1
|
Caria I, Nunes MJ, Ciraci V, Carvalho AN, Ranito C, Santos SG, Gama MJ, Castro-Caldas M, Rodrigues CMP, Ruas JL, Rodrigues E. NPC1-like phenotype, with intracellular cholesterol accumulation and altered mTORC1 signaling in models of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166980. [PMID: 38061599 DOI: 10.1016/j.bbadis.2023.166980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.
Collapse
Affiliation(s)
- Inês Caria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Viviana Ciraci
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Catarina Ranito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Susana G Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Jorge L Ruas
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
2
|
Du H, Ma J, Zhou W, Li M, Huai C, Shen L, Wu H, Zhao X, Zhang N, Gao S, Wang Q, He L, Wu X, Qin S, Zhao M. Methylome-wide association study of different responses to risperidone in schizophrenia. Front Pharmacol 2022; 13:1078464. [PMID: 36618913 PMCID: PMC9815458 DOI: 10.3389/fphar.2022.1078464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Accumulating evidence shows that DNA methylation plays a role in antipsychotic response. However, the mechanisms by which DNA methylation changes are associated with antipsychotic responses remain largely unknown. Methods: We performed a methylome-wide association study (MWAS) to evaluate the association between DNA methylation and the response to risperidone in schizophrenia. Genomic DNA methylation patterns were assessed using the Agilent Human DNA Methylation Microarray. Results: We identified numerous differentially methylated positions (DMPs) and regions (DMRs) associated with antipsychotic response. CYP46A1, SPATS2, and ATP6V1E1 had the most significant DMPs, with p values of 2.50 × 10-6, 3.53 × 10-6, and 5.71 × 10-6, respectively. The top-ranked DMR was located on chromosome 7, corresponding to the PTPRN2 gene with a Šidák-corrected p-value of 9.04 × 10-13. Additionally, a significant enrichment of synaptic function and neurotransmitters was found in the differentially methylated genes after gene ontology and pathway analysis. Conclusion: The identified DMP- and DMR-overlapping genes associated with antipsychotic response are related to synaptic function and neurotransmitters. These findings may improve understanding of the mechanisms underlying antipsychotic response and guide the choice of antipsychotic in schizophrenia.
Collapse
Affiliation(s)
- Huihui Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jingsong Ma
- School o f Engineering, Westlake University, Hangzhou, Zhejiang, China,Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianglong Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Songyin Gao
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Qi Wang
- Hebei Mental Health Center, Hebei Sixth People’s Hospital, Baoding, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuming Wu
- Nantong Fourth People’s Hospital, Nantong, China,*Correspondence: Xuming Wu, ; Shengying Qin, ; Mingzhe Zhao,
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Xuming Wu, ; Shengying Qin, ; Mingzhe Zhao,
| | - Mingzhe Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders Ministry of Education, Shanghai Jiao Tong University, Shanghai, China,Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China,*Correspondence: Xuming Wu, ; Shengying Qin, ; Mingzhe Zhao,
| |
Collapse
|
3
|
Staurenghi E, Leoni V, Lo Iacono M, Sottero B, Testa G, Giannelli S, Leonarduzzi G, Gamba P. ApoE3 vs. ApoE4 Astrocytes: A Detailed Analysis Provides New Insights into Differences in Cholesterol Homeostasis. Antioxidants (Basel) 2022; 11:2168. [PMID: 36358540 PMCID: PMC9686673 DOI: 10.3390/antiox11112168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 07/30/2023] Open
Abstract
The strongest genetic risk factor for sporadic Alzheimer's disease (AD) is the presence of the ε4 allele of the apolipoprotein E (ApoE) gene, the major apolipoprotein involved in brain cholesterol homeostasis. Being astrocytes the main producers of cholesterol and ApoE in the brain, we investigated the impact of the ApoE genotype on astrocyte cholesterol homeostasis. Two mouse astrocytic cell lines expressing the human ApoE3 or ApoE4 isoform were employed. Gas chromatography-mass spectrometry (GC-MS) analysis pointed out that the levels of total cholesterol, cholesterol precursors, and various oxysterols are altered in ApoE4 astrocytes. Moreover, the gene expression analysis of more than 40 lipid-related genes by qRT-PCR showed that certain genes are up-regulated (e.g., CYP27A1) and others down-regulated (e.g., PPARγ, LXRα) in ApoE4, compared to ApoE3 astrocytes. Beyond confirming the significant reduction in the levels of PPARγ, a key transcription factor involved in the maintenance of lipid homeostasis, Western blotting showed that both intracellular and secreted ApoE levels are altered in ApoE4 astrocytes, as well as the levels of receptors and transporters involved in lipid uptake/efflux (ABCA1, LDLR, LRP1, and ApoER2). Data showed that the ApoE genotype clearly affects astrocytic cholesterol homeostasis; however, further investigation is needed to clarify the mechanisms underlying these differences and the consequences on neighboring cells. Indeed, drug development aimed at restoring cholesterol homeostasis could be a potential strategy to counteract AD.
Collapse
Affiliation(s)
- Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Valerio Leoni
- Laboratory of Clinical Biochemistry, Hospital Pius XI of Desio, ASST-Brianza, University of Milano-Bicocca, 20126 Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| |
Collapse
|
4
|
Transcription of cytochrome P450 46A1 in NIH3T3 cells is negatively regulated by FBS. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159136. [PMID: 35306146 DOI: 10.1016/j.bbalip.2022.159136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022]
Abstract
Extracellular administration of side-chain oxysterols, such as 24S-hydroxycholesterol (24S-HC), 27-hydroxycholesterol (27-HC) and 25-hydroxycholesterol (25-HC) to cells suppresses HMG-CoA reductase (Hmgcr) and CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) mRNA levels. Oxysterols are enzymatically produced in cells from cholesterol by cytochrome P450 46A1 (Cyp46A1), Cyp27A1, Cyp3A11 and cholesterol 25-hydroxylase (Ch25h). We analyzed which of these oxysterol-producing enzymes are expressed in NIH3T3 cells and found that only Cyp46A1 was expressed. When Cyp46A1 was overexpressed in NIH3T3 cells, intrinsic oxysterols increased in the order 24S-HC > 25-HC > 27-HC. We investigated the mechanism regulating the production of endogenous oxysterols in NIH3T3 cells by Cyp46A1 and found that the mRNA, relative protein levels and enzymatic activity of Cyp46A1, and the amounts of 24S-HC, 25-HC and 27-HC significantly increased under serum-starved conditions, and these increases were suppressed by FBS supplementation. The aqueous phase of FBS obtained by the Bligh & Dyer method significantly suppressed Cyp46A1 mRNA levels. Fractionation of the aqueous phase by HPLC and analysis of the inhibiting fractions by nanoLC and TripleTOF MS/MS identified insulin-like factor-II (IGF-II). Cyp46A1 mRNA levels in serum-starved NIH3T3 cells were significantly suppressed by the addition of IGFs and insulin and endogenous oxysterol levels were decreased. CYP46A1 mRNA levels in the T98G human glioblastoma cell line were also increased by serum starvation but not by FBS supplementation, and the aqueous phase did not inhibit the increase. These results suggest that mRNA levels of Cyp46A1 are regulated by factors in FBS.
