1
|
Moreno‐Colom P, Montesinos‐Navarro A. Early flowering enhances performance among conspecifics. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:231-237. [PMID: 39625010 PMCID: PMC11846632 DOI: 10.1111/plb.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/16/2024] [Indexed: 02/23/2025]
Abstract
Timing plays a crucial role in plant survival as it determines the environmental conditions during which each phenophase develops. In Mediterranean regions, with high temperatures and low precipitation during summer, the timing of flowering may impact plant performance. Different species avoid harsh abiotic conditions by flowering weeks or months earlier than others. On a shorter time scale, conspecifics that flower just a few days earlier may also gain biotic advantages, such as reduced competition for nutrients or pollinators. We propose that earlier flowering, whether by days for conspecifics or by weeks to months for different species, allows plants to avoid biotic and abiotic stress, respectively, leading to increased reproductive success and growth. We hypothesize that: (i) earlier-flowering species will have higher growth and reproductive success than other species co-occurring in the community, and (ii) earlier-flowering conspecifics will show higher growth and reproductive success than the average of their co-occurring conspecifics. A field study was conducted in SE Spain using 98 co-occurring individuals of four species. We monitored phenology, water loss, and growth over a growing season and estimated relative individual reproduction. Early-flowering species did not show higher relative reproduction than late, co-occurring flowering species, although they differed in water loss. However, early-flowering conspecifics had higher growth and relative reproduction than later-flowering conspecifics, but did not differ in water loss. Our results suggest that early flowering might reduce intraspecific competition among conspecifics, rather than enhance performance of those species that avoid harsh summer conditions (high temperatures and low precipitations).
Collapse
Affiliation(s)
- P. Moreno‐Colom
- Centro de Investigaciones sobre Desertificación (CIDE, CSIC‐UV‐GV)ValenciaSpain
| | | |
Collapse
|
2
|
Van Dyke MN, Kraft NJB. Changes in flowering phenology with altered rainfall and the potential community impacts in an annual grassland. AMERICAN JOURNAL OF BOTANY 2025; 112:e70000. [PMID: 39907183 DOI: 10.1002/ajb2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 02/06/2025]
Abstract
PREMISE Shifts in the timing of life history events, or phenology, have been recorded across many taxa and biomes in response to global change. These phenological changes are often studied in a single species context, but considering the community context is essential for anticipating the cascading effects on biotic interactions that are likely to occur. Focusing on an annual grassland plant community, we examined how experimental changes in precipitation affect flowering phenology in a community context and explore the implications of these shifts for competitive interactions and species coexistence. METHODS We experimentally manipulated rainfall with rainout shelters and recorded detailed flowering phenology data for seven annual species including two grasses and five forbs. We assessed how their first and peak flowering days were affected by changes in rainfall and explored how flowering overlap between competing species changed. RESULTS Changes in rainfall shifted flowering phenology of some species, but sensitivity differed among neighboring species. Four of the seven species studied started and/or peaked flowering earlier in response to reduced water availability. The idiosyncratic shifts in flowering phenology have the potential to alter existing temporal dynamics that may be maintaining coexistence, such as temporal separation of resource-use among neighbors. CONCLUSIONS Our results show how species-specific phenological consequences of global change can impact community dynamics and competition between neighboring plants and warrant future research.
Collapse
Affiliation(s)
- Mary N Van Dyke
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kloos S, Lüpke M, Estrella N, Ghada W, Kattge J, Bucher SF, Buras A, Menzel A. The linkage between functional traits and drone-derived phenology of 74 Northern Hemisphere tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175753. [PMID: 39182776 DOI: 10.1016/j.scitotenv.2024.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Tree phenology is a major component of the global carbon and water cycle, serving as a fingerprint of climate change, and exhibiting significant variability both within and between species. In the emerging field of drone monitoring, it remains unclear whether this phenological variability can be effectively captured across numerous tree species. Additionally, the drivers behind interspecific variations in the phenology of deciduous trees are poorly understood, although they may be linked to plant functional traits. In this study, we derived the start of season (SOS), end of season (EOS), and length of season (LOS) for 3099 individuals from 74 deciduous tree species of the Northern Hemisphere at a unique study site in southeast Germany using drone imagery. We validated these phenological metrics with in-situ data and analyzed the interspecific variability in terms of plant functional traits. The drone-derived SOS and EOS showed high agreement with ground observations of leaf unfolding (R2 = 0.49) and leaf discoloration (R2 = 0.79), indicating that this methodology robustly captures phenology at the individual level with low temporal and human effort. Both intra- and interspecific phenological variability were high in spring and autumn, leading to differences in the LOS of up to two months under almost identical environmental conditions. Functional traits such as seed dry mass, chromosome number, and continent of origin played significant roles in explaining interspecific phenological differences in SOS, EOS, and LOS, respectively. In total, 55 %, 39 %, and 45 % of interspecific variation in SOS, EOS, and LOS could be explained by the Boosted Regression Tree (BRT) models based on functional traits. Our findings encourage new research avenues in tree phenology and advance our understanding of the growth strategies of key tree species in the Northern Hemisphere.
Collapse
Affiliation(s)
- Simon Kloos
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Marvin Lüpke
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Nicole Estrella
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Wael Ghada
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans-Knӧll-Straße 10, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany; Institute of Ecology and Evolution, Plant Biodiversity Group, Friedrich Schiller University Jena, Philosophenweg 16, 07743 Jena, Germany.
| | - Allan Buras
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Annette Menzel
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching, Germany.
| |
Collapse
|
4
|
Zhang T, Chen Y, Yang X, Zhang H, Guo Z, Hu G, Bai H, Sun Y, Huang L, Ma M. Warming reduces mid-summer flowering plant reproductive success through advancing fruiting phenology in an alpine meadow. Proc Biol Sci 2024; 291:20241110. [PMID: 39474908 PMCID: PMC11523106 DOI: 10.1098/rspb.2024.1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/31/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Changes in reproductive phenology induced by warming are happening across the globe, with significant implications for plant sexual reproduction. However, the changes in plant reproductive output (number of flowers and fruits) and success (successful fruits/total flowers) in response to climate change have not been well characterized. Here, we conducted a warming and altered precipitation experiment in an alpine meadow on the eastern Tibetan Plateau to investigate the effects of climate change on the reproductive phenology and success of six common species belonging to two flowering functional groups. We found that warming advanced the start of flowering and the start of fruiting in mid-summerflowering plants. Warming reduced the reproductive output of early-spring flowering plants but did not change their reproductive success. The effects of warming and altered precipitation on the reproductive output and success of mid-summer flowering plants were year-dependent, and the fruiting phenology regulated the response of the mid-summer flowering plant's reproductive success to climate change. These findings highlight the critical role of fruiting phenology in the reproductive success of alpine plants and imply that alpine plants may reduce their fitness by producing fewer flowers and fruits under climate warming, especially for later flowering plants.
