for 3 weeks under controlled conditions and then exposed to Hg for 10 days with or without the addition of the chelators (NH(4))(2)S(2)O(3) or KI. These treatments were used to study the effects of these chelators on localization of Hg in the root tissues to allow better understanding of Hg uptake during its assisted-phytoextraction. Qualitative elemental micro-PIXE analysis revealed that Hg was mainly localized in the root epidermis and exodermis, tissues containing suberin in all Hg treatments. Hg at trace levels was localized in the vascular bundle when plants were treated with a mercury solution only. However, higher Hg concentrations were found when the solution also contained (NH(4))(2)S(2)O(3) or KI. This finding is consistent with the observed increase in Hg translocation to the aerial parts of the plants in the case of chemically induced Hg phytoextraction.
Collapse
|
31
|
Petruzzelli G, Pedron F, Rosellini I, Barbafieri M. Phytoremediation Towards the Future: Focus on Bioavailable Contaminants. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-35564-6_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
32
|
Regier N, Larras F, Bravo AG, Ungureanu VG, Amouroux D, Cosio C. Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters. CHEMOSPHERE 2013; 90:595-602. [PMID: 23021383 DOI: 10.1016/j.chemosphere.2012.08.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Previous studies suggest that macrophytes might participate in bioaccumulation and biomagnification of toxic mercury (Hg) in aquatic environment. Hg bioaccumulation and uptake mechanisms in macrophytes need therefore to be studied. Amongst several macrophytes collected in an Hg contaminated reservoir in Romania, Elodea nuttallii showed a high organic and inorganic Hg accumulation and was then further studied in the laboratory. Tolerance and accumulation of Hg of this plant was also high in the microcosm. Basipetal transport of inorganic Hg was predominant, whereas acropetal transport of methyl-Hg was observed with apparently negligible methylation or demethylation in planta. Hg concentrations were higher in roots>leaves>stems and in top>middle>bottom of shoots. In shoots, more than 60% Hg was found intracellularly where it is believed to be highly available to predators. Accumulation in shoots was highly reduced by cold, death and by competition with Cu(+). Hg in E. nuttallii shoots seems to mainly originate from the water column, but methyl-Hg could also be remobilized from the sediments and might drive in part its entry in the food web. At the cellular level, uptake of Hg into the cell sap of shoots seems linked to the metabolism and to copper transporters. The present work highlights an important breakthrough in our understanding of Hg accumulation and biomagnifications: the remobilization of methyl-Hg from sediments to aquatic plants and differences in uptake mechanisms of inorganic and methyl-Hg in a macrophyte.
Collapse
Affiliation(s)
- Nicole Regier
- Institute F.-A. Forel, University of Geneva, 10 route de Suisse, CP 416, CH-1290 Versoix, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Bolan NS, Choppala G, Kunhikrishnan A, Park J, Naidu R. Microbial transformation of trace elements in soils in relation to bioavailability and remediation. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 225:1-56. [PMID: 23494555 DOI: 10.1007/978-1-4614-6470-9_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Nanthi S Bolan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, Australia,
| | | | | | | | | |
Collapse
|
34
|
Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. JOURNAL OF HAZARDOUS MATERIALS 2012; 231-232:36-42. [PMID: 22771350 DOI: 10.1016/j.jhazmat.2012.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/09/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Mercury-contaminated soils from a petrochemical plant in southern Italy were investigated to assess the phytoextraction efficiency of crop plants treated with the phytohormone, cytokinine (CK foliar treatment), and with the thioligand, ammonium thiosulfate (TS, soil application). Plant biomass, evapotranspiration, Hg uptake and distribution in plant tissues following treatment were compared. Results indicate the effectiveness of CK in increasing plant biomass and the evapotranspiration rate while TS treatment promoted soil Hg solubility and availability. The simultaneous addition of CK and TS treatments increased Hg uptake and translocation in both tested plants with up to 248 and 232% in Brassica juncea (Indian mustard) and Helianthus annuus (sunflower) respectively. B. juncea was more effective in Hg uptake, whereas H. annuus gave better response regarding plant biomass production. The effectiveness of the treatments was confirmed by the calculation of Hg phytoextraction and evaluation of labile-Hg residue in the soil after plant growth. In one growing cycle the plants subject to simultaneous CK and TS treatment significantly reduced labile-Hg pools that were characterized by the soil sequential extraction, but did not significantly affect the pseudototal metal content in the soil. Results support the use of plant growth regulators in the assisted phytoextraction process for Hg-contaminated soils.