Collapse
|
5
|
Pikuleva IA, Cartier N. Cholesterol Hydroxylating Cytochrome P450 46A1: From Mechanisms of Action to Clinical Applications. Front Aging Neurosci 2021; 13:696778. [PMID: 34305573 PMCID: PMC8297829 DOI: 10.3389/fnagi.2021.696778] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Cholesterol, an essential component of the brain, and its local metabolism are involved in many neurodegenerative diseases. The blood-brain barrier is impermeable to cholesterol; hence, cholesterol homeostasis in the central nervous system represents a balance between in situ biosynthesis and elimination. Cytochrome P450 46A1 (CYP46A1), a central nervous system-specific enzyme, converts cholesterol to 24-hydroxycholesterol, which can freely cross the blood-brain barrier and be degraded in the liver. By the dual action of initiating cholesterol efflux and activating the cholesterol synthesis pathway, CYP46A1 is the key enzyme that ensures brain cholesterol turnover. In humans and mouse models, CYP46A1 activity is altered in Alzheimer’s and Huntington’s diseases, spinocerebellar ataxias, glioblastoma, and autism spectrum disorders. In mouse models, modulations of CYP46A1 activity mitigate the manifestations of Alzheimer’s, Huntington’s, Nieman-Pick type C, and Machao-Joseph (spinocerebellar ataxia type 3) diseases as well as amyotrophic lateral sclerosis, epilepsy, glioblastoma, and prion infection. Animal studies revealed that the CYP46A1 activity effects are not limited to cholesterol maintenance but also involve critical cellular pathways, like gene transcription, endocytosis, misfolded protein clearance, vesicular transport, and synaptic transmission. How CYP46A1 can exert central control of such essential brain functions is a pressing question under investigation. The potential therapeutic role of CYP46A1, demonstrated in numerous models of brain disorders, is currently being evaluated in early clinical trials. This review summarizes the past 70 years of research that has led to the identification of CYP46A1 and brain cholesterol homeostasis as powerful therapeutic targets for severe pathologies of the CNS.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Nathalie Cartier
- NeuroGenCell, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| |
Collapse
|
6
|
Zhang H, Lu J, Wu S. Sp4 controls constitutive expression of neuronal serine racemase and NF-E2-related factor-2 mediates its induction by valproic acid. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194597. [PMID: 32603878 DOI: 10.1016/j.bbagrm.2020.194597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 01/10/2023]
Abstract
Serine racemase (SR) synthesizes l-type serine to its enantimor, d-serine which participates in physiological processes and in pathological conditions. In the central nervous system, SR is highly expressed in neurons and astrocytes but expressed at relatively lower amount in microglia. However, the mechanism by which SR is highly expessed in neurons is hitherto unknown. We report that the SR mRNA and protein levels in Neuro-2a were increased by valproic acid (VPA), a neuron differentiation stimulator as well as a histone deacetylase inhibitor. SR proximal promoter contained nine putative Sp-binding elements and in the exon 1, three putative anti-oxidant elements (AREs) were conservative among human, rat, and mouse genome. The promoter constructs including 5'-, 3'-fragment, and full length fragment from mouse were individually cloned into a luciferase reporter. Using dual-luciferase assay, the promoter harboring 3'-fragment contained much lower activity than the construct containing 5'-fragment which was though resistant to VPA induction, relative to 3'-fragment. Overexpression of Sp4 or Nrf2 increased whereas knockdown of either decreased Srr mRNA and SR protein. Using site-directed mutagenesis, mutation of Sp-binding elements or AREs in the constructs significantly decreased luciferase activity of the corresponding promoter construct. With chromatin immunoprecipitation, Sp4 was demonstrated to interact directly with the Sp-binding elements whereas Nrf2 bound AREs in Srr mRNA promoter. Altogether, our study highlights that Sp4 controls constitutive expression of SR in neuron and VPA mediates SR expression in N2A cells which is associated with its effect on neuron differentiation, that is, the effect is mediated via Nrf2.