Collapse
Affiliation(s)
- Tianwu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Yaya Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Xiangrong Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Hui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Zengpeng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Guorui Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Haonan Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Yinguang Sun
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Li Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province730000, People’s Republic of China
| |
Collapse
|
5
|
Vélez-Mora DP, Trigueros-Alatorre K, Duncan DH, Quintana-Ascencio PF. Natural and anthropogenic factors influence flowering synchrony and reproduction of a dominant plant in an inter-Andean scrub. AMERICAN JOURNAL OF BOTANY 2024; 111:e16416. [PMID: 39400358 DOI: 10.1002/ajb2.16416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 10/15/2024]
Abstract
PREMISE Agriculture expansion, livestock, and global change have transformed biological communities and altered, through aerosols and direct deposition, N:P balance in soils of inter-Andean valleys, potentially affecting flowering phenology of many species and thereby flowering synchrony and plant reproduction. METHODS We evaluated the influence of variation in temperature and moisture along the local elevational gradient and treatments with the addition of N and P and grazing on flowering synchrony and reproduction of Croton, a dominant shrub of the inter-Andean dry scrub. Along the elevational gradient (300 m difference between the lowest and highest site), we set up plots with and without grazing nested with four nutrient treatments: control and addition of N or P alone or combined N + P. We recorded the number of female and male flowers in bloom monthly from September 2017 to August 2019 to calculate flowering synchrony. We assessed fruiting, seed mass, and pre-dispersal seed predation. RESULTS Higher growing-season soil temperatures, which were negatively associated with local elevation and higher nitrogen availability promoted flowering synchrony of Croton, particularly among larger plants. Greater flowering synchrony, high soil temperatures, and addition of N + P resulted in production of more fruits of Croton, but also intensified pre-dispersal seed predation. CONCLUSIONS Temperature, availability of moisture throughout the elevational gradient, and nutrient manipulation affected flowering synchrony, which subsequently affected production of fruits in Croton. These results emphasize the critical role of current anthropogenic changes in climate and nutrient availability on flowering synchrony and reproduction of Croton, a dominant plant of the inter-Andean scrub.
Collapse
Affiliation(s)
- Diego P Vélez-Mora
- Laboratorio de Ecología Tropical y Servicios Ecosistémicos, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Karla Trigueros-Alatorre
- Facultad de Ciencias Políticas y Sociales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David H Duncan
- Quantitative and Applied Ecology Group, School of Agriculture, Food and Ecosystem and Forest Sciences, The University of Melbourne, Victoria, Australia
| | | |
Collapse
|
6
|
Li XQ, Zhu HY, He YD, Ochola AC, Qiong L, Yang CF. Mother-reliant or self-reliant: the germination strategy of seeds in a species-rich alpine meadow is associated with the existence of pericarps. ANNALS OF BOTANY 2024; 134:485-490. [PMID: 38809749 PMCID: PMC11341665 DOI: 10.1093/aob/mcae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND AND AIMS Some plants germinate their seeds enclosed by a pericarp, whereas others lack the outer packaging. As a maternal tissue, the pericarp might impart seeds with different germination strategies. Plants in a community with different flowering times might separately disperse and germinate their seeds; therefore, flowering time can be considered as one manifestation of maternal effects on the offspring. The mass of the seed is another important factor influencing germination and represents the intrinsic resource of the seed that supports germination. Using seeds from a species-rich alpine meadow located in the Hengduan Mountains of China, a global biodiversity hotspot, we aimed to illustrate whether and how the type of seed (with or without a pericarp) modulates the interaction of flowering time and seed mass with germination. METHODS Seeds were germinated in generally favourable conditions, and the speed of germination [estimated by mean germination time (MGT)] was calculated. We quantified the maternal conditions by separation of flowering time for 67 species in the meadow, of which 31 produced seeds with pericarps and 36 yielded seeds without pericarps. We also weighed 100 seeds of each species to assess their mass. KEY RESULTS The MGT varied between the two types of seeds. For seeds with pericarps, MGT was associated with flowering time but not with seed mass. Plants with earlier flowering times in the meadow exhibited more rapid seed germination. For seeds without a pericarp, the MGT depended on seed mass, with smaller seeds germinating more rapidly than larger seeds. CONCLUSIONS The distinct responses of germination to flowering time and seed mass observed in seeds with and without a pericarp suggest that germination strategies might be mother-reliant for seeds protected by pericarps but self-reliant for those without such protection. This new finding improves our understanding of seed germination by integrating ecologically mediated maternal conditions and inherent genetic properties.
Collapse
Affiliation(s)
- Xiao-Qing Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
- Key Laboratory of Biodiversity and Environmental on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hong-Yu Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong-Deng He
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Anne Christine Ochola
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - La Qiong
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
- Key Laboratory of Biodiversity and Environmental on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chun-Feng Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
7
|
Rauschkolb R, Bucher SF, Hensen I, Ahrends A, Fernández-Pascual E, Heubach K, Jakubka D, Jiménez-Alfaro B, König A, Koubek T, Kehl A, Khuroo AA, Lindstädter A, Shafee F, Mašková T, Platonova E, Panico P, Plos C, Primack R, Rosche C, Shah MA, Sporbert M, Stevens AD, Tarquini F, Tielbörger K, Träger S, Vange V, Weigelt P, Bonn A, Freiberg M, Knickmann B, Nordt B, Wirth C, Römermann C. Spatial variability in herbaceous plant phenology is mostly explained by variability in temperature but also by photoperiod and functional traits. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:761-775. [PMID: 38285109 DOI: 10.1007/s00484-024-02621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Whereas temporal variability of plant phenology in response to climate change has already been well studied, the spatial variability of phenology is not well understood. Given that phenological shifts may affect biotic interactions, there is a need to investigate how the variability in environmental factors relates to the spatial variability in herbaceous species' phenology by at the same time considering their functional traits to predict their general and species-specific responses to future climate change. In this project, we analysed phenology records of 148 herbaceous species, which were observed for a single year by the PhenObs network in 15 botanical gardens. For each species, we characterised the spatial variability in six different phenological stages across gardens. We used boosted regression trees to link these variabilities in phenology to the variability in environmental parameters (temperature, latitude and local habitat conditions) as well as species traits (seed mass, vegetative height, specific leaf area and temporal niche) hypothesised to be related to phenology variability. We found that spatial variability in the phenology of herbaceous species was mainly driven by the variability in temperature but also photoperiod was an important driving factor for some phenological stages. In addition, we found that early-flowering and less competitive species characterised by small specific leaf area and vegetative height were more variable in their phenology. Our findings contribute to the field of phenology by showing that besides temperature, photoperiod and functional traits are important to be included when spatial variability of herbaceous species is investigated.
Collapse
Affiliation(s)
- Robert Rauschkolb
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany.
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | - Katja Heubach
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, Germany
| | - Desiree Jakubka
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany
| | - Borja Jiménez-Alfaro
- Biodiversity Research Institute, IMIB (Univ.Oviedo-CSIC-Princ.Asturias), Mieres, Spain
| | - Andreas König
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, Germany
| | - Tomáš Koubek
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexandra Kehl
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Anzar A Khuroo
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Anja Lindstädter
- Institute of Biochemistry and Biology, Department of Biodiversity Research/Systematic Botany with Botanical Garden, University of Potsdam, Potsdam, Germany
| | - Faizan Shafee
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Tereza Mašková
- Institute of Plant Sciences, Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | | | - Patrizia Panico
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Christoph Rosche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Maria Sporbert
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Flavio Tarquini
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Sabrina Träger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vibekke Vange
- Ringve Botanical Garden, NTNU University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Goettingen, Goettingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Goettingen, Germany
- Campus Institute Data Science, University of Goettingen, Goettingen, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Freiberg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany
| | | | - Birgit Nordt
- Botanic Garden Berlin, Freie Universität Berlin, Berlin, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Systematic Botany and Functional Biodiversity, Life Science, Leipzig University, Leipzig, Germany
- Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Nepal S, Trunschke J, Ren ZX, Burgess KS, Wang H. Flowering phenology differs among wet and dry sub-alpine meadows in southwestern China. AOB PLANTS 2024; 16:plae002. [PMID: 38298756 PMCID: PMC10829081 DOI: 10.1093/aobpla/plae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The effect of floral traits, floral rewards and plant water availability on plant-pollinator interactions are well-documented; however, empirical evidence of their impact on flowering phenology in high-elevation meadows remains scarce. In this study, we assessed three levels of flowering phenology, i.e. population-, individual- and flower-level (floral longevity), in two nearby but contrasting (wet versus dry) sub-alpine meadows on Yulong Snow Mountain, southwestern China. We also measured a series of floral traits (pollen number, ovule number, and the ratio of pollen to ovule number per flower, i.e. pollen:ovule ratio [P/O]) and floral rewards (nectar availability and pollen presentation) as plausible additional sources of variation for each phenological level. Floral longevity in the wet meadow was significantly longer than that for the dry meadow, whereas population- and individual-flowering duration were significantly shorter. Our results showed a significant positive relationship between flowering phenology with pollen number and P/O per flower; there was no relationship with ovule number per flower. Further, we found a significant effect of flowering phenology on nectar availability and pollen presentation. Our findings suggest that shorter floral longevity in dry habitats compared to wet might be due to water-dependent maintenance costs of flowers, where the population- and individual-level flowering phenology may be less affected by habitats. Our study shows how different levels of flowering phenology underscore the plausible effects of contrasting habitats on reproductive success.
