1
|
Sugiyama Y, Matsuoka S, Ishizuka W, Sugai T. Reduction of the α and β diversity of ectomycorrhizal fungal community under snowmelt: highlights from a common garden trial using Abies sachalinensis with differing host origins and light condition. MYCORRHIZA 2025; 35:27. [PMID: 40178662 DOI: 10.1007/s00572-025-01201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The community structure of ectomycorrhizal (ECM) fungi typically displays temporal dynamics. However, heavy snow cover hinders belowground investigations in temperate-to-boreal forests where ECM trees dominate, and the dynamics of the ECM fungal community structure during winter have not been fully elucidated. Given that boreal conifer species start root production in response to snowmelt, studies on the response of the ECM fungal community to snowmelt are needed. In the present study, to infer the community dynamics during the snowmelt season and their susceptibility to host tree conditions, we investigated ECM fungi associated with saplings of the evergreen conifer Abies sachalinensis immediately after the start and end of snowmelt in a common garden experiment. Saplings derived from two sources of contrasting snowfall conditions (heavy vs. little) were grown under two different light conditions (open vs. shaded), and the ECM fungal community dynamics patterns were compared across these combinations. The response of the ECM fungal community structure varied across treatments; although significant loss of ECM fungal operational taxonomic units (OTUs) was observed when saplings from the heavy snowfall region were grown under shade conditions, no change in community structure across the snowmelt season was observed for the other combinations. The stability of community composition despite the change in abiotic conditions with snowmelt, together with the effects of host origin and light conditions on community dynamics patterns, would imply the importance of host-mediated community dynamics of ECM fungi during the snowmelt season.
Collapse
Affiliation(s)
- Yoriko Sugiyama
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan.
| | - Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | | | - Tetsuto Sugai
- Forestry and Forest Products Research Institute, Hokkaido Research Center, Sapporo, Japan
| |
Collapse
|
2
|
Bag P, Ivanov AG, Huner NP, Jansson S. Photosynthetic advantages of conifers in the boreal forest. TRENDS IN PLANT SCIENCE 2025; 30:409-423. [PMID: 39580266 DOI: 10.1016/j.tplants.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024]
Abstract
Boreal conifers - the 'Christmas trees' - maintain their green needles over the winter by retaining their chlorophyll. These conifers face the toughest challenge in February and March, when subzero temperatures coincide with high solar radiation. To balance the light energy they harvest with the light energy they utilise, conifers deploy various mechanisms in parallel. These include, thylakoid destacking, which facilitates direct energy transfer from Photosystem II (PSII) to Photosystem I (PSI), and excess energy dissipation through sustained nonphotochemical quenching (NPQ). Additionally, they upregulate alternative electron transport pathways to safely reroute excess electrons while maintaining ATP production. From an evolutionary and ecological perspective, we consider these mechanisms as part of a comprehensive photosynthetic alteration, which enhances our understanding of winter acclimation in conifers and their dominance in the boreal forests.
Collapse
Affiliation(s)
- Pushan Bag
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, London, Ontario, Canada; Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Norman P Huner
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden.
| |
Collapse
|
3
|
Ye Z, Sawada M, Iwasa M, Moriyama R, Dey D, Furutani M, Kitao M, Hara T, Tanaka A, Kishimoto J, Yokono M, Akimoto S, Takabayashi A, Tanaka R. Revisiting the early light-induced protein hypothesis in the sustained thermal dissipation mechanism in yew leaves. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:513-531. [PMID: 39365074 DOI: 10.1093/jxb/erae412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Overwintering evergreen trees in boreal regions continuously convert absorbed light energy into heat through a process known as sustained thermal dissipation. To better understand this mechanism, this study examined the alterations in the photosynthetic apparatus and transcriptomes of yew (Taxus cuspidata) leaves throughout the year, comparing sun-exposed and shaded leaves. The Y(II) parameter, conventionally used to estimate the quantum yield of photosystem II (PSII), indicated the occurrence of temperature-dependent thermal dissipation during winter. On the other hand, the levels of photosystem subunits, including the D1 subunit of the PSII reaction center, remained relatively stable year-round, indicating that typical photoinhibition is unlikely to occur. Time-resolved chlorophyll fluorescence analysis revealed that heat dissipation at the PSII antenna is prominent in winter. Winter transcriptomes are notably characterized by a predominance of Elip transcripts encoding early light-induced protein (ELIP), which constitute 20% of the total transcripts, as deduced from RNA-seq analysis. Furthermore, ELIP protein concentration increased to nearly half that of the major light-harvesting complexes. The predicted structure of ELIP includes potential chlorophyll a and carotenoid binding sites. These findings, taken together with a previous report showing ELIP capacity for energy dissipation, lead to a re-evaluation of its significant role in sustained thermal dissipation.
Collapse
Affiliation(s)
- Zihao Ye
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Mina Sawada
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Makiko Iwasa
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ryo Moriyama
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Debayan Dey
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Miyu Furutani
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Hitsujigaoka 7, Sapporo 062-8516, Japan
| | - Toshihiko Hara
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| |
Collapse
|
4
|
Liu M, Wang Y, Zhang H, Hao Y, Wu H, Shen H, Zhang P. Mechanisms of photoprotection in overwintering evergreen conifers: Sustained quenching of chlorophyll fluorescence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108638. [PMID: 38653096 DOI: 10.1016/j.plaphy.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Evergreen conifers growing in high-latitude regions must endure prolonged winters that are characterized by sub-zero temperatures combined with light, conditions that can cause significant photooxidative stress. Understanding overwintering mechanisms is crucial for addressing winter adversity in temperate forest ecosystems and enhancing the ability of conifers to adapt to climate change. This review synthesizes the current understanding of the photoprotective mechanisms that conifers employ to mitigate photooxidative stress, particularly non-photochemical "sustained quenching", the mechanism of which is hypothesized to be a recombination or deformation of the original mechanism employed by conifers in response to short-term low temperature and intense light stress in the past. Based on this hypothesis, scattered studies in this field are assembled and integrated into a complete mechanism of sustained quenching embedded in the adaptation process of plant physiology. It also reveals which parts of the whole system have been verified in conifers and which have only been verified in non-conifers, and proposes specific directions for future research. The functional implications of studies of non-coniferous plant species for the study of coniferous trees are also considered, as a wide range of plant responses lead to sustained quenching, even among different conifer species. In addition, the review highlights the challenges of measuring sustained quenching and discusses the application of ultrafast-time-resolved fluorescence and decay-associated spectra for the elucidation of photosynthetic principles.
Collapse
Affiliation(s)
- Mingyu Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yu Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Yuanqin Hao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Haibo Wu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Hailong Shen
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Peng Zhang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| |
Collapse
|
5
|
Luo Y, Gessler A, D'Odorico P, Hufkens K, Stocker BD. Quantifying effects of cold acclimation and delayed springtime photosynthesis resumption in northern ecosystems. THE NEW PHYTOLOGIST 2023; 240:984-1002. [PMID: 37583086 DOI: 10.1111/nph.19208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Land carbon dynamics in temperate and boreal ecosystems are sensitive to environmental change. Accurately simulating gross primary productivity (GPP) and its seasonality is key for reliable carbon cycle projections. However, significant biases have been found in early spring GPP simulations of northern forests, where observations often suggest a later resumption of photosynthetic activity than predicted by models. Here, we used eddy covariance-based GPP estimates from 39 forest sites that differ by their climate and dominant plant functional types. We used a mechanistic and an empirical light use efficiency (LUE) model to investigate the magnitude and environmental controls of delayed springtime photosynthesis resumption (DSPR) across sites. We found DSPR reduced ecosystem LUE by 30-70% at many, but not all site-years during spring. A significant depression of LUE was found not only in coniferous but also at deciduous forests and was related to combined high radiation and low minimum temperatures. By embedding cold-acclimation effects on LUE that considers the delayed effects of minimum temperatures, initial model bias in simulated springtime GPP was effectively resolved. This provides an approach to improve GPP estimates by considering physiological acclimation and enables more reliable simulations of photosynthesis in northern forests and projections in a warming climate.
