1
|
Tariq M, Ozbek P, Moin ST. Hydration modulates oxygen channel residues for oxygenation of cysteine dioxygenase: Perspectives from molecular dynamics simulations. J Mol Graph Model 2021; 110:108060. [PMID: 34768230 DOI: 10.1016/j.jmgm.2021.108060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Cysteine dioxygenase (CDO) regulates the concentration of l-cysteine substrate by its oxidation in the body to prevent different diseases, including neurodegenerative and autoimmune diseases. CDO catalyzes the oxidation of thiol group of l-cysteine to l-cysteine sulfinic acid using molecular oxygen. In this study, molecular dynamics simulations were applied to ligand-free CDO, cysteine-bound CDO, and oxygen-bound CDO-cysteine complex which were primarily subjected to the evaluation of their structural and dynamical properties. The simulation data provided significant information not only on the conformational changes of the enzyme after its ligation but also on the co-ligation by sequential binding of l-cysteine and molecular oxygen. It was found that the ligation and co-ligation perturbed the active site region as well as the overall protein dynamics which were analyzed in terms of root mean square deviation, root mean square fluctuation and dynamic cross correlation matrices as well as principal component analysis. Furthermore, oxygen transport pathways were successfully explored by taking various tunnel clusters into account and one of those clusters was given preference based on the throughput value. The bottleneck formed by different amino acid residues was examined to figure out their role in the oxygenation process of the enzyme. The residues forming the tunnel's bottleneck and their dynamics mediated by water molecules were further investigated using radial distribution functions which gave insights into the hydration behavior of these residues. The findings based on the hydration behavior in turn served to explore the water-mediated dynamics of these residues in the modulation of the pathway, including tunnel gating for the oxygen entry and diffusion to the active site, which is essential for the CDO's catalytic function.
Collapse
Affiliation(s)
- Muhammad Tariq
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, 34722, Turkey.
| | - Syed Tarique Moin
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
2
|
Swanepoel AC, Bester J, Emmerson O, Soma P, Beukes D, van Reenen M, Loots DT, du Preez I. Serum Metabolome Changes in Relation to Prothrombotic State Induced by Combined Oral Contraceptives with Drospirenone and Ethinylestradiol. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:404-414. [PMID: 32471328 DOI: 10.1089/omi.2020.0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The association between hypercoagulability and use of drospirenone (DRSP) and ethinylestradiol (EE) containing combined oral contraceptives (COCs) is an important clinical concern. We have previously reported that the two formulations of DRSP combined with EE (namely, DRSP/20EE and DRSP/30EE) bring about a prothrombotic state in hemostatic traits of female users. We report here the serum metabolomic changes in the same study cohort in relation to the attendant prothrombotic state induced by COC use, thus offering new insights on the underlying biochemical mechanisms contributing to the altered coagulatory profile with COC use. A total of 78 healthy women participated in this study and were grouped as follows: control group not using oral contraceptives (n = 25), DRSP/20EE group (n = 27), and DRSP/30EE group (n = 26). Untargeted metabolomics revealed changes in amino acid concentrations, particularly a decrease in glycine and an increase in both cysteine and lanthionine in the serum, accompanied by variations in oxidative stress markers in the COC users compared with the controls. Of importance, this study is the first to link specific amino acid variations, serum metabolites, and the oxidative metabolic profile with DRSP/EE use. These molecular changes could be linked to specific biophysical coagulatory alterations observed in the same individuals. These new findings lend evidence on the metabolomic substrates of the prothrombotic state associated with COC use in women and informs future personalized/precision medicine research. Moreover, we underscore the importance of an interdisciplinary approach to evaluate venous thrombotic risk associated with COC use.
Collapse
Affiliation(s)
- Albe Carina Swanepoel
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Janette Bester
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Odette Emmerson
- Department of Physiology and Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Prashilla Soma
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Derylize Beukes
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ilse du Preez
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase. Amino Acids 2014; 47:55-63. [DOI: 10.1007/s00726-014-1843-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/18/2014] [Indexed: 10/24/2022]
|
4
|
Njeri CW, Ellis HR. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation. Arch Biochem Biophys 2014; 558:61-9. [PMID: 24929188 DOI: 10.1016/j.abb.2014.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 11/16/2022]
Abstract
Cysteine dioxygenase (CDO) is a mononuclear iron-dependent enzyme that catalyzes the oxidation of L-cysteine to L-cysteine sulfinic acid. The mammalian CDO enzymes contain a thioether crosslink between Cys93 and Tyr157, and purified recombinant CDO exists as a mixture of the crosslinked and non crosslinked isoforms. The current study presents a method of expressing homogenously non crosslinked CDO using a cell permeative metal chelator in order to provide a comprehensive investigation of the non crosslinked and crosslinked isoforms. Electron paramagnetic resonance analysis of purified non crosslinked CDO revealed that the iron was in the EPR silent Fe(II) form. Activity of non crosslinked CDO monitoring dioxygen utilization showed a distinct lag phase, which correlated with crosslink formation. Generation of homogenously crosslinked CDO resulted in an ∼5-fold higher kcat/Km value compared to the enzyme with a heterogenous mixture of crosslinked and non crosslinked CDO isoforms. EPR analysis of homogenously crosslinked CDO revealed that this isoform exists in the Fe(III) form. These studies present a new perspective on the redox properties of the active site iron and demonstrate that a redox switch commits CDO towards either formation of the Cys93-Tyr157 crosslink or oxidation of the cysteine substrate.
Collapse
Affiliation(s)
- Catherine W Njeri
- The Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University, Auburn, AL 36849, United States
| | - Holly R Ellis
- The Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
5
|
Wölfer J, Gorji A, Speckmann EJ, Wassmann H. Interstitial amino acid concentrations in rodent brain tissue during chemical ischemia. J Neurosci Res 2014; 92:955-63. [PMID: 24659017 DOI: 10.1002/jnr.23375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 11/08/2022]
Abstract
The significance of electrophysiological phenomena is well validated in brain ischemia research. A close link with interstitial amino acid levels has not been proved convincingly but is generally assumed. This has given widespread rise to the clinical method of amino acid, especially glutamate, microdialysis. We combined microdialytic and electrophysiological techniques in an in vitro ischemia model to test for such a correlation. Rodent hippocampal brain slices were subjected to various patterns of ischemic simulation by depletion of glucose and oxygen and to K+ superfusion, which is often used as an alternative stressor. Our data do not strengthen the significance of clinically standardized glutamate measurements, insofar as ischemia-induced damage was demonstrated by electrophysiology and histology before being clearly mirrored by interstitial glutamate levels. Taurine would be a more promising candidate. K+ is not an adequate substitute for ischemic simulation, because biochemical and electrophysiological reactions of the tissue are clearly different. In vitro microdialysis during ischemic simulation is feasible and might provide a tool to inquire into glial functions during ischemic stress. It is probably not able to elucidate processes within the synaptic cleft.
Collapse
Affiliation(s)
- Johannes Wölfer
- Klinik für Neurochirurgie am Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | | | | | | |
Collapse
|
6
|
CHE XIN, GAO JUN, DU LIKAI, LIU CHENGBU. THEORETICAL INVESTIGATION OF THE HIGH-SPIN "Fe-PROXIMAL OXYGEN" CATALYTIC MECHANISM OF RAT CYSTEINE DIOXYGENASE. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2013. [DOI: 10.1142/s0219633613500016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cysteine dioxygenase (CDO) catalyzes the oxidation of cysteine to cysteine sulfinate, which has crucial roles in the metabolism and bioconversion. The catalyzed reaction mechanism of CDO is currently disputed. Herein, a high-spin " Fe -proximal oxygen" catalytic mechanism of rat CDO is theoretically investigated with an energy barrier of 15.7 kcal⋅mol-1. In the mechanism, the Fe -proximal oxygen atom firstly attacks the sulfur atom of cysteine by the swing of O (1)– O (2) bond, and this makes the Fe -proximal oxygen atom O (1) accessible to S and Fe -terminal oxygen atom O (2) be closed to Fe . Then the generated seven-membered ring intermediate has smaller tension and could help the reaction take place easily. The reaction ends in the formation of the product cysteine sulfinic acid with the second oxygen atom O (2) transferred to S. This study gives an additional insight of the reaction mechanism of CDO, where the " Fe -proximal oxygen" and " Fe -terminal oxygen" mechanisms are both favorable in the catalytic process.
