1
|
Zhang Y, Liu S, Liang X, Zheng J, Lu X, Zhao J, Li H, Zhan Y, Teng W, Li H, Han Y, Zhao X, Li Y. GmFER1, a soybean ferritin, enhances tolerance to salt stress and root rot disease and improves soybean yield. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40365869 DOI: 10.1111/pbi.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 05/15/2025]
Abstract
The plant stress response mechanism is activated by biotic and abiotic stresses, but its continuous activation typically affects growth. The role of ferritin in regulating biomass accumulation has been extensively characterized in diverse plant species; however, the underlying mechanisms through which it contributes to salt stress tolerance and Fusarium resistance remain poorly understood. Here, we confirm that overexpression of ferritin leads to iron accumulation and Fe3+ sequestration in both aboveground and roots, activating the iron uptake and transport system. More importantly, GmFER1 enhances salt stress tolerance and Fusarium resistance. First, GmFER1 is localized in chloroplasts and significantly induced by salt stress and Fusarium infection. Overexpression of GmFER1 increases soybean yield per plant by enhancing net photosynthetic rate and Rubisco enzyme activity, without activating the reactive oxygen scavenging mechanism. Under salt stress, GmFER1 enhances resistance by improving the activities of SOD and CAT enzymes, as well as Na+ efflux capacity. Under Fusarium infection, GmFER1 enhances resistance to the pathogen by boosting antioxidant capacity. Moreover, iron-deficiency tests revealed that increased CAT and SOD activities under salt stress are linked to iron ions accumulation. Lastly, we analysed the effects of GmFER1 gene variation on salt tolerance, disease resistance and 23 agronomic traits related to yield and quality. Further analysis of GmFER1 gene variation revealed that the Hap2 haplotypes could potentially enhance salt resistance, disease resistance, pod number and oil content in soybean. Our research offers a new way to reduce growth penalties while boosting plant resistance to salt stress and Fusarium infection.
Collapse
Affiliation(s)
- Yanzheng Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shuhan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyue Liang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Jiqiang Zheng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangpeng Lu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Jialiang Zhao
- Jiangxi Research and Development Center of Super Rice, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haibin Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Haiyan Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
2
|
Jafarisani M, Hashemi SA, Faridi N, Mousavi MF, Bathaie SZ. Cadmium nanocluster as a safe nanocarrier: biodistribution in BALB/c mice and application to carry crocin to breast cancer cell lines. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:522-542. [PMID: 38966182 PMCID: PMC11220307 DOI: 10.37349/etat.2024.00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 07/06/2024] Open
Abstract
Aim Metal nanoclusters are emerging nanomaterials applicable for drug delivery. Here, the toxicity and oxidative stress induction of divalent cationic cadmium (Cd2+) was compared with a Cd in the form of nanocluster. Then, it was used for targeted drug delivery into breast cancer cell lines. Methods Using a green chemistry route, a Cd nanocluster (Cd-NC) was synthesized based on bovine serum albumin. After characterization, its genotoxicity and oxidative stress induction were studied in both in vitro and in vivo. After that, it was conjugated with hyaluronic acid (HA). The efficiency of hyaloronized-Cd-CN (HA-Cd-NC) for loading and releasing crocin (Cro), an anticancer phytochemical, was studied. Finally, it was applied for cell death induction in a panel of breast cancer cell lines. Results The comet assay results indicated that, unlike Cd2+ and potassium permanganate (KMnO4), no genotoxicity and oxidative stress was induced by Cd-NC in vitro. Then, the pharmacokinetics of this Cd-NC was studied in vivo. The data showed that Cd-NC has accumulated in the liver and excreted from the feces of mice. Unlike Cd2+, no toxicity and oxidative stress were induced by this Cd-NC in animal tissues. Then, the Cd-NC was targeted toward breast cancer cells by adding HA, a ligand for the CD44 cell surface receptor. After that, Cro was loaded on HA-Cd-NC and it was used for the treatment of a panel of human breast cancer cell lines with varying degrees of CD44. The half-maximal drug inhibitory concentration (IC50) of Cro was significantly decreased when it was loaded on HA-Cd-NC, especially in MDA-MB-468 with a higher degree of CD44 at the surface. These results indicate the higher toxicity of Cro toward breast cancers when carried out by HA-Cd-NC. Conclusions The Cd-NC was completely safe and is a promising candidate for delivering anticancer drugs/phytochemicals into the targeted breast tumors.
Collapse
Affiliation(s)
- Moslem Jafarisani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - S. Ali Hashemi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - Nassim Faridi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| | - Mir F. Mousavi
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University (TMU), Tehran 14155-331, Iran
- Department of Chemistry, Faculty of basic Sciences, Tarbiat Modares University (TMU), Tehran 14115-175, Iran
| | - S. Zahra Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran 14155-331, Iran
- Institute for Natural Products and Medicinal Plants (INPMP), Tarbiat Modares University (TMU), Tehran 14155-331, Iran
| |
Collapse
|
3
|
Ries F, Weil HL, Herkt C, Mühlhaus T, Sommer F, Schroda M, Willmund F. Competition co-immunoprecipitation reveals the interactors of the chloroplast CPN60 chaperonin machinery. PLANT, CELL & ENVIRONMENT 2023; 46:3371-3391. [PMID: 37606545 DOI: 10.1111/pce.14697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.
Collapse
Affiliation(s)
- Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Heinrich Lukas Weil
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern-Landau, Kaiserslautern, Germany
- Plant Physiology/Synmikro, University of Marburg, Marburg, Germany
| |
Collapse
|
4
|
Miyauchi H, Ishikawa T, Hirakawa Y, Sudou A, Okada K, Hijikata A, Sato N, Tsuzuki M, Fujiwara S. Cellular response of Parachlorella kessleri to a solid surface culture environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1175080. [PMID: 37342150 PMCID: PMC10277731 DOI: 10.3389/fpls.2023.1175080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
Attached culture allows high biomass productivity and is a promising biomass cultivating system because neither a huge facility area nor a large volume of culture medium are needed. This study investigates photosynthetic and transcriptomic behaviors in Parachlorella kessleri cells on a solid surface after their transfer from liquid culture to elucidate the physiological and gene-expression regulatory mechanisms that underlie their vigorous proliferation. The chlorophyll content shows a decrease at 12 h after the transfer; however, it has fully recovered at 24 h, suggesting temporary decreases in the amounts of light harvesting complexes. On PAM analysis, it is demonstrated that the effective quantum yield of PSII decreases at 0 h right after the transfer, followed by its recovery in the next 24 h. A similar changing pattern is observed for the photochemical quenching, with the PSII maximum quantum yield remaining at an almost unaltered level. Non-photochemical quenching was increased at both 0 h and 12 h after the transfer. These observations suggest that electron transfer downstream of PSII but not PSII itself is only temporarily damaged in solid-surface cells just after the transfer, with light energy in excess being dissipated as heat for PSII protection. It thus seems that the photosynthetic machinery acclimates to high-light and/or dehydration stresses through its temporal size-down and functional regulation that start right after the transfer. Meanwhile, transcriptomic analysis by RNA-Seq demonstrates temporary upregulation at 12 h after the transfer as to the expression levels of many genes for photosynthesis, amino acid synthesis, general stress response, and ribosomal subunit proteins. These findings suggest that cells transferred to a solid surface become stressed immediately after transfer but can recover their high photosynthetic activity through adaptation of photosynthetic machinery and metabolic flow as well as induction of general stress response mechanisms within 24 h.
Collapse
|
5
|
Pereira C, Castander-Olarieta A, Montalbán IA, Mendes VM, Correia S, Pedrosa A, Manadas B, Moncaleán P, Canhoto J. Proteomic and Metabolic Analysis of Pinus halepensis Mill. Embryonal Masses Induced under Heat Stress. Int J Mol Sci 2023; 24:ijms24087211. [PMID: 37108380 PMCID: PMC10139065 DOI: 10.3390/ijms24087211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Understanding the physiological and molecular adjustments occurring during tree stress response is of great importance for forest management and breeding programs. Somatic embryogenesis has been used as a model system to analyze various processes occurring during embryo development, including stress response mechanisms. In addition, "priming" plants with heat stress during somatic embryogenesis seems to favor the acquisition of plant resilience to extreme temperature conditions. In this sense, Pinus halepensis somatic embryogenesis was induced under different heat stress treatments (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) and its effects on the proteome and the relative concentration of soluble sugars, sugar alcohols and amino acids of the embryonal masses obtained were assessed. Heat severely affected the production of proteins, and 27 proteins related to heat stress response were identified; the majority of the proteins with increased amounts in embryonal masses induced at higher temperatures consisted of enzymes involved in the regulation of metabolism (glycolysis, the tricarboxylic acid cycle, amino acid biosynthesis and flavonoids formation), DNA binding, cell division, transcription regulation and the life-cycle of proteins. Finally, significant differences in the concentrations of sucrose and amino acids, such as glutamine, glycine and cysteine, were found.