Collapse
Affiliation(s)
- Yunpeng Luo
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, 8902, Zurich, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Koen Hufkens
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, 8902, Zurich, Switzerland
| | - Benjamin D Stocker
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, 8902, Zurich, Switzerland
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012, Bern, Switzerland
| |
Collapse
|
6
|
Wada N, Kondo I, Tanaka R, Kishimoto J, Miyagi A, Kawai-Yamada M, Mizokami Y, Noguchi K. Dynamic seasonal changes in photosynthesis systems in leaves of Asarum tamaense, an evergreen understorey herbaceous species. ANNALS OF BOTANY 2023; 131:423-436. [PMID: 36579472 PMCID: PMC10072104 DOI: 10.1093/aob/mcac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Evergreen herbaceous species in the deciduous forest understorey maintain their photosystems in long-lived leaves under dynamic seasonal changes in light and temperature. However, in evergreen understorey herbs, it is unknown how photosynthetic electron transport acclimates to seasonal changes in forest understorey environments, and what photoprotection systems function in excess energy dissipation under high-light and low-temperature environments in winter. METHODS Here, we used Asarum tamaense, an evergreen herbaceous species in the deciduous forest understorey with a single-flush and long-lived leaves, and measured photosynthetic CO2 assimilation and electron transport in leaves throughout the year. The contents of photosynthetic proteins, pigments and primary metabolites were determined from regularly collected leaves. KEY RESULTS Both the rates of CO2 assimilation and electron transport under saturated light were kept low in summer, but increased in autumn and winter in A. tamaense leaves. Although the contents of photosynthetic proteins including Rubisco did not increase in autumn and winter, the proton motive force and ΔpH across the thylakoid membrane were high in summer and decreased from summer to winter to a great extent. These decreases alleviated the suppression by lumen acidification and increased the electron transport rate in winter. The content and composition of carotenoids changed seasonally, which may affect changes in non-photochemical quenching from summer to winter. Winter leaves accumulated proline and malate, which may support cold acclimation. CONCLUSIONS In A. tamaense leaves, the increase in photosynthetic electron transport rates in winter was not due to an increase in photosynthetic enzyme contents, but due to the activation of photosynthetic enzymes and/or release of limitation of photosynthetic electron flow. These seasonal changes in the regulation of electron transport and also the changes in several photoprotection systems should support the acclimation of photosynthetic C gain under dynamic environmental changes throughout the year.
Collapse
Affiliation(s)
- Naoki Wada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| | - Issei Kondo
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819Japan
| | - Junko Kishimoto
- Institute of Low Temperature Science, Hokkaido University, Sapporo, 060-0819Japan
| | - Atsuko Miyagi
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570Japan
| | - Yusuke Mizokami
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392Japan
| |
Collapse
|
7
|
Georgieva K, Mihailova G, Fernández-Marín B, Bertazza G, Govoni A, Arzac MI, Laza JM, Vilas JL, García-Plazaola JI, Rapparini F. Protective Strategies of Haberlea rhodopensis for Acquisition of Freezing Tolerance: Interaction between Dehydration and Low Temperature. Int J Mol Sci 2022; 23:ijms232315050. [PMID: 36499377 PMCID: PMC9739172 DOI: 10.3390/ijms232315050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Resurrection plants are able to deal with complete dehydration of their leaves and then recover normal metabolic activity after rehydration. Only a few resurrection species are exposed to freezing temperatures in their natural environments, making them interesting models to study the key metabolic adjustments of freezing tolerances. Here, we investigate the effect of cold and freezing temperatures on physiological and biochemical changes in the leaves of Haberlea rhodopensis under natural and controlled environmental conditions. Our data shows that leaf water content affects its thermodynamical properties during vitrification under low temperatures. The changes in membrane lipid composition, accumulation of sugars, and synthesis of stress-induced proteins were significantly activated during the adaptation of H. rhodopensis to both cold and freezing temperatures. In particular, the freezing tolerance of H. rhodopensis relies on a sucrose/hexoses ratio in favor of hexoses during cold acclimation, while there is a shift in favor of sucrose upon exposure to freezing temperatures, especially evident when leaf desiccation is relevant. This pattern was paralleled by an elevated ratio of unsaturated/saturated fatty acids and significant quantitative and compositional changes in stress-induced proteins, namely dehydrins and early light-induced proteins (ELIPs). Taken together, our data indicate that common responses of H. rhodopensis plants to low temperature and desiccation involve the accumulation of sugars and upregulation of dehydrins/ELIP protein expression. Further studies on the molecular mechanisms underlying freezing tolerance (genes and genetic regulatory mechanisms) may help breeders to improve the resistance of crop plants.
Collapse
Affiliation(s)
- Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-979-2620
| | - Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), 38200 Tenerife, Spain
| | - Gianpaolo Bertazza
- Bioeconomy Institute (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Annalisa Govoni
- Bioeconomy Institute (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Miren Irati Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - José Manuel Laza
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - José Luis Vilas
- Department of Physical Chemistry, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Bilbao, Spain
| | - Francesca Rapparini
- Bioeconomy Institute (IBE), Department of Bio-Agrifood Science (DiSBA), National Research Council (CNR), Via P. Gobetti 101, I-40129 Bologna, Italy
| |
Collapse
|
8
|
Liu B, Zhao F, Zhou H, Xia Y, Wang X. Photoprotection conferring plant tolerance to freezing stress through rescuing photosystem in evergreen Rhododendron. PLANT, CELL & ENVIRONMENT 2022; 45:2093-2108. [PMID: 35357711 DOI: 10.1111/pce.14322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Light stress is one of the important stresses for winter survival in evergreens, especially for plants with broad leaves, like evergreen rhododendrons. Photoprotection has been shown to upregulate dramatically in rhododendrons during winter, but whether it directly contributes to enhancing the freezing tolerance is still unknown. In this study, we found that the expression and circadian rhythm of an early light-induced protein (ELIP)-RhELIP3-which exerts photoprotection in Rhododendron 'Elsie Lee', could be impacted by both photoperiod and low temperature, with low temperature being the predominant inducer. Arabidopsis overexpressing RhELIP3 displayed significantly stronger freezing tolerance and better photosystem II function after a 3-day recovery from freezing treatment. Moreover, RhHY5 binds with the RhELIP3 promoter to activate its expression. Arabidopsis overexpressing RhHY5 exhibited stronger freezing tolerance and better photosystem II function. AtELIP1 and AtELIP2 were significantly induced in RhHY5-overexpressed Arabidopsis at low temperatures. We also discovered that RhBBX24 binds directly to RhELIP3 promoter and suppresses its expression. RhBBX24 can also interact with RhHY5 and inhibit the interaction of RhHY5-RhELIP3. RhELIP3, RhHY5, and RhBBX24 exhibited similar circadian rhythms under low temperature with short period. Overall, our investigation highlights that photoprotection is involved in improving the freezing tolerance of evergreen rhododendrons.
Collapse
Affiliation(s)
- Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Fangmeng Zhao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
9
|
Encinas-Valero M, Esteban R, Hereş AM, Becerril JM, García-Plazaola JI, Artexe U, Vivas M, Solla A, Moreno G, Curiel Yuste J. Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs. TREE PHYSIOLOGY 2022; 42:208-224. [PMID: 33611551 DOI: 10.1093/treephys/tpab006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Dehesas, human-shaped savannah-like ecosystems, where the overstorey is mainly dominated by the evergreen holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.), are classified as a global conservation priority. Despite being Q. ilex a species adapted to the harsh Mediterranean environmental conditions, recent decades have witnessed worrisome trends of climate-change-induced holm oak mortality. Holm oak decline is evidenced by tree vigour loss, gradual defoliation and ultimately, death. However, before losing leaves, trees undergo leaf-level physiological adjustments in response to stress that may represent a promising field to develop biochemical early markers of holm oak decline. This study explored holm oak photoprotective responses (pigments, tocopherols and photosynthetic performance) in 144 mature holm oak trees with different health statuses (i.e., crown defoliation percentages) from healthy to first-stage declining individuals. Our results indicate differential photochemical performance and photoprotective compounds concentration depending on the trees' health status. Declining trees showed higher energy dissipation yield, lower photochemical efficiency and enhanced photoprotective compounds. In the case of total violaxanthin cycle pigments (VAZ) and tocopherols, shifts in leaf contents were significant at very early stages of crown defoliation, even before visual symptoms of decline were evident, supporting the value of these biochemical compounds as early stress markers. Linear mixed-effects models results showed an acute response, both in the photosynthesis performance index and in the concentration of foliar tocopherols, during the onset of tree decline, whereas VAZ showed a more gradual response along the defoliation gradient of the crown. These results collectively demonstrate that once a certain threshold of leaf physiological damage is surpassed, that leaf cannot counteract oxidative stress and progressive loss of leaves occurs. Therefore, the use of both photosynthesis performance indexes and the leaf tocopherols concentration as early diagnostic tools might predict declining trends, facilitating the implementation of preventive measures to counteract crown defoliation.
