1
|
Tiritelli R, Cilia G, Gómez-Moracho T. The trypanosomatid (Kinetoplastida: Trypanosomatidae) parasites in bees: A review on their environmental circulation, impacts and implications. CURRENT RESEARCH IN INSECT SCIENCE 2025; 7:100106. [PMID: 39925747 PMCID: PMC11803887 DOI: 10.1016/j.cris.2025.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Trypanosomatids, obligate parasites capable of impacting insects' hindgut, have recently obtained considerable attention, especially about their effects on bees. While Crithidia mellificae and C. bombi were initially discovered and studied in honey bees and bumblebees, respectively, molecular techniques revealed Lotmaria passim as the predominant trypanosomatid in honey bees globally. New species like C. expoeki and C. acanthocephali have also been identified. These parasites have complex life cycles involving various host developmental stages and are transmitted horizontally within and outside colonies through direct contact, oral interactions, and contaminating flowers with infected faeces. The impact of trypanosomatids on honey bee colony health remains uncertain. In bumblebees, studies highlighted the widespread presence of C. bombi, affecting colony and individual fitness, development, and foraging behaviour. Bee trypanosomatids have been detected in various species, including other insects, and mammals, suggesting diverse epidemiological pathways and potential effects that warrant further investigation. Biotic factors, including co-infections, gut microbiota, food contamination, and abiotic factors like environmental conditions, pesticides, and urbanization, play crucial roles in infection dynamics. This review aimed to summarise key research on trypanosomatid transmission and infection in both managed and wild bees, focusing on the influence of biotic and abiotic factors. The work highlights significant gaps in current knowledge and provides a valuable foundation for future studies. Understanding the pathogenicity and infection dynamics of trypanosomatids, along with the impact of environmental factors, is essential for developing effective conservation strategies that support pollinator health and overall ecosystem resilience.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Tamara Gómez-Moracho
- Department of Parasitology, Biochemical and Molecular Parasitology Group CTS-183, University of Granada, Granada, Spain
- Institute of Biotechnology, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Bieber BV, Lockett SG, Glasser SK, St Clair FA, Portillo NO, Adler LS, Povelones ML. Genetic modification of the bee parasite Crithidia bombi for improved visualization and protein localization. Exp Parasitol 2024; 262:108789. [PMID: 38762201 DOI: 10.1016/j.exppara.2024.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Crithidia bombi is a trypanosomatid parasite that infects several species of bumble bees (Bombus spp.), by adhering to their intestinal tract. Crithidia bombi infection impairs learning and reduces survival of workers and the fitness of overwintering queens. Although there is extensive research on the ecology of this host-pathogen system, we understand far less about the mechanisms that mediate internal infection dynamics. Crithidia bombi infects hosts by attaching to the hindgut via the flagellum, and one previous study found that a nectar secondary compound removed the flagellum, preventing attachment. However, approaches that allow more detailed observation of parasite attachment and growth would allow us to better understand factors mediating this host-pathogen relationship. We established techniques for genetic manipulation and visualization of cultured C. bombi. Using constructs established for Crithidia fasciculata, we successfully generated C. bombi cells expressing ectopic fluorescent transgenes using two different selectable markers. To our knowledge, this is the first genetic modification of this species. We also introduced constructs that label the mitochondrion and nucleus of the parasite, showing that subcellular targeting signals can function across parasite species to highlight specific organelles. Finally, we visualized fluorescently tagged parasites in vitro in both their swimming and attached forms, and in vivo in bumble bee (Bombus impatiens) hosts. Expanding our cell and molecular toolkit for C. bombi will help us better understand how factors such as host diet, immune system, and physiology mediate outcomes of infection by these common parasites.
Collapse
Affiliation(s)
| | - Sarah G Lockett
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Sonja K Glasser
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Faith A St Clair
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Neida O Portillo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Megan L Povelones
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
3
|
Iller M, Lipczyńska-Ilczuk K, Sokół R, Borsuk G, Bancerz-Kisiel A. Phylogenetic analysis of the trypanosomatid parasite Lotmaria passim in honey bees ( Apis mellifera) in Poland. J Vet Res 2024; 68:123-127. [PMID: 38525230 PMCID: PMC10960264 DOI: 10.2478/jvetres-2024-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Lotmaria passim (L. passim) is a single-celled flagellate which colonises the bee gastrointestinal tract and is highly prevalent in honey bees. This parasite is associated with colony losses. Honey bee (Apis mellifera) colonies were sampled from five apiaries in the north-eastern part of Poland for the phylogenetic analysis of L. passim. Material and Methods Each apiary consisted of approximately 60 bee colonies, of which 20 were randomly selected. Samples of 60 differently aged worker bees were collected from each colony and pooled. A total of 100 bee colonies from five apiaries were examined. Protozoa of the Trypanosomatidae family were identified by PCR. L. passim was detected in 47 (47%) of the samples. The 18S ribosomal (r) RNA amplicons of L. passim were sequenced by a commercial service. Their sequences were analysed with BLASTN and noted to be compatible with the GenBank sequences of this region of the organism's genome. A sequence analysis was performed using the BioEdit Sequence Alignment Editor and Clustal W software. Results The amplicon sequences of L. passim were 100% homologous with the sequences deposited in GenBank under accession numbers KM066243.1., KJ684964.1 and KM980181.1. Conclusion This is the first study to perform a phylogenetic analysis of L. passim in Polish honey bees. The analysis demonstrated high levels of genetic similarity between isolates of L. passim colonising apiaries in the north-eastern region of Poland.
Collapse
Affiliation(s)
- Maria Iller
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Karolina Lipczyńska-Ilczuk
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Rajmund Sokół
- Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| | - Grzegorz Borsuk
- Department of Apidology, Faculty of Animal Sciences and Bioeconomy, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Agata Bancerz-Kisiel
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719Olsztyn, Poland
| |
Collapse
|
4
|
Sevim A, Akpınar R, Öztürk SH, Yılmaz F, Kayaboynu Ü, Sevim E, Ese H, Karataş Ü, Buldağ M, Umur Ş. PCR-Based Screening of Pathogens in Bombus terrestris Populations of Turkey. Acta Parasitol 2024; 69:275-282. [PMID: 38041724 DOI: 10.1007/s11686-023-00743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Bumblebees are an important group of insects in the pollination of various vegetables, fruits, oilseeds, legumes, and the fodder crops. Compared to honeybees, they have a wider choice of hosts and a longer flight period. These bees are used especially for the pollination of plants in greenhouses and are commercially produced for this purpose. Recently, serious decreases have been occurring in bumblebee populations due to various reasons such as pathogens, and some of species are even threatened with extinction. Due to the worldwide decline in pollinator insects, determining the distribution and prevalence of bumblebee pathogens is of great importance. Therefore, this study was conducted to determine the incidence and prevalence of pathogens in Turkish bumblebee populations and how much of each pathogen was in bumblebee samples. METHODS A total of 172 Bombus terrestris (Linnaeus,1758) samples (21 samples from commercial enterprises, 79 samples from greenhouses and 72 samples from nature) were randomly collected from 3 provinces (Antalya, Mersin and İzmir) where greenhouse cultivation is intensively carried out in Turkey. Eighty-nine of these samples were collected in the spring and eighty-three in the autumn. The presence of four pathogens (Nosema bombi, Crithidia bombi, Apicystis bombi, and Locustacarus buchneri) was investigated by PCR using universal primers. RESULTS The overall prevalence of Nosema bombi, Crithidia bombi, Apicystis bombi, and Locustacarus buchneri was determined as 7.55%, 9.3%, 11.62%, and 4.65%, respectively. Co-infections (5.81%) were only detected in wild-caught (nature) samples. C. bombi and A. bombi infections were detected at higher rates in the spring samples than in the autumn samples (p < 0.05). There was no significant difference between the spring and autumn samples with respect to the presence of N. bombi and L. buchneri (p > 0.05). CONCLUSION The results obtained could be important in determining the prevalence and spread rates of the bumblebee diseases in Turkey and to determine appropriate protection measures. The information gathered should increase our knowledge about the presence of these pathogens in Turkey and could contribute to improve apiarist's practice. More studies are needed to determine the transmission pathways of these pathogens between the populations. Also, complex pathogen interactions in bumblebee populations should be considered in the future to improve bumblebee health.