Collapse
Affiliation(s)
- Cátia Pereira
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | | | | | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLAb, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| | - Ana Pedrosa
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER-BRTA, 01192 Arkaute, Spain
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
6
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
7
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
8
|
Li N, Zhang Y, Wang X, Ma H, Sun Y, Li G, Zhang S. Integration of Transcriptomic and Proteomic Profiles Reveals Multiple Levels of Genetic Regulation of Taproot Growth in Sugar Beet ( Beta vulgaris L.). FRONTIERS IN PLANT SCIENCE 2022; 13:882753. [PMID: 35909753 PMCID: PMC9326478 DOI: 10.3389/fpls.2022.882753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Sugar beet taproot growth and development is a complex biological process involving morphogenesis and dry matter accumulation. However, the molecular regulatory mechanisms underlying taproot growth and development remain elusive. We performed a correlation analysis of the proteome and transcriptome in two cultivars (SD13829 and BS02) at the start and the highest points of the taproot growth rate. The corresponding correlation coefficients were 0.6189, 0.7714, 0.6803, and 0.7056 in four comparison groups. A total of 621 genes were regulated at both transcriptional and translational levels, including 190, 71, 140, and 220 in the BS59-VS-BS82, BS59-VS-SD59, BS82-VS-SD82, and SD59-VS-SD82 groups, respectively. Ten, 32, and 68 correlated-DEGs-DEPs (cor-DEGs-DEPs) were significantly enrdiched in the proteome and transcriptome of the BS59-VS-BS82, SD59-VS-SD82, and BS82-VS-SD82 groups, respectively, which included ribonuclease 1-like protein, DEAD-box ATP-dependent RNA helicase, TolB protein, heat shock protein 83, 20 kDa chaperonin, polygalacturonase, endochitinase, brassinolide and gibberellin receptors (BRI1 and GID1), and xyloglucan endotransglucosylase/hydrolase (XTH). In addition, Beta vulgaris XTH could enhance the growth and development of Arabidopsis primary roots by improving cell growth in the root tip elongation zone. These findings suggested that taproot growth and expansion might be regulated at transcriptional and posttranscriptional levels and also may be attributed to cell wall metabolism to improve cell wall loosening and elongation.
Collapse
|
9
|
Wang F, Sun Z, Zhu M, Zhang Q, Sun Y, Sun W, Wu C, Li T, Zhao Y, Ma C, Zhang H, Zhao Y, Wang Z. Dissecting the Molecular Regulation of Natural Variation in Growth and Senescence of Two Eutrema salsugineum Ecotypes. Int J Mol Sci 2022; 23:ijms23116124. [PMID: 35682805 PMCID: PMC9181637 DOI: 10.3390/ijms23116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Salt cress (Eutrema salsugineum, aka Thellungiella salsuginea) is an extremophile and a close relative of Arabidopsis thaliana. To understand the mechanism of selection of complex traits under natural variation, we analyzed the physiological and proteomic differences between Shandong (SD) and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence or leaf shedding with age. After 2-DE separation and ESI-MS/MS identification, between 25 and 28 differentially expressed protein spots were identified in shoots and roots, respectively. The proteins identified in shoots are mainly involved in cellular metabolic processes, stress responses, responses to abiotic stimuli, and aging responses, while those identified in roots are mainly involved in small-molecule metabolic processes, oxidation-reduction processes, and responses to abiotic stimuli. Our data revealed the evolutionary differences at the protein level between these two ecotypes. Namely, in the evolution of salt tolerance, the SD ecotype highly expressed some stress-related proteins to structurally adapt to the high salt environment in the Yellow River Delta, whereas the XJ ecotype utilizes the specialized energy metabolism to support this evolution of the short-lived xerophytes in the Xinjiang region.
Collapse
Affiliation(s)
- Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Zhibin Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Min Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yufei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Wei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Tongtong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| |
Collapse
|
10
|
Wang N, Wang Y, Zhao Q, Zhang X, Peng C, Zhang W, Liu Y, Vallon O, Schroda M, Cong Y, Liu C. The cryo-EM structure of the chloroplast ClpP complex. NATURE PLANTS 2021; 7:1505-1515. [PMID: 34782772 DOI: 10.1038/s41477-021-01020-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Protein homoeostasis in plastids is strategically regulated by the protein quality control system involving multiple chaperones and proteases, among them the Clp protease. Here, we determined the structure of the chloroplast ClpP complex from Chlamydomonas reinhardtii by cryo-electron microscopy. ClpP contains two heptameric catalytic rings without any symmetry. The top ring contains one ClpR6, three ClpP4 and three ClpP5 subunits while the bottom ring is composed of three ClpP1C subunits and one each of the ClpR1-4 subunits. ClpR3, ClpR4 and ClpT4 subunits connect the two rings and stabilize the complex. The chloroplast Cpn11/20/23 co-chaperonin, a co-factor of Cpn60, forms a cap on the top of ClpP by protruding mobile loops into hydrophobic clefts at the surface of the top ring. The co-chaperonin repressed ClpP proteolytic activity in vitro. By regulating Cpn60 chaperone and ClpP protease activity, the co-chaperonin may play a role in coordinating protein folding and degradation in the chloroplast.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yifan Wang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, Shanghai, China
| | - Wenjuan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Yao Cong
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Cheong MS, Choe H, Jeong MS, Yoon YE, Jung HS, Lee YB. Different Inhibitory Effects of Erythromycin and Chlortetracycline on Early Growth of Brassica campestris Seedlings. Antibiotics (Basel) 2021; 10:antibiotics10101273. [PMID: 34680853 PMCID: PMC8532913 DOI: 10.3390/antibiotics10101273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/14/2023] Open
Abstract
Veterinary antibiotics, including erythromycin (Ery) and chlortetracycline (CTC), are often detected in agricultural land. Although these contaminants affect plant growth and development, their effects on crops remain elusive. In this study, the effects of Ery and CTC on plant growth were investigated and compared by analyzing transcript abundance in Brassica campestris seedlings. Treatment with Ery and/or CTC reduced chlorophyll content in leaves and photosynthetic efficiency. Examination of the chloroplast ultrastructure revealed the presence of abnormally shaped plastids in response to Ery and CTC treatments. The antibiotics produced similar phenotypes of lower accumulation of photosynthetic genes, including RBCL and LHCB1.1. Analysis of the transcript levels revealed that Ery and CTC differentially down-regulated genes involved in the tetrapyrrole biosynthetic pathway and primary root growth. In the presence of Ery and CTC, chloroplasts were undeveloped and photosynthesis efficiency was reduced. These results suggest that both Ery and CTC individually affect gene expression and influence plant physiological activity, independently of one another.
Collapse
Affiliation(s)
- Mi Sun Cheong
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyeonji Choe
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 24341, Korea
| | - Young-Eun Yoon
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Korea; (M.S.J.); (H.S.J.)
| | - Yong Bok Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Korea;
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Korea; (H.C.); (Y.-E.Y.)
- Correspondence: ; Tel.: +82-55-772-1967
| |
Collapse
|
12
|
Mora-Ocampo IY, Pirovani CP, Luz EDMN, Rêgo APB, Silva EMA, Rhodes-Valbuena M, Corrêa RX. Ceratocystis cacaofunesta differentially modulates the proteome in xylem-enriched tissue of cocoa genotypes with contrasting resistance to Ceratocystis wilt. PLANTA 2021; 254:94. [PMID: 34642817 DOI: 10.1007/s00425-021-03747-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Decreased accumulation of polyphenol oxidase, H2O2 accumulation, effective regulation of programmed cell death, and a protein predicted as allergenic can play key roles in cacao defense against Ceratocystis cacaofunesta. Ceratocystis wilt, caused by the fungus Ceratocystis cacaofunesta, has destroyed millions of Theobroma cacao trees in several countries of the Americas. Through proteomics, systems biology, and enzymatic analyses of infected stems, it was possible to infer mechanisms used by resistant (TSH1188) and susceptible (CCN51) cacao genotypes during infection. Protein extraction from xylem-enriched tissue of stems inoculated with the fungus and their controls 1 day after inoculation was carried out, followed by separation through two-dimensional gel electrophoresis and identification by mass spectrometry. Enzyme activity was determined at 1, 3, 7 and 15 days after inoculation. A total of 50 differentially accumulated distinct proteins were identified in the treatments of both genotypes and were classified into 10 different categories. An interaction network between homologous proteins from Arabidospsis thaliana was generated for each genotype, using the STRING database and Cytoscape software. Primary metabolism processes were apparently repressed in both genotypes. The resistance factors suggested for genotype TSH1188 were: H2O2 accumulation, effective regulation of programmed cell death, production of phytoalexins derived from tryptophan and furanocoumarins, and participation of a predicted allergenic protein with probable ribonuclease function inhibiting the germination and propagation of the fungus. In the susceptible genotype, it is possible that its recognition and signaling mechanism through proteins from the SEC14 family is easily overcome by the pathogen. Our results will help to better understand the interaction between cacao and one of its most aggressive pathogens, to create disease control strategies.