Collapse
Affiliation(s)
- Manuel Encinas-Valero
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Raquel Esteban
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Ana-Maria Hereş
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven-1, 500123 Braşov, Romania
| | - José María Becerril
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Unai Artexe
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - María Vivas
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Gerardo Moreno
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for SciencePlaza Euskadi 548009 Bilbao, Bizkaia, Spain
| |
Collapse
|
10
|
Demmig-Adams B, López-Pozo M, Polutchko SK, Fourounjian P, Stewart JJ, Zenir MC, Adams WW. Growth and Nutritional Quality of Lemnaceae Viewed Comparatively in an Ecological and Evolutionary Context. PLANTS (BASEL, SWITZERLAND) 2022; 11:145. [PMID: 35050033 PMCID: PMC8779320 DOI: 10.3390/plants11020145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna's response to elevated CO2 was evaluated in the context of the source-sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source-sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant-microbe interaction, for which duckweeds have a high propensity.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48049 Bilbao, Spain;
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Paul Fourounjian
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
- International Lemna Association, Denville, NJ 07832, USA
| | - Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - Madeleine C. Zenir
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA; (S.K.P.); (P.F.); (J.J.S.); (M.C.Z.); (W.W.A.III)
| |
Collapse
|
11
|
Ptushenko VV, Bondarenko GN, Vinogradova EN, Glagoleva ES, Karpova OV, Ptushenko OS, Solovchenko AE, Trubitsin BV, Chivkunova OB, Shibzukhova KA, Shcherbakov PN. The Effect of Chilling on the Photosynthetic Apparatus of Microalga Lobosphaera incisa IPPAS C-2047. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1590-1598. [PMID: 34937538 DOI: 10.1134/s0006297921120087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic organisms have developed a set of mechanisms aimed at preventing photo-oxidative reactions in the photosynthetic apparatus (PSA) initiated by excessively absorbed light energy. Along with high irradiance, other stressors, e.g., chilling temperatures, can lead to the absorption of the excess of light energy and hence to photo-oxidative stress. Here, we studied induction of photoprotective mechanisms in response to chilling (0°C) at a low irradiance (50 µmol PAR photons m-2·s-1) in the cells of microalga Lobosphaera incisa IPPAS C-2047. After 4 days of incubation at a low temperature, L. incisa IPPAS C-2047 cells showed a notable decrease in the photochemical activity of photosystem II (PSII) and in the efficiency of photosynthetic electron transport, as well as a significant increase in the thermal dissipation of the absorbed light energy in the light-harvesting antenna. In contrast, most conventional markers of PSA acclimation to excess light energy [total chlorophyll and carotenoid content; violaxanthin cycle pigment content and de-epoxidation state; photosynthetic antenna, PSII, and photosystem I (PSI) ratio] remained virtually unchanged. The content of major unsaturated fatty acids also remained almost unaffected, except for arachidonic acid (increased by 40%) recently assumed to activate violaxanthin de-epoxidase by adjusting its lipid microenvironment. Significant changes (4-7-fold increase) were observed in the expression of the gene encoding protective protein LhcSR. Pre-conditioning at 5°C prior to the acclimation to 0°C augmented the PSA photochemical activity. Our data show that the mid-term (4-d) acclimation of L. incisa IPPAS C-2047 to a chilling temperature at a low irradiance triggers the PSA response resembling, in part, the response to high light but relying mostly on the LhcSR protein-dependent quenching of excitation in the photosynthetic antenna.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia. .,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | - Elizaveta N Vinogradova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,National Research Center "Kurchatov Institute", 123182 Moscow Russia
| | - Elena S Glagoleva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga V Karpova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oxana S Ptushenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Boris V Trubitsin
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga B Chivkunova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Pavel N Shcherbakov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
12
|
Döweler F, Case BS, Buckley HL, Bader MKF. High light-induced photoinhibition is not limiting seedling establishment at abrupt treeline ecotones in New Zealand. TREE PHYSIOLOGY 2021; 41:2034-2045. [PMID: 33960386 DOI: 10.1093/treephys/tpab061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Seedlings of New Zealand's treeline-forming Fuscospora cliffortioides (Hook.f.) perform poorly beyond the established canopy, limiting treeline advance. To test the long-standing assumption that photoinhibition impairs regeneration in the subalpine belt of New Zealand's Southern Alps, we assessed photosystem II (PSII) performance of seedling-sized individuals and microclimate variation. We performed diurnal, non-invasive chlorophyll-a-fluorescence measurements on exposed and canopy-sheltered individuals at two sites in New Zealand's Southern Alps during summer and winter. Diurnal recordings of the effective (ΦPSII) and optimal (Fv/Fm) photosynthetic quantum yield were supplemented with light response curves and micro-temperature recordings. ΦPSII returned to near-optimal values around 0.8 after 30 min of shading, which rules out accumulative or long-term photoinhibition effects. The maximum electron transport rate derived from rapid light curves was significantly higher (+12%) in exposed compared with canopy-shaded individuals. Summer temperature fluctuated widely on the scree (-0.5 to 60.5 °C) and near seedlings (-2 to 26.5 °C). Our results revealed a remarkable level of light adaptation and contradict previous studies hinting at high light-induced photoinhibition as a treeline-limiting factor in the Southern Alps. By linking low ΦPSII on winter mornings, and large, sudden temperature drops in summer, we suspect that cold-induced photoinhibition might occur but the rapid recovery of ΦPSII seen across a wide temperature range makes lethal photo-oxidative damage rather unlikely. Given the demonstrably low summer frost tolerance of F. cliffortioides, cold-related damage resulting from frost events during the growing season or embolism induced by frost drought may offer more plausible explanations for the poor seedling establishment. Duration and frequency of these events could diminish with global warming, which may promote treeline advance.
Collapse
Affiliation(s)
- Fabian Döweler
- School of Science, Auckland University of Technology, 46 Wakefield St, Auckland 1010, New Zealand
| | - Bradley S Case
- School of Science, Auckland University of Technology, 46 Wakefield St, Auckland 1010, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 46 Wakefield St, Auckland 1010, New Zealand
| | - Martin K-F Bader
- School of Science, Auckland University of Technology, 46 Wakefield St, Auckland 1010, New Zealand
- Department of Forestry and Wood Technology, Linnaeus University, P G Vejdes väg, 351 95 Växjö, Sweden
| |
Collapse
|
13
|
Arora R, Krebs SL, Wisniewski ME. The relationship of cold acclimation and extracellular ice formation to winter thermonasty in two Rhododendron species and their F 1 hybrid. AMERICAN JOURNAL OF BOTANY 2021; 108:1946-1956. [PMID: 34687044 DOI: 10.1002/ajb2.1783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Thermonastic leaf movements in evergreen Rhododendron species have been used to study plant strategies for winter photoprotection. To add to the current fundamental understanding of this behavior, we addressed the following questions: (1) Is the cold-acclimated (CA) state necessary for thermonasty, and do cold-induced leaf movements also occur in non-acclimated (NA) plants? (2) Which of the two movements, leaf rolling versus curling, is more responsive to freezing, if any, in a non-thermonastic species? (3) What is the temporal relationship between extracellular freezing and thermonasty? (4) What genetic inferences can be drawn from leaf movement in an F1 hybrid relative to its parents? METHODS A temperature-controlled, gradual cooling regime was used to quantify freeze-induced leaf movements. Infrared thermography was used to confirm extracellular ice-formation in leaves. RESULTS Both NA and CA plants of thermonastic species exhibited thermonasty, but leaf rolling/curling increased significantly in CA plants. In the cold-acclimated condition, a non-thermonastic species showed almost no rolling during freezing, while the thermonastic species and F1 hybrid did, the latter exhibiting a response intermediate to the parents. Freezing-induced leaf curling in the non-thermonastic species and the F1 hybrid was equivalent and significantly less than the degree of curling in the thermonastic species. CONCLUSIONS Milder thermonasty in NA than CA leaves could be associated with differential anisotropy in the rolling forces and/or response of aquaporins to freezing. Leaf movements in the hybrid suggest that leaf rolling and curling are additive and dominant genetic traits, respectively. Infrared thermography confirms that ice formation in tissues precedes cold-induced thermonasty in R. catawbiense.
Collapse
Affiliation(s)
- Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, 50011, USA
| | | | | |
Collapse
|
14
|
Demmig-Adams B, Stewart JJ, López-Pozo M, Polutchko SK, Adams WW. Zeaxanthin, a Molecule for Photoprotection in Many Different Environments. Molecules 2020; 25:E5825. [PMID: 33321863 PMCID: PMC7764489 DOI: 10.3390/molecules25245825] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Conversion of sunlight into photochemistry depends on photoprotective processes that allow safe use of sunlight over a broad range of environmental conditions. This review focuses on the ubiquity of photoprotection associated with a group of interconvertible leaf carotenoids, the xanthophyll cycle. We survey the striking plasticity of this process observed in nature with respect to (1) xanthophyll cycle pool size, (2) degree and speed of interconversion of its components, and (3) flexibility in the association between xanthophyll cycle conversion state and photoprotective dissipation of excess excitation energy. It is concluded that the components of this system can be independently tuned with a high degree of flexibility to produce a fit for different environments with various combinations of light, temperature, and other factors. In addition, the role of genetic variation is apparent from variation in the response of different species growing side-by-side in the same environment. These findings illustrate how field studies can generate insight into the adjustable levers that allow xanthophyll cycle-associated photoprotection to support plant photosynthetic productivity and survival in environments with unique combinations of environmental factors.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (M.L.-P.); (S.K.P.); (W.W.A.III)
| | | | | | | | | |
Collapse
|
15
|
Surface Canopy Position Determines the Photosystem II Photochemistry in Invasive and Native Prosopis Congeners at Sharjah Desert, UAE. FORESTS 2020. [DOI: 10.3390/f11070740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plants have evolved photoprotective mechanisms in order to counteract the damaging effects of excess light in hyper-arid desert environments. We evaluated the impact of surface canopy positions on the photosynthetic adjustments and chlorophyll fluorescence attributes (photosystem II photochemistry, quantum yield, fluorescence quenching, and photon energy dissipation), leaf biomass and nutrient content of sun-exposed leaves at the south east (SE canopy position) and shaded-leaves at the north west (NW canopy position) in the invasive Prosopis juliflora and native Prosopis cineraria in the extreme environment (hyper-arid desert area, United Arab Emirates (UAE)). The main aim of this research was to study the photoprotection mechanism in invasive and native Prosopis congeners via the safe removal—as thermal energy—of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. Maximum photosynthetic efficiency (Fv/Fm) from dark-adapted leaves in P. juliflora and P. cineraria was higher on NW than SE canopy position while insignificant difference was observed within the two Prosopis congeners. Greater quantum yield was observed in P. juliflora than P. cineraria on the NW canopy position than SE. With the change of canopy positions from NW to SE, the reduction of the PSII reaction center activity in the leaves of both Prosopis congeners was accelerated. On the SE canopy position, a significant decline in the electron transport rate (ETR) of in the leaves of both Prosopis congeners occurred, which might be due to the blockage of electron transfer from QA to QB on the PSII acceptor side. On the SE canopy position; Prosopis leaves dissipated excess light energy by increasing non-photochemical quenching (NPQ). However, in P. cineraria, the protective ability of NPQ decreased, which led to the accumulation of excess excitation energy (1 − qP)/NPQ and the aggravation of photoinhibition. The results also explain the role of different physiological attributes contributing to invasiveness of P. juliflora and to evaluate its liaison between plasticity of these characters and invasiveness.