Collapse
Affiliation(s)
- XIN CHE
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - JUN GAO
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - LIKAI DU
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - CHENGBU LIU
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
7
|
Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes. PLoS One 2013; 8:e55646. [PMID: 23383255 PMCID: PMC3559474 DOI: 10.1371/journal.pone.0055646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/30/2012] [Indexed: 11/19/2022] Open
Abstract
Glutathione (GSH) is a negatively charged tripeptide, which is a major determinant of the cellular redox state and defense against oxidative stress. It is assembled inside and degraded outside the cells and is released under various physiological and pathophysiological conditions. The GSH release mechanism is poorly understood at present. In our experiments, freshly isolated rat thymocytes were found to release GSH under normal isotonic conditions at a low rate of 0.82±0.07 attomol/cell/min and that was greatly enhanced under hypoosomotic stimulation to reach a level of 6.1±0.4 attomol/cell/min. The swelling-induced GSH release was proportional to the cell density in the suspension and was temperature-dependent with relatively low activation energy of 5.4±0.6 kcal/mol indicating a predominant diffusion mechanism of GSH translocation. The osmosensitive release of GSH was significantly inhibited by blockers of volume-sensitive outwardly rectifying (VSOR) anion channel, DCPIB and phloretin. In patch-clamp experiments, osmotic swelling activated large anionic conductance with the VSOR channel phenotype. Anion replacement studies suggested that the thymic VSOR anion channel is permeable to GSH(-) with the permeability ratio P(GSH)/P(Cl) of 0.32 for influx and 0.10 for efflux of GSH. The osmosensitive GSH release was trans-stimulated by SLCO/OATP substrates, probenecid, taurocholic acid and estrone sulfate, and inhibited by an SLC22A/OAT blocker, p-aminohippuric acid (PAH). The inhibition by PAH was additive to the effect of DCPIB or phloretin implying that PAH and DCPIB/phloretin affected separate pathways. We suggest that the VSOR anion channel constitutes a major part of the γ-glutamyl cycle in thymocytes and, in cooperation with OATP-like and OAT-like transporters, provides a pathway for the GSH efflux from osmotically swollen cells.
Collapse
|
8
|
Jung HS, Pradhan T, Han JH, Heo KJ, Lee JH, Kang C, Kim JS. Molecular modulated cysteine-selective fluorescent probe. Biomaterials 2012; 33:8495-502. [PMID: 22906610 DOI: 10.1016/j.biomaterials.2012.08.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/05/2012] [Indexed: 12/25/2022]
Abstract
We have synthesized a series of coumarins (1-3) that can emit fluorescence in a turn-on manner through a Michael-type reaction with thiol-containing compounds. The only difference among the coumarins is the position of a carboxyl group on its benzene ring moiety near the double-bond conjugated coumarin. Their selectivity for Cys, GSH, and Hcy as well as the associated fluorogenic mechanism were illustrated by fluorescence spectroscopy, DFT calculations, and kinetic studies. All isomers prefer Cys over GSH in the reaction from 48.6 (probe 3) to 111-fold (probe 1) as demonstrated in a second order kinetics. The high selectivity of probe 1 to Cys might be achieved since the ortho carboxyl group on its benzene ring prefers a less negatively charged nucleophile. During intracellular Cys detection using 1, a possible interference by a large amount of GSH in the HepG2 cells was evaluated. The cells were treated with l-buthionine sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase, providing an experimental condition where the cells could not synthesize GSH from Cys or other species. Then, the fluorescence intensity of 1 in HepG2 cells under BSO-H(2)O(2) treatment was strongly enhanced by N-acetylcysteine (NAC), a precursor of Cys, implicating that the fluorescence signal from the cells is mainly associated with changes in intracellular [Cys] rather than that in intracellular [GSH].
Collapse
Affiliation(s)
- Hyo Sung Jung
- Department of Chemistry, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases. Amino Acids 2012; 44:391-404. [DOI: 10.1007/s00726-012-1342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/05/2012] [Indexed: 02/04/2023]
|
10
|
Che X, Gao J, Zhang D, Liu C. How Do the Thiolate Ligand and Its Relative Position Control the Oxygen Activation in the Cysteine Dioxygenase Model? J Phys Chem A 2012; 116:5510-7. [DOI: 10.1021/jp3001515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Che
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jun Gao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
11
|
Lin J, Lee IM, Song Y, Cook NR, Selhub J, Manson JE, Buring JE, Zhang SM. Plasma homocysteine and cysteine and risk of breast cancer in women. Cancer Res 2010; 70:2397-405. [PMID: 20197471 DOI: 10.1158/0008-5472.can-09-3648] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homocysteine and cysteine are associated with oxidative damage and metabolic disorders, which may lead to carcinogenesis. Observational studies assessing the association between circulating homocysteine or cysteine and breast cancer are very limited, and findings have been inconsistent. We prospectively evaluated plasma levels of homocysteine and cysteine in relation to breast cancer risk among 812 incident cases of invasive breast cancer and 812 individually matched control subjects from 28,345 women in the Women's Health Study; these women were >or=45 years old, provided blood samples, and had no history of cancer and cardiovascular disease at baseline. Logistic regression controlling for matching factors and risk factors for breast cancer was used to estimate relative risks (RR) and 95% confidence intervals (95% CI). All statistical tests were two sided. Homocysteine levels were not associated with overall risk for breast cancer. However, we observed a positive association between cysteine levels and breast cancer risk; the multivariate RR for the highest quintile group relative to the lowest quintile was 1.65 (95% CI, 1.04-2.61; P for trend = 0.04). In addition, women with higher levels of homocysteine and cysteine were at a greater risk for developing breast cancer when their folate levels were low (P for interaction = 0.04 and 0.002, respectively). Although our study offers little support for an association between circulating homocysteine and overall breast cancer risk, higher homocysteine levels may be associated with an increased risk for breast cancer among women with low folate status. The increased risk of breast cancer associated with high cysteine levels warrants further investigation.
Collapse
Affiliation(s)
- Jennifer Lin
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fekete A, Vizi ES, Kovács KJ, Lendvai B, Zelles T. Layer-specific differences in reactive oxygen species levels after oxygen-glucose deprivation in acute hippocampal slices. Free Radic Biol Med 2008; 44:1010-22. [PMID: 18206124 DOI: 10.1016/j.freeradbiomed.2007.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/19/2007] [Accepted: 11/25/2007] [Indexed: 11/15/2022]
Abstract
The major role of reactive oxygen species (ROS) in the pathomechanism of ischemia have been widely recognized. Still, measurements of the precise time course and regional distribution of ischemia-induced ROS level changes in acute brain slices have been missing. By using acute hippocampal slices and the fluorescent dye CM-H2DCFDA, we showed that reoxygenation after in vitro ischemia (oxygen-glucose deprivation; OGD) increased ROS levels in the hippocampal CA1 layers vulnerable to ischemia but did not have significant effects in the resistant stratum granulosum in the dentate gyrus (DG). Production of ROS started during OGD, but, contrary to reoxygenation, it manifested as a ROS level increase exclusively in the presence of catalase and glutathione peroxidase inhibition. The mechanism of ROS production involves the activation of NMDA receptors and nitric oxide synthases. The inhibition of ROS response by either AP-5 or L-NAME together with the ROS sensitivity profile of the dye suggest that peroxynitrite, the reaction product of superoxide and nitric oxide, plays a role in the response. Direct visualization of layer-specific effects of ROS production and its scavenging, shown for the first time in acute hippocampal slices, suggests that distinct ROS homeostasis may underlie the different ischemic vulnerability of CA1 and DG.