Collapse
Affiliation(s)
- Ali Sevim
- Department of Plant Protection, Faculty of Agriculture, Kırşehir Ahi Evran University, Kırşehir, 40100, Turkey.
| | - Rahşan Akpınar
- Honeybee Diseases Laboratory, T.C Ministry of Agriculture and Forestry, Samsun Veterinary Control Institute, Samsun, Turkey
| | - Seyit Hasan Öztürk
- T.C Ministry of Agriculture and Forestry, Ordu Apiculture Research Institute, Ordu, Turkey
| | - Fatih Yılmaz
- T.C Ministry of Agriculture and Forestry, Ordu Apiculture Research Institute, Ordu, Turkey
| | - Ümit Kayaboynu
- T.C Ministry of Agriculture and Forestry, Ordu Apiculture Research Institute, Ordu, Turkey
| | - Elif Sevim
- Department of Medical Biology, Faculty of Medicine, Kırşehir Ahi Evran University, Kırşehir, 40100, Turkey
| | - Hasan Ese
- T.C Ministry of Agriculture and Forestry, Ordu Apiculture Research Institute, Ordu, Turkey
| | - Ümit Karataş
- T.C Ministry of Agriculture and Forestry, Ordu Apiculture Research Institute, Ordu, Turkey
| | - Mücahit Buldağ
- T.C Ministry of Agriculture and Forestry, Ordu Apiculture Research Institute, Ordu, Turkey
| | - Şinasi Umur
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
5
|
Chen H, Zhang G, Ding G, Huang J, Zhang H, Vidal MC, Corlett RT, Liu C, An J. Interspecific Host Variation and Biotic Interactions Drive Pathogen Community Assembly in Chinese Bumblebees. INSECTS 2023; 14:887. [PMID: 37999086 PMCID: PMC10672019 DOI: 10.3390/insects14110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Bumblebees have been considered one of the most important pollinators on the planet. However, recent reports of bumblebee decline have raised concern about a significant threat to ecosystem stability. Infectious diseases caused by multiple pathogen infections have been increasingly recognized as an important mechanism behind this decline worldwide. Understanding the determining factors that influence the assembly and composition of pathogen communities among bumblebees can provide important implications for predicting infectious disease dynamics and making effective conservation policies. Here, we study the relative importance of biotic interactions versus interspecific host resistance in shaping the pathogen community composition of bumblebees in China. We first conducted a comprehensive survey of 13 pathogens from 22 bumblebee species across China. We then applied joint species distribution modeling to assess the determinants of pathogen community composition and examine the presence and strength of pathogen-pathogen associations. We found that host species explained most of the variations in pathogen occurrences and composition, suggesting that host specificity was the most important variable in predicting pathogen occurrences and community composition in bumblebees. Moreover, we detected both positive and negative associations among pathogens, indicating the role of competition and facilitation among pathogens in determining pathogen community assembly. Our research demonstrates the power of a pluralistic framework integrating field survey of bumblebee pathogens with community ecology frameworks to understand the underlying mechanisms of pathogen community assembly.
Collapse
Affiliation(s)
- Huanhuan Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Guangshuo Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Hong Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Mayra C. Vidal
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
| | - Cong Liu
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Jiandong An
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| |
Collapse
|
6
|
Aguado-López D, Bartolomé C, Lopes AR, Henriques D, Segura SK, Maside X, Pinto MA, Higes M, Martín-Hernández R. Frequent Parasitism of Apis mellifera by Trypanosomatids in Geographically Isolated Areas with Restricted Beekeeping Movements. MICROBIAL ECOLOGY 2023; 86:2655-2665. [PMID: 37480517 DOI: 10.1007/s00248-023-02266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
Trypanosomatids form a group of high prevalence protozoa that parasitise honey bees, with Lotmaria passim as the predominant species worldwide. However, the knowledge about the ecology of trypanosomatids in isolated areas is limited. The Portuguese archipelagos of Madeira and Azores provide an interesting setting to investigate these parasites because of their geographic isolation, and because they harbour honey bee populations devoid of two major enemies: Varroa destructor and Nosema ceranae. Hence, a total of 661 honey bee colonies from Madeira and the Azores were analysed using different molecular techniques, through which we found a high prevalence of trypanosomatids despite the isolation of these islands. L. passim was the predominant species and, in most colonies, was the only one found, even on islands free of V. destructor and/or N. ceranae with severe restrictions on colony movements to prevent the spread of them. However, islands with V. destructor had a significantly higher prevalence of L. passim and, conversely, islands with N. ceranae did not shown any significant correlation with the trypanosomatid. Crithidia bombi was detected in Madeira and on three islands of the Azores, almost always coincident with L. passim. By contrast, Crithidia mellificae was not detected in any sample. A high-throughput sequencing analysis distinguished two main haplotypes of L. passim, which accounted for 98% of the total sequence reads. This work suggests that L. passim and C. bombi are parasites that have been associated with honey bees predating the spread of V. destructor and N. ceranae.
Collapse
Affiliation(s)
- Daniel Aguado-López
- Laboratorio de Patología Apícola, IRIAF-Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola Y Agroambiental (CIAPA), Consejería de Agricultura de La Junta de Comunidades de Castilla-La Mancha, Camino de San Martín S/N, 19180, Marchamalo, Spain
| | - Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Galicia, Spain
| | - Ana Rita Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade E Tecnologia Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade E Tecnologia Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Sara Kafafi Segura
- Zoología Y Antropología Física, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28014, Madrid, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Galicia, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade E Tecnologia Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Mariano Higes
- Laboratorio de Patología Apícola, IRIAF-Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola Y Agroambiental (CIAPA), Consejería de Agricultura de La Junta de Comunidades de Castilla-La Mancha, Camino de San Martín S/N, 19180, Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, IRIAF-Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Centro de Investigación Apícola Y Agroambiental (CIAPA), Consejería de Agricultura de La Junta de Comunidades de Castilla-La Mancha, Camino de San Martín S/N, 19180, Marchamalo, Spain.
- Instituto de Recursos Humanos Para La Ciencia Y La Tecnología (INCRECYT-FSE/EC-ESF), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain.
| |
Collapse
|
7
|
Figueroa LL, Sadd BM, Tripodi AD, Strange JP, Colla SR, Adams LD, Duennes MA, Evans EC, Lehmann DM, Moylett H, Richardson L, Smith JW, Smith TA, Spevak EM, Inouye DW. Endosymbionts that threaten commercially raised and wild bumble bees ( Bombus spp.). JOURNAL OF POLLINATION ECOLOGY 2023; 33:14-36. [PMID: 39749009 PMCID: PMC11694841 DOI: 10.26786/1920-7603(2023)713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators for both wild and agriculturally managed plants. We give an overview of what is known about the diverse community of internal potentially deleterious bumble bee symbionts, including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods for their detection, quantification, and control. We also provide information on assessment of risk for select bumble bee symbionts and highlight key knowledge gaps. This information is crucial for ongoing efforts to establish parasite- conscious programs for future commerce in bumble bees for crop pollination, and to mitigate the problems with pathogen spillover to wild populations.