Collapse
Affiliation(s)
- He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Jinfang Lu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| |
Collapse
|
7
|
Zhang J, Zhang F, Wu J, Li J, Yang Z, Yue J. Glutamate affects cholesterol homeostasis within the brain via the up-regulation of CYP46A1 and ApoE. Toxicology 2020; 432:152381. [PMID: 31981724 DOI: 10.1016/j.tox.2020.152381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
Chronic glutamate excitotoxicity has been thought to be involved in numerous neurodegenerative disorders. A small but significant loss of membrane cholesterol has been reported following a short stimulation of ionotropic glutamate receptors (iGluRs). We investigated the alteration of brain cholesterol following chronic glutamate treatment. The alteration of cholesterol levels was evaluated in the hippocampus from the adult rats that received the subcutaneous injection with monosodium l-glutamate at 1, 3, 5, and 7 days of age. The regulation of CYP46A1, LXRα, and ApoE levels were assayed following subtoxic glutamate treatment in SH-SY5Y cells as well as HT-22 cells lacking iGluRs. The ratio of 24S-hydroxycholesterol to cholesterol was elevated in the adult rats exposed to monosodium l-glutamate before the weaning age, compared to the control. The blockers of NMDA receptor (MK801) and mGluR5 (MPEP) attenuated the glutamate-induced loss of cholesterol and elevation of 24S-hydroxycholesterol level in SH-SY5Y cells. The induction of the mRNA levels of CYP46A1, LXRα, and ApoE by glutamate was observed in both SH-SY5Y cells and HT-22 cells; additionally, MK801 and MPEP attenuated the increases in these genes in SH-SY5Y cells. The increase in the binding of LXRα proteins with ApoE promoter following glutamate treatment was attenuated by MK801. The luciferase assay indicated the binding of CREB protein with CYP46A1 promoter, and the glutamate-induced CREB expression was inhibited by MK801. The results suggest that glutamate, the major excitatory neurotransmitter, may affect the metabolism and redistribution of cholesterol in the neuronal cells via its specific receptors during chronic exposure.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Department of Clinical Pharmacology, PLA General Hospital of Central Theater Command, Wuhan 430061, China
| | - Furong Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Juan Wu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jie Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zheqiong Yang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Medical Research Center for Structural Biology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
8
|
Petrov AM, Pikuleva IA. Cholesterol 24-Hydroxylation by CYP46A1: Benefits of Modulation for Brain Diseases. Neurotherapeutics 2019; 16:635-648. [PMID: 31001737 PMCID: PMC6694357 DOI: 10.1007/s13311-019-00731-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cholesterol 24-hydroxylation is the major mechanism for cholesterol removal from the brain and the reaction catalyzed by cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. This review describes CYP46A1 in the context of cholesterol homeostasis in the brain and summarizes available experimental data on CYP46A1 association with different neurologic diseases, including the mechanisms by which changes in the CYP46A1 activity in the brain could be beneficial for these diseases. The modulation of CYP46A1 activity by genetic and pharmacologic means is also presented along with a brief synopsis of the two clinical trials that evaluate CYP46A1 as a therapeutic target for Alzheimer's disease as well as Dravet and Lennox-Gastaut syndromes.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, 2085 Adelbert Rd., Room 303, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Lu F, Zhu J, Guo S, Wong BJ, Chehab FF, Ferriero DM, Jiang X. Upregulation of cholesterol 24-hydroxylase following hypoxia-ischemia in neonatal mouse brain. Pediatr Res 2018; 83:1218-1227. [PMID: 29718007 PMCID: PMC6019156 DOI: 10.1038/pr.2018.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 01/07/2023]
Abstract
BackgroundMaintenance of cholesterol homeostasis is crucial for brain development. Brain cholesterol relies on de novo synthesis and is cleared primarily by conversion to 24S-hydroxycholesterol (24S-HC) with brain-specific cholesterol 24-hydroxylase (CYP46A1). We aimed to investigate the impact of hypoxia-ischemia (HI) on brain cholesterol metabolism in the neonatal mice.MethodsPostnatal day 9 C57BL/6 pups were subjected to HI using the Vannucci model. CYP46A1 expression was assessed with western blotting and its cellular localization was determined using immunofluorescence staining. The amount of brain cholesterol, 24S-HC in the cortex and in the serum, was measured with enzyme-linked immunosorbent assay (ELISA).ResultsThere was a transient cholesterol loss at 6 h after HI. CYP46A1 was significantly upregulated at 6 and 24 h following HI with a concomitant increase of 24S-HC in the ipsilateral cortex and in the serum. The serum levels of 24S-HC correlated with those in the brain, as well as with necrotic and apoptotic cell death evaluated by the expression of spectrin breakdown products and cleaved caspase-3 at 6 and 24 h after HI.ConclusionEnhanced cholesterol turnover by activation of CYP46A1 represents disrupted brain cholesterol homeostasis early after neonatal HI. 24S-HC might be a novel blood biomarker for severity of hypoxic-ischemic encephalopathy with potential clinical application.
Collapse
Affiliation(s)
- Fuxin Lu
- Department of Pediatrics, University of California San Francisco, San Francisco, CA
| | - Jun Zhu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Selena Guo
- Dougherty Valley High School, San Ramon, CA
| | | | - Farid F. Chehab
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Xiangning Jiang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,Corresponding author: Xiangning Jiang, Department of Pediatrics, University of California, San Francisco 675 Nelson Rising Lane Room 494, San Francisco, CA 94158 Phone: 415-502-7278 Fax: 415-502-7325
| |
Collapse
|
10
|
McMillin M, Grant S, Frampton G, Petrescu AD, Kain J, Williams E, Haines R, Canady L, DeMorrow S. FXR-Mediated Cortical Cholesterol Accumulation Contributes to the Pathogenesis of Type A Hepatic Encephalopathy. Cell Mol Gastroenterol Hepatol 2018; 6:47-63. [PMID: 29928671 PMCID: PMC6008252 DOI: 10.1016/j.jcmgh.2018.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Hepatic encephalopathy is a serious neurologic complication of acute and chronic liver diseases. We previously showed that aberrant bile acid signaling contributes to the development of hepatic encephalopathy via farnesoid X receptor (FXR)-mediated mechanisms in neurons. In the brain, a novel alternative bile acid synthesis pathway, catalyzed by cytochrome p450 46A1 (Cyp46A1), is the primary mechanism by which the brain regulates cholesterol homeostasis. The aim of this study was to determine if FXR activation in the brain altered cholesterol homeostasis during hepatic encephalopathy. METHODS Cyp7A1-/- mice or C57Bl/6 mice pretreated with central infusion of FXR vivo morpholino, 2-hydroxypropyl-β-cyclodextrin, or fed a cholestyramine-supplemented diet were injected with azoxymethane (AOM). Cognitive and neuromuscular impairment as well as liver damage and expression of Cyp46A1 were assessed using standard techniques. The subsequent cholesterol content in the frontal cortex was measured using commercially available kits and by Filipin III and Nile Red staining. RESULTS There was an increase in membrane-bound and intracellular cholesterol in the cortex of mice treated with AOM that was associated with decreased Cyp46A1 expression. Strategies to inhibit FXR signaling prevented the down-regulation of Cyp46A1 and the accumulation of cholesterol. Treatment of mice with 2-hydroxypropyl-β-cyclodextrin attenuated the AOM-induced cholesterol accumulation in the brain and the cognitive and neuromuscular deficits without altering the underlying liver pathology. CONCLUSIONS During hepatic encephalopathy, FXR signaling increases brain cholesterol and contributes to neurologic decline. Targeting cholesterol accumulation in the brain may be a possible therapeutic target for the management of hepatic encephalopathy.