Collapse
|
16
|
Zhang C, Atherton J, Peñuelas J, Filella I, Kolari P, Aalto J, Ruhanen H, Bäck J, Porcar-Castell A. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? PLANT, CELL & ENVIRONMENT 2019; 42:3264-3279. [PMID: 31325364 DOI: 10.1111/pce.13620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Chlorophyll a fluorescence (ChlF) is closely related to photosynthesis and can be measured remotely using multiple spectral features as solar-induced fluorescence (SIF). In boreal regions, SIF shows particular promise as an indicator of photosynthesis, in part because of the limited variation of seasonal light absorption in these ecosystems. Seasonal spectral changes in ChlF could yield new information on processes such as sustained nonphotochemical quenching (NPQS ) but also disrupt the relationship between SIF and photosynthesis. We followed ChlF and functional and biochemical properties of Pinus sylvestris needles during the photosynthetic spring recovery period to answer the following: (a) How ChlF spectra change over seasonal timescales? (b) How pigments, NPQS , and total photosynthetically active radiation (PAR) absorption drive changes of ChlF spectra? (c) Do all ChlF wavelengths track photosynthetic seasonality? We found seasonal ChlF variation in the red and far-red wavelengths, which was strongly correlated with NPQS , carotenoid content, and photosynthesis (enhanced in the red), but not with PAR absorption. Furthermore, a rapid decrease in red/far-red ChlF ratio occurred in response to a cold spell, potentially relating to the structural reorganization of the photosystems. We conclude that all current SIF retrieval features can track seasonal photosynthetic dynamics in boreal evergreens, but the full SIF spectra provides additional insight.
Collapse
Affiliation(s)
- Chao Zhang
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- CREAF, Center for Ecological Research and Forestry Applications, Bellaterra, 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Spain
| | - Jon Atherton
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Josep Peñuelas
- CREAF, Center for Ecological Research and Forestry Applications, Bellaterra, 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Spain
| | - Iolanda Filella
- CREAF, Center for Ecological Research and Forestry Applications, Bellaterra, 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Spain
| | - Pasi Kolari
- Department of Physics, University of Helsinki, Helsinki, 00014, Finland
| | - Juho Aalto
- Department of Physics, University of Helsinki, Helsinki, 00014, Finland
- Station for Measuring Forest Ecosystem-Atmosphere Relations II (SMEAR II), Hyytiälä Forestry Field Station, University of Helsinki, Korkeakoski, 35500, Finland
| | - Hanna Ruhanen
- Natural Resources Institute Finland (Luke), Natural Resources and Bioproduction, Suonenjoki, 77600, Finland
| | - Jaana Bäck
- Department of Forest Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Albert Porcar-Castell
- Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
17
|
Less photoprotection can be good in some genetic and environmental contexts. Biochem J 2019; 476:2017-2029. [PMID: 31320389 DOI: 10.1042/bcj20190328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
Antioxidant systems modulate oxidant-based signaling networks and excessive removal of oxidants can prevent beneficial acclimation responses. Evidence from mutant, transgenic, and locally adapted natural plant systems is used to interpret differences in the capacity for antioxidation and formulate hypotheses for future inquiry. We focus on the first line of chloroplast antioxidant defense, pre-emptive thermal dissipation of excess absorbed light (monitored as nonphotochemical fluorescence quenching, NPQ) as well as on tocopherol-based antioxidation. Findings from NPQ-deficient and tocopherol-deficient mutants that exhibited enhanced biomass production and/or enhanced foliar water-transport capacity are reviewed and discussed in the context of the impact of lower levels of antioxidation on plant performance in hot/dry conditions, under cool temperature, and in the presence of biotic stress. The complexity of cellular redox-signaling networks is related to the complexity of environmental and endogenous inputs as well as to the need for intensified training and collaboration in the study of plant-environment interactions across biological sub-disciplines.
Collapse
|
18
|
Lazarus BE, Germino MJ, Richardson BA. Freezing resistance, safety margins, and survival vary among big sagebrush populations across the western United States. AMERICAN JOURNAL OF BOTANY 2019; 106:922-934. [PMID: 31294835 DOI: 10.1002/ajb2.1320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Physiological responses to temperature extremes are considered strong drivers of species' demographic responses to climate variability. Plants are typically classified as either avoiders or tolerators in their freezing-resistance mechanism, but a gradient of physiological-threshold freezing responses may exist among individuals of a species. Moreover, adaptive significance of physiological freezing responses is poorly characterized, particularly under warming conditions that relax selection on cold hardiness. METHODS Freezing responses were measured in winter and again for new foliage in spring for 14 populations of Artemisia tridentata collected throughout its range and planted in a warm common garden. The relationships of the freezing responses to survival were evaluated in the warm garden and in two colder gardens. RESULTS Winter and spring freezing resistance were not correlated and appeared to be under differing selection regimes, as evident in correlations with different population climate of origin variables. All populations resisted considerably lower temperatures in winter than in spring, with populations from more continental climates showing narrower freezing safety margins (difference in temperatures at which ice-nucleation occurs and 50% reduction in chlorophyll fluorescence occurs) in spring. Populations with greater winter freezing resistance had lower survivorship in the warmest garden, while populations with greater spring freezing resistance had lower survivorship in a colder garden. CONCLUSIONS These survivorship patterns relative to physiological thresholds suggest excess freezing resistance may incur a survival cost that likely relates to a trade-off between carbon gain and freezing resistance during critical periods of moisture availability. This cost has implications for seed moved from cooler to warmer environments and for plants growing in warming environments.
Collapse
Affiliation(s)
- Brynne E Lazarus
- U. S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 S. Lusk Street, Boise, ID, 83706, USA
| | - Matthew J Germino
- U. S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 970 S. Lusk Street, Boise, ID, 83706, USA
| | - Bryce A Richardson
- USDA Forest Service, Rocky Mountain Research Station, 1221 S. Main St., Moscow, ID, 83843, USA
| |
Collapse
|
19
|
Cronn R, Dolan PC, Jogdeo S, Wegrzyn JL, Neale DB, St Clair JB, Denver DR. Transcription through the eye of a needle: daily and annual cyclic gene expression variation in Douglas-fir needles. BMC Genomics 2017; 18:558. [PMID: 28738815 PMCID: PMC5525293 DOI: 10.1186/s12864-017-3916-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. RESULTS We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. CONCLUSIONS Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.
Collapse
Affiliation(s)
- Richard Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA.
| | - Peter C Dolan
- University of Minnesota - Morris, Morris, MN, 56267, USA
| | - Sanjuro Jogdeo
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - David B Neale
- Department of Plant Sciences, University of California - Davis, Davis, CA, 95616, USA
| | - J Bradley St Clair
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, 97331, USA
| | - Dee R Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
20
|
Chan AM, Bowling DR. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests. TREE PHYSIOLOGY 2017; 37:984-995. [PMID: 28549168 DOI: 10.1093/treephys/tpx049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Productivity of conifers in seasonally snow-covered forests is high before and during snowmelt when environmental conditions are optimal for photosynthesis. Climate change is altering the timing of spring in many locations, and changes in the date of transition from winter dormancy can have large impacts on annual productivity. Sap flow methods provide a promising approach to monitor tree activity during the cold season and the winter-spring and fall-winter transitions. Although sap flow techniques have been widely used, cold season results are generally not reported. Here we examine the feasibility of using the Granier thermal dissipation (TD) sap flux density method to monitor transpiration and dormancy of evergreen conifers during the cold season. We conducted a laboratory experiment which demonstrated that the TD method reliably detects xylem water transport (when it occurs) both at near freezing temperature and at low flow rate, and that the sensors can withstand repeated freeze-thaw events. However, the dependence between sensor output and water transport rate in these experiments differed from the established TD relation. In field experiments, sensors installed in two Abies forests lasted through two winters and a summer with low failure. The baseline (no-flow) sensor output varied considerably with temperature during the cold season, and a new baseline algorithm was developed to accommodate this variation. The Abies forests differed in elevation (2070 and 2620 m), and there was a clear difference in timing of initiation and cessation of transpiration between them. We conclude that the TD method can be reliably used to examine water transport during cold periods with associated low flow conditions.