Collapse
Affiliation(s)
- Shristhi Nepal
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Judith Trunschke
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str., 479106 Freiburg, Germany
| | - Zong-Xin Ren
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31901, USA
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| |
Collapse
|
9
|
Sporbert M, Jakubka D, Bucher SF, Hensen I, Freiberg M, Heubach K, König A, Nordt B, Plos C, Blinova I, Bonn A, Knickmann B, Koubek T, Linstädter A, Mašková T, Primack RB, Rosche C, Shah MA, Stevens AD, Tielbörger K, Träger S, Wirth C, Römermann C. Functional traits influence patterns in vegetative and reproductive plant phenology - a multi-botanical garden study. THE NEW PHYTOLOGIST 2022; 235:2199-2210. [PMID: 35762815 DOI: 10.1111/nph.18345] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species' relatedness. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species' life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities' competitive hierarchies with consequences for biodiversity.
Collapse
Affiliation(s)
- Maria Sporbert
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Desiree Jakubka
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Martin Freiberg
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
| | - Katja Heubach
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, 60323, Germany
| | - Andreas König
- Palmengarten and Botanical Garden Frankfurt, Frankfurt am Main, 60323, Germany
| | - Birgit Nordt
- Botanic Garden Berlin, Freie Universität Berlin, Berlin, 14195, Germany
| | - Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | | | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, 04318, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Barbara Knickmann
- Core Facility Botanical Garden, University Vienna, Vienna, 1030, Austria
| | - Tomáš Koubek
- Department of Botany, Faculty of Science, Charles University, Prague, 12801, Czech Republic
| | - Anja Linstädter
- Institute of Biochemistry and Biology, Department of Biodiversity Research/ Systematic Botany with Botanical Garden, University of Potsdam, Potsdam, 14469, Germany
| | - Tereza Mašková
- Department of Botany, Faculty of Science, Charles University, Prague, 12801, Czech Republic
- Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, 93053, Germany
| | | | - Christoph Rosche
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, 190006, India
| | | | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, 72076, Germany
| | - Sabrina Träger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), 06108, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology, Leipzig University, Leipzig, 04103, Germany
- Max-Planck-Institute for Biogeochemistry, Jena, 07745, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
10
|
Levine JI, Levine JM, Gibbs T, Pacala SW. Competition for water and species coexistence in phenologically structured annual plant communities. Ecol Lett 2022; 25:1110-1125. [PMID: 35301777 DOI: 10.1111/ele.13990] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022]
Abstract
Both competition for water and phenological variation are important determinants of plant community structure, but ecologists lack a synthetic theory for how they affect coexistence outcomes. We developed an analytically tractable model of water competition for Mediterranean annual communities and demonstrated that variation in phenology alone can maintain high diversity in spatially homogenous assemblages of water-limited plants. We modelled a system where all water arrives early in the season and species vary in their ability to grow under drying conditions. As a consequence, species differ in growing season length and compete by shortening the growing season of their competitors. This model replicates and offers mechanistic explanations for patterns observed in empirical studies of how phenology influences coexistence among Mediterranean annuals. Additionally, we found that a decreasing, concave-up trade-off between growth rate and access to water can maintain high diversity under simple but realistic assumptions. High diversity is possible because: (1) later plants escape competition after their earlier season competitors have gone to seed and (2) early-season species are more than compensated for their shortened growing season by a growth rate advantage. Together, these mechanisms provide an explanation for how phenologically variable annual plant species might coexist when competing only for water.
Collapse
Affiliation(s)
- Jacob I Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Jonathan M Levine
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Theo Gibbs
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
11
|
|
12
|
Ferenc V, Merkert C, Zilles F, Sheppard CS. Native and alien species suffer from late arrival, while negative effects of multiple alien species on natives vary. Oecologia 2021; 197:271-281. [PMID: 34410489 PMCID: PMC8445876 DOI: 10.1007/s00442-021-05017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
Ongoing globalisation and climate change are causing plant species to invade new habitats and thereby alter biodiversity and ecosystem functioning. Since numbers of plant invasions continue to increase globally, it is crucial to investigate the effects of multiple co-occurring alien species on native communities. Furthermore, priority effects due to the earlier emergence of certain species affecting fitness of later arriving species can shape community structure and affect native species performance. We investigate in a common garden pot experiment the interactions among five alien-native species pairs. First we focus on the effect of growing with either one or two alien neighbour species on a native plant, second we alter the arrival time of the alien or native neighbour by 3 weeks. Generally, native species performance decreased when surrounded by two alien species compared to only one, although the magnitude of this effect varied depending on species, with one species even performing better with alien neighbours than in monoculture. Species performance greatly decreased when arriving second in the pot, for both native and alien species. In contrast, alien species tended to benefit more from arriving early. Given that we studied annual ruderal species, their potentially lower competitive ability might explain why we detected negative effects of late arrival. We highlight the need to further elucidate underlying mechanisms of small-scale invasion dynamics to achieve generalisations concerning the response of multiple alien and native plants given their species-specific differences in response to neighbour species and arrival time.
Collapse
Affiliation(s)
- Viktoria Ferenc
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70593, Stuttgart, Germany.
| | - Christian Merkert
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Frederik Zilles
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Christine S Sheppard
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70593, Stuttgart, Germany
| |
Collapse
|
13
|
Wolkovich EM, Donahue MJ. How phenological tracking shapes species and communities in non-stationary environments. Biol Rev Camb Philos Soc 2021; 96:2810-2827. [PMID: 34288337 DOI: 10.1111/brv.12781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/27/2023]
Abstract
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically - how an organism shifts the timing of major biological events in response to the environment - is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.
Collapse
Affiliation(s)
- E M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Megan J Donahue
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kān'eohe, HI, 96744, U.S.A
| |
Collapse
|
14
|
Liu Y, Li G, Wu X, Niklas KJ, Yang Z, Sun S. Linkage between species traits and plant phenology in an alpine meadow. Oecologia 2021; 195:409-419. [PMID: 33423112 DOI: 10.1007/s00442-020-04846-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
Plant phenology differs largely among coexisting species within communities that share similar habitat conditions. However, the factors explaining such phenological diversity of plants have not been fully investigated. We hypothesize that species traits, including leaf mass per area (LMA), seed mass, stem tissue mass density (STD), maximum plant height (Hmax), and relative growth rate in height (RGRH), explain variation in plant phenology, and tested this hypothesis in an alpine meadow. Results showed that both LMA and STD were positively correlated with the onset (i.e., beginning) and offset (i.e., ending) times of the four life history events including two reproductive events (flowering and fruiting) and two vegetative events (leafing and senescing). In contrast, RGRH was negatively correlated with the four life phenological events. Moreover, Hmax was positively correlated with reproductive events but not with vegetative events. However, none of the eight phenological events was associated with seed size. In addition, the combination of LMA and STD accounted for 50% of the variation in plant phenologies. Phylogenetic generalized least squares analysis showed plant phylogeny weakened the relationships between species traits vs. phenologies. Phylogeny significantly regulated the variation in the ending but not the beginning of phenologies. Our results indicate that species traits are robust indicators for plant phenologies and can be used to explain the diversity of plant phenologies among co-occurring herbaceous species in grasslands. The findings highlight the important role of the combination of and trade-offs between functional traits in determing plant phenology diversity in the alpine meadow.