Collapse
Key Words
- 2-HβC, 2-hypdroxypropyl-β-cyclodextrin
- AOM, azoxymethane
- Acute Liver Failure
- Azoxymethane
- CYP46A1, cytochrome p450 46A1
- CYP7A1, cytochrome p450 7A1
- Cytochrome p450 46A1
- FXR, farnesoid X receptor
- Farnesoid X Receptor
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- RT-PCR, reverse-transcription polymerase chain reaction
- WT, wild-type
Collapse
Affiliation(s)
- Matthew McMillin
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Stephanie Grant
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Gabriel Frampton
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Anca D. Petrescu
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Jessica Kain
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Elaina Williams
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Rebecca Haines
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Lauren Canady
- Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas
| | - Sharon DeMorrow
- Central Texas Veterans Healthcare System, Temple, Texas,Department of Medical Physiology, Texas A&M College of Medicine, Temple, Texas,Correspondence Address correspondence to: Sharon DeMorrow, PhD, Department of Medical Physiology, Texas A&M Health Science Center, Central Texas Veterans Health Care System, Building 205, 1901 South 1st Street, Temple, Texas 76504. fax: (254) 743-0378.
| |
Collapse
|
11
|
Mast N, Lin JB, Anderson KW, Bjorkhem I, Pikuleva IA. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS One 2017; 12:e0187168. [PMID: 29073233 PMCID: PMC5658173 DOI: 10.1371/journal.pone.0187168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) converts cholesterol to 24-hydroxycholesterol and thereby controls the major pathways of cholesterol removal from the brain. Cyp46a1-/- mice have a reduction in the rate of cholesterol biosynthesis in the brain and significant impairments to memory and learning. To gain insights into the mechanisms underlying Cyp46a1-/- phenotype, we used Cyp46a1-/- mice and quantified their brain sterol levels and the expression of the genes pertinent to cholesterol homeostasis. We also compared the Cyp46a1-/- and wild type brains for protein phosphorylation and ubiquitination. The data obtained enable the following inferences. First, there seems to be a compensatory upregulation in the Cyp46a1-/- brain of the pathways of cholesterol storage and CYP46A1-independent removal. Second, transcriptional regulation of the brain cholesterol biosynthesis via sterol regulatory element binding transcription factors is not significantly activated in the Cyp46a1-/- brain to explain a compensatory decrease in cholesterol biosynthesis. Third, some of the liver X receptor target genes (Abca1) are paradoxically upregulated in the Cyp46a1-/- brain, possibly due to a reduced activation of the small GTPases RAB8, CDC42, and RAC as a result of a reduced phosphorylation of RAB3IP and PAK1. Fourth, the phosphorylation of many other proteins (a total of 146) is altered in the Cyp46a1-/- brain, including microtubule associated and neurofilament proteins (the MAP and NEF families) along with proteins related to synaptic vesicles and synaptic neurotransmission (e.g., SLCs, SHANKs, and BSN). Fifth, the extent of protein ubiquitination is increased in the Cyp46a1-/- brain, and the affected proteins pertain to ubiquitination (UBE2N), cognition (STX1B and ATP1A2), cytoskeleton function (TUBA1A and YWHAZ), and energy production (ATP1A2 and ALDOA). The present study demonstrates the diverse potential effects of CYP46A1 deficiency on brain functions and identifies important proteins that could be affected by this deficiency.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph B. Lin
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kyle W. Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
| | - Ingemar Bjorkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Huddinge, Sweden
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
12
|
Mast N, Anderson KW, Johnson KM, Phan TTN, Guengerich FP, Pikuleva IA. In vitro cytochrome P450 46A1 (CYP46A1) activation by neuroactive compounds. J Biol Chem 2017. [PMID: 28642370 DOI: 10.1074/jbc.m117.794909] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 46A1 (CYP46A1, cholesterol 24-hydroxylase) is the enzyme responsible for the majority of cholesterol elimination from the brain. Previously, we found that the anti-HIV drug efavirenz (EFV) can pharmacologically activate CYP46A1 in mice. Herein, we investigated whether CYP46A1 could also be activated by endogenous compounds, including major neurotransmitters. In vitro experiments with purified recombinant CYP46A1 indicated that CYP46A1 is activated by l-glutamate (l-Glu), l-aspartate, γ-aminobutyric acid, and acetylcholine, with l-Glu eliciting the highest increase (3-fold) in CYP46A1-mediated cholesterol 24-hydroxylation. We also found that l-Glu and other activating neurotransmitters bind to the same site on the CYP46A1 surface, which differs from the EFV-binding site. The other principal differences between EFV and l-Glu in CYP46A1 activation include an apparent lack of l-Glu binding to the P450 active site and different pathways of signal transduction from the allosteric site to the active site. EFV and l-Glu similarly increased the CYP46A1 kcat, the rate of the "fast" phase of the enzyme reduction by the redox partner NADPH-cytochrome P450 oxidoreductase, and the amount of P450 reduced. Spectral titrations with cholesterol, in the presence of EFV or l-Glu, suggest that water displacement from the heme iron can be affected in activator-bound CYP46A1. Moreover, EFV and l-Glu synergistically activated CYP46A1. Collectively, our in vitro data, along with those from previous cell culture and in vivo studies by others, suggest that l-Glu-induced CYP46A1 activation is of physiological relevance.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kyle W Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850
| | - Kevin M Johnson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Thanh T N Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
13
|
Moutinho M, Nunes MJ, Rodrigues E. Cholesterol 24-hydroxylase: Brain cholesterol metabolism and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1911-1920. [PMID: 27663182 DOI: 10.1016/j.bbalip.2016.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The major elimination pathway of brain cholesterol is its hydroxylation into 24 (S)-hydroxycholesterol by the cholesterol 24-hydroxylase (CYP46A1). Interestingly, there seems to be an association between CYP46A1 and high-order brain functions, in a sense that increased expression of this hydroxylase improves cognition, while a reduction leads to a poor cognitive performance. Moreover, increasing amount of epidemiological, biochemical and molecular evidence, suggests that CYP46A1 has a role in the pathogenesis or progression of neurodegenerative disorders, in which up-regulation of this enzyme is clearly beneficial. However, the mechanisms underlying these effects are poorly understood, which highlights the importance of studies that further explore the role of CYP46A1 in the central nervous system. In this review we summarize the major findings regarding CYP46A1, and highlight the several recently described pathways modulated by this enzyme from a physiological and pathological perspective, which might account for novel therapeutic strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
14
|
Meaney S. Epigenetic regulation of cholesterol homeostasis. Front Genet 2014; 5:311. [PMID: 25309573 PMCID: PMC4174035 DOI: 10.3389/fgene.2014.00311] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/20/2014] [Indexed: 01/15/2023] Open
Abstract
Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review.