Collapse
Affiliation(s)
- Adám Fekete
- Laboratory of Cellular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Szigony u. 43., Hungary
| | | | | | | | | |
Collapse
|
13
|
Dominy JE, Hwang J, Stipanuk MH. Overexpression of cysteine dioxygenase reduces intracellular cysteine and glutathione pools in HepG2/C3A cells. Am J Physiol Endocrinol Metab 2007; 293:E62-9. [PMID: 17327371 DOI: 10.1152/ajpendo.00053.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteine levels are carefully regulated in mammals to balance metabolic needs against the potential for cytotoxicity. It has been postulated that one of the major regulators of intracellular cysteine levels in mammals is cysteine dioxygenase (CDO). Hepatic expression of this catabolic enzyme increases dramatically in response to increased cysteine availability and may therefore be part of a homeostatic response to shunt excess toxic cysteine to more benign metabolites such as sulfate or taurine. Direct experimental evidence, however, is lacking to support the hypothesis that CDO is capable of altering steady-state intracellular cysteine levels. In this study, we expressed either the wild-type (WT) or a catalytically inactivated mutant (H86A) isoform of CDO in HepG2/C3A cells (which do not express endogenous CDO protein) and cultured them in different concentrations of extracellular cysteine. WT CDO, but not H86A CDO, was capable of reducing intracellular cysteine levels in cells incubated in physiologically relevant concentrations of cysteine. WT CDO also decreased the glutathione pool and potentiated the toxicity of CdCl(2). These results demonstrate that CDO is capable of altering intracellular cysteine levels as well as glutathione levels.
Collapse
Affiliation(s)
- John E Dominy
- Department of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
14
|
Cho JH, Askwith CC. Potentiation of acid-sensing ion channels by sulfhydryl compounds. Am J Physiol Cell Physiol 2007; 292:C2161-74. [PMID: 17392378 DOI: 10.1152/ajpcell.00598.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The acid-sensing ion channels (ASICs) are voltage-independent ion channels activated by acidic extracellular pH. ASICs play a role in sensory transduction, behavior, and acidotoxic neuronal death, which occurs during stroke and ischemia. During these conditions, the extracellular concentration of sulfhydryl reducing agents increases. We used perforated patch-clamp technique to analyze the impact of sulfhydryls on H(+)-gated currents from Chinese hamster ovary (CHO) cells expressing human ASIC1a (hASIC1a). We found that hASIC1a currents activated by pH 6.5 were increased almost twofold by the sulfhydryl-containing reducing agents dithiothreitol (DTT) and glutathione. DTT shifted the pH-dose response of hASIC1a toward a more neutral pH (pH(0.5) from 6.54 to 6.69) and slowed channel desensitization. The effect of reducing agents on native mouse hippocampal neurons and transfected mouse ASIC1a was similar. We found that the effect of DTT on hASIC1a was mimicked by the metal chelator TPEN, and mutant hASIC1a channels with reduced TPEN potentiation showed reduced DTT potentiation. Furthermore, the addition of DTT in the presence of TPEN did not result in further increases in current amplitude. These results suggest that the effect of DTT on hASIC1a is due to relief of tonic inhibition by transition metal ions. We found that all ASICs examined remained potentiated following the removal of DTT. This effect was reversed by the oxidizing agent DTNB in hASIC1a, supporting the hypothesis that DTT also impacts ASICs via a redox-sensitive site. Thus sulfhydryl compounds potentiate H(+)-gated currents via two mechanisms, metal chelation and redox modulation of target amino acids.
Collapse
Affiliation(s)
- Jun-Hyeong Cho
- Dept. of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
15
|
Ye S, Wu X, Wei L, Tang D, Sun P, Bartlam M, Rao Z. An Insight into the Mechanism of Human Cysteine Dioxygenase. J Biol Chem 2007; 282:3391-402. [PMID: 17135237 DOI: 10.1074/jbc.m609337200] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine dioxygenase is a non-heme mononuclear iron metalloenzyme that catalyzes the oxidation of cysteine to cysteine sulfinic acid with addition of molecular dioxygen. This irreversible oxidative catabolism of cysteine initiates several important metabolic pathways related to diverse sulfurate compounds. Cysteine dioxygenase is therefore very important for maintaining the proper hepatic concentration of intracellular free cysteine. Mechanisms for mouse and rat cysteine dioxygenases have recently been reported based on their crystal structures in the absence of substrates, although there is still a lack of direct evidence. Here we report the first crystal structure of human cysteine dioxygenase in complex with its substrate L-cysteine to 2.7A, together with enzymatic activity and metal content assays of several single point mutants. Our results provide an insight into a new mechanism of cysteine thiol dioxygenation catalyzed by cysteine dioxygenase, which is tightly associated with a thioether-bonded tyrosine-cysteine cofactor involving Tyr-157 and Cys-93. This cross-linked protein-derived cofactor plays several key roles different from those in galactose oxidase. This report provides a new potential target for therapy of diseases related to human cysteine dioxygenase, including neurodegenerative and autoimmune diseases.
Collapse
Affiliation(s)
- Sheng Ye
- Tsinghua-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Stipanuk MH, Dominy JE, Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 2006; 136:1652S-1659S. [PMID: 16702335 DOI: 10.1093/jn/136.6.1652s] [Citation(s) in RCA: 369] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian liver tightly regulates its free cysteine pool, and intracellular cysteine in rat liver is maintained between 20 and 100 nmol/g even when sulfur amino acid intakes are deficient or excessive. By keeping cysteine levels within a narrow range and by regulating the synthesis of glutathione, which serves as a reservoir of cysteine, the liver addresses both the need to have adequate cysteine to support normal metabolism and the need to keep cysteine levels below the threshold of toxicity. Cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Glutathione synthesis also increases when intracellular cysteine levels increase as a result of increased saturation of glutamate-cysteine ligase (GCL) with cysteine, and this contributes to removal of excess cysteine. When cysteine levels drop, GCL activity increases, and the increased capacity for glutathione synthesis facilitates conservation of cysteine in the form of glutathione (although the absolute rate of glutathione synthesis still decreases because of the lack of substrate). This increase in GCL activity is dependent on up-regulation of expression of both the catalytic and modifier subunits of GCL, resulting in an increase in total catalytic subunit plus an increase in the catalytic efficiency of the enzyme. An important role of cysteine utilization for coenzyme A synthesis in maintaining cellular cysteine levels in some tissues, and a possible connection between the necessity of controlling cellular cysteine levels to regulate the rate of hydrogen sulfide production, have been suggested by recent literature and are areas that deserve further study.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | | | | | | |
Collapse
|
17
|
Dominy J, Hirschberger L, Coloso R, Stipanuk M. Regulation of cysteine dioxygenase degradation is mediated by intracellular cysteine levels and the ubiquitin-26 S proteasome system in the living rat. Biochem J 2006; 394:267-73. [PMID: 16262602 PMCID: PMC1386025 DOI: 10.1042/bj20051510] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian metabolism of ingested cysteine is conducted principally within the liver. The liver tightly regulates its intracellular cysteine pool to keep levels high enough to meet the many catabolic and anabolic pathways for which cysteine is needed, but low enough to prevent toxicity. One of the enzymes the liver uses to regulate cysteine levels is CDO (cysteine dioxygenase). Catalysing the irreversible oxidation of cysteine, CDO protein is up-regulated in the liver in response to the dietary intake of cysteine. In the present study, we have evaluated the contribution of the ubiquitin-26 S proteasome pathway to the diet-induced changes in CDO half-life. In the living rat, inhibition of the proteasome with PS1 (proteasome inhibitor 1) dramatically stabilized CDO in the liver under dietary conditions that normally favour its degradation. Ubiquitinated CDO intermediates were also seen to accumulate in the liver. Metabolic analyses showed that PS1 had a significant effect on sulphoxidation flux secondary to the stabilization of CDO but no significant effect on the intracellular cysteine pool. Finally, by a combination of in vitro hepatocyte culture and in vivo whole animal studies, we were able to attribute the changes in CDO stability specifically to cysteine rather than the metabolite 2-mercaptoethylamine (cysteamine). The present study represents the first demonstration of regulated ubiquitination and degradation of a protein in a living mammal, inhibition of which had dramatic effects on cysteine catabolism.