Collapse
Affiliation(s)
- Laura L. Figueroa
- Department of Environmental Conservation, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | - Ben M. Sadd
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | | | - James P. Strange
- Department of Entomology, The Ohio State University, Columbus, OH 43214, USA
| | - Sheila R. Colla
- Faculty of Environmental and Urban Change, York University, Toronto, ON, Canada
| | - Laurie Davies Adams
- Pollinator Partnership, 600 Montgomery, Suite 440, San Francisco, CA 94111, USA
| | | | - Elaine C. Evans
- Department of Entomology, University of Minnesota, Saint Paul, MN 55108 USA
| | - David M. Lehmann
- Center for Public Health and Environmental Assessment (CPHEA), Health and Environmental Effects Assessment Division, Integrated Health Assessment Branch, US - Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | | | - Leif Richardson
- The Xerces Society for Invertebrate Conservation, 628 NE Broadway, Suite 20, Portland, OR 97232-1324, USA
| | - James W. Smith
- Retired USDA-Animal and Plant Health Inspection Service, Raleigh, NC 27526, USA
| | - Tamara A. Smith
- US Fish & Wildlife Service, Minnesota/Wisconsin Ecological Services Field Office, 4101 American Boulevard East, Bloomington, MN 55425, USA
| | - Edward M. Spevak
- Center for Native Pollinator Conservation, Saint Louis Zoo, One Government Drive, St. Louis, MO 63110, USA
| | - David W. Inouye
- Department of Biology, University of Maryland, College Park, MD 20742, and Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA
| |
Collapse
|
8
|
Votavová A, Trněný O, Staveníková J, Dybová M, Brus J, Komzáková O. Prevalence and Distribution of Three Bumblebee Pathogens from the Czech Republic. INSECTS 2022; 13:insects13121121. [PMID: 36555033 PMCID: PMC9785318 DOI: 10.3390/insects13121121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 05/12/2023]
Abstract
Bumblebees are significant pollinators for both wild plants and economically important crops. Due to the worldwide decrease in pollinators, it is crucial to monitor the prevalence and distribution of bumblebee pathogens. Field-caught bumblebee workers and males were examined for the presence of three pathogens during the summer months of the years 2015-2020 (Bombus terrestris/lucorum) and 2015-2017 (Bombus lapidarius). The greatest prevalence was in the case of Crithidia bombi, where significantly more workers (57%) of B. terrestris/lucorum were infected than males (41%). Infection was also confirmed in 37% of B. lapidarius workers. The average prevalence was very similar in the case of Nosema bombi in workers (25%) and males (22%) of B. terrestris/lucorum. In the case of B. lapidarius, 17% of the workers were infected. The lowest number of infected individuals was for Apicystis bombi and the prevalence of infection was significantly higher for males (22%) than workers (8%) of B. terrestris/lucorum. Only 3% of workers and 4% of males of B. terrestris/lucorum were simultaneously infected with three types of pathogens, but no worker was infected with only a combination of N. bombi and A. bombi. The greatest prevalence of C. bombi was found in urban or woodland areas.
Collapse
Affiliation(s)
- Alena Votavová
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
- Correspondence:
| | - Oldřich Trněný
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Jana Staveníková
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Magdaléna Dybová
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| | - Jan Brus
- Department of Geoinformatics, Faculty of Science, Palacký University Olomouc, 17. Listopadu 50, 771 46 Olomouc, Czech Republic
| | - Olga Komzáková
- Agricultural Research Ltd., Troubsko, Zahradní 1, 664 41 Troubsko, Czech Republic
| |
Collapse
|
9
|
Jones LJ, Singh A, Schilder RJ, López-Uribe MM. Squash bees host high diversity and prevalence of parasites in the northeastern United States. J Invertebr Pathol 2022; 195:107848. [PMID: 36343669 DOI: 10.1016/j.jip.2022.107848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The squash bee Eucera (Peponapis) pruinosa is emerging as a model species to study how stressors impact solitary wild bees in North America. Here, we describe the prevalence of trypanosomes, microsporidians and mollicute bacteria in E. pruinosa and two other species, Bombus impatiens and Apis mellifera, that together comprise over 97% of the pollinator visitors of Cucurbita agroecosystems in Pennsylvania (United States). Our results indicate that all three parasite groups are commonly detected in these bee species, but E. pruinosa often exhibit higher prevalences. We further describe novel trypanosome parasites detected in E. pruinosa, however it is unknown how these parasites impact these bees. We suggest future work investigates parasite replication and infection outcomes.
Collapse
Affiliation(s)
- Laura J Jones
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Avehi Singh
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rudolf J Schilder
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margarita M López-Uribe
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
10
|
Bartolomé C, Buendía-Abad M, Ornosa C, De la Rúa P, Martín-Hernández R, Higes M, Maside X. Bee Trypanosomatids: First Steps in the Analysis of the Genetic Variation and Population Structure of Lotmaria passim, Crithidia bombi and Crithidia mellificae. MICROBIAL ECOLOGY 2022; 84:856-867. [PMID: 34609533 PMCID: PMC9622509 DOI: 10.1007/s00248-021-01882-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04 %) - and a mutation frequency distribution compatible with a population expansion after a bottleneck - that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areas.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Concepción Ornosa
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pilar De la Rúa
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, 02006, Albacete, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
11
|
Michalczyk M, Sokół R. Detection of Lotmaria passim and Crithidia mellificae in Selected Bumblebee Species. Pathogens 2022; 11:pathogens11091053. [PMID: 36145485 PMCID: PMC9504464 DOI: 10.3390/pathogens11091053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Bumblebees (Bombus spp.) are an essential element of the ecosystem and the global economy. They are valued pollinators in many countries around the word. Unfortunately, there has been a decline in the bumblebee population, which is attributed to, among others, pathogens and reduced access to food due to the loss of natural nesting sites. Lotmaria passim and Crithidia mellificae, protozoan pathogens of the family Trypanosomatidae, commonly infect bumblebees, including in Poland. In this study, a Polish population of bumblebees was screened for L. passim and C. mellificae. The experiment was performed on 13 adult bumblebees belonging to 4 species: B. lapidarius, B. lucorum, B. pascuorum, and B. terrestris. Protozoa of the family Trypanosomatidae were identified by PCR. Only L. passim was identified in one B. pascuorum individual. Further research is needed to confirm the effect of concurrent pathogens on the decline of bumblebee populations.
Collapse
|
12
|
Gómez-Moracho T, Durand AM, Lihoreau M. The gut parasite Nosema ceranae impairs olfactory learning in bumblebees. J Exp Biol 2022; 225:jeb244340. [PMID: 35726829 DOI: 10.1242/jeb.244340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Pollinators are exposed to numerous parasites and pathogens when foraging on flowers. These biological stressors may affect critical cognitive abilities required for foraging. Here, we tested whether exposure to Nosema ceranae, one of the most widespread parasites of honey bees also found in wild pollinators, impacts cognition in bumblebees. We investigated different forms of olfactory learning and memory using conditioning of the proboscis extension reflex. Seven days after being exposed to parasite spores, bumblebees showed lower performance in absolute, differential and reversal learning than controls. The consistent observations across different types of olfactory learning indicate a general negative effect of N. ceranae exposure that did not specifically target particular brain areas or neural processes. We discuss the potential mechanisms by which N. ceranae impairs bumblebee cognition and the broader consequences for populations of pollinators.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| | - Alice Mélusine Durand
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse cedex 09, France
| |
Collapse
|
13
|
Ivers NA, Jordan Z, Cohen H, Tripodi A, Brown MJF, Liere H, Lin BB, Philpott S, Jha S. Parasitism of urban bumble bees influenced by pollinator taxonomic richness, local garden management, and surrounding impervious cover. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Fowler AE, Giacomini JJ, Connon SJ, Irwin RE, Adler LS. Sunflower pollen reduces a gut pathogen in the model bee species, Bombus impatiens, but has weaker effects in three wild congeners. Proc Biol Sci 2022; 289:20211909. [PMID: 35105241 PMCID: PMC8809364 DOI: 10.1098/rspb.2021.1909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Commercial bumblebees have become popular models to understand stressors and solutions for pollinator health, but few studies test whether results translate to other pollinators. Consuming sunflower pollen dramatically reduces infection by the gut parasite Crithidia bombi in commercially reared Bombus impatiens. We assessed the effect of sunflower pollen on infection in wild B. impatiens, Bombus griseocollis, Bombus bimaculatus and Bombus vagans. We also asked how pollen diet (50% sunflower pollen versus wildflower pollen) and infection (yes/no) affected performance in wild B. impatiens microcolonies. Compared to controls, sunflower pollen dramatically reduced Crithidia infection in commercial and wild B. impatiens, had similar but less dramatic effects in B. bimaculatus and B. vagans, and no effect in B. griseocollis. Bombus impatiens, B. bimaculatus and B. vagans are in the same subgenus, suggesting that responses to sunflower pollen may be phylogenetically conserved. In microcolonies, 50% sunflower pollen reduced infection compared to wildflower pollen, but also reduced reproduction. Sunflower pollen could control Crithidia infections in B. impatiens and potentially close relatives, but may hinder reproduction if other resources are scarce. We caution that research using managed bee species, such as B. impatiens, be interpreted carefully as findings may not relate to all bee species.