Collapse
Affiliation(s)
- Allison M Chan
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
- Los Alamos National Laboratory, Environmental Management Division, Los Alamos, NM 87545, USA
| | - David R Bowling
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
21
|
Demmig-Adams B, Stewart JJ, Adams WW. Environmental regulation of intrinsic photosynthetic capacity: an integrated view. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:34-41. [PMID: 28410523 DOI: 10.1016/j.pbi.2017.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/13/2023]
Abstract
Environmental modulation of photosynthetic capacity is reviewed in the context of its assessment and its regulation, genetic differences among species and ecotypes, and links to plant stress tolerance and productivity. Modulation of intrinsic photosynthetic capacity matches investment in photosynthetic components to opportunity for CO2 uptake and productivity in specific environments, with exceptionally high rates during particularly narrow windows of opportunity. Response varies among species and ecotypes and should be evaluated on multiple reference bases as well as chloroplast, leaf, and whole plant scales. Photosynthetic capacity, total foliar vascular transport capacity, and plant sink strength are modulated in concert. Switching among alternative target sinks and alternative foliar vascular architectures may provide avenues for co-optimization of productivity and stress tolerance.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | - Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| |
Collapse
|
22
|
Die JV, Arora R, Rowland LJ. Proteome dynamics of cold-acclimating Rhododendron species contrasting in their freezing tolerance and thermonasty behavior. PLoS One 2017; 12:e0177389. [PMID: 28542212 PMCID: PMC5441609 DOI: 10.1371/journal.pone.0177389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
To gain a better understanding of cold acclimation in rhododendron and in woody perennials in general, we used the 2D-DIGE technique to analyze the rhododendron proteome during the seasonal development of freezing tolerance. We selected two species varying in their cold acclimation ability as well as their thermonasty response (folding of leaves in response to low temperature). Proteins were extracted from leaves of non-acclimated (NA) and cold acclimated (CA) plants of the hardier thermonastic species, R. catawbiense (Cata.), and from leaves of cold acclimated plants of the less hardy, non-thermonastic R. ponticum (Pont.). All three protein samples (Cata.NA, Cata.CA, and Pont.CA) were labeled with different CyDyes and separated together on a single gel. Triplicate gels were run and protein profiles were compared resulting in the identification of 72 protein spots that consistently had different abundances in at least one pair-wise comparison. From the 72 differential spots, we chose 56 spots to excise and characterize further by mass spectrometry (MS). Changes in the proteome associated with the seasonal development of cold acclimation were identified from the Cata.CA-Cata.NA comparisons. Differentially abundant proteins associated with the acquisition of superior freezing tolerance and with the thermonastic response were identified from the Cata.CA-Pont.CA comparisons. Our results indicate that cold acclimation in rhododendron involves increases in abundance of several proteins related to stress (freezing/desiccation tolerance), energy and carbohydrate metabolism, regulation/signaling, secondary metabolism (possibly involving cell wall remodeling), and permeability of the cell membrane. Cold acclimation also involves decreases in abundance of several proteins involved in photosynthesis. Differences in freezing tolerance between genotypes can probably be attributed to observed differences in levels of proteins involved in these functions. Also differences in freezing tolerance may be attributed to higher levels of some constitutive protective proteins in Cata. than in Pont. that may be required to overcome freeze damage, such as glutathione peroxidase, glutamine synthetase, and a plastid-lipid-associated protein.
Collapse
Affiliation(s)
- Jose V. Die
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, Iowa, United States of America
| | - Lisa J. Rowland
- Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, United States of America
| |
Collapse
|
23
|
Schumann T, Paul S, Melzer M, Dörmann P, Jahns P. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:681. [PMID: 28515734 PMCID: PMC5413563 DOI: 10.3389/fpls.2017.00681] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/13/2017] [Indexed: 05/18/2023]
Abstract
Efficient acclimation to different growth light intensities is essential for plant fitness. So far, most studies on light acclimation have been conducted with plants grown under different constant light regimes, but more recent work indicated that acclimation to fluctuating light or field conditions may result in different physiological properties of plants. Thale cress (Arabidopsis thaliana) was grown under three different constant light intensities (LL: 25 μmol photons m-2 s-1; NL: 100 μmol photons m-2 s-1; HL: 500 μmol photons m-2 s-1) and under natural fluctuating light (NatL) conditions. We performed a thorough characterization of the morphological, physiological, and biochemical properties focusing on photo-protective mechanisms. Our analyses corroborated the known properties of LL, NL, and HL plants. NatL plants, however, were found to combine characteristics of both LL and HL grown plants, leading to efficient and unique light utilization capacities. Strikingly, the high energy dissipation capacity of NatL plants correlated with increased dynamics of thylakoid membrane reorganization upon short-term acclimation to excess light. We conclude that the thylakoid membrane organization and particularly the light-dependent and reversible unstacking of grana membranes likely represent key factors that provide the basis for the high acclimation capacity of NatL grown plants to rapidly changing light intensities.
Collapse
Affiliation(s)
- Tobias Schumann
- Plant Biochemistry, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
| | - Suman Paul
- Department of Plant Physiology, Umeå UniversityUmeå, Sweden
| | - Michael Melzer
- Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Seeland, Germany
| | - Peter Dörmann
- Molecular Biotechnology/Biochemistry, Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), Rheinische Friedrich-Wilhelms-University BonnBonn, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University DüsseldorfDüsseldorf, Germany
- *Correspondence: Peter Jahns
| |
Collapse
|
24
|
Míguez F, Fernández-Marín B, Becerril JM, García-Plazaola JI. Activation of photoprotective winter photoinhibition in plants from different environments: a literature compilation and meta-analysis. PHYSIOLOGIA PLANTARUM 2015; 155:414-23. [PMID: 25626882 DOI: 10.1111/ppl.12329] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 05/08/2023]
Abstract
Overwintering plants face a pronounced imbalance between light capture and use of that excitation for photosynthesis. In response, plants upregulate thermal dissipation, with concomitant reductions in photochemical efficiency, in a process characterized by a slow recovery upon warming. These sustained depressions of photochemical efficiency are termed winter photoinhibition (WPI) here. WPI has been extensively studied in conifers and in few overwintering crops, but other plant species have received less attention. Furthermore, the literature shows some controversies about the association of WPI with xanthophylls and the environmental conditions that control xanthophylls conversion. To overview current knowledge and identify knowledge gaps on WPI mechanisms, we performed a comprehensive meta-analysis of literature published over the period 1991-2011. All publications containing measurements of Fv/Fm for a cold period and a corresponding warm control were included in our final database of 190 studies on 162 species. WPI was estimated as the relative decrease in Fv/Fm. High WPI was always accompanied by a high (A + Z)/(V + A + Z). Activation of lasting WPI was directly related to air temperature, with a threshold of around 0°C. Tropical plants presented earlier (at a temperature of >0°C) and higher WPI than non-tropical plants. We conclude that (1) activation of a xanthophyll-dependent mechanism of WPI is a requisite for maintaining photosynthetic structures at sub-zero temperatures, while (2) absence (or low levels) of WPI is not necessarily related to low (A + Z)/(V + A + Z); and (3) the air temperature that triggers lasting WPI, and the maximum level of WPI, do not depend on plant growth habit or bioclimatic origin of species.
Collapse
Affiliation(s)
- Fátima Míguez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, 48080, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, 48080, Spain
| | - José María Becerril
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, 48080, Spain
| | | |
Collapse
|
25
|
Demmig-Adams B, Muller O, Stewart JJ, Cohu CM, Adams WW. Chloroplast thylakoid structure in evergreen leaves employing strong thermal energy dissipation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:357-66. [PMID: 25843771 DOI: 10.1016/j.jphotobiol.2015.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 11/26/2022]
Abstract
In nature, photosynthetic organisms cope with highly variable light environments--intensities varying over orders of magnitudes as well as rapid fluctuations over seconds-to-minutes--by alternating between (a) highly effective absorption and photochemical conversion of light levels limiting to photosynthesis and (b) powerful photoprotective thermal dissipation of potentially damaging light levels exceeding those that can be utilized in photosynthesis. Adjustments of the photosynthetic apparatus to changes in light environment involve biophysical, biochemical, and structural adjustments. We used electron micrographs to assess overall thylakoid grana structure in evergreen species that exhibit much stronger maximal levels of thermal energy dissipation than the more commonly studied annual species. Our findings indicate an association between partial or complete unstacking of thylakoid grana structure and strong reversible thermal energy dissipation that, in contrast to what has been reported for annual species with much lower maximal levels of energy dissipation, is similar to what is seen under photoinhibitory conditions. For a tropical evergreen with tall grana stacks, a loosening, or vertical unstacking, of grana was seen in sun-grown plants exhibiting pronounced pH-dependent, rapidly reversible thermal energy dissipation as well as for sudden low-to-high-light transfer of shade-grown plants that responded with photoinhibition, characterized by strong dark-sustained, pH-independent thermal energy dissipation and photosystem II (PSII) inactivation. On the other hand, full-sun exposed subalpine confers with rather short grana stacks transitioned from autumn to winter via conversion of most thylakoids from granal to stromal lamellae concomitant with photoinhibitory photosynthetic inactivation and sustained thermal energy dissipation. We propose that these two types of changes (partial or complete unstacking of grana) in thylakoid arrangement are both associated with the strong non-photochemical quenching (NPQ) of chlorophyll fluorescence (a measure of photoprotective thermal energy dissipation) unique to evergreen species rather than with PSII inactivation per se.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | - Onno Muller
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Jared J Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Christopher M Cohu
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| |
Collapse
|
26
|
Chang CY, Unda F, Zubilewich A, Mansfield SD, Ensminger I. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings. FRONTIERS IN PLANT SCIENCE 2015; 6:165. [PMID: 25852717 PMCID: PMC4371696 DOI: 10.3389/fpls.2015.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/01/2015] [Indexed: 05/08/2023]
Abstract
Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20-30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field experiments.