Collapse
Affiliation(s)
| | | | - Relicardo M. Coloso
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, U.S.A
| | - Martha H. Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Kocki T, Luchowski P, Luchowska E, Wielosz M, Turski WA, Urbanska EM. L-cysteine sulphinate, endogenous sulphur-containing amino acid, inhibits rat brain kynurenic acid production via selective interference with kynurenine aminotransferase II. Neurosci Lett 2003; 346:97-100. [PMID: 12850557 DOI: 10.1016/s0304-3940(03)00579-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study the effect of endogenous sulphur-containing amino acids, L-cysteine sulphinate, L-cysteate, L-homocysteine sulphinate and L-homocysteate, on the production of glutamate receptor antagonist, kynurenic acid (KYNA), was evaluated. The experiments comprised the measurements of (a). KYNA synthesis in rat cortical slices and (b). the activity of KYNA biosynthetic enzymes, kynurenine aminotransferases (KATs). All studied compounds reduced KYNA production and inhibited the activity of KAT I and/or KAT II, thus acting most probably intracellularly. L-Cysteine sulphinate in very low, micromolar concentrations selectively affected the activity of KAT II, the enzyme catalyzing approximately 75% of KYNA synthesis in the brain. L-Cysteine sulphinate potency was higher than other studied sulphur-containing amino acids, than L-aspartate, L-glutamate, or any other known KAT II inhibitor. Thus, L-cysteine sulphinate might act as a modulator of KYNA formation in the brain.
Collapse
Affiliation(s)
- Tomasz Kocki
- Department of Pharmacology and Toxicology, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Wallin C, Abbas AK, Tranberg M, Weber SG, Wigström H, Sandberg M. Searching for mechanisms of N-methyl-D-aspartate-induced glutathione efflux in organotypic hippocampal cultures. Neurochem Res 2003; 28:281-91. [PMID: 12608701 PMCID: PMC1475825 DOI: 10.1023/a:1022381318126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N-Methyl-D-aspartate (NMDA)-receptor stimulation evoked a selective and partly delayed elevated efflux of glutathione, phosphoethanolamine, and taurine from organotypic rat hippocampus slice cultures. The protein kinase inhibitors H9 and staurosporine had no effect on the efflux. The phospholipase A2 inhibitors quinacrine and 4-bromophenacyl bromide, as well as arachidonic acid, a product of phospholipase A2 activity, did not affect the stimulated efflux. Polymyxin B, an antimicrobal agent that inhibits protein kinase C, and quinacrine in high concentration (500 microM), blocked efflux completely. The stimulated efflux after but not during NMDA incubation was attenuated by a calmodulin antagonist (W7) and an anion transport inhibitor (DNDS). Omission of calcium increased the spontaneous efflux with no or small additional effects by NMDA. In conclusion, NMDA receptor stimulation cause an increased selective efflux of glutathione, phosphoethanolamine and taurine in organotypic cultures of rat hippocampus. The efflux may partly be regulated by calmodulin and DNDS sensitive channels.
Collapse
Affiliation(s)
- Camilla Wallin
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Abdul-Karim Abbas
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Mattias Tranberg
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Holger Wigström
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
| | - Mats Sandberg
- Department of Medical Biophysics, University of Göteborg, Medicinaregatan 11, S-405 30 Göteborg, Sweden
- Address reprint requests to: Mats Sandberg, Tel: (46)-31-7733395; Fax: (46)-31-7733558; E-mail:
| |
Collapse
|
20
|
Salman MS, Ackerley C, Senger C, Becker L. New insights into the neuropathogenesis of molybdenum cofactor deficiency. Can J Neurol Sci 2002; 29:91-6. [PMID: 11858544 DOI: 10.1017/s0317167100001803] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Molybdenum cofactor deficiency (MOCOD) is a rare, progressive neurodegenerative disorder caused by sulphite oxidase enzyme deficiency. The neuropathological findings are consistent with a toxic insult to the brain that causes severe neuronal loss, reactive astrogliosis and spongiosis. The mechanisms responsible for these changes are unknown. METHODS The case is a male infant with MOCOD who died at nine months of age from pneumonia. At autopsy, a complete neuropathological examination was performed including conventional immunohistochemical staining. In addition, brain sections were stained cytochemically with shikata and orcein which stain for disulphide bonds. The elemental composition of cortical cells was then analyzed in the scanning electron microscope using backscatter electron imaging and energy dispersive X-ray spectrometry. RESULTS Neurons demonstrated cytoplasmic staining with shikata and orcein cytochemically when compared to control sections. Energy dispersive X-ray spectrometry analysis of these neurons confirmed the presence of excess sulphur and unexpectedly revealed excess magnesium accumulation. None of these findings was found in an age-matched control. CONCLUSIONS In MOCOD we found abnormal accumulation of sulphur and magnesium in neurons. It is postulated that sulphur-containing compound(s) that are formed as a result of MOCOD cause excitotoxic neuronal injury in the presence of excess magnesium.
Collapse
Affiliation(s)
- Michael S Salman
- Department of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
21
|
Wallin C, Puka-Sundvall M, Hagberg H, Weber SG, Sandberg M. Alterations in glutathione and amino acid concentrations after hypoxia-ischemia in the immature rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:51-60. [PMID: 11154760 DOI: 10.1016/s0165-3806(00)00112-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hypoxic-ischemic brain injury involves an increased formation of reactive oxygen species. Key factors in the cellular protection against such agents are the GSH-associated reactions. In the present study we examined alterations in total glutathione and GSSG concentrations in mitochondria-enriched fractions and tissue homogenates from the cerebral cortex of 7-day-old rats at 0, 1, 3, 8, 14, 24 and 72 h after hypoxia-ischemia. The concentration of total glutathione was transiently decreased immediately after hypoxia-ischemia in the mitochondrial fraction, but not in the tissue, recovered, and then decreased both in mitochondrial fraction and homogenate after 14 h, reaching a minimum at 24 h after hypoxia-ischemia. The level of GSSG was approximately 4% of total glutathione and increased selectively in the mitochondrial fraction immediately after hypoxia-ischemia. The decrease in glutathione may be important in the development of cell death via impaired free radical inactivation and/or redox related changes. The effects of hypoxia-ischemia on the concentrations of selected amino acids varied. The levels of phosphoethanolamine, an amine previously reported to be released in ischemia, mirrored the changes in glutathione. GABA concentrations initially increased (0-3 h) followed by a decrease at 72 h. Glutamine levels increased, whereas glutamate and aspartate were unchanged up to 24 h after the insult. The results on total glutathione and GSSG are discussed in relation to changes in mitochondrial respiration and microtubule associated protein-2 (MAP2) which are reported on in accompanying paper [64].
Collapse
Affiliation(s)
- C Wallin
- Department of Anatomy and Cell Biology, Göteborg University, P.O. Box 420, SE 405 30, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
22
|
Abstract
We review here the possible mechanisms of neuronal degeneration caused by L-cysteine, an odd excitotoxin. L-Cysteine lacks the omega carboxyl group required for excitotoxic actions via excitatory amino acid receptors, yet it evokes N-methyl-D-aspartate (NMDA) -like excitotoxic neuronal death and potentiates the Ca2+ influx evoked by NMDA. Both actions are prevented by NMDA antagonists. One target for cysteine effects is thus the NMDA receptor. The following mechanisms are discussed now: (1) possible increase in extracellular glutamate via release or inhibition of uptake/degradation, (2) generation of cysteine alpha-carbamate, a toxic analog of NMDA, (3) generation of toxic oxidized cysteine derivatives, (4) chelation of Zn2+ which blocks the NMDA receptor-ionophore, (5) direct interaction with the NMDA receptor redox site(s), (6) generation of free radicals, and (7) formation of S-nitrosocysteine. In addition to these, we describe another new alternative for cytotoxicity: (8) generation of the neurotoxic catecholamine derivative, 5-S-cysteinyl-3,4-dihydroxyphenylacetate (cysdopac).