Collapse
Affiliation(s)
- Steve Meaney
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology Dublin, Ireland ; Environmental Sustainability and Health Institute, Dublin Institute of Technology Dublin, Ireland
| |
Collapse
|
15
|
Cholesterol 24S-Hydroxylase Overexpression Inhibits the Liver X Receptor (LXR) Pathway by Activating Small Guanosine Triphosphate-Binding Proteins (sGTPases) in Neuronal Cells. Mol Neurobiol 2014; 51:1489-503. [DOI: 10.1007/s12035-014-8828-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
|
16
|
Nunes MJ, Moutinho M, Gama MJ, Rodrigues CMP, Rodrigues E. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux. PLoS One 2013; 8:e53394. [PMID: 23326422 PMCID: PMC3542332 DOI: 10.1371/journal.pone.0053394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/28/2012] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA) are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines and Pharmaceutical Sciences iMed.UL, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
17
|
Nunes MJ, Moutinho M, Milagre I, Gama MJ, Rodrigues E. Okadaic acid inhibits the trichostatin A-mediated increase of human CYP46A1 neuronal expression in a ERK1/2-Sp3-dependent pathway. J Lipid Res 2012; 53:1910-9. [PMID: 22693257 DOI: 10.1194/jlr.m027680] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CYP46A1 gene codes for the cholesterol 24-hydroxylase, a cytochrome P450 specifically expressed in neurons and responsible for the majority of cholesterol turnover in the central nervous system. Previously, we have demonstrated the critical participation of Sp transcription factors in the CYP46A1 response to histone deacetylase (HDAC) inhibitors, and in this study we investigated the involvement of intracellular signaling pathways in the trichostatin A (TSA) effect. Our results show that pretreatment of neuroblastoma cells with chemical inhibitors of mitogen-activated kinase kinase (MEK)1 significantly potentiates the TSA-dependent induction of cholesterol 24-hydroxylase, whereas inhibition of protein phosphatases by okadaic acid (OA) or overexpression of MEK1 partially impairs the TSA effect without affecting histone hyperacetylation at the promoter. Immunoblotting revealed that TSA treatment decreases ERK1/2 phosphorylation concomitantly with a decrease in Sp3 binding activity, which are both reversed by pretreatment with OA. Chromatin immunoprecipitation analysis demonstrated that TSA induces the release of p-ERK1/2 from the CYP46A1 proximal promoter, whereas pretreatment with OA restores the co-occupancy of Sp3-ERK1/2 in the same promoter fragments. We demonstrate for the first time the participation of MEK-ERK1/2 signaling pathway in HDAC inhibitor-dependent induction of cytochrome P450 gene expression, underlying the importance of this regulatory signaling mechanism in the control of brain cholesterol elimination.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), University of Lisbon, 1649-019 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
18
|
Demethylation of the coding region triggers the activation of the human testis-specific PDHA2 gene in somatic tissues. PLoS One 2012; 7:e38076. [PMID: 22675509 PMCID: PMC3365900 DOI: 10.1371/journal.pone.0038076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/30/2012] [Indexed: 11/20/2022] Open
Abstract
Human PDHA2 is a testis-specific gene that codes for the E(1)α subunit of Pyruvate Dehydrogenase Complex (PDC), a crucial enzyme system in cell energy metabolism. Since activation of the PDHA2 gene in somatic cells could be a new therapeutic approach for PDC deficiency, we aimed to identify the regulatory mechanisms underlying the human PDHA2 gene expression. Functional deletion studies revealed that the -122 to -6 promoter region is indispensable for basal expression of this TATA-less promoter, and suggested a role of an epigenetic program in the control of PDHA2 gene expression. Indeed, treatment of SH-SY5Y cells with the hypomethylating agent 5-Aza-2'-deoxycytidine (DAC) promoted the reactivation of the PDHA2 gene, by inducing the recruitment of the RNA polymerase II to the proximal promoter region and the consequent increase in PDHA2 mRNA levels. Bisulfite sequencing analysis revealed that DAC treatment induced a significant demethylation of the CpG island II (nucleotides +197 to +460) in PDHA2 coding region, while the promoter region remained highly methylated. Taken together with our previous results that show an in vivo correlation between PDHA2 expression and the demethylation of the CpG island II in testis germ cells, the present results show that internal methylation of the PDHA2 gene plays a part in its repression in somatic cells. In conclusion, our data support the novel finding that methylation of the PDHA2 coding region can inhibit gene transcription. This represents a key mechanism for absence of PDHA2 expression in somatic cells and a target for PDC therapy.