Collapse
Affiliation(s)
- Alison E. Fowler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| | - Jonathan J. Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sara June Connon
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts Amherst, 221 Morrill Science Center South, 611 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Galajda R, Valenčáková A, Sučik M, Kandráčová P. Nosema Disease of European Honey Bees. J Fungi (Basel) 2021; 7:jof7090714. [PMID: 34575752 PMCID: PMC8468538 DOI: 10.3390/jof7090714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Nosematosis is currently a frequently discussed honey bee disease caused by two types of Microsporidia: Nosema apis and Nosema ceranae. Nosematosis as an intestinal disease caused by these species is one of the main factors associated with the weakening and loss of hives, with none of the stressors acting in isolation and all having an important synergistic or additive effect on the occurrence of parasitic infection. The most important factors are exposure to pesticides and nutritional stress, both worsening the immune response. Honey bees Apis mellifera become more susceptible to parasites and subsequently the disease manifests itself. Choosing the right laboratory diagnostics is important to determine the prevalence of both species. Our review summarizes the most commonly used methodologies, especially polymerase chain reaction (PCR), which is a reliable method for detecting nosematosis, as well as for distinguishing between the two species causing the disease.
Collapse
|
16
|
Giacomini JJ, Connon SJ, Marulanda D, Adler LS, Irwin RE. The costs and benefits of sunflower pollen diet on bumble bee colony disease and health. Ecosphere 2021. [DOI: 10.1002/ecs2.3663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jonathan J. Giacomini
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| | - Sara J. Connon
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| | - Daniel Marulanda
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| | - Lynn S. Adler
- Department of Biology University of Massachusetts Amherst Amherst Massachusetts 01003 USA
| | - Rebecca E. Irwin
- Department of Applied Ecology North Carolina State University Raleigh North Carolina 27695 USA
| |
Collapse
|
17
|
Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history. Sci Rep 2021; 11:10087. [PMID: 33980970 PMCID: PMC8115236 DOI: 10.1038/s41598-021-89607-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 11/08/2022] Open
Abstract
Social insect colonies exhibit a variety of life history strategies, from the annual, semelparous colonies of temperate bees and wasps to the long-lived colonies of many ants and honeybees. Species introduced to novel habitats may exhibit plasticity in life history strategies as a result of the introduction, but the factors governing these changes often remain obscure. Vespula pensylvanica, a yellowjacket wasp, exhibits such plasticity in colony longevity. Multi-year (perennial) colonies are relatively common in introduced populations in Hawaii, while source populations in the western United States are typically on an annual cycle. Here, we use experiments and observational data to examine how diet, disease, nest thermal environment, and nest location influence colony longevity in a population with both annual and perennial colonies. Counter to our predictions, experimental feeding and warming did not increase colony survival in the winter in the introduced range. However, Moku Virus load and wasp colony density predicted colony survival in one year, suggesting a potential role for disease in modulating colony phenology. We also found that local V. pensylvanica colony density was positively correlated with Moku Virus loads, and that Arsenophonus sp. bacterial loads in V. pensylvanica colonies were positively associated with proximity to feral honeybee (Apis mellifera) hives, suggesting potential transmission routes for these poorly understood symbionts. The factors influencing colony longevity in this population are likely multiple and interactive. More important than food availability, we propose winter precipitation as a critical factor that may explain temporal and spatial variation in colony longevity in these invasive wasps.
Collapse
|
18
|
Dario MA, Lisboa CV, Silva MV, Herrera HM, Rocha FL, Furtado MC, Moratelli R, Rodrigues Roque AL, Jansen AM. Crithidia mellificae infection in different mammalian species in Brazil. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:58-69. [PMID: 33981571 PMCID: PMC8085711 DOI: 10.1016/j.ijppaw.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022]
Abstract
Crithidia mellificae, a monoxenous trypanosomatid considered restricted to insects, was recently reported to infect a bat. Herein, C. mellificae has been demonstrated to have a wider range of vertebrate hosts and distribution in Brazilian biomes than once thought. Parasites isolated from haemocultures were characterized using V7V8 SSU rDNA and glyceraldehyde 3-phosphate dehydrogenase genes. Coatis (Nasua nasua) in the Cerrado; marmosets (Callithrix sp.) and bats (Carollia perspicillata, Myotis lavali, M. izecksohni, Artibeus lituratus) in the Atlantic Forest; crab-eating foxes (Cerdocyon thous) and ocelot (Leopardus pardalis) in the Pantanal biomes were infected by trypanosomatids that displayed choanomastigote forms in haemoculture in Giemsa-stained slide smears. Molecular characterization and phylogenetic inference confirmed the infection of C. mellificae in these animals. Moreover, slight differences in C. mellificae sequences were observed. Crithidia mellificae growth curves were counted at 27°C, 36°C and 37°C, and the morphotypes were able to grow and survive for up to 16 days. Serological titers for C. mellificae were observed in nonhuman primates, demonstrating that this parasite is able to induce a humoral immune response in an infected mammal. These results showed that host specificity in trypanosomatids is complex and far from understood.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Varella Lisboa
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Vicente Silva
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fabiana Lopes Rocha
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental, Universidade Federal da Paraíba, Rio Tinto, Paraíba, Brazil
- IUCN SSC Species Survival Center. Parque das Aves, Foz do Iguaçú, Paraná, Brazil
| | | | - Ricardo Moratelli
- Fiocruz Mata Atlântica, Fundação Oswaldo Cruz Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Corresponding author.
| |
Collapse
|
19
|
Gómez-Moracho T, Durand T, Pasquaretta C, Heeb P, Lihoreau M. Artificial Diets Modulate Infection Rates by Nosema ceranae in Bumblebees. Microorganisms 2021; 9:microorganisms9010158. [PMID: 33445614 PMCID: PMC7827189 DOI: 10.3390/microorganisms9010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022] Open
Abstract
Parasites alter the physiology and behaviour of their hosts. In domestic honey bees, the microsporidia Nosema ceranae induces energetic stress that impairs the behaviour of foragers, potentially leading to colony collapse. Whether this parasite similarly affects wild pollinators is little understood because of the low success rates of experimental infection protocols. Here, we present a new approach for infecting bumblebees (Bombus terrestris) with controlled amounts of N. ceranae by briefly exposing individual bumblebees to parasite spores before feeding them with artificial diets. We validated our protocol by testing the effect of two spore dosages and two diets varying in their protein to carbohydrate ratio on the prevalence of the parasite (proportion of PCR-positive bumblebees), the intensity of parasites (spore count in the gut and the faeces), and the survival of bumblebees. Overall, insects fed a low-protein, high-carbohydrate diet showed the highest parasite prevalence (up to 70%) but lived the longest, suggesting that immunity and survival are maximised at different protein to carbohydrate ratios. Spore dosage did not affect parasite infection rate and host survival. The identification of experimental conditions for successfully infecting bumblebees with N. ceranae in the lab will facilitate future investigations of the sub-lethal effects of this parasite on the behaviour and cognition of wild pollinators.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
- Correspondence:
| | - Tristan Durand
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Philipp Heeb
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique, Université Paul Sabatier, ENSFEA, 31062 Toulouse, France;
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| |
Collapse
|
20
|
Graystock P, Ng WH, Parks K, Tripodi AD, Muñiz PA, Fersch AA, Myers CR, McFrederick QS, McArt SH. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat Ecol Evol 2020; 4:1358-1367. [PMID: 32690902 PMCID: PMC7529964 DOI: 10.1038/s41559-020-1247-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Pollinator reductions can leave communities less diverse and potentially at increased risk of infectious diseases. Species-rich plant and bee communities have high species turnover, making the study of disease dynamics challenging. To address how temporal dynamics shape parasite prevalence in plant and bee communities, we screened >5,000 bees and flowers over an entire growing season for five common bee microparasites (Nosema ceranae, Nosema bombi, Crithidia bombi, Crithidia expoeki and neogregarines). Over 110 bee species and 89 flower species were screened, revealing that 42% of bee species (12.2% individual bees) and 70% of flower species (8.7% individual flowers) had at least one parasite in or on them, respectively. Some common flowers (for example, Lychnis flos-cuculi) harboured multiple parasite species whilst others (for example, Lythrum salicaria) had few. Significant temporal variation of parasite prevalence in bees was linked to bee diversity, bee and flower abundance and community composition. Specifically, we found that bee communities had the highest prevalence late in the season, when social bees (Bombus spp. and Apis mellifera) were dominant and bee diversity was lowest. Conversely, prevalence on flowers was lowest late in the season when floral abundance was highest. Thus turnover in the bee community impacted community-wide prevalence, and turnover in the plant community impacted when parasite transmission was likely to occur at flowers. These results imply that efforts to improve bee health will benefit from the promotion of high floral numbers to reduce transmission risk, maintaining bee diversity to dilute parasites and monitoring the abundance of dominant competent hosts.