Collapse
Affiliation(s)
- Irma Y Mora-Ocampo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Carlos P Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Edna D M N Luz
- Comissão Executiva de Planejamento da Lavoura Cacaueira (CEPLAC), Centro de Pesquisas do Cacau (CEPEC), Itabuna, BA, 45600-919, Brazil
| | - Angra P B Rêgo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Edson M A Silva
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Mateo Rhodes-Valbuena
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil
| | - Ronan X Corrêa
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, BA, 45662-900, Brazil.
| |
Collapse
|
13
|
Przybyla-Toscano J, Boussardon C, Law SR, Rouhier N, Keech O. Gene atlas of iron-containing proteins in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:258-274. [PMID: 33423341 DOI: 10.1111/tpj.15154] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 05/27/2023]
Abstract
Iron (Fe) is an essential element for the development and physiology of plants, owing to its presence in numerous proteins involved in central biological processes. Here, we established an exhaustive, manually curated inventory of genes encoding Fe-containing proteins in Arabidopsis thaliana, and summarized their subcellular localization, spatiotemporal expression and evolutionary age. We have currently identified 1068 genes encoding potential Fe-containing proteins, including 204 iron-sulfur (Fe-S) proteins, 446 haem proteins and 330 non-Fe-S/non-haem Fe proteins (updates of this atlas are available at https://conf.arabidopsis.org/display/COM/Atlas+of+Fe+containing+proteins). A fourth class, containing 88 genes for which iron binding is uncertain, is indexed as 'unclear'. The proteins are distributed in diverse subcellular compartments with strong differences per category. Interestingly, analysis of the gene age index showed that most genes were acquired early in plant evolutionary history and have progressively gained regulatory elements, to support the complex organ-specific and development-specific functions necessitated by the emergence of terrestrial plants. With this gene atlas, we provide a valuable and updateable tool for the research community that supports the characterization of the molecular actors and mechanisms important for Fe metabolism in plants. This will also help in selecting relevant targets for breeding or biotechnological approaches aiming at Fe biofortification in crops.
Collapse
Affiliation(s)
| | - Clément Boussardon
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| | | | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, S-90187, Sweden
| |
Collapse
|
14
|
Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:618835. [PMID: 33597960 PMCID: PMC7882706 DOI: 10.3389/fpls.2020.618835] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/11/2020] [Indexed: 05/26/2023]
Abstract
Reactive oxygen species (ROS) are signaling molecules essential for plant responses to abiotic and biotic stimuli as well as for multiple developmental processes. They are produced as byproducts of aerobic metabolism and are affected by adverse environmental conditions. The ROS content is controlled on the side of their production but also by scavenging machinery. Antioxidant enzymes represent a major ROS-scavenging force and are crucial for stress tolerance in plants. Enzymatic antioxidant defense occurs as a series of redox reactions for ROS elimination. Therefore, the deregulation of the antioxidant machinery may lead to the overaccumulation of ROS in plants, with negative consequences both in terms of plant development and resistance to environmental challenges. The transcriptional activation of antioxidant enzymes accompanies the long-term exposure of plants to unfavorable environmental conditions. Fast ROS production requires the immediate mobilization of the antioxidant defense system, which may occur via retrograde signaling, redox-based modifications, and the phosphorylation of ROS detoxifying enzymes. This review aimed to summarize the current knowledge on signaling processes regulating the enzymatic antioxidant capacity of plants.
Collapse
|
15
|
Hu SH, Lin SF, Huang YC, Huang CH, Kuo WY, Jinn TL. Significance of AtMTM1 and AtMTM2 for Mitochondrial MnSOD Activation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:690064. [PMID: 34434202 PMCID: PMC8382117 DOI: 10.3389/fpls.2021.690064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
The manganese (Mn) tracking factor for mitochondrial Mn superoxide dismutase (MnSOD) has been annotated as yMTM1 in yeast, which belongs to the mitochondrial carrier family. We confirmed that Arabidopsis AtMTM1 and AtMTM2 are functional homologs of yMTM1 as they can revive yeast MnSOD activity in yMTM1-mutant cells. Transient expression of AtMnSOD-3xFLAG in the AtMTM1 and AtMTM2-double mutant protoplasts confirmed that AtMTM1 and AtMTM2 are required for AtMnSOD activation. Our study revealed that AtMnSOD interacts with AtMTM1 and AtMTM2 in the mitochondria. The expression levels of AtMTM1, AtMTM2, and AtMnSOD respond positively to methyl viologen (MV) and metal stress. AtMTM1 and AtMTM2 are involved in Mn and Fe homeostasis, root length, and flowering time. Transient expression of chloroplast-destined AtMnSOD revealed that an evolutionarily conserved activation mechanism, like the chloroplastic-localized MnSOD in some algae, still exists in Arabidopsis chloroplasts. This study strengthens the proposition that AtMTM1 and AtMTM2 participate in the AtMnSOD activation and ion homeostasis.
Collapse
Affiliation(s)
- Shu-Hsuan Hu
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Chen Huang
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Hsun Huang
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Yu Kuo
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tsung-Luo Jinn
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
- *Correspondence: Tsung-Luo Jinn,
| |
Collapse
|
16
|
Dvořák P, Krasylenko Y, Ovečka M, Basheer J, Zapletalová V, Šamaj J, Takáč T. In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection. PLANT, CELL & ENVIRONMENT 2021; 44:68-87. [PMID: 32974958 DOI: 10.1111/pce.13894] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Superoxide dismutases (SODs) are enzymes detoxifying superoxide to hydrogen peroxide while temporal developmental expression and subcellular localisation are linked to their functions. Therefore, we aimed here to reveal in vivo developmental expression, subcellular, tissue- and organ-specific localisation of iron superoxide dismutase 1 (FSD1) in Arabidopsis using light-sheet and Airyscan confocal microscopy. FSD1-GFP temporarily accumulated at the site of endosperm rupture during seed germination. In emerged roots, it showed the highest abundance in cells of the lateral root cap, columella, and endodermis/cortex initials. The largest subcellular pool of FSD1-GFP was localised in the plastid stroma, while it was also located in the nuclei and cytosol. The majority of the nuclear FSD1-GFP is immobile as revealed by fluorescence recovery after photobleaching. We found that fsd1 knockout mutants exhibit reduced lateral root number and this phenotype was reverted by genetic complementation. Mutant analysis also revealed a requirement for FSD1 in seed germination during salt stress. Salt stress tolerance was coupled with the accumulation of FSD1-GFP in Hechtian strands and superoxide removal. It is likely that the plastidic pool is required for acquiring oxidative stress tolerance in Arabidopsis. This study suggests new developmental and osmoprotective functions of SODs in plants.
Collapse
Affiliation(s)
- Petr Dvořák
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Yuliya Krasylenko
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jasim Basheer
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Veronika Zapletalová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
17
|
Ding H, Mo S, Qian Y, Yuan G, Wu X, Ge C. Integrated proteome and transcriptome analyses revealed key factors involved in tomato (
Solanum lycopersicum
) under high temperature stress. Food Energy Secur 2020. [DOI: 10.1002/fes3.239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Haidong Ding
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Shuangrong Mo
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Ying Qian
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Guibo Yuan
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Xiaoxia Wu
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Cailin Ge
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| |
Collapse
|
18
|
Song W, Tang F, Cai W, Zhang Q, Zhou F, Ning M, Tian H, Shan C. iTRAQ-based quantitative proteomics analysis of cantaloupe (Cucumis melo var. saccharinus) after cold storage. BMC Genomics 2020; 21:390. [PMID: 32493266 PMCID: PMC7268308 DOI: 10.1186/s12864-020-06797-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Background Cantaloupe is susceptible to cold stress when it is stored at low temperatures, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of low temperatures resistance in cantaloupe, a cold-sensitive cultivar, Golden Empress-308 (GE) and a cold-tolerant cultivar, Jia Shi-310 (JS), were selected in parallel for iTRAQ quantitative proteomic analysis. Results The two kinds of commercial cultivars were exposed to a temperature of 0.5 °C for 0, 12 and 24 days. We found that the cold-sensitive cultivar (GE) suffered more severe damage as the length of the cold treatment increased. Proteomic analysis of both cultivars indicated that the number of differentially expressed proteins (DEPs) changed remarkably during the chilly treatment. JS expressed cold-responsive proteins more rapidly and mobilized more groups of proteins than GE. Furthermore, metabolic analysis revealed that more amino acids were up-regulated in JS during the early phases of low temperatures stress. The DEPs we found were mainly related to carbohydrate and energy metabolism, structural proteins, reactive oxygen species scavenging, amino acids metabolism and signal transduction. The consequences of phenotype assays, metabolic analysis and q-PCR validation confirm the findings of the iTRAQ analysis. Conclusion We found that the prompt response and mobilization of proteins in JS allowed it to maintain a higher level of cold tolerance than GE, and that the slower cold responses in GE may be a vital reason for the severe chilling injury commonly found in this cultivar. The candidate proteins we identified will form the basis of future studies and may improve our understanding of the mechanisms of cold tolerance in cantaloupe.