Collapse
|
19
|
Milagre I, Olin M, Nunes MJ, Moutinho M, Lövgren-Sandblom A, Gama MJ, Björkhem I, Rodrigues E. Marked change in the balance between CYP27A1 and CYP46A1 mediated elimination of cholesterol during differentiation of human neuronal cells. Neurochem Int 2012; 60:192-8. [DOI: 10.1016/j.neuint.2011.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/29/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022]
|
20
|
Milagre I, Nunes MJ, Castro-Caldas M, Moutinho M, Gama MJ, Rodrigues E. Neuronal differentiation alters the ratio of Sp transcription factors recruited to the CYP46A1 promoter. J Neurochem 2011; 120:220-9. [PMID: 22060190 DOI: 10.1111/j.1471-4159.2011.07577.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CYP46A1 is a neuron-specific cytochrome P450 that plays a pivotal role in maintaining cholesterol homeostasis in the CNS. However, the molecular mechanisms underlying human CYP46A1 expression are still poorly understood, partly because of the lack of a cellular model that expresses high levels of CYP46A1. Our previous studies demonstrated that specificity protein (Sp) transcription factors control CYP46A1 expression, and are probably responsible for cell-type specificity. Herein, we have differentiated Ntera2/cloneD1 cells into post-mitotic neurons and identified for the first time a human cell model that expresses high levels of CYP46A1 mRNA. Our results show a decrease in Sp1 protein levels, concomitant with the increase in CYP46A1 mRNA levels. This decrease was correlated with changes in the ratio of Sp proteins associated to the CYP46A1 proximal promoter. To examine if the increase in (Sp3+Sp4)/Sp1 ratio was observed in other Sp-regulated promoters, we have selected four genes--reelin, glutamate receptor subunit zeta-1, glutamate receptor subunit epsilon-1 and μ-opioid receptor--known to be expressed in the human brain and analyzed the Sp proteins binding pattern to the promoter of these genes, in undifferentiated and differentiated Ntera2/cloneD1. Our data indicate that the dissociation of Sp1 from promoter regions is a common feature amongst Sp-regulated genes that are up-regulated after neuronal differentiation.
Collapse
Affiliation(s)
- Inês Milagre
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
21
|
Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CMP. miR-34a regulates mouse neural stem cell differentiation. PLoS One 2011; 6:e21396. [PMID: 21857907 PMCID: PMC3153928 DOI: 10.1371/journal.pone.0021396] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/26/2011] [Indexed: 01/03/2023] Open
Abstract
Background MicroRNAs (miRNAs or miRs) participate in the regulation of several biological processes, including cell differentiation. Recently, miR-34a has been implicated in the differentiation of monocyte-derived dendritic cells, human erythroleukemia cells, and mouse embryonic stem cells. In addition, members of the miR-34 family have been identified as direct p53 targets. However, the function of miR-34a in the control of the differentiation program of specific neural cell types remains largely unknown. Here, we investigated the role of miR-34a in regulating mouse neural stem (NS) cell differentiation. Methodology/Principal Findings miR-34a overexpression increased postmitotic neurons and neurite elongation of mouse NS cells, whereas anti-miR-34a had the opposite effect. SIRT1 was identified as a target of miR-34a, which may mediate the effect of miR-34a on neurite elongation. In addition, acetylation of p53 (Lys 379) and p53-DNA binding activity were increased and cell death unchanged after miR-34a overexpression, thus reinforcing the role of p53 during neural differentiation. Interestingly, in conditions where SIRT1 was activated by pharmacologic treatment with resveratrol, miR-34a promoted astrocytic differentiation, through a SIRT1-independent mechanism. Conclusions Our results provide new insight into the molecular mechanisms by which miR-34a modulates neural differentiation, suggesting that miR-34a is required for proper neuronal differentiation, in part, by targeting SIRT1 and modulating p53 activity.
Collapse
Affiliation(s)
- Márcia M Aranha
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
22
|
Pfrieger FW, Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog Lipid Res 2011; 50:357-71. [PMID: 21741992 DOI: 10.1016/j.plipres.2011.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 12/20/2022]
Abstract
Cells in the mammalian body must accurately maintain their content of cholesterol, which is an essential membrane component and precursor for vital signalling molecules. Outside the brain, cholesterol homeostasis is guaranteed by a lipoprotein shuttle between the liver, intestine and other organs via the blood circulation. Cells inside the brain are cut off from this circuit by the blood-brain barrier and must regulate their cholesterol content in a different manner. Here, we review how this is accomplished by neurons and astrocytes, two cell types of the central nervous system, whose cooperation is essential for normal brain development and function. The key observation is a remarkable cell-specific distribution of proteins that mediate different steps of cholesterol metabolism. This form of metabolic compartmentalization identifies astrocytes as net producers of cholesterol and neurons as consumers with unique means to prevent cholesterol overload. The idea that cholesterol turnover in neurons depends on close cooperation with astrocytes raises new questions that need to be addressed by new experimental approaches to monitor and manipulate cholesterol homeostasis in a cell-specific manner. We conclude that an understanding of cholesterol metabolism in the brain and its role in disease requires a close look at individual cell types.
Collapse
Affiliation(s)
- Frank W Pfrieger
- CNRS UPR 3212, University of Strasbourg, Institute of Cellular and Integrative Neurosciences (INCI), 67084 Strasbourg Cedex, France.
| | | |
Collapse
|
23
|
Kommaddi RP, Dickson KM, Barker PA. Stress-induced expression of the p75 neurotrophin receptor is regulated by O-GlcNAcylation of the Sp1 transcription factor. J Neurochem 2011; 116:396-405. [PMID: 21105874 DOI: 10.1111/j.1471-4159.2010.07120.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Injury-induced expression of p75 neurotrophin receptor (p75NTR) in the CNS induces neuronal apoptosis and prevents neuronal regrowth. The mechanisms regulating injury-induced p75NTR expression are poorly characterized but previous studies have established that reductions in extracellular osmolarity which mimic cytotoxic edema induce p75NTR gene expression through pathways that activate the Sp1 transcription factor. In this report, we examined how extracellular osmolarity converges on Sp1 to regulate p75NTR expression. We report that levels of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), the enzyme that mediates O-linked attachment of GlcNAc, are reduced by extracellular hypo-osmolarity and that global levels of protein O-GlcNAcylation and of Sp1 show a corresponding decline. We demonstrate that chemical and RNAi-based treatments that reduce cellular O-GlcNAcylation facilitate p75NTR induction by hypo-osmolarity, directly linking protein O-GlcNAcylation to p75NTR induction. To determine if Sp1 O-GlcNAc content regulates p75NTR expression, we replaced endogenous Sp1 with a Sp1 mutated at O-GlcNAc target residues. This O-GlcNAc-deficient form of Sp1-enhanced p75NTR expression, demonstrating that O-GlcNAcylation of Sp1 negatively regulates p75NTR expression. We conclude that a stress-induced decline in the O-GlcNAc content of Sp1 drives expression of p75NTR.