Collapse
Affiliation(s)
- Peter Graystock
- Department of Entomology, Cornell University, Ithaca, NY, USA.
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK.
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| | - Wee Hao Ng
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Kyle Parks
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Paige A Muñiz
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Ashley A Fersch
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Christopher R Myers
- Center for Advanced Computing, and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Ngor L, Palmer-Young EC, Burciaga Nevarez R, Russell KA, Leger L, Giacomini SJ, Pinilla-Gallego MS, Irwin RE, McFrederick QS. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 2020; 147:1290-1304. [PMID: 32616082 PMCID: PMC7477370 DOI: 10.1017/s0031182020001018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
Recent declines of wild pollinators and infections in honey, bumble and other bee species have raised concerns about pathogen spillover from managed honey and bumble bees to other pollinators. Parasites of honey and bumble bees include trypanosomatids and microsporidia that often exhibit low host specificity, suggesting potential for spillover to co-occurring bees via shared floral resources. However, experimental tests of trypanosomatid and microsporidial cross-infectivity outside of managed honey and bumble bees are scarce. To characterize potential cross-infectivity of honey and bumble bee-associated parasites, we inoculated three trypanosomatids and one microsporidian into five potential hosts - including four managed species - from the apid, halictid and megachilid bee families. We found evidence of cross-infection by the trypanosomatids Crithidia bombi and C. mellificae, with evidence for replication in 3/5 and 3/4 host species, respectively. These include the first reports of experimental C. bombi infection in Megachile rotundata and Osmia lignaria, and C. mellificae infection in O. lignaria and Halictus ligatus. Although inability to control amounts inoculated in O. lignaria and H. ligatus hindered estimates of parasite replication, our findings suggest a broad host range in these trypanosomatids, and underscore the need to quantify disease-mediated threats of managed social bees to sympatric pollinators.
Collapse
Affiliation(s)
- Lyna Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Evan C. Palmer-Young
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Kaleigh A. Russell
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Laura Leger
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Sara June Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Quinn S. McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
22
|
Boucinha C, Caetano AR, Santos HLC, Helaers R, Vikkula M, Branquinha MH, dos Santos ALS, Grellier P, Morelli KA, d‘Avila-Levy CM. Analysing ambiguities in trypanosomatids taxonomy by barcoding. Mem Inst Oswaldo Cruz 2020; 115:e200504. [PMID: 32578684 PMCID: PMC7304411 DOI: 10.1590/0074-02760200504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Biodiversity screens and phylogenetic studies are dependent on reliable DNA sequences in public databases. Biological collections possess vouchered specimens with a traceable history. Therefore, DNA sequencing of samples available at institutional collections can greatly contribute to taxonomy, and studies on evolution and biodiversity. METHODS We sequenced part of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and the SSU rRNA (V7/V8) genes from 102 trypanosomatid cultures, which are available on request at www.colprot.fiocruz.br. OBJECTIVE The main objective of this work was to use phylogenetic inferences, using the obtained DNA sequences and those from representatives of all Trypanosomatidae genera, to generate phylogenetic trees that can simplify new isolates screenings. FINDINGS A DNA sequence is provided for the first time for several isolates, the phylogenetic analysis allowed the classification or reclassification of several specimens, identification of candidates for new genera and species, as well as the taxonomic validation of several deposits. MAIN CONCLUSIONS This survey aimed at presenting a list of validated species and their associated DNA sequences combined with a short historical overview of each isolate, which can support taxonomic and biodiversity research and promote culture collections.
Collapse
Affiliation(s)
- Carolina Boucinha
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Amanda R Caetano
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Helena LC Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Raphael Helaers
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Miikka Vikkula
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| | - Marta Helena Branquinha
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brasil
| | | | - Philippe Grellier
- Muséum National d‘Histoire Naturelle, Unité Molécules de Communication et Adaptation des Microorganisme, Paris, France
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | - Claudia Masini d‘Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários da Fiocruz, Rio de Janeiro, RJ, Brasil
- University of Louvain, de Duve Institute, Laboratory of Human Molecular Genetics, Brussels, Belgium
| |
Collapse
|
23
|
Schoonvaere K, Brunain M, Baeke F, De Bruyne M, De Rycke R, de Graaf DC. Comparison between Apicystis cryptica sp. n. and Apicystis bombi (Arthrogregarida, Apicomplexa): Gregarine parasites that cause fat body hypertrophism in bees. Eur J Protistol 2020; 73:125688. [PMID: 32143143 DOI: 10.1016/j.ejop.2020.125688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 01/31/2020] [Accepted: 02/15/2020] [Indexed: 10/25/2022]
Abstract
The molecular divergence, morphology and pathology of a cryptic gregarine that is related to the bee parasite Apicystis bombi Lipa and Triggiani, 1996 is described. The 18S ribosomal DNA gene sequence of the new gregarine was equally dissimilar to that of A. bombi and the closest related genus Mattesia Naville, 1930, although phylogenetic analysis supported a closer relation to A. bombi. Pronounced divergence with A. bombi was found in the ITS1 sequence (69.6% similarity) and seven protein-coding genes (nucleotide 78.05% and protein 90.2% similarity). The new gregarine was isolated from a Bombus pascuorum Scopoli, 1763 female and caused heavy hypertrophism of the fat body tissue in its host. In addition, infected cells of the hypopharyngeal gland tissue, an important excretory organ of the host, were observed. Mature oocysts were navicular in shape and contained four sporozoites, similar to A. bombi oocysts. Given these characteristics, we proposed the name Apicystis cryptica sp. n. Detections so far indicated that distribution and host species occupation of Apicystis spp. overlap at least in Europe, and that historical detections could not discriminate between them. Specific molecular assays were developed that can be implemented in future pathogen screens that aim to discriminate Apicystis spp. in bees.
Collapse
Affiliation(s)
- Karel Schoonvaere
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Krijgslaan 281 Block S2, 9000 Ghent, Belgium
| | - Marleen Brunain
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Krijgslaan 281 Block S2, 9000 Ghent, Belgium
| | - Femke Baeke
- Department for Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium
| | - Michiel De Bruyne
- Department for Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium
| | - Riet De Rycke
- Department for Biomedical Molecular Biology, Ghent University, VIB Center for Inflammation Research, Ghent, Belgium; Ghent University Expertise Centre for Transmission Electron Microscopy and VIB BioImaging Core, Ghent, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Krijgslaan 281 Block S2, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Liu Q, Lei J, Darby AC, Kadowaki T. Trypanosomatid parasite dynamically changes the transcriptome during infection and modifies honey bee physiology. Commun Biol 2020; 3:51. [PMID: 32005933 PMCID: PMC6994608 DOI: 10.1038/s42003-020-0775-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
It is still not understood how honey bee parasite changes the gene expression to adapt to the host environment and how the host simultaneously responds to the parasite infection by modifying its own gene expression. To address this question, we studied a trypanosomatid, Lotmaria passim, which can be cultured in medium and inhabit the honey bee hindgut. We found that L. passim decreases mRNAs associated with protein translation, glycolysis, detoxification of radical oxygen species, and kinetoplast respiratory chain to adapt to the anaerobic and nutritionally poor honey bee hindgut during the infection. After the long term infection, the host appears to be in poor nutritional status, indicated by the increase and decrease of take-out and vitellogenin mRNAs, respectively. Simultaneous gene expression profiling of L. passim and honey bee during infection by dual RNA-seq provided insight into how both parasite and host modify their gene expressions.
Collapse
Affiliation(s)
- Qiushi Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Jing Lei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China
| | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
25
|
Palmer-Young EC, Ngor L, Nevarez RB, Rothman JA, Raffel TR, McFrederick QS. Temperature dependence of parasitic infection and gut bacterial communities in bumble bees. Environ Microbiol 2019; 21:4706-4723. [PMID: 31573120 PMCID: PMC7316186 DOI: 10.1111/1462-2920.14805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
Abstract
High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature-driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasite Crithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growth in vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non-linear, and taxon-specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen-containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature-dependent activity of gut bacteria. The thermal ecology of gut parasite-symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever-based immunity.