Collapse
Affiliation(s)
- R Janáky
- Brain Research Center, Medical School, University of Tampere, Finland
| | | | | | | | | |
Collapse
|
23
|
Wallin C, Weber SG, Sandberg M. Glutathione efflux induced by NMDA and kainate: implications in neurotoxicity? J Neurochem 1999; 73:1566-72. [PMID: 10501202 DOI: 10.1046/j.1471-4159.1999.0731566.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Neurotoxicity in acute as well as chronic neurological diseases may be partly mediated by oxidative stress caused by overactivation of glutamate receptors. A key component of the cellular defense against oxidative stress is reduced glutathione. In our earlier work, we have shown that ischemia in brain induces increased efflux, elevated metabolism, and decreased tissue concentrations of glutathione. In this study, we have evaluated the effect of glutamate receptor activation on the efflux of glutathione from hippocampus in vitro. NMDA and kainate induced a delayed increase in glutathione, taurine, and phosphoethanolamine efflux. Extracellular glutathione was recovered mainly in the reduced form (85-95%); the efflux was dependent on extracellular calcium but unrelated to dantrolene-sensitive intracellular calcium release and independent of glutathione or NO synthesis. The NMDA-induced efflux of glutathione was enhanced by blockage of gamma-glutamyl transpeptidase, indicating an increased transpeptidation of glutathione after NMDA receptor activation. Our results suggest that increased efflux of glutathione could be a factor in initiating nerve cell death via a change in intracellular redox potential and/or a decrease in the intracellular capacity for inactivation of reactive oxygen species.
Collapse
Affiliation(s)
- C Wallin
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | |
Collapse
|
24
|
Li X, Wallin C, Weber SG, Sandberg M. Net efflux of cysteine, glutathione and related metabolites from rat hippocampal slices during oxygen/glucose deprivation: dependence on gamma-glutamyl transpeptidase. Brain Res 1999; 815:81-8. [PMID: 9974125 DOI: 10.1016/s0006-8993(98)01097-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellular metabolism of the protective substance glutathione (gamma-glutamyl-cysteinyl-glycine) may generate cysteine, glycine, several gamma-glutamyl-containing dipeptides and possibly free glutamate, all of which could participate in neurotoxicity. In the present study, we have examined how blockage of gamma-glutamyl transpeptidase, the key enzyme in glutathione degradation, influences the extracellular concentrations of glutathione, cysteine and related metabolites during anoxia/aglycemia of rat hippocampal slices. The net efflux, i.e., the increase in extracellular concentration due to changes in release and/or uptake, of cysteine, cysteine sulfinate, gamma-glutamyl-glutamate, gamma-glutamyl-glutamine, glutathione, gamma-glutamyl-cysteine and glutamate increased as a result of anoxia/aglycemia. These increases in net efflux of cysteine, cysteine sulfinate, gamma-glutamyl-glutamate and gamma-glutamyl-glutamine were reduced or blocked by acivicin, an inhibitor of gamma-glutamyl transpeptidase. In contrast, acivicin caused an increase in both basal and anoxia/aglycemia-induced net efflux of glutathione whereas the basal and anoxia/aglycemia-induced efflux of glutamate was unchanged by acivicin treatment. The effect of acivicin on the efflux of gamma-glutamyl-cysteine was similar to that of glutathione although less pronounced. Addition of beta-mercaptoethanol to the incubation medium during and after 30 min of anoxia/aglycemia decreased the net efflux of cysteine sulfinate specifically, indicating that the increase in cysteine sulfinate during anoxia/aglycemia may be partly derived from the spontaneous oxidation of cysteine. The results suggest that gamma-glutamyl transpeptidase may be involved in the regulation of the extracellular concentrations of cysteine, several gamma-glutamyl-containing dipeptides and glutathione but not glutamate during ischemia.
Collapse
Affiliation(s)
- X Li
- Institute of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
25
|
Jenei Z, Janáky R, Varga V, Saransaari P, Oja SS. Interference of S-alkyl derivatives of glutathione with brain ionotropic glutamate receptors. Neurochem Res 1998; 23:1085-91. [PMID: 9704598 DOI: 10.1023/a:1020712203611] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of glutathione, glutathione sulfonate and S-alkyl derivatives of glutathione on the binding of glutamate and selective ligands of ionotropic N-methyl-D-aspartate (NMDA) and non-NMDA receptors were studied with mouse synaptic membranes. The effects of glutathione and its analogues on 45Ca2+ influx were also estimated in cultured rat cerebellar granule cells. Reduced and oxidized glutathione, glutathione sulfonate, S-methyl-, -ethyl-, -propyl-, -butyl- and -pentylglutathione inhibited the Na+-independent binding of L-[3H]glutamate. They strongly inhibited also the binding of (S)-2-amino-3-hydroxy-5-[3H]methyl-4-isoxazolepropionate [3H]AMPA (IC50 values: 0.8-15.9 microM). S-Alkylation of glutathione rendered the derivatives unable to inhibit [3H]kainate binding. The NMDA-sensitive binding of L-[3H]glutamate and the binding of 3-[(R)-2-carboxypiperazin-4-yl][1,2-(3)H]propyl-1-phosphonate ([3H]CPP, a competitive antagonist at NMDA sites) were inhibited by the peptides at micromolar concentrations. The strychnine-insensitive binding of the NMDA coagonist [3H]glycine was attenuated only by oxidized glutathione and glutathione sulfonate. All peptides slightly enhanced the use-dependent binding of [3H]dizocilpine (MK-801) to the NMDA-gated ionophores. This effect was additive with the effect of glycine but not with that of saturating concentrations of glutamate or glutamate plus glycine. The glutamate- and NMDA-evoked influx of 45Ca2+ into cerebellar granule cells was inhibited by the S-alkyl derivatives of glutathione. We conclude that besides glutathione the endogenous S-methylglutathione and glutathione sulfonate and the synthetic S-alkyl derivatives of glutathione act as ligands of the AMPA and NMDA receptors. In the NMDA receptor-ionophore these glutathione analogues bind preferably to the glutamate recognition site via their gamma-glutamyl moieties.
Collapse
Affiliation(s)
- Z Jenei
- Tampere Brain Research Center, University of Tampere Medical School, Finland
| | | | | | | | | |
Collapse
|
26
|
Kuriyama K, Hashimoto T. Interrelationship between taurine and GABA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 442:329-37. [PMID: 9635048 DOI: 10.1007/978-1-4899-0117-0_41] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- K Kuriyama
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Japan
| | | |
Collapse
|
27
|
Varga V, Jenei Z, Janáky R, Saransaari P, Oja SS. Glutathione is an endogenous ligand of rat brain N-methyl-D-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Neurochem Res 1997; 22:1165-71. [PMID: 9251108 DOI: 10.1023/a:1027377605054] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A study was made of the effects of reduced (GSH) and oxidized (GSSG) glutathione on the Na(+)-independent and N-methyl-D-aspartate (NMDA) displaceable bindings of glutamate, on the binding of kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and ligand of the brain NMDA receptor-ionophore complex: glycine, dizocilpine (MK-801) and (+/-)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP). GSH and GSSG strongly inhibited the binding of glutamate, CPP and AMPA, kainate and glycine binding being less affected. Both peptides enhanced the binding of dizocilpine in a time- and concentration-dependent manner. This activatory effect was not additive to that of saturating concentrations of glutamate or glutamate plus glycine. The activation of dizocilpine binding by GSH and GSSG was prevented by the competitive NMDA and glycine antagonists DL-2-amino-5-phosphonovalerate and 7-chlorokynurenate. GSH and GSSG may be endogenous ligands of AMPA and NMDA receptors, binding preferably to the glutamate recognition site via their gamma-glutamyl moieties. In addition to this, at millimolar concentrations they may regulate the redox state of the NMDA receptor-ionophore complex.