Collapse
Affiliation(s)
- Yinzhan Liu
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Guoyong Li
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Xinwei Wu
- Department of Biology, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Karl J Niklas
- Department of Plant Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Zhongling Yang
- International Joint Research Laboratory for Global Change Ecology, Laboratory of Biodiversity Conservation and Ecological Restoration, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Shucun Sun
- Department of Biology, Nanjing University, Nanjing, 210093, Jiangsu, China
| |
Collapse
|
15
|
Linder HP. The evolution of flowering phenology: an example from the wind-pollinated African Restionaceae. ANNALS OF BOTANY 2020; 126:1141-1153. [PMID: 32761162 PMCID: PMC7684698 DOI: 10.1093/aob/mcaa129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/02/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Flowering phenology is arguably the most striking angiosperm phenophase. Although the response of species to climate change and the environmental correlates of the communities have received much attention, the interspecific evolution of flowering phenology has hardly been investigated. I explored this in the wind-pollinated dioecious Restionaceae (restios) of the hyperdiverse Cape flora, to disentangle the effects of phylogeny, traits, and biotic and abiotic environments on flowering time shifts. METHODS I recorded the flowering times of 347 of the 351 species, mapped these over a 98 % complete phylogeny and inferred the evolutionary pattern and abiotic correlates of flowering time shifts. The patterns and biotic/abiotic correlates of restio community mean flowering time were explored using 934 plots. KEY RESULTS Restios flower throughout the year, with large spring and smaller autumn peaks. Species flowering time is evolutionarily labile, poorly explained by either the environment or traits of the species, with half of all sister species allochronic. Community mean flowering time is related to elevation, temperature and rainfall. CONCLUSIONS Flowering time shifts may result from assortative mating and allochronic speciation, possibly leading to non-adaptive radiation. However, community mean flowering time may be environmentally selected. Diversification of flowering time may be non-adaptive, but species could be filtered through survival in suitable communities.
Collapse
Affiliation(s)
- H Peter Linder
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Li K, Wang J, Qiao L, Zheng R, Ma Y, Chen Y, Hou X, Du Y, Gao J, Liu H. Diversity of Reproductive Phenology Among Subtropical Grasses Is Constrained by Evolution and Climatic Niche. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Identification of suites of traits that explains drought resistance and phenological patterns of plants in a semi-arid grassland community. Oecologia 2020; 192:55-66. [PMID: 31932921 DOI: 10.1007/s00442-019-04567-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022]
Abstract
Grassland ecosystems are comprised of plants that occupy a wide array of phenological niches and vary considerably in their ability to resist the stress of seasonal soil-water deficits. Yet, the link between plant drought resistance and phenology remains unclear in perennial grassland ecosystems. To evaluate the role of soil water availability and plant drought tolerance in driving phenology, we measured leaf hydraulic conductance (Ksat), resistance to hydraulic failure (P50), leaf gas exchange, plant and soil water stable isotope ratios (δ18O), and several phenology metrics on ten perennial herbaceous species in mixed-grass prairie. The interaction between P50 and δ18O of xylem water explained 67% of differences in phenology, with lower P50 values associated with later season activity, but only among shallow-rooted species. In addition, stomatal control and high water-use efficiency also contributed to the late flowering and late senescence strategies of plants that had low P50 values and relied upon shallow soil water. Alternatively, plants with deeper roots did not possess drought-tolerant leaves, but had high hydraulic efficiency, contributing to their ability to efficiently move water longer distances while maintaining leaf water potential at relatively high values. The suites of traits that characterize these contrasting strategies provide a mechanistic link between phenology and plant-water relations; thus, these traits could help predict grassland community responses to changes in water availability, both temporally and vertically within the soil profile.
Collapse
|
18
|
Segrestin J, Navas ML, Garnier E. Reproductive phenology as a dimension of the phenotypic space in 139 plant species from the Mediterranean. THE NEW PHYTOLOGIST 2020; 225:740-753. [PMID: 31486531 DOI: 10.1111/nph.16165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Phenology, the study of seasonal timing of events in nature, plays a key role in the matching between organisms and their environment. Yet, it has been poorly integrated in trait-based descriptions of the plant phenotype. Here, we focus on three phases of reproductive phenology - time of flowering, time of seed dispersal and duration of seed maturation - to test how these traits relate to other recognized dimensions of plant functioning. Traits describing reproductive phenology, together with reproductive plant height, seed mass, area of a leaf, and traits involved in leaf economics, were compiled for 139 species growing under Mediterranean climate conditions. Across all species, flowering time was positively related to reproductive height, while the duration of seed maturation was related to leaf economics. Relationships differed among growth forms, however: flowering time and reproductive height were related both in annuals and in herbaceous perennials, whereas the duration of seed maturation was related to seed mass only in annuals; no correlations were found for woody species. Phenology relates to other dimensions of plant functioning in a complex manner, suggesting that it should be considered as an independent dimension in the context of plant strategies.
Collapse
Affiliation(s)
- Jules Segrestin
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, route de Mende, 34293, Montpellier Cedex 5, France
| | - Marie-Laure Navas
- CEFE, Montpellier SupAgro, CNRS, Univ. Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, 34060, France
| | - Eric Garnier
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
19
|
Meng F, Zhang L, Niu H, Suonan J, Zhang Z, Wang Q, Li B, Lv W, Wang S, Duan J, Liu P, Renzeng W, Jiang L, Luo C, Dorji T, Wang Z, Du M. Divergent Responses of Community Reproductive and Vegetative Phenology to Warming and Cooling: Asymmetry Versus Symmetry. FRONTIERS IN PLANT SCIENCE 2019; 10:1310. [PMID: 31681391 PMCID: PMC6811613 DOI: 10.3389/fpls.2019.01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Few studies have focused on the response of plant community phenology to temperature change using manipulative experiments. A lack of understanding of whether responses of community reproductive and vegetative phenological sequences to warming and cooling are asymmetrical or symmetrical limits our capacity to predict responses under warming and cooling. A reciprocal transplant experiment was conducted for 3 years to evaluate response patterns of the temperature sensitivities of community phenological sequences to warming (transferred downward) and cooling (transferred upward) along four elevations on the Tibetan Plateau. We found that the temperature sensitivities of flowering stages had asymmetric responses to warming and cooling, whereas symmetric responses to warming and cooling were observed for the vegetative phenological sequences. Our findings showed that coverage changes of flowering functional groups (FFGs; i.e., early-spring FFG, mid-summer FFG, and late-autumn FFG) and their compensation effects combined with required accumulated soil temperatureto codetermined the asymmetric and symmetric responses of community phenological sequences to warming and cooling. These results suggest that coverage change in FFGs on warming and cooling processes can be a primary driver of community phenological variation and may lead to inaccurate phenlogical estimation at large scale, such as based on remote sensing.