Collapse
Affiliation(s)
- Evan C Palmer-Young
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Lyna Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Jason A. Rothman
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Thomas R Raffel
- Department of Biology, Oakland University, Rochester, MI, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
26
|
Abstract
In this study, we sequenced and analyzed the genomes of 40 strains, in addition to the already-reported two type strains, of two Crithidia species infecting bumblebees in Alaska and Central Europe and demonstrated that different strains of Crithidia bombi and C. expoeki vary considerably in terms of single nucleotide polymorphisms and gene copy number. Based on the genomic structure, phylogenetic analyses, and the pattern of copy number variation, we confirmed the status of C. expoeki as a separate species. The Alaskan populations appear to be clearly separated from those of Central Europe. This pattern fits a scenario of rapid host-parasite coevolution, where the selective advantage of a given parasite strain is only temporary. This study provides helpful insights into possible scenarios of selection and diversification of trypanosomatid parasites.IMPORTANCE A group of trypanosomatid flagellates includes several well-studied medically and economically important parasites of vertebrates and plants. Nevertheless, the vast majority of trypanosomatids infect only insects (mostly flies and true bugs) and, because of that, has attracted little research attention in the past. Of several hundred trypanosomatid species, only four can infect bees (honeybees and bumblebees). Because of such scarcity, these parasites are severely understudied. We analyzed whole-genome information for a total of 42 representatives of bee-infecting trypanosomatids collected in Central Europe and Alaska from a population genetics point of view. Our data shed light on the evolution, selection, and diversification in this important group of trypanosomatid parasites.
Collapse
|
27
|
Figueroa LL, Blinder M, Grincavitch C, Jelinek A, Mann EK, Merva LA, Metz LE, Zhao AY, Irwin RE, McArt SH, Adler LS. Bee pathogen transmission dynamics: deposition, persistence and acquisition on flowers. Proc Biol Sci 2019; 286:20190603. [PMID: 31138075 PMCID: PMC6545085 DOI: 10.1098/rspb.2019.0603] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Infectious diseases are a primary driver of bee decline worldwide, but limited understanding of how pathogens are transmitted hampers effective management. Flowers have been implicated as hubs of bee disease transmission, but we know little about how interspecific floral variation affects transmission dynamics. Using bumblebees ( Bombus impatiens), a trypanosomatid pathogen ( Crithidia bombi) and three plant species varying in floral morphology, we assessed how host infection and plant species affect pathogen deposition on flowers, and plant species and flower parts impact pathogen survival and acquisition at flowers. We found that host infection with Crithidia increased defaecation rates on flowers, and that bees deposited faeces onto bracts of Lobelia siphilitica and Lythrum salicaria more frequently than onto Monarda didyma bracts . Among flower parts, bracts were associated with the lowest pathogen survival but highest resulting infection intensity in bee hosts. Additionally, we found that Crithidia survival across flower parts was reduced with sun exposure. These results suggest that efficiency of pathogen transmission depends on where deposition occurs and the timing and place of acquisition, which varies among plant species and environmental conditions. This information could be used for development of wildflower mixes that maximize forage while minimizing disease spread.
Collapse
Affiliation(s)
| | - Malcolm Blinder
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Cali Grincavitch
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Angus Jelinek
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Emilia K. Mann
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Liam A. Merva
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Lucy E. Metz
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Amy Y. Zhao
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, 127 David Clark Laboratories, Raleigh, NC 27695, USA
| | - Scott H. McArt
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
28
|
Liu Q, Lei J, Kadowaki T. Gene Disruption of Honey Bee Trypanosomatid Parasite, Lotmaria passim, by CRISPR/Cas9 System. Front Cell Infect Microbiol 2019; 9:126. [PMID: 31080782 PMCID: PMC6497781 DOI: 10.3389/fcimb.2019.00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
Two trypanosomatid species, Lotmaria passim and Crithidia mellificae, have been shown to parasitize honey bees to date. L. passim appears to be more prevalent than C. mellificae and specifically infects the honey bee hindgut. Although the genomic DNA has been sequenced, the effects of infection on honey bee health and colony are poorly understood. To identify the genes that are important for infecting honey bees and to understand their functions, we applied the CRISPR/Cas9 system to establish a method to manipulate L. passim genes. By electroporation of plasmid DNA and subsequent selection by drug, we first established an L. passim clone expressing tdTomato or Cas9. We also successfully disrupted the endogenous miltefosine transporter and tyrosine aminotransferase genes by replacement with drug (hygromycin) resistant gene using the CRISPR/Cas9-induced homology-directed repair pathway. The L. passim clone expressing fluorescent marker, as well as the simple method for editing specific genes, could become useful approaches to understand the underlying mechanisms of honey bee-trypanosomatid parasite interactions.
Collapse
Affiliation(s)
| | | | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
29
|
Double-stranded RNA reduces growth rates of the gut parasite Crithidia mellificae. Parasitol Res 2019; 118:715-721. [DOI: 10.1007/s00436-018-6176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
30
|
Palmer-Young EC, Raffel TR, McFrederick QS. Temperature-mediated inhibition of a bumblebee parasite by an intestinal symbiont. Proc Biol Sci 2018; 285:rspb.2018.2041. [PMID: 30381384 DOI: 10.1098/rspb.2018.2041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Competition between organisms is often mediated by environmental factors, including temperature. In animal intestines, nonpathogenic symbionts compete physically and chemically against pathogens, with consequences for host infection. We used metabolic theory-based models to characterize differential responses to temperature of a bacterial symbiont and a co-occurring trypanosomatid parasite of bumblebees, which regulate body temperature during flight and incubation. We hypothesized that inhibition of parasites by bacterial symbionts would increase with temperature, due to symbionts having higher optimal growth temperatures than parasites. We found that a temperature increase over the range measured in bumblebee colonies would favour symbionts over parasites. As predicted by our hypothesis, symbionts reduced the optimal growth temperature for parasites, both in direct competition and when parasites were exposed to symbiont spent medium. Inhibitory effects of the symbiont increased with temperature, reflecting accelerated growth and acid production by symbionts. Our results indicate that high temperatures, whether due to host endothermy or environmental factors, can enhance the inhibitory effects of symbionts on parasites. Temperature-modulated manipulation of microbiota could be one explanation for fever- and heat-induced reductions of infection in animals, with consequences for diseases of medical and conservation concern.
Collapse
Affiliation(s)
- Evan C Palmer-Young
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
31
|
A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J Invertebr Pathol 2018; 154:37-41. [DOI: 10.1016/j.jip.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 11/22/2022]
|
32
|
Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J Invertebr Pathol 2018; 153:147-155. [DOI: 10.1016/j.jip.2018.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 11/21/2022]
|
33
|
Schoonvaere K, Smagghe G, Francis F, de Graaf DC. Study of the Metatranscriptome of Eight Social and Solitary Wild Bee Species Reveals Novel Viruses and Bee Parasites. Front Microbiol 2018; 9:177. [PMID: 29491849 PMCID: PMC5817871 DOI: 10.3389/fmicb.2018.00177] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Bees are associated with a remarkable diversity of microorganisms, including unicellular parasites, bacteria, fungi, and viruses. The application of next-generation sequencing approaches enables the identification of this rich species composition as well as the discovery of previously unknown associations. Using high-throughput polyadenylated ribonucleic acid (RNA) sequencing, we investigated the metatranscriptome of eight wild bee species (Andrena cineraria, Andrena fulva, Andrena haemorrhoa, Bombus terrestris, Bombus cryptarum, Bombus pascuorum, Osmia bicornis, and Osmia cornuta) sampled from four different localities in Belgium. Across the RNA sequencing libraries, 88–99% of the taxonomically informative reads were of the host transcriptome. Four viruses with homology to insect pathogens were found including two RNA viruses (belonging to the families Iflaviridae and Tymoviridae that harbor already viruses of honey bees), a double stranded DNA virus (family Nudiviridae) and a single stranded DNA virus (family Parvoviridae). In addition, we found genomic sequences of 11 unclassified arthropod viruses (related to negeviruses, sobemoviruses, totiviruses, rhabdoviruses, and mononegaviruses), seven plant pathogenic viruses, and one fungal virus. Interestingly, nege-like viruses appear to be widespread, host-specific, and capable of attaining high copy numbers inside bees. Next to viruses, three novel parasite associations were discovered in wild bees, including Crithidia pragensis and a tubulinosematid and a neogregarine parasite. Yeasts of the genus Metschnikowia were identified in solitary bees. This study gives a glimpse of the microorganisms and viruses associated with social and solitary wild bees and demonstrates that their diversity exceeds by far the subset of species first discovered in honey bees.