Collapse
Affiliation(s)
- Wen Song
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Fengxian Tang
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Wenchao Cai
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Qin Zhang
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Fake Zhou
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Ming Ning
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Huan Tian
- College of Food, Shihezi University, Xinjiang, 832000, China
| | - Chunhui Shan
- College of Food, Shihezi University, Xinjiang, 832000, China.
| |
Collapse
|
19
|
Tadini L, Jeran N, Peracchio C, Masiero S, Colombo M, Pesaresi P. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190399. [PMID: 32362266 DOI: 10.1098/rstb.2019.0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Plastid genes in higher plants are transcribed by at least two different RNA polymerases, the plastid-encoded RNA polymerase (PEP), a bacteria-like core enzyme whose subunits are encoded by plastid genes (rpoA, rpoB, rpoC1 and rpoC2), and the nuclear-encoded plastid RNA polymerase (NEP), a monomeric bacteriophage-type RNA polymerase. Both PEP and NEP enzymes are active in non-green plastids and in chloroplasts at all developmental stages. Their transcriptional activity is affected by endogenous and exogenous factors and requires a strict coordination within the plastid and with the nuclear gene expression machinery. This review focuses on the different molecular mechanisms underlying chloroplast transcription regulation and its coordination with the photosynthesis-associated nuclear genes (PhANGs) expression. Particular attention is given to the link between NEP and PEP activity and the GUN1- (Genomes Uncoupled 1) mediated chloroplast-to-nucleus retrograde communication with respect to the Δrpo adaptive response, i.e. the increased accumulation of NEP-dependent transcripts upon depletion of PEP activity, and the editing-level changes observed in NEP-dependent transcripts, including rpoB and rpoC1, in gun1 cotyledons after norflurazon or lincomycin treatment. The role of cytosolic preproteins and HSP90 chaperone as components of the GUN1-retrograde signalling pathway, when chloroplast biogenesis is inhibited in Arabidopsis cotyledons, is also discussed. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Luca Tadini
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Nicolaj Jeran
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Carlotta Peracchio
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Simona Masiero
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| | - Monica Colombo
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paolo Pesaresi
- Dipartimento di Bioscienze, Università degli studi di Milano, 20133 Milano, Italy
| |
Collapse
|
20
|
Oliveira BRM, de Almeida AAF, Pirovani CP, Barroso JP, de C Neto CH, Santos NA, Ahnert D, Baligar VC, Mangabeira PAO. Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:340-358. [PMID: 32107699 DOI: 10.1007/s10646-020-02178-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Cd is a non-essential metal and highly toxic to plants, animals and humans, even at very low concentrations. Cd has been found in cocoa beans and in their products, as in the case of chocolate. Mn plays an important role in photosynthetic and can interact with Cd and attenuate its toxic effects on plants. The objective of this work was to evaluate the mechanisms of Mn response in the mitigation of Cd toxicity in young plants of the CCN 51 cacao genotype submitted to 0.8 mmol Cd kg-1, 1.6 mmol Mn kg-1 or the combination of 0.4 mmol Cd kg-1 + 0.8 mmol Mn kg-1 soil, together with the control treatment (without addition of Cd and Mn in soil), by means of analysis of changes in the profile of exclusive proteins (EP) and differentially accumulated proteins (DAP). Leaf and root proteins were extracted and quantified from the different treatments, followed by proteomic analysis. About eight DAP and 38 EP were identified in leaves, whereas in roots 43 DAP and 21 EP were identified. Some important proteins induced in the presence of Cd and repressed in the presence of Cd + Mn or vice versa, were ATPases, isoflavone reductase, proteasome and chaperonin. It was concluded that proteins involved in oxidoreduction and defense and stress response processes, in addition to other processes, were induced in the presence of Cd and repressed in the presence of Cd + Mn. This demonstrated that Mn was able to mitigate the toxic effects of Cd on young plants of the CCN 51 cocoa genotype.
Collapse
Affiliation(s)
- Bruna Rafaela Machado Oliveira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil.
| | - Carlos P Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Joedson P Barroso
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Carlos H de C Neto
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Nayara A Santos
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Dário Ahnert
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| | - Viropax C Baligar
- USDA-ARS-Beltsville Agricultural Research Center, Beltsville, MD, USA
| | - Pedro Antonio O Mangabeira
- Department of Biological Sciences, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, BA, 45662-900, Brazil
| |
Collapse
|
21
|
Zhu K, Zhang W, Sarwa R, Xu S, Li K, Yang Y, Li Y, Wang Z, Cao J, Li Y, Tan X. Proteomic analysis of a clavata-like phenotype mutant in Brassica napus. Genet Mol Biol 2020; 43:e20190305. [PMID: 32154828 PMCID: PMC7198001 DOI: 10.1590/1678-4685-gmb-2019-0305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Rapeseed is one of important oil crops in China. Better understanding of the
regulation network of main agronomic traits of rapeseed could improve the
yielding of rapeseed. In this study, we obtained an influrescence mutant that
showed a fusion phenotype, similar with the Arabidopsis
clavata-like phenotype, so we named the mutant as
Bnclavata-like (Bnclv-like). Phenotype
analysis illustrated that abnormal development of the inflorescence meristem
(IM) led to the fused-inflorescence phenotype. At the stage of protein
abundance, major regulators in metabolic processes, ROS metabolism, and
cytoskeleton formation were seen to be altered in this mutant. These results not
only revealed the relationship between biological processes and inflorescence
meristem development, but also suggest bioengineering strategies for the
improved breeding and production of Brassica napus.
Collapse
Affiliation(s)
- Keming Zhu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China.,Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Wuhan, China
| | - Weiwei Zhang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Rehman Sarwa
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Shuo Xu
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Kaixia Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yulong Li
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Zheng Wang
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Jun Cao
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| | - Yaoming Li
- Jiangsu University, Institute of Agricultural Engineering, Zhenjiang, China
| | - Xiaoli Tan
- Jiangsu University, Institute of Life Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
22
|
Huang WL, Wu FL, Huang HY, Huang WT, Deng CL, Yang LT, Huang ZR, Chen LS. Excess Copper-Induced Alterations of Protein Profiles and Related Physiological Parameters in Citrus Leaves. PLANTS (BASEL, SWITZERLAND) 2020; 9:E291. [PMID: 32121140 PMCID: PMC7154894 DOI: 10.3390/plants9030291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
This present study examined excess copper (Cu) effects on seedling growth, leaf Cu concentration, gas exchange, and protein profiles identified by a two-dimensional electrophoresis (2-DE) based mass spectrometry (MS) approach after Citrus sinensis and Citrus grandis seedlings were treated for six months with 0.5 (control), 200, 300, or 400 μM CuCl2. Forty-one and 37 differentially abundant protein (DAP) spots were identified in Cu-treated C. grandis and C. sinensis leaves, respectively, including some novel DAPs that were not reported in leaves and/or roots. Most of these DAPs were identified only in C. grandis or C. sinensis leaves. More DAPs increased in abundances than DAPs decreased in abundances were observed in Cu-treated C. grandis leaves, but the opposite was true in Cu-treated C. sinensis leaves. Over 50% of DAPs were associated with photosynthesis, carbohydrate, and energy metabolism. Cu-toxicity-induced reduction in leaf CO2 assimilation might be caused by decreased abundances of proteins related to photosynthetic electron transport chain (PETC) and CO2 assimilation. Cu-effects on PETC were more pronounced in C. sinensis leaves than in C. grandis leaves. DAPs related to antioxidation and detoxification, protein folding and assembly (viz., chaperones and folding catalysts), and signal transduction might be involved in Citrus Cu-toxicity and Cu-tolerance.
Collapse
Affiliation(s)
- Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Feng-Lin Wu
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Hui-Yu Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Wei-Tao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
| | - Zeng-Rong Huang
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, China; (C.-L.D.); (Z.-R.H.)
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.-L.H.); (F.-L.W.); (H.-Y.H.); (W.-T.H.); (L.-T.Y.)
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
23
|
Ding H, Wu Y, Yuan G, Mo S, Chen Q, Xu X, Wu X, Ge C. In-depth proteome analysis reveals multiple pathways involved in tomato SlMPK1-mediated high-temperature responses. PROTOPLASMA 2020; 257:43-59. [PMID: 31359223 DOI: 10.1007/s00709-019-01419-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
High temperature (HT) is one of the major environmental factors which limits plant growth and yield. The mitogen-activated protein kinase (MAPK) plays vital roles in environmental stress responses. However, the mechanisms triggered by MAPKs in plants in response to HT are still extremely limited. In this study, the proteomic data of differences between SlMPK1 RNA-interference mutant (SlMPK1i) and wild type and of tomato (Solanum lycopersicum) plants under HT stress using isobaric tags for relative and absolute quantitation (iTRAQ) was re-analyzed in depth. In total, 168 differently expressed proteins (DEPs) were identified in response to HT stress, including 38 DEPs only found in wild type, and 84 DEPs specifically observed in SlMPK1i after HT treatment. The majority of higher expression of 84 DEPs were annotated into photosynthesis, oxidation-reduction process, protein folding, translation, proteolysis, stress response, and amino acid biosynthetic process. More importantly, SlMPK1-mediated photosynthesis was confirmed by the physiological characterization of SlMPK1i with a higher level of photosynthetic capacity under HT stress. Overall, the results reveal a set of potential candidate proteins helping to further understand the intricate regulatory network regulated by SlMPK1 in response to HT.
Collapse
Affiliation(s)
- Haidong Ding
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Wu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Guibo Yuan
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Shuangrong Mo
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qi Chen
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoying Xu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Cailin Ge
- Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Lenk I, Fisher LHC, Vickers M, Akinyemi A, Didion T, Swain M, Jensen CS, Mur LAJ, Bosch M. Transcriptional and Metabolomic Analyses Indicate that Cell Wall Properties are Associated with Drought Tolerance in Brachypodium distachyon. Int J Mol Sci 2019; 20:E1758. [PMID: 30974727 PMCID: PMC6479473 DOI: 10.3390/ijms20071758] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for "regulated stress response", "plant cell wall" and "oxidative stress" associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.