Collapse
Affiliation(s)
- Christine Y. Chang
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
- Graduate Department of Cell and Systems Biology, University of TorontoToronto, ON, Canada
| | - Faride Unda
- Department of Wood Science, University of British ColumbiaVancouver, BC, Canada
| | | | - Shawn D. Mansfield
- Department of Wood Science, University of British ColumbiaVancouver, BC, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
- Graduate Department of Cell and Systems Biology, University of TorontoToronto, ON, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of TorontoToronto, ON, Canada
| |
Collapse
|
27
|
Tanaka C, Nakano T, Yamazaki JY, Maruta E. Responses of the photosynthetic apparatus to winter conditions in broadleaved evergreen trees growing in warm temperate regions of Japan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:147-154. [PMID: 25500451 DOI: 10.1016/j.plaphy.2014.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
Photosynthetic characteristics of two broadleaved evergreen trees, Quercus myrsinaefolia and Machilus thunbergii, were compared in autumn and winter. The irradiance was similar in both seasons, but the air temperature was lower in winter. Under the winter conditions, net photosynthesis under natural sunlight (Anet) in both species dropped to 4 μmol CO2 m(-2) s(-1), and the quantum yield of photosystem II (PSII) photochemistry in dark-adapted leaves (Fv/Fm) also dropped to 0.60. In both species the maximum carboxylation rates of Rubisco (V(cmax)) decreased, and the amount of Rubisco increased in winter. A decline in chlorophyll (Chl) concentration and an increase in the Chl a/b ratio in winter resulted in a reduction in the size of the light-harvesting antennae. From measurements of Chl a fluorescence parameters, both the relative fraction and the energy flux rates of thermal dissipation through other non-photochemical processes were markedly elevated in winter. The results indicate that the photosynthetic apparatus in broadleaved evergreen species in warm temperate regions responds to winter through regulatory mechanisms involving the downregulation of light-harvesting and photosynthesis coupled with increased photoprotective thermal energy dissipation to minimize photodamage in winter. These mechanisms aid a quick restart of photosynthesis without the development of new leaves in the following spring.
Collapse
Affiliation(s)
- Chizuru Tanaka
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Takashi Nakano
- Mount Fuji Research Institute, Yamanashi Prefectural Government (MFRI), Kenmarubi 5597-1, Kamiyoshida, Fujiyoshida City, Yamanashi 403-0005, Japan
| | - Jun-Ya Yamazaki
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan.
| | - Emiko Maruta
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
28
|
Schöttler MA, Tóth SZ. Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. FRONTIERS IN PLANT SCIENCE 2014; 5:188. [PMID: 24860580 PMCID: PMC4026699 DOI: 10.3389/fpls.2014.00188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/22/2014] [Indexed: 05/02/2023]
Abstract
The composition of the photosynthetic apparatus of higher plants is dynamically adjusted to long-term changes in environmental conditions such as growth light intensity and light quality, and to changing metabolic demands for ATP and NADPH imposed by stresses and leaf aging. By changing photosynthetic complex stoichiometry, a long-term imbalance between the photosynthetic production of ATP and NADPH and their metabolic consumption is avoided, and cytotoxic side reactions are minimized. Otherwise, an excess capacity of the light reactions, relative to the demands of primary metabolism, could result in a disturbance of cellular redox homeostasis and an increased production of reactive oxygen species, leading to the destruction of the photosynthetic apparatus and the initiation of cell death programs. In this review, changes of the abundances of the different constituents of the photosynthetic apparatus in response to environmental conditions and during leaf ontogenesis are summarized. The contributions of the different photosynthetic complexes to photosynthetic flux control and the regulation of electron transport are discussed.
Collapse
Affiliation(s)
- Mark A. Schöttler
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | |
Collapse
|
29
|
Demmig-Adams B, Koh SC, Cohu CM, Muller O, Stewart JJ, Adams WW. Non-Photochemical Fluorescence Quenching in Contrasting Plant Species and Environments. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_24] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Adams WW, Demmig-Adams B. Lessons from Nature: A Personal Perspective. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Murchie EH, Harbinson J. Non-Photochemical Fluorescence Quenching Across Scales: From Chloroplasts to Plants to Communities. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Chloroplast Photoprotection and the Trade-Off Between Abiotic and Biotic Defense. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_28] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Adams WW, Muller O, Cohu CM, Demmig-Adams B. May photoinhibition be a consequence, rather than a cause, of limited plant productivity? PHOTOSYNTHESIS RESEARCH 2013; 117:31-44. [PMID: 23695654 DOI: 10.1007/s11120-013-9849-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/10/2013] [Indexed: 05/03/2023]
Abstract
Photoinhibition in leaves in response to high and/or excess light, consisting of a decrease in photosynthesis and/or photosynthetic efficiency, is frequently equated to photodamage and often invoked as being responsible for decreased plant growth and productivity. However, a review of the literature reveals that photoinhibited leaves characterized for foliar carbohydrate levels were invariably found to possess high levels of sugars and starch. We propose that photoinhibition should be placed in the context of whole-plant source-sink regulation of photosynthesis. Photoinhibition may represent downregulation of the photosynthetic apparatus in response to excess light when (1) more sugar is produced in leaves than can be utilized by the rest of the plant and/or (2) more light energy is harvested than can be utilized by the chloroplast for the fixation of carbon dioxide into sugars.
Collapse
Affiliation(s)
- William W Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309-0334, USA,
| | | | | | | |
Collapse
|
34
|
Valledor L, Cañal MJ, Pascual J, Rodríguez R, Meijón M. Early induced protein 1 (PrELIP1) and other photosynthetic, stress and epigenetic regulation genes are involved in Pinus radiata D. don UV-B radiation response. PHYSIOLOGIA PLANTARUM 2012; 146:308-20. [PMID: 22471584 DOI: 10.1111/j.1399-3054.2012.01629.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The continuous atmospheric and environmental deterioration is likely to increase, among others, the influx of ultraviolet B (UV-B) radiation. The plants have photoprotective responses, which are complex mechanisms involving different physiological responses, to avoid the damages caused by this radiation that may lead to plant death. We have studied the adaptive responses to UV-B in Pinus radiata, given the importance of this species in conifer forests and reforestation programs. We analyzed the photosynthetic activity, pigments content, and gene expression of candidate genes related to photosynthesis, stress and gene regulation in needles exposed to UV-B during a 96 h time course. The results reveal a clear increase of pigments under UV-B stress while photosynthetic activity decreased. The expression levels of the studied genes drastically changed after UV-B exposure, were stress related genes were upregulated while photosynthesis (RBCA and RBCS) and epigenetic regulation were downregulated (MSI1, CSDP2, SHM4). The novel gene PrELIP1, fully sequenced for this work, was upregulated and expressed mainly in the palisade parenchyma of needles. This gene has conserved domains related to the dissipation of the UV-B radiation that give to this protein a key role during photoprotection response of the needles in Pinus radiata.
Collapse
Affiliation(s)
- Luis Valledor
- Área de Fisiología Vegetal, Dpto. B.O.S., Facultad de Biología, Universidad de Oviedo, C/ Cat. Rodrigo Uria s/n, E-33071, Oviedo, Asturias, Spain
| | | | | | | | | |
Collapse
|
35
|
García-Plazaola JI, Esteban R, Fernández-Marín B, Kranner I, Porcar-Castell A. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. PHOTOSYNTHESIS RESEARCH 2012; 113:89-103. [PMID: 22772904 DOI: 10.1007/s11120-012-9760-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.