Collapse
Affiliation(s)
- Fandong Meng
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Lirong Zhang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Haishan Niu
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ji Suonan
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qi Wang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Li
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Wangwang Lv
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Shiping Wang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Jichuang Duan
- Binhai Research Institute in Tianjin, Tianjin, China
| | - Peipei Liu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Wangmu Renzeng
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Lili Jiang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Caiyun Luo
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Tsechoe Dorji
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Tibetan Plateau Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Zhezhen Wang
- University of Chicago Medicine and Biological Sciences Division, Chicago, IL, United States
| | - Mingyuan Du
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
20
|
Coller H, Siebert F. The impact of herbivore exclusion on forb diversity: Comparing species and functional responses during a drought. Afr J Ecol 2019. [DOI: 10.1111/aje.12676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Helga Coller
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - Frances Siebert
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| |
Collapse
|
21
|
Zettlemoyer MA, Schultheis EH, Lau JA. Phenology in a warming world: differences between native and non-native plant species. Ecol Lett 2019; 22:1253-1263. [PMID: 31134712 DOI: 10.1111/ele.13290] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/20/2019] [Accepted: 05/08/2019] [Indexed: 01/27/2023]
Abstract
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non-native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non-native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non-native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non-native species, implicating phenology as a potential trait associated with the successful establishment of non-native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non-natives are hypothesised to promote invasion success and population persistence, potentially benefiting non-native over native species under climate change.
Collapse
Affiliation(s)
- Meredith A Zettlemoyer
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA
| | - Elizabeth H Schultheis
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA
| | - Jennifer A Lau
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA.,Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA.,Department of Biology and the Environmental Resilience Institute, Indiana University, Bloomington, IN, 47405-7005, USA
| |
Collapse
|
22
|
Phenological and reproductive traits and their response to environmental variation differ among native and invasive grasses in a Neotropical savanna. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02013-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Smith C, Weinman L, Gibbs J, Winfree R. Specialist foragers in forest bee communities are small, social or emerge early. J Anim Ecol 2019; 88:1158-1167. [PMID: 31063228 DOI: 10.1111/1365-2656.13003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/02/2019] [Indexed: 12/01/2022]
Abstract
Individual pollinators that specialize on one plant species within a foraging bout transfer more conspecific and less heterospecific pollen, positively affecting plant reproduction. However, we know much less about pollinator specialization at the scale of a foraging bout compared to specialization by pollinator species. In this study, we measured the diversity of pollen carried by individual bees foraging in forest plant communities in the mid-Atlantic United States. We found that individuals frequently carried low-diversity pollen loads, suggesting that specialization at the scale of the foraging bout is common. Individuals of solitary bee species carried higher diversity pollen loads than did individuals of social bee species; the latter have been better studied with respect to foraging bout specialization, but account for a small minority of the world's bee species. Bee body size was positively correlated with pollen load diversity, and individuals of polylectic (but not oligolectic) species carried increasingly diverse pollen loads as the season progressed, likely reflecting an increase in the diversity of flowers in bloom. Furthermore, the seasonal increase in pollen load diversity was stronger for bees visiting trees and shrubs than for bees visiting herbaceous plants. Overall, our results showed that both plant and pollinator species' traits as well as community-level patterns of flowering phenology are likely to be important determinants of individual-level interactions in plant-pollinator communities.
Collapse
Affiliation(s)
- Colleen Smith
- Graduate Program in Ecology & Evolution, Rutgers University, New Brunswick, New Jersey.,Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey
| | - Lucia Weinman
- Graduate Program in Ecology & Evolution, Rutgers University, New Brunswick, New Jersey.,Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey
| | - Jason Gibbs
- Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachael Winfree
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
24
|
Cochard A, Pithon J, Braud F, Beaujouan V, Bulot A, Daniel H. Intraspecific trait variation in grassland plant communities along urban-rural gradients. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-0827-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Warming shortens flowering seasons of tundra plant communities. Nat Ecol Evol 2018; 3:45-52. [PMID: 30532048 DOI: 10.1038/s41559-018-0745-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022]
Abstract
Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
Collapse
|
26
|
Park DS, Breckheimer I, Williams AC, Law E, Ellison AM, Davis CC. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170394. [PMID: 30455212 PMCID: PMC6282088 DOI: 10.1098/rstb.2017.0394] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Phenology is a key biological trait that can determine an organism's survival and provides one of the clearest indicators of the effects of recent climatic change. Long time-series observations of plant phenology collected at continental scales could clarify latitudinal and regional patterns of plant responses and illuminate drivers of that variation, but few such datasets exist. Here, we use the web tool CrowdCurio to crowdsource phenological data from over 7000 herbarium specimens representing 30 diverse flowering plant species distributed across the eastern United States. Our results, spanning 120 years and generated from over 2000 crowdsourcers, illustrate numerous aspects of continental-scale plant reproductive phenology. First, they support prior studies that found plant reproductive phenology significantly advances in response to warming, especially for early-flowering species. Second, they reveal that fruiting in populations from warmer, lower latitudes is significantly more phenologically sensitive to temperature than that for populations from colder, higher-latitude regions. Last, we found that variation in phenological sensitivities to climate within species between regions was of similar magnitude to variation between species. Overall, our results suggest that phenological responses to anthropogenic climate change will be heterogeneous within communities and across regions, with large amounts of regional variability driven by local adaptation, phenotypic plasticity and differences in species assemblages. As millions of imaged herbarium specimens become available online, they will play an increasingly critical role in revealing large-scale patterns within assemblages and across continents that ultimately can improve forecasts of the impacts of climatic change on the structure and function of ecosystems.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Ian Breckheimer
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Alex C Williams
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Edith Law
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Aaron M Ellison
- Harvard Forest, Harvard University, Petersham, MA 01366, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
Ettinger AK, Gee S, Wolkovich EM. Phenological sequences: how early-season events define those that follow. AMERICAN JOURNAL OF BOTANY 2018; 105:1771-1780. [PMID: 30324664 DOI: 10.1002/ajb2.1174] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Plant phenology is a critical trait, as the timings of phenophases such as budburst, leafout, flowering, and fruiting, are important to plant fitness. Despite much study about when individual phenophases occur and how they may shift with climate change, little is known about how multiple phenophases relate to one another across an entire growing season. We test the extent to which early phenological stages constrain later ones, throughout a growing season, across 25 angiosperm tree species. METHODS We observed phenology (budburst, leafout, flowering, fruiting, and senescence) of 118 individual trees across 25 species, from April through December 2015. KEY RESULTS We found that early phenological events weakly constrain most later events, with the strongest constraints seen between consecutive stages. In contrast, interphase duration was a much stronger predictor of phenology, especially for reproductive events, suggesting that the development time of flowers and fruits may constrain the phenology of these events. CONCLUSIONS Much of the variation in later phenological events can be explained by the timing of earlier events and by interphase durations. This highlights that a shift in one phenophase may often have cascading effects on later phases. Accurate forecasts of climate change impacts should therefore include multiple phenophases within and across years.
Collapse
Affiliation(s)
- A K Ettinger
- Arnold Arboretum of Harvard University, Boston, Massachusetts, 02131, USA
- Tufts University, Medford, Massachusetts, 02155, USA
| | - S Gee
- Arnold Arboretum of Harvard University, Boston, Massachusetts, 02131, USA
| | - E M Wolkovich
- Arnold Arboretum of Harvard University, Boston, Massachusetts, 02131, USA
- Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
28
|
Zhang J, Yi Q, Xing F, Tang C, Wang L, Ye W, Ng II, Chan TI, Chen H, Liu D. Rapid Shifts of Peak Flowering Phenology in 12 Species under the Effects of Extreme Climate Events in Macao. Sci Rep 2018; 8:13950. [PMID: 30224664 PMCID: PMC6141562 DOI: 10.1038/s41598-018-32209-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Plant phenology is sensitive to climate change; the timing of flowering has served as a visible indicator of plant phenology in numerous studies. The present study used phenological records from a manual monitoring program to characterize the flowering phenology of 12 species in Guia Hill, Macao. The mean peak flowering dates (PFDs) of these species ranged from March to September, 41.7% of which occurred in May. The earliest or latest PFDs of nine species occurred in 2013, a year with extremely heavy rain events in early spring. In addition, we found that, in the 5-year period, the monthly mean temperature or monthly precipitation in two periods, specifically 1) during November to December of the previous year and 2) during 0-2 months before the PFDs of each species, were significantly correlated with the PFD of eight species. The result showed that, even though complex species-specific responses to the characteristics of climate widely exist, most species in the present study responded to shifts in climate shifts in these two periods. In addition, some species were extraordinarily sensitive to extreme climate events. Precipitation was more effective in altering flowering date than temperature, especially among the late-flowering species in Guia Hill, Macao.