Collapse
Affiliation(s)
- Reddy P Kommaddi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
24
|
Identification and analysis of the promoter region of the human DHCR24 gene: involvement of DNA methylation and histone acetylation. Mol Biol Rep 2010; 38:1091-101. [PMID: 20568014 DOI: 10.1007/s11033-010-0206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Mutations in the DHCR24 gene, which encodes the cholesterol biosynthesis enzyme 3ß-hydroxysterol-∆24 reductase, result in an autosomal recessive disease called desmosterolosis. Further, reduced expression of DHCR24 is found in the temporal cortex of Alzheimer's disease patients. This suggests that variability in the regulatory regions of DHCR24 may contribute to the development of this neurodegenerative disease. In this work, we functionally characterised the proximal fragment of the human DHCR24 gene, for the first time. We show that the transcription of DHCR24 is initiated from a single CpG-rich promoter that is regulated by DNA methylation in some cell types. An activator sequence was also uncovered in the -1203/-665 bp region by reporter gene assays. Furthermore, sodium butyrate (a well-known HDAC inhibitor) increased DHCR24 expression in SH-SY5Y cells by recruiting acetylated core histones H3 and H4 to the enhancer region, as demonstrated by transient transfection and chromatin immunoprecipitation assays. Understanding the regulation of the DHCR24 gene may lead to alternative therapeutic strategies in at least some Alzheimer's patients.
Collapse
|
25
|
Mast N, Shafaati M, Zaman W, Zheng W, Prusak D, Wood T, Ansari GAS, Lövgren-Sandblom A, Olin M, Bjorkhem I, Pikuleva I. Marked variability in hepatic expression of cytochromes CYP7A1 and CYP27A1 as compared to cerebral CYP46A1. Lessons from a dietary study with omega 3 fatty acids in hamsters. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:674-81. [PMID: 20298807 PMCID: PMC2866082 DOI: 10.1016/j.bbalip.2010.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/05/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Two diets simulating the recommendations of the American Heart Association to increase the intake of n-3 polyunsaturated fatty acids (n-3 PUFAs) were tested on Golden Syrian hamsters and compared to the diet simulating the current estimated consumption of fat in the United States. N-3 PUFAs were evaluated for their effects on serum and brain lipids and on the three cytochrome P450 enzymes (CYPs 7A1, 27A1, and 46A1) that play key roles in cholesterol elimination from different organs. Hamsters on the highest concentration of n-3 PUFAs had a statistically significant decrease in LDL and HDL cholesterol and no change in serum total cholesterol and triglycerides levels. CYP27A1 and CYP46A1 mRNA levels were increased in the liver and brain, respectively, whereas possible effects on CYP7A1 were obscured by a marked intergroup variability at mRNA, protein, and sterol product levels. Increased levels of CYP46A1 mRNA in the brain did not lead to significant changes in the levels of lathosterol, 24S-hydroxycholesterol or cholesterol in this organ. The data obtained are discussed in relation to inconsistent effects of n-3 PUFAs on serum lipids in human trials and reported positive effects of fish oil on cognitive function.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Marjan Shafaati
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Wahiduz Zaman
- Department of Pharmacology and Toxicology, University of Texas, Medical Branch, Galveston, TX, USA
| | - Wenchao Zheng
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Deborah Prusak
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, Galveston, TX, USA
| | - Thomas Wood
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, Galveston, TX, USA
| | - G. A. S. Ansari
- Department of Biochemistry and Molecular Biology, University of Texas, Medical Branch, Galveston, TX, USA
| | - Anita Lövgren-Sandblom
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Maria Olin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Ingemar Bjorkhem
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
Nunes MJ, Milagre I, Schnekenburger M, Gama MJ, Diederich M, Rodrigues E. Sp proteins play a critical role in histone deacetylase inhibitor-mediated derepression of CYP46A1 gene transcription. J Neurochem 2010; 113:418-31. [PMID: 20096088 DOI: 10.1111/j.1471-4159.2010.06612.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We investigated whether the CYP46A1 gene, a neuronal-specific cytochrome P450, responsible for the majority of brain cholesterol turnover, is subject to transcriptional modulation through modifications in histone acetylation. We demonstrated that inhibition of histone deacetylase activity by trichostatin A (TSA), valproic acid and sodium butyrate caused a potent induction of both CYP46A1 promoter activity and endogenous expression. Silencing of Sp transcription factors through specific small interfering RNAs, or impairing Sp binding to the proximal promoter, by site-directed mutagenesis, led to a significant decrease in TSA-mediated induction of CYP46A1 expression/promoter activity. Electrophoretic mobility shift assay, DNA affinity precipitation assays and chromatin immunoprecipitation assays were used to determine the multiprotein complex recruited to the CYP46A1 promoter, upon TSA treatment. Our data showed that a decrease in Sp3 binding at particular responsive elements, can shift the Sp1/Sp3/Sp4 ratio, and favor the detachment of histone deacetylase (HDAC) 1 and HDAC2 and the recruitment of p300/CBP. Moreover, we observed a dynamic change in the chromatin structure upon TSA treatment, characterized by an increase in the local recruitment of euchromatic markers and RNA polymerase II. Our results show the critical participation of an epigenetic program in the control of CYP46A1 gene transcription, and suggest that brain cholesterol catabolism may be affected upon treatment with HDAC inhibitors.