Collapse
Affiliation(s)
- José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo 644, 48080, Bilbao, Spain.
| | | | | | | | | |
Collapse
|
36
|
Demmig-Adams B, Cohu CM, Muller O, Adams WW. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. PHOTOSYNTHESIS RESEARCH 2012; 113:75-88. [PMID: 22790560 DOI: 10.1007/s11120-012-9761-6] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/18/2012] [Indexed: 05/08/2023]
Abstract
Modulation of the efficiency with which leaves convert absorbed light to photochemical energy [intrinsic efficiency of open photosystem II (PSII) centers, as the ratio of variable to maximal chlorophyll fluorescence] as well as leaf xanthophyll composition (interconversions of the xanthophyll cycle pigments violaxanthin and zeaxanthin) were characterized throughout single days and nights to entire seasons in plants growing naturally in contrasting light and temperature environments. All pronounced decreases of intrinsic PSII efficiency took place in the presence of zeaxanthin. The reversibility of these PSII efficiency changes varied widely, ranging from reversible-within-seconds (in a vine experiencing multiple sunflecks under a eucalypt canopy) to apparently permanently locked-in for entire seasons (throughout the whole winter in a subalpine conifer forest at 3,000 m). While close association between low intrinsic PSII efficiency and zeaxanthin accumulation was ubiquitous, accompanying features (such as trans-thylakoid pH gradient, thylakoid protein composition, and phosphorylation) differed among contrasting conditions. The strongest and longest-lasting depressions in intrinsic PSII efficiency were seen in the most stress-tolerant species. Evergreens, in particular, showed the most pronounced modulation of PSII efficiency and thermal dissipation, and are therefore suggested as model species for the study of photoprotection. Implications of the responses of field-grown plants in nature for mechanistic models are discussed.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | | | | | |
Collapse
|
37
|
Light Stress Proteins in Viruses, Cyanobacteria and Photosynthetic Eukaryota. PHOTOSYNTHESIS 2012. [DOI: 10.1007/978-94-007-1579-0_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
38
|
Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:182-93. [PMID: 21565154 DOI: 10.1016/j.bbabio.2011.04.012] [Citation(s) in RCA: 629] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/31/2011] [Accepted: 04/02/2011] [Indexed: 11/18/2022]
Abstract
Photoprotection of photosystem II (PSII) is essential to avoid the light-induced damage of the photosynthetic apparatus due to the formation of reactive oxygen species (=photo-oxidative stress) under excess light. Carotenoids are known to play a crucial role in these processes based on their property to deactivate triplet chlorophyll (³Chl*) and singlet oxygen (¹O₂*). Xanthophylls are further assumed to be involved either directly or indirectly in the non-photochemical quenching (NPQ) of excess light energy in the antenna of PSII. This review gives an overview on recent progress in the understanding of the photoprotective role of the xanthophylls zeaxanthin (which is formed in the light in the so-called xanthophyll cycle) and lutein with emphasis on the NPQ processes associated with PSII of higher plants. The current knowledge supports the view that the photoprotective role of Lut is predominantly restricted to its function in the deactivation of ³Chl*, while zeaxanthin is the major player in the deactivation of excited singlet Chl (¹Chl*) and thus in NPQ (non-photochemical quenching). Additionally, zeaxanthin serves important functions as an antioxidant in the lipid phase of the membrane and is likely to act as a key component in the memory of the chloroplast with respect to preceding photo-oxidative stress. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr.1, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
39
|
Yasumura Y, Ishida A. Temporal variation in leaf nitrogen partitioning of a broad-leaved evergreen tree, Quercus myrsinaefolia. JOURNAL OF PLANT RESEARCH 2011; 124:115-123. [PMID: 20596744 DOI: 10.1007/s10265-010-0358-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 05/11/2010] [Indexed: 05/29/2023]
Abstract
We examined temporal changes in the amount of nitrogenous compounds in leaves from the outer and inner parts of the crown of Quercus myrsinaefolia growing in a seasonal climate. Throughout the leaf life span, metabolic protein and Rubisco content closely correlated with total nitrogen content, while structural protein content was relatively stable after full leaf expansion. Chlorophyll content was affected by shading as well as total nitrogen content in outer leaves that were overtopped by new shoots in the second year. Outer leaves showed a large seasonal variation in photosynthetic nitrogen-use efficiency (PNUE; the light-saturated photosynthetic rate per unit leaf nitrogen content) during the first year of their life, with PNUE decreasing from the peak in summer towards winter. Outer and inner leaves both showed age-related decline in PNUE in the second year. There were no such drastic changes in leaf nitrogen partitioning that could explain seasonal and yearly variations in PNUE. Nitrogen resorption occurred in overwintering leaves in spring. Metabolic protein explained the majority of nitrogen being resorbed, whereas structural protein, which was low in degradability, contributed little to nitrogen resorption.
Collapse
Affiliation(s)
- Yuko Yasumura
- Department of Plant Ecology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan.
| | | |
Collapse
|
40
|
Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Changes in the localization and levels of starch and lipids in cambium and phloem during cambial reactivation by artificial heating of main stems of Cryptomeria japonica trees. ANNALS OF BOTANY 2010; 106:885-95. [PMID: 21037242 PMCID: PMC2990657 DOI: 10.1093/aob/mcq185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/13/2010] [Accepted: 08/05/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter. METHODS Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy. KEY RESULTS Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems. CONCLUSIONS The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.
Collapse
Affiliation(s)
- Shahanara Begum
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo 183-8509, Japan
| | - Satoshi Nakaba
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo 183-8509, Japan
| | - Yuichiro Oribe
- Tohoku Regional Breeding Office, Forestry and Forest Products Research Institute, Takizawa-Iwate 020-0173, Japan
| | - Takafumi Kubo
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo 183-8509, Japan
| | - Ryo Funada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo 183-8509, Japan
| |
Collapse
|
41
|
Savitch LV, Ivanov AG, Krol M, Sprott DP, Oquist G, Huner NPA. Regulation of energy partitioning and alternative electron transport pathways during cold acclimation of lodgepole pine is oxygen dependent. PLANT & CELL PHYSIOLOGY 2010; 51:1555-70. [PMID: 20630988 DOI: 10.1093/pcp/pcq101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Second year needles of Lodgepole pine (Pinus contorta L.) were exposed for 6 weeks to either simulated control summer ['summer'; 25 °C/250 photon flux denisty (PFD)], autumn ('autumn'; 15°C/250 PFD) or winter conditions ('winter'; 5 °C/250 PFD). We report that the proportion of linear electron transport utilized in carbon assimilation (ETR(CO2)) was 40% lower in both 'autumn' and 'winter' pine when compared with the 'summer' pine. In contrast, the proportion of excess photosynthetic linear electron transport (ETR(excess)) not used for carbon assimilation within the total ETR(Jf) increased by 30% in both 'autumn' and 'winter' pine. In 'autumn' pine acclimated to 15°C, the increased amounts of 'excess' electrons were directed equally to 21 kPa O2-dependent and 2 kPa O2-dependent alternative electron transport pathways and the fractions of excitation light energy utilized by PSII photochemistry (Φ(PSII)), thermally dissipated through Φ(NPQ) and dissipated by additional quenching mechanism(s) (Φ(f,D)) were similar to those in 'summer' pine. In contrast, in 'winter' needles acclimated to 5 °C, 60% of photosynthetically generated 'excess' electrons were utilized through the 2 kPa O2-dependent electron sink and only 15% by the photorespiratory (21 kPa O2) electron pathway. Needles exposed to 'winter' conditions led to a 3-fold lower Φ(PSII), only a marginal increase in Φ(NPQ) and a 2-fold higher Φ(f,D), which was O2 dependent compared with the 'summer' and 'autumn' pine. Our results demonstrate that the employment of a variety of alternative pathways for utilization of photosynthetically generated electrons by Lodgepole pine depends on the acclimation temperature. Furthermore, dissipation of excess light energy through constitutive non-photochemical quenching mechanisms is O2 dependent.
Collapse
Affiliation(s)
- Leonid V Savitch
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, Ottawa, ON K1A0C6, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Zhu SH, Green BR. Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1449-57. [DOI: 10.1016/j.bbabio.2010.04.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/11/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|
43
|
Pedron L, Baldi P, Hietala AM, La Porta N. Genotype-specific regulation of cold-responsive genes in cypress (Cupressus sempervirens L.). Gene 2009; 437:45-53. [DOI: 10.1016/j.gene.2008.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Reyes-Díaz M, Ivanov AG, Huner NPA, Alberdi M, Corcuera LJ, Bravo LA. Thermal energy dissipation and its components in two developmental stages of a shade-tolerant species, Nothofagus nitida, and a shade-intolerant species, Nothofagus dombeyi. TREE PHYSIOLOGY 2009; 29:651-662. [PMID: 19203980 DOI: 10.1093/treephys/tpp003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nothofagus dombeyi (Mirb.) Blume and Nothofagus nitida (Phil.) Krasser, two evergreens in the South Chilean forest, regenerate in open habitats and under the canopy, respectively. Both overtop the forest canopy when they are in the adult stage, suggesting that their photoprotective mechanisms differ in ontogenetic dynamics. We postulated that N. nitida, a shade-tolerant species increases its capacity to tolerate photoinhibitory conditions (low temperature and high irradiance) by thermal energy dissipation of excess energy during its transition from the seedling to the adult stage, whereas N. dombeyi, a shade-intolerant species, maintains a high capacity for photoprotection by thermal energy dissipation from the seedling to the adult stage. To test this hypothesis, the main photoprotective mechanisms in plants - the fast- and slow-relaxing components of thermal energy dissipation (NPQ, non-photochemical quenching) NPQ(F) and NPQ(S), respectively, and state transitions - were studied in seedlings and adults of both species grown in their natural habitats and in a common garden. In adults, NPQ(F) and NPQ(S) did not differ between species and seasons. The greatest differences in these parameters were observed in seedlings. The xanthophyll cycle was more active in N. dombeyi seedlings than in N. nitida seedlings at low temperature and high irradiance, consistent with a higher NPQ(F) in N. dombeyi. Under all study conditions, N. nitida seedlings had higher NPQ(S) than N. dombeyi seedlings. The state transition capability was higher in N. nitida seedlings than in N. dombeyi seedlings. Therefore, although (shade-intolerant) N. dombeyi was able to thermally dissipate the excess absorbed energy, under natural conditions its photochemical energy quenching was efficient in both developmental stages, decreasing its need for thermal dissipation. In contrast, the seedlings of N. nitida were more sensitive to photoinhibition than the adult trees, suggesting a change from shade-grown to sun-exposed phenotype from the seedling to the adult stage. These results help to explain the differences in the regeneration patterns of N. nitida and N. dombeyi and the presence of N. nitida adult stage in the upper canopy.