Collapse
Affiliation(s)
- Karel Schoonvaere
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium.,Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Palmer-Young EC, Calhoun AC, Mirzayeva A, Sadd BM. Effects of the floral phytochemical eugenol on parasite evolution and bumble bee infection and preference. Sci Rep 2018; 8:2074. [PMID: 29391545 PMCID: PMC5794921 DOI: 10.1038/s41598-018-20369-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/17/2018] [Indexed: 11/09/2022] Open
Abstract
Ecological and evolutionary pressures on hosts and parasites jointly determine infection success. In pollinators, parasite exposure to floral phytochemicals may influence between-host transmission and within-host replication. In the bumble bee parasite Crithidia bombi, strains vary in phytochemical resistance, and resistance increases under in vitro selection, implying that resistance/infectivity trade-offs could maintain intraspecific variation in resistance. We assessed costs and benefits of in vitro selection for resistance to the floral phytochemical eugenol on C. bombi infection in Bombus impatiens fed eugenol-rich and eugenol-free diets. We also assessed infection-induced changes in host preferences for eugenol. In vitro, eugenol-exposed cells initially increased in size, but normalized during adaptation. Selection for eugenol resistance resulted in considerable (55%) but non-significant reductions in infection intensity; bee colony and body size were the strongest predictors of infection. Dietary eugenol did not alter infection, and infected bees preferred eugenol-free over eugenol-containing solutions. Although direct effects of eugenol exposure could influence between-host transmission at flowers, dietary eugenol did not ameliorate infection in bees. Limited within-host benefits of resistance, and possible trade-offs between resistance and infectivity, may relax selection for eugenol resistance and promote inter-strain variation in resistance. However, infection-induced dietary shifts could influence pollinator-mediated selection on floral traits.
Collapse
Affiliation(s)
- Evan C Palmer-Young
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts at Amherst, Amherst, Massachusetts, 01003, United States.
| | - Austin C Calhoun
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, United States
| | - Anastasiya Mirzayeva
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, 01003, United States
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, 61790, United States
| |
Collapse
|
35
|
Schmid-Hempel P, Aebi M, Barribeau S, Kitajima T, du Plessis L, Schmid-Hempel R, Zoller S. The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees. PLoS One 2018; 13:e0189738. [PMID: 29304093 PMCID: PMC5755769 DOI: 10.1371/journal.pone.0189738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki, we could produce high-quality and well resolved sequences. We find that these genomes are around 32 and 34 MB, with 7,808 and 7,851 annotated genes for C. bombi and C. expoeki, respectively-which is somewhat less than reported from other trypanosomatids, with few introns, and organized in polycistronic units. A large fraction of genes received plausible functional support in comparison primarily with Leishmania and Trypanosoma. Comparing the annotated genes of the two species with those of six other trypanosomatids (C. fasciculata, L. pyrrhocoris, L. seymouri, B. ayalai, L. major, and T. brucei) shows similar gene repertoires and many orthologs. Similar to other trypanosomatids, we also find signs of concerted evolution in genes putatively involved in the interaction with the host, a high degree of synteny between C. bombi and C. expoeki, and considerable overlap with several other species in the set. A total of 86 orthologous gene groups show signatures of positive selection in the branch leading to the two Crithidia under study, mostly of unknown function. As an example, we examined the initiating glycosylation pathway of surface components in C. bombi, finding it deviates from most other eukaryotes and also from other kinetoplastids, which may indicate rapid evolution in the extracellular matrix that is involved in interactions with the host. Bumble bees are important pollinators and Crithidia-infections are suspected to cause substantial selection pressure on their host populations. These newly sequenced genomes provide tools that should help better understand host-parasite interactions in these pollinator pathogens.
Collapse
Affiliation(s)
| | - Markus Aebi
- Institute of Microbiology, ETH Zurich, Zürich, Switzerland
| | - Seth Barribeau
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | | | - Louis du Plessis
- Institute of Integrative Biology (IBZ), ETH Zurich, Zürich, Switzerland
| | | | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zurich, Zürich, Switzerland
| |
Collapse
|
36
|
Triplex real-time PCR for detection of Crithidia mellificae and Lotmaria passim in honey bees. Parasitol Res 2017; 117:623-628. [DOI: 10.1007/s00436-017-5733-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023]
|
37
|
Palmer-Young EC, Hogeboom A, Kaye AJ, Donnelly D, Andicoechea J, Connon SJ, Weston I, Skyrm K, Irwin RE, Adler LS. Context-dependent medicinal effects of anabasine and infection-dependent toxicity in bumble bees. PLoS One 2017; 12:e0183729. [PMID: 28832668 PMCID: PMC5568382 DOI: 10.1371/journal.pone.0183729] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and as insecticides. Although many phytochemicals act as toxins and deterrents to consumers, the same chemicals may counteract disease and be preferred by infected individuals. The roles of nectar and pollen phytochemicals in pollinator ecology and conservation are complex, with evidence for both toxicity and medicinal effects against parasites. However, it remains unclear how consistent the effects of phytochemicals are across different parasite lineages and environmental conditions, and whether pollinators actively self-medicate with these compounds when infected. APPROACH Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection intensity, dietary preference, and survival and performance of bumble bees (Bombus impatiens). We examined variation in the effects of anabasine on infection with different lineages of the intestinal parasite Crithidia under pollen-fed and pollen-starved conditions. RESULTS We found that anabasine did not reduce infection intensity in individual bees infected with any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection intensity in microcolonies of queenless workers. In addition, neither anabasine nor its isomer, nicotine, was preferred by infected bees in choice experiments, and infected bees consumed less anabasine than did uninfected bees under no-choice conditions. Furthermore, anabasine exacerbated the negative effects of infection on bee survival and microcolony performance. Anabasine reduced infection in only one experiment, in which bees were deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited reduced-rather than increased-phytochemical consumption relative to uninfected bees. CONCLUSIONS Variation in the effect of anabasine on infection suggests potential modulation of tritrophic interactions by both host genotype and environmental variables. Overall, our results demonstrate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that the medicinal effects and toxicity of anabasine may be context dependent. Future research should identify the specific environmental and genotypic factors that determine whether nectar phytochemicals have medicinal or deleterious effects on pollinators.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- Organismic & Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Alison Hogeboom
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Alexander J. Kaye
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Dash Donnelly
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Jonathan Andicoechea
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Sara June Connon
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ian Weston
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kimberly Skyrm
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Rebecca E. Irwin
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
38
|
Palmer-Young EC, Thursfield L. Pollen extracts and constituent sugars increase growth of a trypanosomatid parasite of bumble bees. PeerJ 2017; 5:e3297. [PMID: 28503378 PMCID: PMC5426351 DOI: 10.7717/peerj.3297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/11/2017] [Indexed: 12/20/2022] Open
Abstract
Phytochemicals produced by plants, including at flowers, function in protection against plant diseases, and have a long history of use against trypanosomatid infection. Floral nectar and pollen, the sole food sources for many species of insect pollinators, contain phytochemicals that have been shown to reduce trypanosomatid infection in bumble and honey bees when fed as isolated compounds. Nectar and pollen, however, consist of phytochemical mixtures, which can have greater antimicrobial activity than do single compounds. This study tested the hypothesis that pollen extracts would inhibit parasite growth. Extracts of six different pollens were tested for direct inhibitory activity against cell cultures of the bumble bee trypanosomatid gut parasite Crithidia bombi. Surprisingly, pollen extracts increased parasite growth rather than inhibiting it. Pollen extracts contained high concentrations of sugars, mainly the monosaccharides glucose and fructose. Experimental manipulations of growth media showed that supplemental monosaccharides (glucose and fructose) increased maximum cell density, while a common floral phytochemical (caffeic acid) with inhibitory activity against other trypanosomatids had only weak inhibitory effects on Crithidia bombi. These results indicate that, although pollen is essential for bees and other pollinators, pollen may promote growth of intestinal parasites that are uninhibited by pollen phytochemicals and, as a result, can benefit from the nutrients that pollen provides.