Collapse
Affiliation(s)
- L Cassina
- National Research Council, Institute of Ecosystem Study, Section of Pisa, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Wang J, Feng X, Anderson CWN, Xing Y, Shang L. Remediation of mercury contaminated sites - A review. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:1-18. [PMID: 22579459 DOI: 10.1016/j.jhazmat.2012.04.035] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 04/08/2012] [Accepted: 04/14/2012] [Indexed: 05/08/2023]
Abstract
Environmental contamination caused by mercury is a serious problem worldwide. Coal combustion, mercury and gold mining activities and industrial activities have led to an increase in the mercury concentration in soil. The objective of this paper is to present an up-to-date understanding of the available techniques for the remediation of soil contaminated with mercury through considering: mercury contamination in soil, mercury speciation in soil; mercury toxicity to humans, plants and microorganisms, and remediation options. This paper describes the commonly employed and emerging techniques for mercury remediation, namely: stabilization/solidification (S/S), immobilization, vitrification, thermal desorption, nanotechnology, soil washing, electro-remediation, phytostabilization, phytoextraction and phytovolatilization.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | | | | | | | | |
Collapse
|
36
|
Wang J, Feng X, Anderson CWN, Wang H, Zheng L, Hu T. Implications of mercury speciation in thiosulfate treated plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5361-5368. [PMID: 22489923 DOI: 10.1021/es204331a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mercury uptake was induced in two cultivars of Brassica juncea under field conditions using thiosulfate. Analysis was conducted to better understand the mechanism of uptake, speciation of mercury in plants, and redistribution of mercury in the soil. Plant mercury and sulfur concentrations were increased after thiosulfate treatment, and a linear correlation between mercury and sulfur was observed. Mercury may be absorbed and transported in plants as the Hg-thiosulfate complex. The majority of mercury in treated plant tissues (two cultivars) was bound to sulfur in a form similar to β-HgS (66-94%). Remaining mercury was present in forms similar to Hg-cysteine (1-10%) and Hg-dicysteine (8-28%). The formation of β-HgS may relate to the transport and assimilation of sulfate in plant tissues. Mercury-thiosulfate complex could decompose to mercuric and sulfate ions in the presence of free protons inside the plasma membrane, while sulfide ions would be produced by the assimilation of sulfate. The concomitant presence of mercuric ions and S(2-) would precipitate β-HgS. The mercury concentration in the rhizosphere decreased in the treated relative to the nontreated soil. The iron/manganese oxide and organic-bound fractions of soil mercury were transformed to more bioavailable forms (soluble and exchangeable and specifically sorbed) and taken up by plants.
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Moreno FN, Sígolo JB, Figueira AV. Peat-assisted phytoremediation of waste foundry sands: plant growth, metal accumulation and fertility aspects. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:247-260. [PMID: 22567709 DOI: 10.1080/15226514.2011.604692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigated the potential of peat additions to improve plant growth and fertility and to reduce plant metal uptake in waste foundry sands (WFS) landfills. The WFS contains 78211 mg kg(-1) and 371 mg kg(-1) concentrations of Cr and Ni, respectively, and varied metal concentrations. The experiment investigated the growth of Brassica juncea plants on fertilized WFS mixed with peat at concentrations of 0, 2.5, 5, and 10% (w/w). The highest peat treatment allowed substantial plant growth and increased Ni mass in shoots, which was positively correlated to shoot biomass increments. On a concentration basis, peat additions did not increase shoot Ni values, thus suggesting that plants grown on peat-treated WFS may not increase risks to human and ecological receptors. Chromium was below detection levels in shoots for all peat treatments. Peat-treated substrates also promoted increased CEC values and higher water holding capacity, therefore improving the WFS agronomical properties. These results indicate that peat can be used as an amendment to assist in the phytoremediation of WFS landfill areas. However, there was evidence for increased mobilization of Cr and Ni in the substrate solution which can pose a threat to local groundwater.
Collapse
Affiliation(s)
- Fábio N Moreno
- Department of Sedimentary and Environmental Geology, Institute of Geosciences, University of São Paulo (USP), Cidade Universitária, São Paulo, Brazil.
| | | | | |
Collapse
|
38
|
Lomonte C, Doronila A, Gregory D, Baker AJM, Kolev SD. Chelate-assisted phytoextraction of mercury in biosolids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:2685-92. [PMID: 21514623 DOI: 10.1016/j.scitotenv.2011.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 05/16/2023]
Abstract
Mercury contaminated stockpiles of biosolids (8.4 mg kg⁻¹ Hg) from Melbourne Water's Western Treatment Plant (MW-WTP) were investigated to evaluate the possibility of their Hg chelate-assisted phytoextraction. The effects of ammonium thiosulphate (NH₄)₂S₂O₃, cysteine (Cys), nitrilotriacetic acid (NTA), and potassium iodide (KI) were studied to mobilize Hg and to increase its uptake in plant shoots. Three plant species were selected for this study, one herbaceous and two grasses: Atriplex codonocarpa, Austrodanthonia caespitosa and Vetiveria zizanioides. KI proved to be the best candidate for Hg phytostabilization in biosolids because it facilitated the concentration of this metal mainly in roots. (NH₄)₂S₂O₃ was shown to be the most effective chelating agent among those tested for Hg phytoextraction as it allowed the highest translocation of Hg into the above-ground tissues of the selected plant species. The phytoextraction conditions using A. caespitosa as the best performing plant species were optimized at an (NH₄)₂S₂O₃ concentration of 27 mmol kg⁻¹ and contact time with biosolids of seven day. Monitoring of the Hg concentration in biosolids and in leachate water during a 9-day treatment revealed that the biosolids Hg concentration decreased significantly after the first day of treatment and then it decreased only slightly with time reaching a value of 5.6 mg kg⁻¹ Hg at the end of the 9-day period. From the corresponding results obtained for the leachate water, it was suggested that a relatively large fraction of Hg (0.7 mg kg⁻¹ Hg) was promptly mobilized and consequently the plants were able to take up the metal and translocate it into shoots.