Collapse
Affiliation(s)
- Jianhao Zhang
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifei Yi
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Fuwu Xing
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chunyan Tang
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lin Wang
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Wen Ye
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Ian Ian Ng
- Department of Garden and Green Areas, Civil and Municipal Affairs Bureau of Macao Special Administrative Region, Macao, 999078, China
| | - Tou I Chan
- Department of Garden and Green Areas, Civil and Municipal Affairs Bureau of Macao Special Administrative Region, Macao, 999078, China
| | - Hongfeng Chen
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Dongming Liu
- South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
29
|
Betekhtina AA, Sergienko AO, Veselkin DV. Root Structure Indicates the Ability of Heracleum sosnowskyi To Absorb Resources Quickly under Optimum Soil Conditions. BIOL BULL+ 2018. [DOI: 10.1134/s1062359018020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Segrestin J, Bernard‐Verdier M, Violle C, Richarte J, Navas M, Garnier E. When is the best time to flower and disperse? A comparative analysis of plant reproductive phenology in the Mediterranean. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jules Segrestin
- CEFECNRSUniversity of MontpellierUniversité Paul Valéry Montpellier 3EPHEIRD Montpellier Cedex 5 France
| | - Maud Bernard‐Verdier
- CEFECNRSUniversity of MontpellierUniversité Paul Valéry Montpellier 3EPHEIRD Montpellier Cedex 5 France
| | - Cyrille Violle
- CEFECNRSUniversity of MontpellierUniversité Paul Valéry Montpellier 3EPHEIRD Montpellier Cedex 5 France
| | - Jean Richarte
- CEFEMontpellier SupAgroCNRSUniversity of MontpellierUniversité Paul Valéry Montpellier 3EPHEIRD Montpellier France
| | - Marie‐Laure Navas
- CEFEMontpellier SupAgroCNRSUniversity of MontpellierUniversité Paul Valéry Montpellier 3EPHEIRD Montpellier France
| | - Eric Garnier
- CEFECNRSUniversity of MontpellierUniversité Paul Valéry Montpellier 3EPHEIRD Montpellier Cedex 5 France
| |
Collapse
|
31
|
Catorci A, Piermarteri K, Penksza K, Házi J, Tardella FM. Filtering effect of temporal niche fluctuation and amplitude of environmental variations on the trait-related flowering patterns: lesson from sub-Mediterranean grasslands. Sci Rep 2017; 7:12034. [PMID: 28931871 PMCID: PMC5607319 DOI: 10.1038/s41598-017-12226-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/25/2017] [Indexed: 11/17/2022] Open
Abstract
Timing of flowering is a critical component of community assembly, but how plant traits respond to heterogeneity of resources has been identified mostly through observations of spatial variations. Thus, we performed a trait-based phenological study in sub-Mediterranean grasslands to assess the importance of temporal variation of resources in the species assemblage processes. We found that early flowering species have traits allowing for slow resource acquisition and storage but rapid growth rate. Instead, mid- and late-flowering species exhibited sets of strategies devoted to minimizing water loss by evapotranspiration or aimed at maximizing the species' competitive ability, thanks to slow growth rate and more efficient resource acquisition, conservation and use. Our findings were consistent with the fluctuation niche theory. We observed that the amplitude of the environmental fluctuations influences the type and number of strategies positively filtered by the system. In fact, in the most productive grasslands, we observed the highest number of indicator trait states reflecting strategies devoted to the storage of resources and competition for light. Results seem also indicate that temporal variation of resources plays a role in trait differentiation and richness within a plant community, filtering traits composition of grasslands in the same direction, as formerly proved for spatial heterogeneity of resources.
Collapse
Affiliation(s)
- Andrea Catorci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032, Camerino, Italy
| | - Karina Piermarteri
- School of Advanced Studies, University of Camerino, Via Lili 55, 62032, Camerino, Italy
| | - Károly Penksza
- Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Botany and Ecophysiology, Páter K. st.1, Gödöllő, 2100, Hungary
| | - Judit Házi
- Szent István University, Faculty of Agricultural and Environmental Sciences, Institute of Botany and Ecophysiology, Páter K. st.1, Gödöllő, 2100, Hungary
| | - Federico Maria Tardella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032, Camerino, Italy.
| |
Collapse
|
32
|
Biederman L, Mortensen B, Fay P, Hagenah N, Knops J, La Pierre K, Laungani R, Lind E, McCulley R, Power S, Seabloom E, Tognetti P. Nutrient addition shifts plant community composition towards earlier flowering species in some prairie ecoregions in the U.S. Central Plains. PLoS One 2017; 12:e0178440. [PMID: 28552986 PMCID: PMC5446158 DOI: 10.1371/journal.pone.0178440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
The distribution of flowering across the growing season is governed by each species’ evolutionary history and climatic variability. However, global change factors, such as eutrophication and invasion, can alter plant community composition and thus change the distribution of flowering across the growing season. We examined three ecoregions (tall-, mixed, and short-grass prairie) across the U.S. Central Plains to determine how nutrient (nitrogen (N), phosphorus, and potassium (+micronutrient)) addition alters the temporal patterns of plant flowering traits. We calculated total community flowering potential (FP) by distributing peak-season plant cover values across the growing season, allocating each species’ cover to only those months in which it typically flowers. We also generated separate FP profiles for exotic and native species and functional group. We compared the ability of the added nutrients to shift the distribution of these FP profiles (total and sub-groups) across the growing season. In all ecoregions, N increased the relative cover of both exotic species and C3 graminoids that flower in May through August. The cover of C4 graminoids decreased with added N, but the response varied by ecoregion and month. However, these functional changes only aggregated to shift the entire community’s FP profile in the tall-grass prairie, where the relative cover of plants expected to flower in May and June increased and those that flower in September and October decreased with added N. The relatively low native cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion by exotic species that occupy this temporal niche. There was no change in the FP profile of the mixed and short-grass prairies with N addition as increased abundance of exotic species and C3 graminoids replaced other species that flower at the same time. In these communities a disturbance other than nutrient addition may be required to disrupt phenological patterns.