Collapse
Affiliation(s)
- Ingo Lenk
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge, Denmark.
| | - Lorraine H C Fisher
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Martin Vickers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Aderemi Akinyemi
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Thomas Didion
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge, Denmark.
| | - Martin Swain
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | | | - Luis A J Mur
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Maurice Bosch
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| |
Collapse
|
25
|
Wang W, Liu D, Chen D, Cheng Y, Zhang X, Song L, Hu M, Dong J, Shen F. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol 2019; 16:362-375. [PMID: 30676211 PMCID: PMC6380294 DOI: 10.1080/15476286.2019.1574163] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022] Open
Abstract
Salinity stress is a major abiotic stress affecting the productivity and fiber quality of cotton. Although reactive oxygen species (ROS) play critical roles in plant stress responses, their complex molecular regulatory mechanism under salinity stress is largely unknown in cotton, especially microRNA (miRNA)-mediated regulation of superoxide dismutase gene expression. Here, we report that a cotton iron superoxide dismutase gene GhFSD1 and the cotton miRNA ghr-miR414c work together in response to salinity stress. The miRNA ghr-miR414c targets the coding sequence region of GhFSD1, inhibiting expression of transcripts of this antioxidase gene, which represents the first line of defense against stress-induced ROS. Expression of GhFSD1 was induced by salinity stress. Under salinity stress, ghr-miR414c showed expression patterns opposite to those of GhFSD1. Ectopic expression of GhFSD1 in Arabidopsis conferred salinity stress tolerance by improving primary root growth and biomass, whereas Arabidopsis constitutively expressing ghr-miR414c showed hypersensitivity to salinity stress. Silencing GhFSD1 in cotton caused an excessive hypersensitive phenotype to salinity stress, whereas overexpressing miR414c decreased the expression of GhFSD1 and increased sensitivity to salinity stress, yielding a phenotype similar to that of GhFSD1-silenced cotton. Taken together, our results demonstrated that ghr-miR414c was involved in regulation of plant response to salinity stress by targeting GhFSD1 transcripts. This study provides a new strategy and method for plant breeding in order to improve plant salinity tolerance.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Dan Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Dongdong Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Yingying Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Xiaopei Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Lirong Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Mengjiao Hu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Jie Dong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| | - Fafu Shen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, People’s Republic of China
| |
Collapse
|
26
|
Nováková S, Danchenko M, Skultety L, Fialová I, Lešková A, Beke G, Flores-Ramírez G, Glasa M. Photosynthetic and Stress Responsive Proteins Are Altered More Effectively in Nicotiana benthamiana Infected with Plum pox virus Aggressive PPV-CR versus Mild PPV-C Cherry-Adapted Isolates. J Proteome Res 2018; 17:3114-3127. [PMID: 30084641 DOI: 10.1021/acs.jproteome.8b00230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plum pox virus (PPV, family Potyviridae) is one of the most important viral pathogens of Prunus spp. causing considerable damage to stone-fruit industry worldwide. Among the PPV strains identified so far, only PPV-C, PPV-CR, and PPV-CV are able to infect cherries under natural conditions. Herein, we evaluated the pathogenic potential of two viral isolates in herbaceous host Nicotiana benthamiana. Significantly higher accumulation of PPV capsid protein in tobacco leaves infected with PPV-CR (RU-30sc isolate) was detected in contrast to PPV-C (BY-101 isolate). This result correlated well with the symptoms observed in the infected plants. To further explore the host response upon viral infection at the molecular level, a comprehensive proteomic profiling was performed. Using reverse-phase ultra-high-performance liquid chromatography followed by label-free mass spectrometry quantification, we identified 38 unique plant proteins as significantly altered due to the infection. Notably, the abundances of photosynthesis-related proteins, mainly from the Calvin-Benson cycle, were found more aggressively affected in plants infected with PPV-CR isolate than those of PPV-C. This observation was accompanied by a significant reduction in the amount of photosynthetic pigments extracted from the leaves of PPV-CR infected plants. Shifts in the abundance of proteins that are involved in stimulation of photosynthetic capacity, modification of amino acid, and carbohydrate metabolism may affect plant growth and initiate energy formation via gluconeogenesis in PPV infected N. benthamiana. Furthermore, we suggest that the higher accumulation of H2O2 in PPV-CR infected leaves plays a crucial role in plant defense and development by activating the glutathione synthesis.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Maksym Danchenko
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Ludovit Skultety
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
- Institute of Microbiology , The Czech Academy of Sciences , Videnska 1083 , 142 20 Prague , Czech Republic
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Alexandra Lešková
- Plant Science and Biodiversity Center, Institute of Botany , Slovak Academy of Sciences , Dubravska cesta 9 , 845 23 Bratislava , Slovak Republic
| | - Gábor Beke
- Institute of Molecular Biology , Slovak Academy of Sciences , Dúbravská cesta 21 , 845 51 Bratislava , Slovak Republic
| | - Gabriela Flores-Ramírez
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| | - Miroslav Glasa
- Biomedical Research Center, Institute of Virology , Slovak Academy of Sciences , Dubravska cesta 9 , 845 05 Bratislava , Slovak Republic
| |
Collapse
|
27
|
Ding H, He J, Wu Y, Wu X, Ge C, Wang Y, Zhong S, Peiter E, Liang J, Xu W. The Tomato Mitogen-Activated Protein Kinase SlMPK1 Is as a Negative Regulator of the High-Temperature Stress Response. PLANT PHYSIOLOGY 2018; 177:633-651. [PMID: 29678861 PMCID: PMC6001329 DOI: 10.1104/pp.18.00067] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
High-temperature (HT) stress is a major environmental stress that limits plant growth and development. MAPK cascades play key roles in plant growth and stress signaling, but their involvement in the HT stress response is poorly understood. Here, we describe a 47-kD MBP-phosphorylated protein (p47-MBPK) activated in tomato (Solanum lycopersicum) leaves under HT and identify it as SlMPK1 by tandem mass spectrometry analysis. Silencing of SlMPK1 in transgenic tomato plants resulted in enhanced tolerance to HT, while overexpression resulted in reduced tolerance. Proteomic analysis identified a set of proteins involved in antioxidant defense that are significantly more abundant in RNA interference-SlMPK1 plants than nontransgenic plants under HT stress. RNA interference-SlMPK1 plants also showed changes in membrane lipid peroxidation and antioxidant enzyme activities. Furthermore, using yeast two-hybrid screening, we identified a serine-proline-rich protein homolog, SlSPRH1, which interacts with SlMPK1 in yeast, in plant cells, and in vitro. We demonstrate that SlMPK1 can directly phosphorylate SlSPRH1. Furthermore, the serine residue serine-44 of SlSPRH1 is a crucial phosphorylation site in the SlMPK1-mediated antioxidant defense mechanism activated during HT stress. We also demonstrate that heterologous expression of SlSPRH1 in Arabidopsis (Arabidopsis thaliana) led to a decrease in thermotolerance and lower antioxidant capacity. Taken together, our results suggest that SlMPK1 is a negative regulator of thermotolerance in tomato plants. SlMPK1 acts by regulating antioxidant defense, and its substrate SlSPRH1 is involved in this pathway.
Collapse
Affiliation(s)
- Haidong Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jie He
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxia Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Cailin Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yijun Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Silin Zhong
- School of Life Sciences, Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06099, Germany
| | - Jiansheng Liang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weifeng Xu
- Center for Plant Water Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crops, Fujian Agriculture and Forestry University, Jinshan Fuzhou 350002, China
| |
Collapse
|
28
|
Saini S, Kaur N, Pati PK. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice. Anal Biochem 2018; 550:99-108. [PMID: 29704477 DOI: 10.1016/j.ab.2018.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/12/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H2O2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
29
|
Zhao Q, Liu C. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis. Front Mol Biosci 2018; 4:98. [PMID: 29404339 PMCID: PMC5780408 DOI: 10.3389/fmolb.2017.00098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/28/2017] [Indexed: 11/13/2022] Open
Abstract
Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead to successful reconstitution of eukaryotic Rubisco in vitro.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. J Proteomics 2017; 170:1-13. [PMID: 28986270 DOI: 10.1016/j.jprot.2017.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/18/2017] [Accepted: 09/24/2017] [Indexed: 02/06/2023]
Abstract
Drought stress, a major abiotic stress, commonly occurs in metal-contaminated environments and affects crop growth and yield. In this study, we performed the first integrated phenotypic, physiological, and proteomic analysis of Brachypodium distachyon L. seedling leaves under polyethylene glycol (PEG) mock osmotic stress, cadmium (Cd2+), and their combined stresses. Combined osmotic and Cd2+ stress had more significant effects than each individual stress on seedling growth, and the physiological traits and ultrastructures of leaves. Totally 117 differentially accumulated protein (DAP) spots detected by two-dimensional difference gel electrophoresis (2D-DIGE) were identified, and representing 89 unique proteins under individual and combined stresses. These DAPs were involved in photosynthesis/respiration (34%), energy and carbon metabolism (21%), stress/defense/detoxification (13%), protein folding and degradation (12%), and amino acid metabolism (7%). Principal component analysis (PCA) revealed that DAPs from the Cd2+ and combined stresses grouped much closer than those from osmotic stress, indicating Cd2+ and combined stresses resulted in more changes to the leaf proteome than osmotic stress alone. Protein-protein interaction analyses showed that a 14-3-3 centered sub-network could play important roles in responses to abiotic stresses. An overview pathway of proteome metabolic changes in Bd21 seedling leaves under combined stresses is proposed, representing a synergistic responsive network and underlying response and defense mechanisms. SIGNIFICANCE Drought stress is one of the major abiotic stresses, which commonly occurs in metal-contaminated environments, and affects crop growth and yield performance. We performed the first integrated phenotypic, physiological and proteomic analysis of Brachypodium distachyon L. seedling leaves under drought (PEG), cadmium (Cd2+) and their combined stresses.