Collapse
Affiliation(s)
- Maria João Nunes
- Faculty of Pharmacy, iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
27
|
Vanmierlo T, Rutten K, Dederen J, Bloks VW, van Vark-van der Zee LC, Kuipers F, Kiliaan A, Blokland A, Sijbrands EJG, Steinbusch H, Prickaerts J, Lütjohann D, Mulder M. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2009; 32:1262-72. [PMID: 19674815 DOI: 10.1016/j.neurobiolaging.2009.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/03/2009] [Accepted: 07/10/2009] [Indexed: 11/19/2022]
Abstract
Alterations in cerebral cholesterol metabolism are thought to play a role in the progression of Alzheimer's disease (AD). Liver X receptors (LXRs) are key regulators of cholesterol metabolism. The synthetic LXR activator, T0901317 has been reported to improve memory functions in animal models for AD and to reduce amyloid-β (Aβ) deposition in the brain. Here we provide evidence that long-term administration of T0901317 to aged, 21-month-old APPSLxPS1mut mice restores impaired memory. Cerebral cholesterol turnover was enhanced as indicated by the increased levels of brain cholesterol precursors and the upregulation of LXR-target genes Abca1, Abcg1, and Apoe. Unexpectedly, the improved memory functions in the APPSLxPS1mut mice after T0901317 treatment were not accompanied by a decrease in Aβ plaque load in the cortex or hippocampus DG, CA1 or CA3. T0901317 administration also enhanced cerebral cholesterol turnover in aged C57BL/6NCrl mice, but did not further improve their memory functions. In conclusion, long-term activation of the LXR-pathway restored memory functions in aged APPSLxPS1mut mice with advanced Aβ deposition. However the beneficial effects of T0901317 on memory in the APPSLxPS1mut mice were independent of the Aβ plaque load in the hippocampus, but were associated with enhanced brain cholesterol turnover.
Collapse
Affiliation(s)
- Tim Vanmierlo
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Russell DW, Halford RW, Ramirez DMO, Shah R, Kotti T. Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem 2009; 78:1017-40. [PMID: 19489738 DOI: 10.1146/annurev.biochem.78.072407.103859] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cholesterol 24-hydroxylase is a highly conserved cytochrome P450 that is responsible for the majority of cholesterol turnover in the vertebrate central nervous system. The enzyme is expressed in neurons, including hippocampal and cortical neurons that are important for learning and memory formation. Disruption of the cholesterol 24-hydroxylase gene in the mouse reduces both cholesterol turnover and synthesis in the brain but does not alter steady-state levels of cholesterol in the tissue. The decline in synthesis reduces the flow of metabolites through the cholesterol biosynthetic pathway, of which one, geranylgeraniol diphosphate, is required for learning in the whole animal and for synaptic plasticity in vitro. This review focuses on how the link between cholesterol metabolism and higher-order brain function was experimentally established.
Collapse
Affiliation(s)
- David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Aberrations in cerebral cholesterol homeostasis can lead to severe neurological diseases and have been linked to Alzheimer's disease. Many proteins involved in peripheral cholesterol metabolism are also present in the brain. Yet, brain cholesterol metabolism is very different from that in the remainder of the body. This review reports on present insights into the regulation of cerebral cholesterol homeostasis, focusing on cholesterol trafficking between astrocytes and neurons. RECENT FINDINGS Astrocytes are a major site of cholesterol synthesis. They secrete cholesterol in the form of apolipoprotein E-containing HDL-like particles. After birth, neurons are thought to reduce their cholesterol synthesis and rely predominantly on astrocytes for their cholesterol supply. How exactly neurons regulate their cholesterol supply is largely unknown. A role for the brain-specific cholesterol metabolite, 24(S)-hydroxycholesterol, in this process was recently proposed. Recent findings strengthen the link between brain cholesterol metabolism and factors involved in synaptic plasticity, a process essential for learning and memory functions, as well as regeneration, which are affected in Alzheimer's disease. SUMMARY Insight into the regulation of cerebral cholesterol homeostasis will provide possibilities to modulate the key steps involved and may lead to the development of therapies for the prevention as well as treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Monique Mulder
- Department of Internal Medicine and Division of Pharmacology, Vascular and Metabolic diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Shafaati M, O'Driscoll R, Björkhem I, Meaney S. Transcriptional regulation of cholesterol 24-hydroxylase by histone deacetylase inhibitors. Biochem Biophys Res Commun 2008; 378:689-94. [PMID: 19059217 DOI: 10.1016/j.bbrc.2008.11.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
The mechanistic basis for the tissue specific expression of cholesterol elimination pathways is poorly understood. To gain additional insight into this phenomenon we considered it of interest to investigate if epigenetic mechanisms are involved in the regulation of the brain-specific enzyme cholesterol 24-hydroxylase (CYP46A1), a key regulator of brain cholesterol elimination. We demonstrated a marked time-dependent derepression of the expression of CYP46A1, in response to treatment with the potent histone deacetylase (HDAC) inhibitor Trichostatin A. The pattern of expression of the genes in the genomic region surrounding CYP46A1 was found to be diametrically opposite in brain and liver. Intraperitoneal injection of HDAC inhibitors in mice led to a significant derepression of hepatic Cyp46a1 mRNA expression and tissue specific changes in Hmgcr and Cyp39a1 mRNA expression. These results are discussed in the context of the phenomenology of tissue specific cholesterol balance.
Collapse
Affiliation(s)
- Marjan Shafaati
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
31
|
Pikuleva IA. Cholesterol-metabolizing cytochromes P450: implications for cholesterol lowering. Expert Opin Drug Metab Toxicol 2008; 4:1403-14. [PMID: 18950282 PMCID: PMC2957831 DOI: 10.1517/17425255.4.11.1403] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of death worldwide. Elevated serum cholesterol is one of the classical risk factors for CVD, which also include age, hypertension, smoking, diabetes mellitus, obesity and family history. Several therapeutic drug classes have been developed to treat hypercholesterolemia; yet, an important percentage of patients do not reach their treatment goals. Therefore, new cholesterol-lowering medications that have sites of action different from that of drugs available at present need to be developed. This review summarizes new information about cytochrome P450 enzymes 7A1, 27A1 and 46A1. These enzymes play key roles in cholesterol elimination and have the potential to serve as targets for cholesterol-lowering.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Case Western Reserve University, University Hospitals Case Medical Center, Department of Ophthalmology and Visual Sciences, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Corrigendum. J Neurochem 2008. [DOI: 10.1111/j.1471-4159.2008.05654.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|