Collapse
Affiliation(s)
- Lori Biederman
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| | - Brent Mortensen
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
| | - Philip Fay
- USDA-ARS Grassland Soil and Water Research Lab, United States Department of Agriculture–Agricultural Research Service, Temple, Texas, United States of America
| | - Nicole Hagenah
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Johannes Knops
- School of Biological Science, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Kimberly La Pierre
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Ramesh Laungani
- Department of Biology, Doane University, Crete, Nebraska, United States of America
| | - Eric Lind
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Rebecca McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sally Power
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Eric Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Pedro Tognetti
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Buenos Aires, Argentina
| |
Collapse
|
33
|
Berrached R, Kadik L, Ait Mouheb H, Prinzing A. Deep roots delay flowering and relax the impact of floral traits and associated pollinators in steppe plants. PLoS One 2017; 12:e0173921. [PMID: 28301580 PMCID: PMC5354412 DOI: 10.1371/journal.pone.0173921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/28/2017] [Indexed: 11/18/2022] Open
Abstract
Strong seasonality in abiotic harshness and pollinator availability shape the reproductive success of plants. Plant species can avoid or can tolerate harsh abiotic conditions and can attract different pollinators, but it remains unknown (i) which of these capacities is most important for flowering phenology, (ii) whether tolerance/avoidance of abiotic harshness reinforces or relaxes the phenological differentiation of species attracting different pollinators. We assembled possibly the first functional trait database for a North African steppe covering 104 species. We inferred avoidance of harshness (drought) from dormancy, i.e. annual life-span and seed size. We inferred tolerance or resistance to harshness from small specific leaf area, small stature, deep roots and high dry matter content. We inferred the type of pollinators attracted from floral colour, shape and depth. We found that avoidance traits did not affect flowering phenology, and among tolerance traits only deep roots had an effect by delaying flowering. Flower colour (red or purple), and occasionally flower depth, delayed flowering. Dish, gullet and flag shape accelerated flowering. Interactive effects however were at least as important, inversing the mentioned relationship between floral characters and flowering phenology. Specifically, among drought-tolerant deep-rooted species, flowering phenologies converged among floral types attracting different pollinators, without becoming less variable overall. Direct and interactive effects of root depth and floral traits explained at least 45% of the variance in flowering phenology. Also, conclusions on interactive effects were highly consistent with and without including information on family identity or outliers. Overall, roots and floral syndromes strongly control flowering phenology, while many other traits do not. Surprisingly, floral syndromes and the related pollinators appear to constrain phenology mainly in shallow-rooted, abiotically little tolerant species. Lack of abiotic tolerance might hence constrain accessible resources and thereby impose a stronger synchronization with biotic partners such as pollinators.
Collapse
Affiliation(s)
- Rachda Berrached
- Laboratory of Ecology and Environment, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Bab Ezzouar, Algiers, Algeria
- * E-mail:
| | - Leila Kadik
- Laboratory of Ecology and Environment, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Bab Ezzouar, Algiers, Algeria
| | - Hocine Ait Mouheb
- Laboratory of Ecology and Environment, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Bab Ezzouar, Algiers, Algeria
| | - Andreas Prinzing
- Research Unit “Ecosystèmes Biodiversité, Evolution”, Centre National de la Recherche Scientifique, Université Rennes 1, Campus de Beaulieu, Bât 14 A, Rennes, France
| |
Collapse
|
34
|
Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, Yang X. Emerging opportunities and challenges in phenology: a review. Ecosphere 2016. [DOI: 10.1002/ecs2.1436] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jianwu Tang
- Ecosystems Center Marine Biological Laboratory Woods Hole Massachusetts 02543 USA
| | - Christian Körner
- Institute of Botany University of Basel Schönbeinstrasse 6 4056 Basel Switzerland
| | - Hiroyuki Muraoka
- River Basin Research Center Gifu University 1‐1 Yanagido Gifu 501‐1193 Japan
| | - Shilong Piao
- Department of Ecology College of Urban and Environmental Sciences Peking University Beijing 100871 China
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research, CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences 16 Lincui Road, Chaoyang District Beijing China
| | - Miaogen Shen
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research, CAS Center for Excellence in Tibetan Plateau Earth Sciences Chinese Academy of Sciences 16 Lincui Road, Chaoyang District Beijing China
| | - Stephen J. Thackeray
- Lake Ecosystems Group Centre for Ecology & Hydrology Lancaster Environment Centre Bailrigg Lancaster LA1 4AP UK
| | - Xi Yang
- Department of Earth, Environmental and Planetary Sciences Brown University Providence Rhode Island 02912 USA
| |
Collapse
|
35
|
Climatic warming and the future of bison as grazers. Sci Rep 2015; 5:16738. [PMID: 26567987 PMCID: PMC4645125 DOI: 10.1038/srep16738] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/19/2015] [Indexed: 11/09/2022] Open
Abstract
Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.
Collapse
|
36
|
Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison). PLoS One 2015; 10:e0142409. [PMID: 26562019 PMCID: PMC4642958 DOI: 10.1371/journal.pone.0142409] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 10/21/2015] [Indexed: 01/23/2023] Open
Abstract
North American bison (Bison bison) are becoming increasingly important to both grassland management and commercial ranching. However, a lack of quantitative data on their diet constrains conservation efforts and the ability to predict bison effects on grasslands. In particular, we know little about the seasonality of the bison diet, the degree to which bison supplement their diet with eudicots, and how changes in diet influence gut microbial communities, all of which play important roles in ungulate performance. To address these knowledge gaps, we quantified seasonal patterns in bison diet and gut microbial community composition for a bison herd in Kansas using DNA sequencing-based analyses of both chloroplast and microbial DNA contained in fecal matter. Across the 11 sampling dates that spanned 166 days, we found that diet shifted continuously over the growing season, allowing bison to take advantage of the seasonal availability of high-protein plant species. Bison consumed more woody shrubs in spring and fall than in summer, when forb and grass intake predominated. In examining gut microbiota, the bacterial phylum Tenericutes shifted significantly in relative abundance over the growing season. This work suggests that North American bison can continuously adjust their diet with a high reliance on non-grasses throughout the year. In addition, we find evidence for seasonal patterns in gut community composition that are likely driven by the observed dietary changes.
Collapse
|
37
|
Delaney JT, Jokela KJ, Debinski DM. Seasonal succession of pollinator floral resources in four types of grasslands. Ecosphere 2015. [DOI: 10.1890/es15-00218.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Tracking animal-mediated seedling establishment from dispersed acorns with the aid of the attached cotyledons. MAMMAL RES 2015. [DOI: 10.1007/s13364-015-0214-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Gao M, Qu H, Gao L, Chen L, Sebastian RSJ, Zhao L. Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1-8. [PMID: 24750468 DOI: 10.1111/plb.12186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/04/2014] [Indexed: 06/03/2023]
Abstract
Flowers are the defining feature of angiosperms, and function as indispensable organs for sexual reproduction. Flower colour typically plays an important role in attracting pollinators, and can show considerable variation, even between closely related species. For example, domesticated tomato (S. lycopersicum) has orange/yellow flowers, while the wild relative S. chilense (accession LA2405) has bright yellow flowers. In this study, the mechanism of flower colour formation in these two species was compared by evaluating the accumulation of carotenoids, assessing the expression genes related to carotenoid biosynthetic pathways and observing chromoplast ultrastructure. In S. chilense petals, genes associated with the lutein branch of the carotenoid biosynthetic pathway, phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), lycopene β-cyclase (LCY-B), β-ring hydroxylase (CRTR-B) and ε-ring hydroxylase (CRTR-E), were highly expressed, and this was correlated with high levels of lutein accumulation. In contrast, PDS, ZDS and CYC-B from the neoxanthin biosynthetic branch were highly expressed in S. lycopersicum anthers, leading to increased β-carotene accumulation and hence an orange/yellow colour. Changes in the size, amount and electron density of plastoglobules in chromoplasts provided further evidence of carotenoid accumulation and flower colour formation. Taken together, these results reveal the biochemical basis of differences in carotenoid pigment accumulation and colour between petals and anthers in tomato.