Collapse
|
31
|
Comparative analysis of constitutive proteome between resistant and susceptible tomato genotypes regarding to late blight. Funct Integr Genomics 2017; 18:11-21. [DOI: 10.1007/s10142-017-0570-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
|
32
|
Garcia-Molina A, Altmann M, Alkofer A, Epple PM, Dangl JL, Falter-Braun P. LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1185-1197. [PMID: 28207043 PMCID: PMC5441861 DOI: 10.1093/jxb/erw498] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In natural environments, plants often experience different stresses simultaneously, and adverse abiotic conditions can weaken the plant immune system. Interactome mapping revealed that the LOW SULPHUR UPREGULATED (LSU) proteins are hubs in an Arabidopsis protein interaction network that are targeted by virulence effectors from evolutionarily diverse pathogens. Here we show that LSU proteins are up-regulated in several abiotic and biotic stress conditions, such as nutrient depletion or salt stress, by both transcriptional and post-translational mechanisms. Interference with LSU expression prevents chloroplastic reactive oxygen species (ROS) production and proper stomatal closure during sulphur stress. We demonstrate that LSU1 interacts with the chloroplastic superoxide dismutase FSD2 and stimulates its enzymatic activity in vivo and in vitro. Pseudomonas syringae virulence effectors interfere with this interaction and preclude re-localization of LSU1 to chloroplasts. We demonstrate that reduced LSU levels cause a moderately enhanced disease susceptibility in plants exposed to abiotic stresses such as nutrient deficiency, high salinity, or heavy metal toxicity, whereas LSU1 overexpression confers significant disease resistance in several of these conditions. Our data suggest that the network hub LSU1 plays an important role in co-ordinating plant immune responses across a spectrum of abiotic stress conditions.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Technische Universität München (TUM), School for Life Sciences Weihenstephan (WZW), Plant Systems Biology, Emil-Ramann-Straße, 4, D-85354 Freising, Germany
| | - Melina Altmann
- Technische Universität München (TUM), School for Life Sciences Weihenstephan (WZW), Plant Systems Biology, Emil-Ramann-Straße, 4, D-85354 Freising, Germany
| | - Angela Alkofer
- Technische Universität München (TUM), School for Life Sciences Weihenstephan (WZW), Plant Systems Biology, Emil-Ramann-Straße, 4, D-85354 Freising, Germany
| | - Petra M Epple
- Howard Hughes Medical Institute and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- BASF Plant Science LP, Research Triangle Park, NC 27709, USA
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Helmholtz Zentrum München (HMGU), German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Department of Microbe-Host Interactions, Ludwig-Maximilians-Universität München (LMU Munich), Planegg-Martinsried, Germany
| |
Collapse
|
33
|
Gupta R, Lee SJ, Min CW, Kim SW, Park KH, Bae DW, Lee BW, Agrawal GK, Rakwal R, Kim ST. Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max. J Proteomics 2016; 148:65-74. [PMID: 27474340 DOI: 10.1016/j.jprot.2016.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED Leaf senescence is the last stage of leaf development that re-mobilizes nutrients from the source to sink. Here, we have utilized the soybean as a model system to unravel senescence-associated proteins (SAPs). A comparative proteomics approach was used at two contrasting stages of leaf development, namely mature (R3) and senescent (R7). Selection criteria for these two stages were the contrasting differences in their biochemical parameters - chlorophyll, carotenoids and malondialdehyde contents. Proteome analysis involved subjecting the total leaf proteins to 15% poly-ethylene glycol (PEG) pre-fractional method to enrich the low-abundance proteins (LAPs) and their analyses by gel-based 2-DE and 1-DE shotgun proteomics approaches. 2-DE profiling of PEG-supernatant and -pellet fractions detected 153 differential spots between R3 and R7 stages, of which 102 proteins were identified. In parallel, 1-DE shotgun proteomics approach identified 598 and 534 proteins in supernatant and pellet fractions of R3 and R7 stages, respectively. MapMan and Gene Ontology analyses showed increased abundance and/or specific accumulation of proteins related to jasmonic acid biosynthesis and defense, while proteins associated with photosynthesis and ROS-detoxification were decreased during leaf senescence. These findings and the generated datasets further our understanding on leaf senescence at protein level, providing a resource for the scientific community. BIOLOGICAL SIGNIFICANCE Leaf senescence is a major biological event in the life cycle of plants that leads to the recycling of nutrients. However, the molecular mechanisms underlying leaf senescence still remain poorly understood. Here, we used a combination of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deeper into the leaf senescence proteome using soybean leaf as a model experimental material. For the identification of low-abundance proteins, polyethylene glycol (PEG) fractionation was employed and both PEG-supernatant and -pellet fractions were utilized for 2-DE and shotgun proteomic analysis. A total of 1234 (102 from 2-DE and 1132 from 1-DE shotgun proteome analysis) proteins were identified which were functionally annotated using GO and MapMan bioinformatics tools. Our results also emphasize the role of jasmonic acid in soybean leaf senescence.
Collapse
Affiliation(s)
- Ravi Gupta
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Su Ji Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - So Wun Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea
| | - Ki-Hun Park
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong-Won Bae
- Center for Research Facilities, Gyeongsang National University, Jinju, Republic of Korea
| | - Byong Won Lee
- Department of Functional Crops, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Miryang 627-803, Republic of Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 13265, Kathmandu, Nepal; GRADE Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan; Global Research Center for Innovative Life Science, Peptide Drug Innovation, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41 Ebara 2-chome, Shinagawa, Tokyo 142-8501, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 627-707, Republic of Korea.
| |
Collapse
|
34
|
Ma X, Huang B. Gibberellin-Stimulation of Rhizome Elongation and Differential GA-Responsive Proteomic Changes in Two Grass Species. FRONTIERS IN PLANT SCIENCE 2016; 7:905. [PMID: 27446135 PMCID: PMC4917561 DOI: 10.3389/fpls.2016.00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 05/10/2023]
Abstract
Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; 'BR') and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; 'Baron') were treated with 10 μM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth.
Collapse
Affiliation(s)
- Xiqing Ma
- College of Agro-grassland Science, Nanjing Agricultural University, NanjingChina
- Department of Plant Biology and Pathology, State University of New Jersey, New Brunswick, NJUSA
| | - Bingru Huang
- Department of Plant Biology and Pathology, State University of New Jersey, New Brunswick, NJUSA
| |
Collapse
|
35
|
Kaur N, Dhawan M, Sharma I, Pati PK. Interdependency of Reactive Oxygen Species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice. BMC PLANT BIOLOGY 2016; 16:131. [PMID: 27286833 PMCID: PMC4901479 DOI: 10.1186/s12870-016-0824-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/27/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Salinity stress is a major constrain in the global rice production and hence serious efforts are being undertaken towards deciphering its remedial strategies. The comparative analysis of differential response of salt sensitive and salt tolerant lines is a judicious approach to obtain essential clues towards understanding the acquisition of salinity tolerance in rice plants. However, adaptation to salt stress is a fairly complex process and operates through different mechanisms. Among various mechanisms involved, the reactive oxygen species mediated salinity tolerance is believed to be critical as it evokes cascade of responses related to stress tolerance. In this background, the present paper for the first time evaluates the ROS generating and the scavenging system in tandem in both salt sensitive and salt tolerant cultivars of rice for getting better insight into salinity stress adaptation. RESULTS Comparative analysis of ROS indicates the higher level of hydrogen peroxide (H2O2) and lower level of superoxide ions (O(2-)) in the salt tolerant as compared to salt sensitive cultivars. Specific activity of ROS generating enzyme, NADPH oxidase was also found to be more in the tolerant cultivars. Further, activities of various enzymes involved in enzymatic and non enzymatic antioxidant defence system were mostly higher in tolerant cultivars. The transcript level analysis of antioxidant enzymes were in alignment with the enzymatic activity. Other stress markers like proline were observed to be higher in tolerant varieties whereas, the level of malondialdehyde (MDA) equivalents and chlorophyll content were estimated to be more in sensitive. CONCLUSION The present study showed significant differences in the level of ROS production and antioxidant enzymes activities among sensitive and tolerant cultivars, suggesting their possible role in providing natural salt tolerance to selected cultivars of rice. Our study demonstrates that the cellular machinery for ROS production and scavenging system works in an interdependent manner to offer better salt stress adaptation in rice. The present work further highlights that the elevated level of H2O2 which is considered as a key determinant for conferring salt stress tolerance to rice might have originated through an alternative route of photocatalytic activity of chlorophyll.
Collapse
Affiliation(s)
- Navdeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Manish Dhawan
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Isha Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Oral biology, Augusta University, Augusta, GA, USA
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
36
|
Noctor G, Mhamdi A, Foyer CH. Oxidative stress and antioxidative systems: recipes for successful data collection and interpretation. PLANT, CELL & ENVIRONMENT 2016; 39:1140-60. [PMID: 26864619 DOI: 10.1111/pce.12726] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 05/18/2023]
Abstract
Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of plants. Enormous and ever-growing interest has focused on this research area, leading to an extensive literature that documents the tremendous progress made in recent years. As in other areas of plant biology, advances have been greatly facilitated by developments in genomics-dependent technologies and the application of interdisciplinary techniques that generate information at multiple levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of biochemical and cell biology techniques that are specific to the study of oxidative stress. It is therefore timely to revisit these approaches with the aim of providing a guide to convenient methods and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently popular methodologies includes a detailed discussion of approaches used to generate oxidative stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of antioxidative enzymes and marker transcripts for oxidative stress. We consider the applicability of metabolomics, proteomics and transcriptomics approaches and discuss markers such as damage to DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological developments within this popular research field.