Collapse
Affiliation(s)
- Marjorie Reyes-Díaz
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
45
|
Yokono M, Akimoto S, Tanaka A. Seasonal changes of excitation energy transfer and thylakoid stacking in the evergreen tree Taxus cuspidata: How does it divert excess energy from photosynthetic reaction center? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:379-87. [DOI: 10.1016/j.bbabio.2008.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
46
|
Reinhold C, Niczyporuk S, Beran KC, Jahns P. Short-term down-regulation of zeaxanthin epoxidation in Arabidopsis thaliana in response to photo-oxidative stress conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:462-9. [PMID: 18394424 DOI: 10.1016/j.bbabio.2008.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/05/2008] [Accepted: 03/07/2008] [Indexed: 11/29/2022]
Abstract
The epoxidation of zeaxanthin (Zx) to violaxanthin after exposure to different light stress conditions has been studied in Arabidopsis (Arabidopsis thaliana). Formation of Zx was induced by illumination of intact leaves for up to 8 h at different light intensities and temperatures. The kinetics of epoxidation was found to be gradually retarded with increasing light stress during pre-illumination, indicating a gradual down-regulation of the Zx epoxidase activity. Retardation of the epoxidation rates by a factor of up to 10 was inducible either by increasing the light intensity or by extending the illumination time or by decreasing the temperature during pre-illumination. The retardation of the epoxidation kinetics was correlated with a decrease of the PSII quantum efficiency after the pre-illumination treatment. Experiments with the stn7/stn8 mutant of Arabidopsis indicated that the thylakoid protein kinases STN7 and STN8, which are required for the phosphorylation of PSII proteins, are not involved in the short-term down-regulation of Zx epoxidation. However, the retardation of Zx epoxidation was maintained in thylakoids isolated from pre-illuminated leaves, indicating that a direct modification of the Zx epoxidase is most likely involved in the light-induced down-regulation.
Collapse
Affiliation(s)
- Clemens Reinhold
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
47
|
Soukupová J, Cséfalvay L, Urban O, Košvancová M, Marek M, Rascher U, Nedbal L. Annual variation of the steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:63-76. [PMID: 32688757 DOI: 10.1071/fp07158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 11/29/2007] [Indexed: 06/11/2023]
Abstract
Remotely sensed passive chlorophyll fluorescence emission has a potential to become one of the major global-scale reporter signals on vegetation performance and stress. In contrast to the actively probed parameters such as maximal (FM') or minimal (F0') emission, the steady-state chlorophyll fluorescence, Chl-FS, (FM' > Chl-FS > F0') has not been adequately studied. Using fluorescence imaging of leaves, we explored the modulation of Chl-FS by actinic irradiance and by temperature in laboratory, as well as the changes that occurred in three coniferous and broadleaf plant species grown in field. The experiments revealed that Chl-FS is largely insensitive to the incident irradiance once this is above early morning or late evening levels. The characteristic, pre-noon measured Chl-FS correlated positively with the CO2 assimilation rate when measured in field during the year. It was low and stable in the cold winter months and steeply increased with the spring onset. The high values of the characteristic Chl-FS persisted throughout the vegetation season and rapidly decreased in the fall. The seasonal Chl-FS transitions coincided with the last spring frosts or the first fall frosts that persisted for several consecutive nights. The transitions were marked by an elevated variability of the Chl-FS signal. We propose that the signal variability occurring during the transition periods can be used to detect from satellites the beginning and the end of the photosynthetic activity in evergreen canopies of the temperate zone.
Collapse
Affiliation(s)
- Julie Soukupová
- Laboratory of Physiology and Ecology, Department of Biological Dynamics, Institute of Systems Biology and Ecology of the Academy of Sciences CR, Zámek 136, CZ-37333 Nové Hrady, Czech Republic
| | - Ladislav Cséfalvay
- Laboratory of Physiology and Ecology, Department of Biological Dynamics, Institute of Systems Biology and Ecology of the Academy of Sciences CR, Zámek 136, CZ-37333 Nové Hrady, Czech Republic
| | - Otmar Urban
- Laboratory of Plants Ecological Physiology, Division of Ecosystem Processes, Institute of Systems Biology and Ecology, Poříčí 3b, CZ-60300 Brno, Czech Republic
| | - Martina Košvancová
- Laboratory of Plants Ecological Physiology, Division of Ecosystem Processes, Institute of Systems Biology and Ecology, Poříčí 3b, CZ-60300 Brno, Czech Republic
| | - Michal Marek
- Laboratory of Plants Ecological Physiology, Division of Ecosystem Processes, Institute of Systems Biology and Ecology, Poříčí 3b, CZ-60300 Brno, Czech Republic
| | - Uwe Rascher
- Institute of Chemistry and Dynamics of the Geosphere, ICG-3: Phytosphere, Research Centre Jülich, D-52425 Jülich, Germany
| | - Ladislav Nedbal
- Laboratory of Physiology and Ecology, Department of Biological Dynamics, Institute of Systems Biology and Ecology of the Academy of Sciences CR, Zámek 136, CZ-37333 Nové Hrady, Czech Republic
| |
Collapse
|
48
|
Zarter CR, Demmig-Adams B, Ebbert V, Adamska I, Adams WW. Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. THE NEW PHYTOLOGIST 2006; 172:283-92. [PMID: 16995916 DOI: 10.1111/j.1469-8137.2006.01816.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Some coniferous forest ecosystems undergo complete photosynthetic down-regulation in winter. The present study examined the influence of several environmental parameters on intrinsic, needle-level photosynthesis and photoprotection during the spring reactivation of photosynthesis in subalpine conifers. Maximal photosystem II (PSII) efficiency, photosynthetic capacity, and amounts of zeaxanthin and early light-inducible protein (Elip) family members were assessed in three subalpine conifer species over 3 years, and intensively during the 2003 winter-to-spring transition. During summers, maximal PSII efficiency remained high while intrinsic photosynthetic capacity varied depending on precipitation. During winters and the winter-to-spring transition, photosynthetic capacity and PSII efficiency were highly correlated and (during the spring transition) strongly influenced by air and soil temperature and liquid water availability. Decreases in the amount of Elip family members from winter through spring paralleled disengagement of sustained zeaxanthin-dependent photoprotection, although one of four anti-Elip antibody-reactive bands increased during spring. Intrinsic photosynthetic capacity and maximal PSII efficiency were highly responsive to day-to-day environmental changes during spring, indicating that multiple environmental signals are integrated to orchestrate the reactivation of photosynthesis from the inactive winter state to the active summer state.
Collapse
Affiliation(s)
- C Ryan Zarter
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | | | | | | | | |
Collapse
|
49
|
Demmig-Adams B, Adams WW. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. THE NEW PHYTOLOGIST 2006; 172:11-21. [PMID: 16945085 DOI: 10.1111/j.1469-8137.2006.01835.x] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review places photoprotection into the context of ecology and species diversity. The focus is on photoprotection via the safe removal - as thermal energy - of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. An update on the surprisingly complex, multiple variations of thermal energy dissipation is presented, placing these different forms into ecological and genetic contexts. Zeaxanthin-facilitated, flexible thermal dissipation associated with the PsbS protein and controlled by the trans-thylakoid pH gradient apparently occurs ubiquitously in plants, and can become sustained (and thus less flexible) at low temperatures. Long-lived, slow-growing plants with low intrinsic capacities for photosynthesis have greater capacities for this flexible dissipation than short-lived, fast-growing species. Furthermore, potent, but inflexible (zeaxanthin-facilitated) thermal dissipation, prominent in evergreen species under prolonged environmental stress, is characterized with respect to the involvement of photosystem II core rearrangement and/or degradation as well as the absence of control by trans-thylakoid pH and, possibly, PsbS. A role of PsbS-related proteins in photoprotection is discussed.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | |
Collapse
|