Collapse
Affiliation(s)
- V Varga
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The effect of melatonin, a potent free radical scavenger, on L-cysteine-induced seizures and lipid peroxidation was investigated in mice. When L-cysteine (1.25, or 5.0 mumol/animal) was injected intracerebroventricularly (i.c.v.) into mice, severe tonic seizures were observed for over 20 sec in 75% and 100% of the treated mice, respectively. However, when melatonin (20 or 100 mg/kg) was injected subcutaneously (sc) into mice 15 min before L-cysteine injection (1.25 mumol/animal, i.c.v.), the incidence of seizures was observed in only 35% and 20% of the treated mice, respectively. Furthermore, when L-cysteine (1.25 or 5.0 mumol/animal, i.c.v.) was injected into mice, lipid peroxidation in whole brain 20 min after injection was significantly increased by 56% or 67% as compared to that of the control. However, when the seizures induced by L-cysteine (1.25 mumol/animal) were abolished by preadministration of melatonin, the increased lipid peroxidation induced by L-cysteine was prevented. These results suggest that there may be a positive correlation between free radical formation and seizures induced by L-cysteine and that melatonin affords protection against the seizures as well as against the associated lipid peroxidation.
Collapse
Affiliation(s)
- H Yamamoto
- Institute of Community Medicine, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
29
|
Orwar O, Jardemark K, Jacobson I, Moscho A, Fishman HA, Scheller RH, Zare RN. Patch-clamp detection of neurotransmitters in capillary electrophoresis. Science 1996; 272:1779-82. [PMID: 8650575 DOI: 10.1126/science.272.5269.1779] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Gamma-aminobutyrate acid, L-glutamate, and N-methyl-D-aspartate were separated by capillary electrophoresis and detected by the use of whole-cell and outside-out patch-clamp techniques on freshly dissociated rat olfactory interneurons. These neuroactive compounds could be identified from their electrophoretic migration times, unitary channel conductances, and power spectra that yielded corner frequencies and mean single-channel conductances characteristic for each of the different agonist-receptor interactions. This technique has the sensitivity to observe the opening of a single ion channel for agonists separated by capillary electrophoresis.
Collapse
Affiliation(s)
- O Orwar
- Department of Chemistry, Stanford University, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Varga V, Janáky R, Holopainen I, Oja SS, Akerman KE. Endogenous gamma-L-glutamylglutamate is a partial agonist at the N-methyl-D-aspartate receptors in cultured cerebellar granule cells. Neurochem Res 1995; 20:1471-6. [PMID: 8789610 DOI: 10.1007/bf00970596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
gamma-L-Glutamylglutamate (LGG), an endogenous constituent of the brain, reduced the glutamate-evoked increase in intracellular Ca2+ in cultured cerebellar granule cells. The extent and properties of this inhibition were different at different Mg2+ concentrations. The intracellular Ca2+ response to NMDA was slightly enhanced by 0.1 mM LGG in normal (1.3 mM) Mg2+ medium, but in Mg(2+)-free medium LGG was stimulatory at low (0.1-1 microM) NMDA and inhibitory at high (0.1-1 mM) NMDA concentrations. In the absence of Mg2+, LGG alone increased cytosolic free Ca2+ and depolarized the cells. These effects were potentiated by glycine and blocked by extracellular Mg2+, 2-amino-5-phosphonopentanoate (APV), 7-chlorokynurenate, 3-amino-1-hydroxypyrrolidin-2-one (HA-966) and 5,7-dinitroquinoxaline-2,3-dione (MNQX). The results indicate that LGG is a partial NMDA agonist. On the other hand, the non-NMDA antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) also inhibited the effects of LGG. This indicates an involvement of non-NMDA receptors in the actions of LGG. The consequent depolarization may also contribute to the activation of NMDA receptor-governed ionophores.
Collapse
Affiliation(s)
- V Varga
- Department of Physiology, University of Tampere Medical School, Finland
| | | | | | | | | |
Collapse
|
31
|
Chen JG, Vinski E, Colizza K, Weber SG. Optimization of a modified electrode for the sensitive and selective detection of alpha-dipeptides. J Chromatogr A 1995; 705:171-84. [PMID: 7640768 DOI: 10.1016/0021-9673(95)00286-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sensitive and selective detection of dipeptides is important in neurochemistry. We have developed a flexible detection scheme for dipeptides based on a modified carbon electrode. The modification arises from the anodic treatment of the carbon electrode in alkaline solution. The flexibility of the detection scheme arises from the different conditions used in both the modification and the detection. It is shown that the modification step requires the presence of cupric ion, while the detection step does not. On the other hand, it is shown that the presence of copper in the detection eluent, as well as the pH of the environment, can be used in controlling the selectivity of the modified electrode. For example, the modified electrode is more selective for alpha-dipeptides over beta- and gamma-dipeptides as well as amino acids at pH 9.8, whereas it is selective for all dipeptides over amino acids at pH 8.0. Detection limits of dipeptides on the order of 10 nM were achieved at pH 8.0 by flow-injection analysis with a knotted Teflon tubing connecting the injector and the detector that gave a typical peak volume of about 0.50 ml at 1.0 ml/min. From surface analysis it is shown that the oxygenation of the glassy carbon electrode gives rise to the selectivity. The oxidation of dipeptides at the modified electrode is completely inhibited by 10 mM Mg2+ in the eluent.
Collapse
Affiliation(s)
- J G Chen
- Department of Chemistry, University of Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
32
|
Shibata S, Tominaga K, Watanabe S. Glutathione protects against hypoxic/hypoglycemic decreases in 2-deoxyglucose uptake and presynaptic spikes in hippocampal slices. Eur J Pharmacol 1995; 273:191-5. [PMID: 7737314 DOI: 10.1016/0014-2999(94)00727-o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of glutathione, its analogue: YM737 (N-(N-gamma-L-glutamyl-L- cysteinyl) glycine l-isopropyl ester sulfate monohydrate), a monoester of glutathione, and N-acetyl-L-cysteine on hypoxia/hypoglycemia-induced decreases in CA1 presynaptic fiber spikes and 2-deoxyglucose uptake were investigated using rat hippocampal slices. The drugs were added to normal medium for 30 min before the incubation under hypoxic/hypoglycemic conditions (20 min), and, after a 3-h washout, presynaptic potential or 2-deoxyglucose uptake in hippocampal slices was measured. Treatment with glutathione, YM737 and N-acetyl-L-cysteine produced an attenuation of the hypoxia/hypoglycemia-induced decrease in presynaptic fiber spikes and 2-deoxyglucose uptake. The order of potency for neuroprotective action was YM737 > or = N-acetyl-L-cysteine > glutathione. The present results suggest a role for glutathione in improving hypoxia/hypoglycemia-induced dysfunction of hippocampal regions.
Collapse
Affiliation(s)
- S Shibata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
33
|
Varga V, Janáky R, Saransaari P, Oja SS. Endogenous gamma-L-glutamyl and beta-L-aspartyl peptides and excitatory aminoacidergic neurotransmission in the brain. Neuropeptides 1994; 27:19-26. [PMID: 7969817 DOI: 10.1016/0143-4179(94)90012-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of gamma-L-glutamyl- and beta-L-aspartyl di- and tripeptides on glutamatergic neurotransmission were tested in vitro. Of the peptides, gamma-L-glutamylglutamate was the most effective inhibitor, comparable to glutamate, of both Na(+)-independent and Cl-/Ca(2+)-activated binding/transport of glutamate. gamma-L-glutamylglutamate was most effective in the midbrain and hypothalamus and gamma-L-glutamylaspartate in the hippocampus when tested on the Na(+)-independent binding. The Cl-/Ca(2+)-dependent binding/transport of glutamate was affected by gamma-glutamylaspartate most strongly in the hippocampus. gamma-L-glutamylglycine and beta-L-aspartylglycine moderately inhibited the Na(+)-dependent uptake of L-glutamate and D-aspartate while the other peptides were only weak inhibitors. Reduced and oxidized glutathione enhanced the uptake of L-glutamate. The K(+)-stimulated release of L-glutamate was enhanced by gamma-L-glutamylglutamate and -aspartate and the release of D-aspartate also by gamma-L-glutamylglycine. The results indicate that both pre- and postsynaptic events in glutamatergic neurotransmission are modulated by these endogenous acidic oligopeptides.