Collapse
Affiliation(s)
- Graham Noctor
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
| | - Amna Mhamdi
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405, Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB, Department of Plant Systems Biology, Technologie Park 927, B-9052, Ghent, Belgium
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology and Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
37
|
Park KY, Kim EY, Lee W, Kim TY, Kim WT. Expression, subcellular localization, and enzyme activity of a recombinant human extra-cellular superoxide dismutase in tobacco (Nicotiana benthamiana L.). Protein Expr Purif 2016; 119:69-74. [PMID: 26611610 DOI: 10.1016/j.pep.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022]
Abstract
Human extracellular superoxide dismutase (hEC-SOD) is an enzyme that scavenges reactive oxygen species (ROS). Because of its antioxidant activity, hEC-SOD has been used as a therapeutic protein to treat skin disease and arthritis in mammalian systems. In this study, codon-optimized hEC-SOD was expressed in tobacco (Nicotiana benthamiana L.) via a plant-based transient protein expression system. Plant expression binary vectors containing full-length hEC-SOD (f-hEC-SOD) and modified hEC-SOD (m-hEC-SOD), in which the signal peptide and heparin-binding domain were deleted, were constructed for the cytosolic-, endoplasmic reticulum (ER)-, and chloroplast-localizations in tobacco leaf mesophyll cells. The results demonstrated that f-hEC-SOD was more efficiently expressed in the cytosolic fractions than in the ER or chloroplasts of tobacco cells. Our data further indicated that differently localized f-hEC-SOD and m-hEC-SOD displayed SOD enzyme activities, suggesting that the hEC-SODs expressed by plants may be functionally active. The f-hEC-SOD was expressed up to 3.8% of the total leaf soluble protein and the expression yield was calculated to be 313.7 μg f-hEC-SOD per g fresh weight of leaf. Overall, our results reveal that it was possible to express catalytically active hEC-SODs by means of a transient plant expression system in tobacco leaf cells.
Collapse
Affiliation(s)
- Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Weontae Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Tae-Yoon Kim
- Laboratory of Dermatology-immunology, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
38
|
Zhang HD, Cui YL, Huang C, Yin QQ, Qin XM, Xu T, He XF, Zhang Y, Li ZR, Yang ZN. PPR protein PDM1/SEL1 is involved in RNA editing and splicing of plastid genes in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2015; 126:311-21. [PMID: 26123918 DOI: 10.1007/s11120-015-0171-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/22/2015] [Indexed: 05/10/2023]
Abstract
After transcription, most chloroplast precursor RNAs undergo further post-transcriptional processing including cleavage, editing, and splicing. Previous investigation has shown that the cleavage of the rpoA transcript and most editing sites, including accD-1, are defective in the knockout mutant of PDM1/SEL1, a PLS-type PPR protein, and that PDM1 is associated with the rpoA transcript. In this work, we found that the splicing of group II introns in trnK and ndhA is also affected in pdm1. Co-immunoprecipitation mass spectrometry experiments were performed to identify proteins that are associated with PDM1. We obtained 126 non-redundant proteins, of which MORF9 was reported to be involved in RNA editing in chloroplast. Yeast two-hybrid assays showed that PDM1 interacts directly with MORF9, MORF2, and MORF8. RNA immunoprecipitation showed that PDM1 associates with the transcripts of trnK and ndhA, as well as accD-1, suggesting that PDM1 is involved in RNA editing and splicing. Therefore, PDM1 is an important protein for post-transcriptional regulation in chloroplast.
Collapse
Affiliation(s)
- Hong-Dao Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yong-Lan Cui
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qian-Qian Yin
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Mei Qin
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Te Xu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Fang He
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zi-Ran Li
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
39
|
Guo P, Jiang S, Bai C, Zhang W, Zhao Q, Liu C. Asymmetric functional interaction between chaperonin and its plastidic cofactors. FEBS J 2015; 282:3959-70. [DOI: 10.1111/febs.13390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/07/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Peng Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Shan Jiang
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Cuicui Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Wenjuan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
| | - Qian Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
- University of Chinese Academy of Sciences; Beijing China
| | - Cuimin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
40
|
Gas-Pascual E, Simonovik B, Heintz D, Bergdoll M, Schaller H, Bach TJ. Inhibition of Cycloartenol Synthase (CAS) Function in Tobacco BY-2 Cell Suspensions: A Proteomic Analysis. Lipids 2015; 50:773-84. [PMID: 26123692 DOI: 10.1007/s11745-015-4041-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023]
Abstract
The effect of an inhibitor of cycloartenol synthase (CAS, EC 5.4.99.8) on the proteome of tobacco BY-2 cells has been examined. CAS catalyzes the first committed step in phytosterol synthesis in plants. BY-2 cells were treated with RO 48-8071, a potent inhibitor of oxidosqualene cyclization. Proteins were separated by two-dimensional electrophoresis and spots, that clearly looked differentially accumulated after visual inspection, were cut, in-gel trypsin digested, and peptides were analyzed by nano-HPLC-MS/MS. Distinct peptides were compared to sequences in the data banks and attributed to corresponding proteins and genes. Inhibition of CAS induced proteins that appear to mitigate the negative effects of the chemical exposure. However, as all enzymes that are directly involved in phytosterol biosynthesis are low-abundant proteins, significant changes in their levels could not be observed. Differences could be seen with enzymes involved in primary metabolism (glycolysis, pentose phosphate pathway etc.), in proteins of the chaperonin family, and those, like actin, that participate in formation and strengthening of the cytoskeleton and have some impact on cell growth and division.
Collapse
Affiliation(s)
- Elisabet Gas-Pascual
- Département Réseaux Métaboliques, Institut de Biologie Moléculaire des Plantes, CNRS UPR 2357, Université de Strasbourg, 28, rue Goethe, 67083, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
41
|
Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Mishra P, Sabat SC, Tuteja N. Superoxide dismutase--mentor of abiotic stress tolerance in crop plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10375-94. [PMID: 25921757 DOI: 10.1007/s11356-015-4532-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/12/2015] [Indexed: 05/20/2023]
Abstract
Abiotic stresses impact growth, development, and productivity, and significantly limit the global agricultural productivity mainly by impairing cellular physiology/biochemistry via elevating reactive oxygen species (ROS) generation. If not metabolized, ROS (such as O2 (•-), OH(•), H2O2, or (1)O2) exceeds the status of antioxidants and cause damage to DNA, proteins, lipids, and other macromolecules, and finally cellular metabolism arrest. Plants are endowed with a family of enzymes called superoxide dismutases (SODs) that protects cells against potential consequences caused by cytotoxic O2 (•-) by catalyzing its conversion to O2 and H2O2. Hence, SODs constitute the first line of defense against abiotic stress-accrued enhanced ROS and its reaction products. In the light of recent reports, the present effort: (a) overviews abiotic stresses, ROS, and their metabolism; (b) introduces and discusses SODs and their types, significance, and appraises abiotic stress-mediated modulation in plants; (c) analyzes major reports available on genetic engineering of SODs in plants; and finally, (d) highlights major aspects so far least studied in the current context. Literature appraised herein reflects clear information paucity in context with the molecular/genetic insights into the major functions (and underlying mechanisms) performed by SODs, and also with the regulation of SODs by post-translational modifications. If the previous aspects are considered in the future works, the outcome can be significant in sustainably improving plant abiotic stress tolerance and efficiently managing agricultural challenges under changing climatic conditions.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, MD University, Rohtak, Haryana, 124001, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Trösch R, Mühlhaus T, Schroda M, Willmund F. ATP-dependent molecular chaperones in plastids--More complex than expected. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:872-88. [PMID: 25596449 DOI: 10.1016/j.bbabio.2015.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 11/27/2022]
Abstract
Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Raphael Trösch
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany; HU Berlin, Institute of Biology, Chausseestraße 117, 10115 Berlin, Germany; TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Timo Mühlhaus
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Michael Schroda
- TU Kaiserslautern, Molecular Biotechnology & Systems Biology, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| | - Felix Willmund
- TU Kaiserslautern, Molecular Genetics of Eukaryotes, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany.
| |
Collapse
|
43
|
Takáč T, Šamajová O, Vadovič P, Pechan T, Košútová P, Ovečka M, Husičková A, Komis G, Šamaj J. Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant. J Proteome Res 2014; 13:5347-61. [PMID: 25325904 PMCID: PMC4423761 DOI: 10.1021/pr500588c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Disentanglement of functional complexity associated with plant mitogen-activated protein kinase (MAPK) signaling has benefited from transcriptomic, proteomic, phosphoproteomic, and genetic studies. Published transcriptomic analysis of a double homozygous recessive anp2anp3 mutant of two MAPK kinase kinase (MAPKKK) genes called Arabidopsis thaliana Homologues of Nucleus- and Phragmoplast-localized Kinase 2 (ANP2) and 3 (ANP3) showed the upregulation of stress-related genes. In this study, a comparative proteomic analysis of anp2anp3 mutant against its respective Wassilevskaja ecotype (Ws) wild type background is provided. Such differential proteomic analysis revealed overabundance of core enzymes such as FeSOD1, MnSOD, DHAR1, and FeSOD1-associated regulatory protein CPN20, which are involved in the detoxification of reactive oxygen species in the anp2anp3 mutant. The proteomic results were validated at the level of single protein abundance by Western blot analyses and by quantitative biochemical determination of antioxidant enzymatic activities. Finally, the functional network of proteins involved in antioxidant defense in the anp2anp3 mutant was physiologically linked with the increased resistance of mutant seedlings against paraquat treatment.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Pavol Vadovič
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Petra Košútová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
44
|
Abstract
The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa.