Collapse
Affiliation(s)
- M Gao
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
40
|
Towne EG, Craine JM. Ecological consequences of shifting the timing of burning tallgrass prairie. PLoS One 2014; 9:e103423. [PMID: 25077487 PMCID: PMC4117529 DOI: 10.1371/journal.pone.0103423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
In the Kansas Flint Hills, grassland burning is conducted during a relatively narrow window because management recommendations for the past 40 years have been to burn only in late spring. Widespread prescribed burning within this restricted time frame frequently creates smoke management issues downwind. A potential remedy for the concentrated smoke production in late spring is to expand burning to times earlier in the year. Yet, previous research suggested that burning in winter or early spring reduces plant productivity and cattle weight gain while increasing the proportion of undesirable plant species. In order to better understand the ecological consequences of burning at different times of the year, plant production and species abundance were measured for 20 years on ungrazed watersheds burned annually in autumn, winter, or spring. We found that there were no significant differences in total grass production among the burns on either upland or lowland topographic positions, although spring burned watersheds had higher grass culm production and lower forb biomass than autumn and winter burned watersheds. Burning in autumn or winter broadened the window of grass productivity response to precipitation, which reduces susceptibility to mid-season drought. Burning in autumn or winter also increased the phenological range of species by promoting cool-season graminoids without a concomitant decrease in warm-season grasses, potentially widening the seasonal window of high-quality forage. Incorporating autumn and winter burns into the overall portfolio of tallgrass prairie management should increase the flexibility in managing grasslands, promote biodiversity, and minimize air quality issues caused by en masse late-spring burning with little negative consequences for cattle production.
Collapse
Affiliation(s)
- E. Gene Towne
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Joseph M. Craine
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
41
|
Wolkovich EM, Cleland EE. Phenological niches and the future of invaded ecosystems with climate change. AOB PLANTS 2014; 6:plu013. [PMID: 24876295 PMCID: PMC4025191 DOI: 10.1093/aobpla/plu013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/18/2014] [Indexed: 05/05/2023]
Abstract
In recent years, research in invasion biology has focused increasing attention on understanding the role of phenology in shaping plant invasions. Multiple studies have found non-native species that tend to flower distinctly early or late in the growing season, advance more with warming or have shifted earlier with climate change compared with native species. This growing body of literature has focused on patterns of phenological differences, but there is a need now for mechanistic studies of how phenology contributes to invasions. To do this, however, requires understanding how phenology fits within complex functional trait relationships. Towards this goal, we review recent literature linking phenology with other functional traits, and discuss the role of phenology in mediating how plants experience disturbance and stress-via climate, herbivory and competition-across the growing season. Because climate change may alter the timing and severity of stress and disturbance in many systems, it could provide novel opportunities for invasion-depending upon the dominant climate controller of the system, the projected climate change, and the traits of native and non-native species. Based on our current understanding of plant phenological and growth strategies-especially rapid growing, early-flowering species versus later-flowering species that make slower-return investments in growth-we project optimal periods for invasions across three distinct systems under current climate change scenarios. Research on plant invasions and phenology within this predictive framework would provide a more rigorous test of what drives invader success, while at the same time testing basic plant ecological theory. Additionally, extensions could provide the basis to model how ecosystem processes may shift in the future with continued climate change.
Collapse
Affiliation(s)
- Elizabeth M Wolkovich
- Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada Arnold Arboretum, Harvard University, Boston, MA, USA Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elsa E Cleland
- Division of Biological Sciences, University of California - San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Wolkovich EM, Cook BI, Davies TJ. Progress towards an interdisciplinary science of plant phenology: building predictions across space, time and species diversity. THE NEW PHYTOLOGIST 2014; 201:1156-62. [PMID: 24649487 DOI: 10.1111/nph.12599] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Climate change has brought renewed interest in the study of plant phenology - the timing of life history events. Data on shifting phenologies with warming have accumulated rapidly, yet research has been comparatively slow to explain the diversity of phenological responses observed across latitudes, growing seasons and species. Here, we outline recent efforts to synthesize perspectives on plant phenology across the fields of ecology, climate science and evolution. We highlight three major axes that vary among these disciplines: relative focus on abiotic versus biotic drivers of phenology, on plastic versus genetic drivers of intraspecific variation, and on cross-species versus autecological approaches. Recent interdisciplinary efforts, building on data covering diverse species and climate space, have found a greater role of temperature in controlling phenology at higher latitudes and for early-flowering species in temperate systems. These efforts have also made progress in understanding the tremendous diversity of responses across species by incorporating evolutionary relatedness, and linking phenological flexibility to invasions and plant performance. Future research with a focus on data collection in areas outside the temperate mid-latitudes and across species' ranges, alongside better integration of how risk and investment shape plant phenology, offers promise for further progress.
Collapse
|
43
|
Wolkovich EM, Davies TJ, Schaefer H, Cleland EE, Cook BI, Travers SE, Willis CG, Davis CC. Temperature-dependent shifts in phenology contribute to the success of exotic species with climate change. AMERICAN JOURNAL OF BOTANY 2013; 100:1407-21. [PMID: 23797366 DOI: 10.3732/ajb.1200478] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PREMISE OF THE STUDY The study of how phenology may contribute to the assembly of plant communities has a long history in ecology. Climate change has brought renewed interest in this area, with many studies examining how phenology may contribute to the success of exotic species. In particular, there is increasing evidence that exotic species occupy unique phenological niches and track climate change more closely than native species. METHODS Here, we use long-term records of species’ first flowering dates from fi ve northern hemisphere temperate sites (Chinnor, UK and in the United States, Concord, Massachusetts; Fargo, North Dakota; Konza Prairie, Kansas; and Washington,D.C.) to examine whether invaders have distinct phenologies. Using a broad phylogenetic framework, we tested for differences between exotic and native species in mean annual flowering time, phenological changes in response to temperature and precipitation,and longer-term shifts in first flowering dates during recent pronounced climate change (“flowering time shifts”). KEY RESULTS Across North American sites, exotic species have shifted flowering with climate change while native species, on average, have not. In the three mesic systems, exotic species exhibited higher tracking of interannual variation in temperature,such that flowering advances more with warming, than native species. Across the two grassland systems, however, exotic species differed from native species primarily in responses to precipitation and soil moisture, not temperature. CONCLUSIONS Our findings provide cross-site support for the role of phenology and climate change in explaining species’ invasions.Further, they support recent evidence that exotic species may be important drivers of extended growing seasons observed with climate change in North America.
Collapse
Affiliation(s)
- Elizabeth M Wolkovich
- Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cardillo M. The phylogenetic signal of species co-occurrence in high-diversity shrublands: different patterns for fire-killed and fire-resistant species. BMC Ecol 2012; 12:21. [PMID: 23016574 PMCID: PMC3485096 DOI: 10.1186/1472-6785-12-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/24/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Using phylogenies in community ecology is now commonplace, but typically, studies assume and test for a single common phylogenetic signal for all species in a community, at a given scale. A possibility that remains little-explored is that species differing in demographic or ecological attributes, or facing different selective pressures, show different community phylogenetic patterns, even within the same communities. Here I compare community phylogenetic patterns for fire-killed and fire-resistant Banksia species in the fire-prone shrublands of southwest Australia. RESULTS Using new Bayesian phylogenies of Banksia, together with ecological trait data and abundance data from 24 field sites, I find that fire regeneration mode influences the phylogenetic and phenotypic signal of species co-occurrence patterns. Fire-killed species (reseeders) show patterns of phylogenetic and phenotypic repulsion consistent with competition-driven niche differentiation, but there are no such patterns for fire-resistant species (resprouters). For pairs of species that differ in fire response, co-occurrence is mediated by environmental filtering based on similarity in edaphic preferences. CONCLUSIONS These results suggest that it may be simplistic to characterize an entire community by a single structuring process, such as competition or environmental filtering. For this reason, community analyses based on pairwise species co-occurrence patterns may be more informative than those based on whole-community structure metrics.
Collapse
Affiliation(s)
- Marcel Cardillo
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, A.C.T. 0200, Australia.
| |
Collapse
|