Collapse
Affiliation(s)
- V Varga
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | |
Collapse
|
34
|
Abstract
The mechanisms underlying cell damage in stroke or during experimental brain ischemia are not fully understood. L-Cysteine, an excitotoxic amino acid that could contribute to tissue damage, is normally found in relatively low levels in brain (ca. 0.05 mumol/g), compared to the cysteine-containing tripeptide, glutathione (GSH, ca. 1.5 mumol/g). We have observed that during brain ischemia in gerbils, levels of cysteine rise 10-13-fold over an 8 h period to 0.66 and 0.62 mumol/g, respectively, in the ischemic hippocampus and striatum. At the same time, levels of GSH fall by 0.84 and 0.94 mumol/g, respectively. The elevated free cysteine may be derived largely from GSH. The levels of cysteine found in ischemic brain are similar to those reported after parenteral administration of neurotoxic doses of L-cysteine to perinatal rats. The remarkable increase in cysteine during brain ischemia, coupled to its neurotoxic properties, may play a role in aspects of brain damage during or following brain ischemia.
Collapse
Affiliation(s)
- A Slivka
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
35
|
Frandsen A, Schousboe A, Griffiths R. Cytotoxic actions and effects on intracellular Ca2+ and cGMP concentrations of sulphur-containing excitatory amino acids in cultured cerebral cortical neurons. J Neurosci Res 1993; 34:331-9. [PMID: 8095988 DOI: 10.1002/jnr.490340310] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Effects of the sulphur-containing acidic amino acids (SAAs) cysteic acid (CA), homocysteic acid (HCA), cysteine sulphinic acid (CSA), homocysteine sulphinic acid (HCSA), and S-sulphocysteine (SC) on intracellular concentrations of Ca2+ ([Ca2+]i) and cGMP ([cGMP]i) as well as their cytotoxic actions were investigated in cultured cerebral cortical neurons. The glutamate receptor subtype selective antagonists APV (D-(-)-2-amino-5-phosphonopentanoate) acting on N-methyl-D-aspartate (NMDA) receptors and DNQX (6,7-dinitroquinoxaline-2,3-dione) acting on non-NMDA receptors were employed to obtain information about the involvement of glutamate receptor subtypes in these actions of the SAAs. It was found that all SAAs exerted a cytotoxic action on the neurons. The ED50 values for CSA, CA, HCSA, and HCA were around 30 to 50 microM and that for SC was about 150 microM. The glutamate transport blocker L-aspartate-beta-hydroxamate increased the efficacy of CSA and CA but had no effect on the cytotoxic actions of the remaining SAAs. In case of CA, HCA, and SC the cytotoxicity could be prevented by APV alone and for HCSA, DNQX could block the toxic action. DNQX reduced the toxicity of HCA somewhat but the presence of APV was required for complete protection. CSA toxicity could only be blocked by the combination of APV and DNQX. All SAAs induced an increase in [cGMP]i and [Ca2+]i and with regard to [Ca2+]i SC was the most potent and CA the least potent SAA. The effect of all SAAs on [cGMP]i could be blocked by APV alone whereas DNQX had no effect except in the case of HCSA where the response was blocked completely and HCA where the response was inhibited by 75%.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Frandsen
- PharmaBiotec Research Center, Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen
| | | | | |
Collapse
|
36
|
Schurr A, West CA, Heine MF, Rigor BM. The neurotoxicity of sulfur-containing amino acids in energy-deprived rat hippocampal slices. Brain Res 1993; 601:317-20. [PMID: 8431779 DOI: 10.1016/0006-8993(93)91728-b] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The rat hippocampal slice preparation and its electrophysiology were used to assess the toxicity of two sulfur-containing amino acids, L-cysteate (CA) and L-cysteine (CYS). Both compounds were innocuous under normal conditions but became toxic in energy-deprived (lack of oxygen or glucose) slices. CA and CYS toxicity was apparent as both reduced the number of slices that normally recover their neuronal function (evoked CA1 population spike) after a standardized period of hypoxia or glucose deprivation (GD). The competitive N-methyl-D-aspartate (NMDA) antagonist DL-2-amino-5-phosphonovalerate blocked the toxicity of both CA and CYS in hypoxic slices, but it was effective only against CYS toxicity in glucose-deprived slices. The glycine antagonist 7-chlorokynurenate blocked CA and CYS toxicity in hypoxic slices but was unable to block their toxicity in glucose-deprived tissue. Perfusing slices with medium containing a high magnesium concentration blocked the toxicity of CA in both hypoxic and glucose-deprived slices, a treatment that was ineffective against CYS toxicity under either condition. Calcium depletion from the perfusion medium completely blocked the damaging effect of both amino acids in hypoxic slices, but it only partially blocked the toxicity of CA and did not block that of CYS in glucose-deprived slices. These results suggest that CA and CYS activate different NMDA receptor subsets and other glutamate receptor subtypes. Moreover, the results indicate a possible difference between the mechanism that lead to hypoxic neuronal damage and the one that lead to hypoglycemic neuronal damage.
Collapse
Affiliation(s)
- A Schurr
- Department of Anesthesiology, University of Louisville School of Medicine, KY 40292
| | | | | | | |
Collapse
|
37
|
Andiné P. Involvement of adenosine in ischemic and postischemic calcium regulation. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1993; 18:35-49. [PMID: 8096697 DOI: 10.1007/bf03160021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the CA1 region of the hippocampus, ischemia or high-frequency stimulation of the glutamatergic input induces neuronal calcium uptake that is reflected as a decrease of the extracellular concentration of calcium ([Ca2+]ec. In this study, the effects of theophylline on these [Ca2+]ec shifts were examined in doses (20 mg/kg iv) where theophylline is mainly acting by blocking adenosine receptors. By using calcium-sensitive microelectrodes, [Ca2+]ec was concomitantly recorded in stratum pyramidale (SP) and stratum radiatum (SR) of the CA1 in adult Wistar rats, before, during, and for 6 h after transient forebrain ischemia. During ischemia (4-vessel occlusion, 20 min), the [Ca2+]ec decrease in SR preceded (by 11 +/- 4 s; mean +/- SEM) the [Ca2+]ec decrease in SP. Administration of theophylline prior to ischemia reduced the time from vessel-occlusion to the ischemic decrease in [Ca2+]ec (from 3.0 +/- 0.3 to 0.9 +/- 0.1 min; mean +/- SEM; p < 0.01). During electrically evoked burst firing, the [Ca2+]ec shift was augmented by theophylline in nonischemic controls (by 29 +/- 4%; mean +/- SEM' p < 0.05). After 6 h of reflow, i.e., at a time-point when the evoked calcium uptake is enhanced, theophylline had no effect on evoked [Ca2+]ec shifts. In summary, during ischemia the uptake of calcium into CA1 pyramidal cells started in the dendrites and preceded that in the cell bodies. Removal of adenosine inhibition by theophylline accelerated ischemic calcium uptake and enhanced electrically evoked calcium uptake in control animals. In contrast, in the postischemic phase adenosine inhibition was lost with a secondary enhancement of the evoked calcium uptake that may be one critical factor in the development of delayed neuronal death.
Collapse
Affiliation(s)
- P Andiné
- Institute of Neurobiology, University of Göteborg, Sweden
| |
Collapse
|
38
|
Klancnik JM, Cuénod M, Gähwiler BH, Jiang ZP, Do KQ. Release of endogenous amino acids, including homocysteic acid and cysteine sulphinic acid, from rat hippocampal slices evoked by electrical stimulation of Schaffer collateral-commissural fibres. Neuroscience 1992; 49:557-70. [PMID: 1354337 DOI: 10.1016/0306-4522(92)90226-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined the release of endogenous amino acids from acute hippocampal slices, upon stimulation of the Schaffer collateral-commissural fibres. One-minute samples of superfusate were collected via a cannula placed over the CA1 stratum radiatum, and were analysed by reversed-phase high performance liquid chromatography. Evoked potentials were recorded to ascertain stimulation efficacy. Four minutes of continuous 50 Hz stimulation produced a tetrodotoxin-sensitive release of aspartate and glycine in the second minute of stimulation, as well as a tetrodotoxin-sensitive release of cysteine sulphinic acid, during stimulation and of homocysteic acid, following stimulation. Such 50 Hz stimulation also produced a tetrodotoxin-insensitive decrease in methionine levels, but no significant changes in any of the other 15 amino acids measured. Four minutes of continuous 1 Hz stimulation produced no changes in the levels of any of the amino acids measured, but four 600-ms trains of 100 Hz stimulation, which, unlike the 1 Hz stimulation, produced long-term potentiation, resulted in significant increases in levels of cysteine sulphinic acid and homocysteic acid, but not of any of the other amino acids measured. These results suggest that aspartate, glycine, homocysteic acid, and cysteine sulphinic acid play a role in synaptic transmission in the Schaffer collateral-commissural fibres, and that cysteine sulphinic acid and homocysteic acid may be released specifically by high-frequency stimulation.