Collapse
|
45
|
Vitlin Gruber A, Nisemblat S, Azem A, Weiss C. The complexity of chloroplast chaperonins. TRENDS IN PLANT SCIENCE 2013; 18:688-94. [PMID: 24035661 DOI: 10.1016/j.tplants.2013.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/29/2013] [Accepted: 08/07/2013] [Indexed: 05/07/2023]
Abstract
Type I chaperonins are large oligomeric protein ensembles that are involved in the folding and assembly of other proteins. Chloroplast chaperonins and co-chaperonins exist in multiple copies of two distinct isoforms that can combine to form a range of labile oligomeric structures. This complex system increases the potential number of chaperonin substrates and possibilities for regulation. The incorporation of unique subunits into the oligomer can modify substrate specificity. Some subunits are upregulated in response to heat shock and some show organ-specific expression, whereas others possess additional functions that are unrelated to their role in protein folding. Accumulating evidence suggests that specific subunits have distinct roles in biogenesis of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco).
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
46
|
Szechyńska-Hebda M, Karpiński S. Light intensity-dependent retrograde signalling in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1501-16. [PMID: 23850030 DOI: 10.1016/j.jplph.2013.06.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 05/23/2023]
Abstract
Plants are able to acclimate to highly fluctuating light environment and evolved a short- and long-term light acclimatory responses, that are dependent on chloroplasts retrograde signalling. In this review we summarise recent evidences suggesting that the chloroplasts act as key sensors of light intensity changes in a wide range (low, high and excess light conditions) as well as sensors of darkness. They also participate in transduction and synchronisation of systemic retrograde signalling in response to differential light exposure of distinct leaves. Regulation of intra- and inter-cellular chloroplast retrograde signalling is dependent on the developmental and functional stage of the plastids. Therefore, it is discussed in following subsections: firstly, chloroplast biogenic control of nuclear genes, for example, signals related to photosystems and pigment biogenesis during early plastid development; secondly, signals in the mature chloroplast induced by changes in photosynthetic electron transport, reactive oxygen species, hormones and metabolite biosynthesis; thirdly, chloroplast signalling during leaf senescence. Moreover, with a help of meta-analysis of multiple microarray experiments, we showed that the expression of the same set of genes is regulated specifically in particular types of signals and types of light conditions. Furthermore, we also highlight the alternative scenarios of the chloroplast retrograde signals transduction and coordination linked to the role of photo-electrochemical signalling.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland; Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warszawa, Poland
| | | |
Collapse
|
47
|
Zhang XF, Jiang T, Wu Z, Du SY, Yu YT, Jiang SC, Lu K, Feng XJ, Wang XF, Zhang DP. Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis. PLANT MOLECULAR BIOLOGY 2013; 83:205-18. [PMID: 23783410 PMCID: PMC3777161 DOI: 10.1007/s11103-013-0082-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 05/26/2013] [Indexed: 05/08/2023]
Abstract
Previous study showed that the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR) positively regulates abscisic acid (ABA) signaling. Here, we investigated the functions of a CHLH/ABAR interaction protein, the chloroplast co-chaperonin 20 (CPN20) in ABA signaling in Arabidopsis thaliana. We showed that down-expression of the CPN20 gene increases, but overexpression of the CPN20 gene reduces, ABA sensitivity in the major ABA responses including ABA-induced seed germination inhibition, postgermination growth arrest, promotion of stomatal closure and inhibition of stomatal opening. Genetic evidence supports that CPN20 functions downstream or at the same node of CHLH/ABAR, but upstream of the WRKY40 transcription factor. The other CPN20 interaction partners CPN10 and CPN60 are not involved in ABA signaling. Our findings show that CPN20 functions negatively in the ABAR-WRKY40 coupled ABA signaling independently of its co-chaperonin role, and provide a new insight into the role of co-chaperones in the regulation of plant responses to environmental cues.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Tao Jiang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhen Wu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Shu-Yuan Du
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Yong-Tao Yu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Shang-Chuan Jiang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Kai Lu
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiu-Jing Feng
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
48
|
Sehrawat A, Abat JK, Deswal R. RuBisCO depletion improved proteome coverage of cold responsive S-nitrosylated targets in Brassica juncea. FRONTIERS IN PLANT SCIENCE 2013; 4:342. [PMID: 24032038 PMCID: PMC3759006 DOI: 10.3389/fpls.2013.00342] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/13/2013] [Indexed: 05/21/2023]
Abstract
Although in the last few years good number of S-nitrosylated proteins are identified but information on endogenous targets is still limiting. Therefore, an attempt is made to decipher NO signaling in cold treated Brassica juncea seedlings. Treatment of seedlings with substrate, cofactor and inhibitor of Nitric-oxide synthase and nitrate reductase (NR), indicated NR mediated NO biosynthesis in cold. Analysis of the in vivo thiols showed depletion of low molecular weight thiols and enhancement of available protein thiols, suggesting redox changes. To have a detailed view, S-nitrosylation analysis was done using biotin switch technique (BST) and avidin-affinity chromatography. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is S-nitrosylated and therefore, is identified as target repeatedly due to its abundance. It also competes out low abundant proteins which are important NO signaling components. Therefore, RuBisCO was removed (over 80%) using immunoaffinity purification. Purified S-nitrosylated RuBisCO depleted proteins were resolved on 2-D gel as 110 spots, including 13 new, which were absent in the crude S-nitrosoproteome. These were identified by nLC-MS/MS as thioredoxin, fructose biphosphate aldolase class I, myrosinase, salt responsive proteins, peptidyl-prolyl cis-trans isomerase and malate dehydrogenase. Cold showed differential S-nitrosylation of 15 spots, enhanced superoxide dismutase activity (via S-nitrosylation) and promoted the detoxification of superoxide radicals. Increased S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase sedoheptulose-biphosphatase, and fructose biphosphate aldolase, indicated regulation of Calvin cycle by S-nitrosylation. The results showed that RuBisCO depletion improved proteome coverage and provided clues for NO signaling in cold.
Collapse
Affiliation(s)
| | | | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of DelhiDelhi, India
| |
Collapse
|
49
|
Kuo WY, Huang CH, Jinn TL. Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD). PLANT SIGNALING & BEHAVIOR 2013; 8:e23074. [PMID: 23299425 PMCID: PMC3657002 DOI: 10.4161/psb.23074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 11/30/2012] [Accepted: 11/30/2012] [Indexed: 05/20/2023]
Abstract
Activation of Cu/Zn superoxide dismutases (CuZnSODs) is aided by Cu incorporation and disulfide isomerization by Cu chaperone of SOD (CCS). As well, an Fe-S cluster scaffold protein, ISU, might alter the incorporation of Fe or Mn into yeast MnSOD (ySOD2), thus leading to active or inactive ySOD2. However, metallochaperones involved in the activation of FeSODs are unknown. Recently, we found that a chloroplastic chaperonin cofactor, CPN20, could mediate FeSOD activity. To investigate whether Fe incorporation in FeSOD is affected by CPN20, we used inductively coupled plasma mass spectrometry to analyze the ability of CPN20 to bind Fe. CPN20 could bind Fe, and the Fe binding to FeSOD was increased with CPN20 incubation. Thus, CPN20 might be an Fe chaperone for FeSOD activation, a role independent of its well-known co-chaperonin activity.
Collapse
|
50
|
Vitlin Gruber A, Nisemblat S, Zizelski G, Parnas A, Dzikowski R, Azem A, Weiss C. P. falciparum cpn20 is a bona fide co-chaperonin that can replace GroES in E. coli. PLoS One 2013; 8:e53909. [PMID: 23326533 PMCID: PMC3542282 DOI: 10.1371/journal.pone.0053909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 02/05/2023] Open
Abstract
Human malaria is among the most ubiquitous and destructive tropical, parasitic diseases in the world today. The causative agent, Plasmodium falciparum, contains an unusual, essential organelle known as the apicoplast. Inhibition of this degenerate chloroplast results in second generation death of the parasite and is the mechanism by which antibiotics function in treating malaria. In order to better understand the biochemistry of this organelle, we have cloned a putative, 20 kDa, co-chaperonin protein, Pf-cpn20, which localizes to the apicoplast. Although this protein is homologous to the cpn20 that is found in plant chloroplasts, its ability to function as a co-chaperonin was questioned in the past. In the present study, we carried out a structural analysis of Pf-cpn20 using circular dichroism and analytical ultracentrifugation and then used two different approaches to investigate the ability of this protein to function as a co-chaperonin. In the first approach, we purified recombinant Pf-cpn20 and tested its ability to act as a co-chaperonin for GroEL in vitro, while in the second, we examined the ability of Pf-cpn20 to complement an E. coli depletion of the essential bacterial co-chaperonin GroES. Our results demonstrate that Pf-cpn20 is fully functional as a co-chaperonin in vitro. Moreover, the parasitic co-chaperonin is able to replace GroES in E. coli at both normal and heat-shock temperatures. Thus, Pf-cpn20 functions as a co-chaperonin in chaperonin-mediated protein folding. The ability of the malarial protein to function in E. coli suggests that this simple system can be used as a tool for further analyses of Pf-cpn20 and perhaps other chaperone proteins from P. falciparum.
Collapse
Affiliation(s)
- Anna Vitlin Gruber
- George E. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|