Collapse
Affiliation(s)
- Cristina Lomonte
- School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
39
|
Wang J, Feng X, Anderson CWN, Qiu G, Ping L, Bao Z. Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil--results from a greenhouse study. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:119-127. [PMID: 21122988 DOI: 10.1016/j.jhazmat.2010.10.097] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/01/2010] [Accepted: 10/23/2010] [Indexed: 05/30/2023]
Abstract
According to the 'hard and soft' acid-base principle, mercury is a 'soft metal' and will preferentially form soluble chemical complexes with sulphur-containing ligands. In this work mercury uptake by Chenopodium glaucum L. growing on mercury-contaminated soil was promoted using ammonium thiosulphate. The relative geochemical fractionation of mercury in the soil was subsequently investigated as a function of plant growth with and without thiosulphate amendment. The results indicate that the solubility of mercury is significantly increased through the application of thiosulphate to the soil. Substantially higher mercury levels were found in C. glaucum L. treated with 2 g kg(-1) thiosulphate of soil when compared to the non-treated plants. Compared with initial soil, soluble and exchangeable fractions were increased both in planted and planted treated plants. However, no significant difference was observed between the soils of the planted and planted treated plants. The oxide-bound mercury concentration was significantly decreased for the planted soil (treated and non-treated) at the end of the experiment. Moreover, this fraction was highly correlated with the plant tissue mercury concentration. Taken together, thiosulphate assisted phytoextraction could be used to reduce environmental risk apparent for mercury-contaminated soil through reducing the oxide bound fractions, while managing the bioavailable fractions (compared with no treated plant).
Collapse
Affiliation(s)
- Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | | | | | | | | | | |
Collapse
|
40
|
Vamerali T, Bandiera M, Mosca G. Field crops for phytoremediation of metal-contaminated land. A review. ENVIRONMENTAL CHEMISTRY LETTERS 2010; 8:1-17. [PMID: 0 DOI: 10.1007/s10311-009-0268-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
41
|
Chapter 27 Manipulating bioavailability to manage remediation of metal-contaminated soils. CHEMICAL BIOAVAILABILITY IN TERRESTRIAL ENVIRONMENT 2008. [DOI: 10.1016/s0166-2481(07)32027-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
42
|
Abstract
AbstractThe results of the laboratory pot experiments on soil mercury (Hg) immobilisation with a non-toxic and price-reasonable agent — colloidal sulphur (S) water suspension, are presented. It was shown that fertilisation with small agrochemical doses of colloidal S reduces excess Hg effectively as follows: in interstitial waters by a factor 2 – 12 times for total Hg, and 22– 680 times for “reactive” Hg; in stems and leaves of oats – 7 – 22 times; and in moss bags, reflecting soil Hg degassing, 7 – 15 times, for the most heavily Hg-spiked soils. The results obtained allowed to conclude that the immobilization of Hg occurs through Hg binding to the newly formed S-bearing functional groups in humic acids and/or sulphides.
Collapse
|
43
|
Rodriguez L, Rincón J, Asencio I, Rodríguez-Castellanos L. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2007; 9:1-13. [PMID: 18246711 DOI: 10.1080/15226510601139359] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
High-biomass crops can be considered as an alternative to hyperaccumulator plants to phytoremediate soils contaminated by heavy metals. In order to assess their practical capability for the absorption and accumulation of Hg in shoots, barley, white lupine, lentil, and chickpea were tested in pot experiments using several growth substrates. In the first experimental series, plants were grown in a mixture of vermiculite and perlite spiked with 8.35 microg g(-1) d.w. of soluble Hg. The mercury concentration of the plants' aerial tissues ranged from 1.51 to 5.13 microg g(-1) d.w. with lentil and lupine showing the highest values. In a second experiment carried out using a Hg-polluted soil (32.16 microg g(-1) d.w.) collected from a historical mining area (Almadén, Spain), the crop plants tested only reached shoot Hg concentration up to 1.13 microg g(-1) d.w. In the third experimental series, the Almadén soil was spiked with 1 microg g(-1) d.w. of soluble Hg; as a result, mercury concentrations in the plant shoots increased approximately 6 times for lupine, 5 times for chickpea, and 3.5 times for barley and lentil, with respect to those obtained with the original soil without Hg added. This marked difference was attributed to the low availability of Hg in the original Almadin soil and its subsequent increase in the Hg-spiked soil. The low mercury accumulation yields obtained for all plants do not make a successful decontamination of the Almadén soils possible byphytoremediation using crop plants. However, since the crops tested can effectively decrease the plant-available Hg level in this soil, their use could, to some extent, reduce the environmental risk of Hg pollution in the area.
Collapse
Affiliation(s)
- Luis Rodriguez
- Department of Chemical Engineering, Faculty of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain.
| | | | | | | |
Collapse
|