Collapse
Affiliation(s)
- J M Klancnik
- Brain Research Institute, University of Zürich, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Andiné P, Jacobson I, Hagberg H. Enhanced calcium uptake by CA1 pyramidal cell dendrites in the postischemic phase despite subnormal evoked field potentials: excitatory amino acid receptor dependency and relationship to neuronal damage. J Cereb Blood Flow Metab 1992; 12:773-83. [PMID: 1324252 DOI: 10.1038/jcbfm.1992.108] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
After 6-12 h of recovery from transient cerebral ischemia, the pyramidal cells of the hippocampal CA1 region take up excessive amounts of calcium upon electrical stimulation, which has been suggested to be important for the development of delayed neuronal death. The aim of this study was to further characterize this enhanced calcium uptake with respect to time-course of development, relationship to neuronal damage, and amplitude of evoked field potentials as well as the dependency on N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Adult Wistar rats were used and calcium-sensitive microelectrodes were placed in the stratum radiatum of the CA1 hippocampus for recording of the extracellular calcium concentration ([Ca2+]ec) during 20 min of ischemia and for 6 h of reflow. High-frequency stimulation of the perforant pathway elicited burst firing in CA1 and a transient decrease in [Ca2+]ec which reflects neuronal uptake. Shifts in [Ca2+]ec could not be evoked 0-1 h after ischemia. However, from 1-2 h burst firing could be evoked and the accompanying shift in [Ca2+]ec increased thereafter in amplitude with prolonged reflow, exceeded preischemic levels after 4 h, and reached 250 +/- 116% (mean +/- SD) of control after 6 h of reflow (p less than 0.05). The extracellular reference potential shift during electrical stimulation and the amplitude of evoked field potentials were still subnormal after 6 h [85 +/- 25% and 83 +/- 25%, respectively (mean +/- SD)]. There was a significant correlation between the degree of stimulated calcium uptake at 6 h postischemia and the extent of CA1 damage evaluated 7 days after the ischemic insult (r = 0.849; p less than 0.001). The shifts in [Ca2+]ec were reduced by the NMDA antagonist MK-801 (0.5-2 mg/kg, i.v.) to approximately 50% of the initial level during both control and postischemic conditions (p less than 0.01). The non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[F]quinoxaline (NBQX) (42 +/- 13 mg/kg, i.p.; mean +/- SD) decreased the amplitude of the evoked field potentials (to 30 +/- 28% of control, p less than 0.05) and completely abolished the evoked shifts in [Ca2+]ec. In conclusion, the uptake of calcium into CA1 pyramidal cells during electrical stimulation was enhanced already 4 h after ischemia in spite of the fact that other measures of excitability were subnormal. This calcium uptake correlated to the extent of CA1 pyramidal cell damage and was dependent on both NMDA and non-NMDA receptor activation.
Collapse
Affiliation(s)
- P Andiné
- Institute of Neurobiology, University of Göteborg, Sweden
| | | | | |
Collapse
|
40
|
Dunlop J, Grieve A, Damgaard I, Schousboe A, Griffiths R. Sulphur-containing excitatory amino acid-evoked Ca2+-independent release of d-[3H]aspartate from cultured cerebellar granule cells: The role of glutamate receptor activation coupled to reversal of the acidic amino acid plasma membrane carrier. Neuroscience 1992; 50:107-15. [PMID: 1357589 DOI: 10.1016/0306-4522(92)90385-f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sulphur-containing excitatory amino acid transmitter candidates (500 microM) stimulated the Ca(2+)-independent efflux of exogenously-supplied D-[3H]aspartate from primary cultures of cerebellar granule cells superfused continuously with HEPES-buffered saline containing CoCl2 (1 mM) in place of CaCl2. The stimulated release of D-[3H]aspartate was markedly attenuated by 200 microM 6,7-dinitroquinoxalinedione, a concentration at which the antagonist inhibits both non-N-methyl-D-aspartate and N-methyl-D-aspartate ionotropic excitatory amino acid receptors. The Ca(2+)-independent component of evoked release was also markedly attenuated and, in some cases, abolished by removing NaCl from the superfusion medium. Furthermore, when 700 microM dihydrokainate (demonstrated herein as a mixed/non-competitive inhibitor of the high-affinity dicarboxylic amino acid transporter in cultured granule cells) was included in the superfusion medium, stimulated efflux of D-[3H]aspartate was reduced by between 15-78% of the control response; the extent of inhibition varying with the agonist employed. In constrast, agents which act as competitive inhibitors of the plasma membrane carrier in granule cells, e.g. beta-methylene-D,L-aspartate, potentiated the release of D-[3H]aspartate in a synergistic manner. Taken together, these findings are consistent with a mechanism for the Ca(2+)-independent release of D-[3H]aspartate that is mediated predominantly by activation of excitatory amino acid receptors resulting in a reversal of the high-affinity dicarboxylic amino acid transport system. Although the physiological relevance of such non-vesicular release from the cytosol remains obscure and is still a matter of some debate, this mode of release may be of pathological significance.
Collapse
Affiliation(s)
- J Dunlop
- Department of Biochemistry and Microbiology, University of St. Andrews, Fife, Scotland, U.K
| | | | | | | | | |
Collapse
|
41
|
Lombardini JB. Review: recent studies on taurine in the central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 315:245-51. [PMID: 1509946 DOI: 10.1007/978-1-4615-3436-5_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- J B Lombardini
- Department of Pharmacology, Texas Tech University Health Sciences Center, Lubbock 79430
| |
Collapse
|
42
|
Andiné P, Orwar O, Jacobson I, Sandberg M, Hagberg H. Changes in extracellular amino acids and spontaneous neuronal activity during ischemia and extended reflow in the CA1 of the rat hippocampus. J Neurochem 1991; 57:222-9. [PMID: 2051165 DOI: 10.1111/j.1471-4159.1991.tb02119.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study addresses the possible involvement of an agonist-induced postischemic hyperactivity in the delayed neuronal death of the CA1 hippocampus in the rat. In two sets of experiments, dialytrodes were implanted into the CA1 either acutely or chronically (24 h of recovery). During 20 min of cerebral ischemia (four-vessel occlusion model) and 8 h of reflow, we followed extracellular amino acids and multiple-unit activity. Multiple-unit activity ceased within 20 sec of ischemia and remained zero during the ischemic insult and for the following 1 h of reflow. During ischemia, extracellular aspartate, glutamate, taurine, and gamma-aminobutyric acid increased in both acute and chronic experiments (seven- to 26-fold). Multiple-unit activity recovered to preischemic levels following 4-6 h of reflow. In the group with dialytrodes implanted acutely, the continuous increase in multiple-unit activity reached 110% of basal at 8 h of reflow. In the group with dialytrodes implanted chronically, multiple-unit activity recovered faster and reached 140% of control at 8 h, paralleled by an increase in extracellular aspartate (5.5-fold) and glutamate (twofold). In conclusion, the postischemic increase of excitatory amino acids and the recovery of the neuronal activity may stress the CA1 pyramidal cells, which could be detrimental in combination with, e.g., postsynaptic impairments.
Collapse
Affiliation(s)
- P Andiné
- Institute of Neurobiology, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|