Collapse
Affiliation(s)
- Evan C. Palmer-Young
- Organismic and Evolutionary Biology, University of Massachusetts at Amherst, Amherst, MA, United States of America
| | - Lucy Thursfield
- Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
39
|
Palmer‐Young EC, Sadd BM, Adler LS. Evolution of resistance to single and combined floral phytochemicals by a bumble bee parasite. J Evol Biol 2017; 30:300-312. [PMID: 27783434 PMCID: PMC5324628 DOI: 10.1111/jeb.13002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023]
Abstract
Repeated exposure to inhibitory compounds can drive the evolution of resistance, which weakens chemical defence against antagonists. Floral phytochemicals in nectar and pollen have antimicrobial properties that can ameliorate infection in pollinators, but evolved resistance among parasites could diminish the medicinal efficacy of phytochemicals. However, multicompound blends, which occur in nectar and pollen, present simultaneous chemical challenges that may slow resistance evolution. We assessed evolution of resistance by the common bumble bee gut parasite Crithidia bombi to two floral phytochemicals, singly and combined, over 6 weeks (~100 generations) of chronic exposure. Resistance of C. bombi increased under single and combined phytochemical exposure, without any associated costs of reduced growth under phytochemical-free conditions. After 6 weeks' exposure, phytochemical concentrations that initially inhibited growth by > 50%, and exceeded concentrations in floral nectar, had minimal effects on evolved parasite lines. Unexpectedly, the phytochemical combination did not impede resistance evolution compared to single compounds. These results demonstrate that repeated phytochemical exposure, which could occur in homogeneous floral landscapes or with therapeutic phytochemical treatment of managed hives, can cause rapid evolution of resistance in pollinator parasites. We discuss possible explanations for submaximal phytochemical resistance in natural populations. Evolved resistance could diminish the antiparasitic value of phytochemical ingestion, weakening an important natural defence against infection.
Collapse
Affiliation(s)
| | - B. M. Sadd
- School of Biological SciencesIllinois State UniversityNormalILUSA
| | - L. S. Adler
- Department of BiologyUniversity of Massachusetts at AmherstAmherstMAUSA
| |
Collapse
|
40
|
Bumble bee parasite strains vary in resistance to phytochemicals. Sci Rep 2016; 6:37087. [PMID: 27883009 PMCID: PMC5121629 DOI: 10.1038/srep37087] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/14/2016] [Indexed: 12/05/2022] Open
Abstract
Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53–22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemicals, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline.
Collapse
|
41
|
Conroy TJ, Palmer-Young EC, Irwin RE, Adler LS. Food Limitation Affects Parasite Load and Survival of Bombus impatiens (Hymenoptera: Apidae) Infected With Crithidia (Trypanosomatida: Trypanosomatidae). ENVIRONMENTAL ENTOMOLOGY 2016; 45:1212-1219. [PMID: 27523087 DOI: 10.1093/ee/nvw099] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/17/2016] [Indexed: 06/06/2023]
Abstract
Bumble bees (genus Bombus) are globally important insect pollinators, and several species have experienced marked declines in recent years. Both nutritional limitation and pathogens may have contributed to these declines. While each of these factors may be individually important, there may also be synergisms where nutritional stress could decrease pathogen resistance. Understanding interactions between bumble bees, their parasites, and food availability may provide new insight into the causes of declines. In this study, we examined the combined impacts of pollen and nectar limitation on Crithidia, a common gut parasite in Bombus impatiens Cresson. Individual worker bees were inoculated with Crithidia and then assigned in a factorial design to two levels of pollen availability (pollen or no pollen) and two nectar sugar concentrations (high [30%] or low [15%] sucrose). We found that lack of pollen and low nectar sugar both reduced Crithidia cell counts, with the most dramatic effect from lack of pollen. Both pollen availability and nectar sugar concentration were also important for bee survival. The proportion of bees that died after seven days of infection was ∼25% lower in bees with access to pollen and high nectar sugar concentration than any other treatment. Thus, nectar and pollen availability are both important for bee survival, but may come at a cost of higher parasite loads. Our results illustrate the importance of understanding environmental context, such as resource availability, when examining a host-parasite interaction.
Collapse
Affiliation(s)
- Taylor J Conroy
- Department of Biology, 221 Morrill Science Center, University of Massachusetts Amherst, 611 N. Pleasant St, Amherst, MA 01003 (; ; )
| | - Evan C Palmer-Young
- Department of Biology, 221 Morrill Science Center, University of Massachusetts Amherst, 611 N. Pleasant St, Amherst, MA 01003 (; ; )
| | - Rebecca E Irwin
- Department of Applied Ecology, David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Lynn S Adler
- Department of Biology, 221 Morrill Science Center, University of Massachusetts Amherst, 611 N. Pleasant St, Amherst, MA 01003 (; ; )
| |
Collapse
|
42
|
Marxer M, Vollenweider V, Schmid-Hempel P. Insect antimicrobial peptides act synergistically to inhibit a trypanosome parasite. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150302. [PMID: 27160603 PMCID: PMC4874398 DOI: 10.1098/rstb.2015.0302] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 11/12/2022] Open
Abstract
The innate immune system provides protection from infection by producing essential effector molecules, such as antimicrobial peptides (AMPs) that possess broad-spectrum activity. This is also the case for bumblebees, Bombus terrestris, when infected by the trypanosome, Crithidia bombi Furthermore, the expressed mixture of AMPs varies with host genetic background and infecting parasite strain (genotype). Here, we used the fact that clones of C. bombi can be cultivated and kept as strains in medium to test the effect of various combinations of AMPs on the growth rate of the parasite. In particular, we used pairwise combinations and a range of physiological concentrations of three AMPs, namely Abaecin, Defensin and Hymenoptaecin, synthetized from the respective genomic sequences. We found that these AMPs indeed suppress the growth of eight different strains of C. bombi, and that combinations of AMPs were typically more effective than the use of a single AMP alone. Furthermore, the most effective combinations were rarely those consisting of maximum concentrations. In addition, the AMP combination treatments revealed parasite strain specificity, such that strains varied in their sensitivity towards the same mixtures. Hence, variable expression of AMPs could be an alternative strategy to combat highly variable infections.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Monika Marxer
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Vera Vollenweider
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - Paul Schmid-Hempel
- ETH Zurich, Institute of Integrative Biology (IBZ), Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
43
|
Sweet MJ, Scriven LA, Singleton I. Microsatellites for microbiologists. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:169-207. [PMID: 22958530 DOI: 10.1016/b978-0-12-394382-8.00005-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microsatellites are repeating sequences of 2-6base pairs of DNA. Currently, they are used as molecular markers in many organisms, specifically in genetic studies analyzing kinship and population structure. In addition, they can be used to study gene duplication and/or deletion. Although they are used in studies on microorganisms including fungi, bacteria, protists, and archaea, it appears that these genetic markers are not being utilized to their full microbiological potential. Microsatellites have many advantages over other genetic markers currently in use as they are in general species specific, and therefore, cross-contamination by nontarget organisms is rare. Furthermore, microsatellites are suitable for use with fast and cheap DNA extraction methods, with ancient DNA or DNA from hair and fecal samples used in noninvasive sampling, making them widely available as a genetic marker. Microsatellites have already proven to be a useful tool for evolutionary studies of pathogenic microorganisms such as Candida albicans and Helicobacter pylori, and the onset of new sequencing techniques (such as 454, PACBIO, and mini-ion sequencing) means the ability to detect such markers will become less time consuming and cheaper, thus further expanding their potential to answer important microbial ecology questions.
Collapse
Affiliation(s)
- Michael J Sweet
- School of Biology, Institute for Research on Sustainability, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | | | | |
Collapse
|
44
|
Buechel SD, Schmid-Hempel P. Colony pace: a life-history trait affecting social insect epidemiology. Proc Biol Sci 2016; 283:rspb.2015.1919. [PMID: 26763696 DOI: 10.1098/rspb.2015.1919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among colonies of social insects, the worker turnover rate (colony 'pace') typically shows considerable variation. This has epidemiological consequences for parasites, because in 'fast-paced' colonies, with short-lived workers, the time of parasite residence in a given host will be reduced, and further transmission may thus get less likely. Here, we test this idea and ask whether pace is a life-history strategy against infectious parasites. We infected bumblebees (Bombus terrestris) with the infectious gut parasite Crithidia bombi, and experimentally manipulated birth and death rates to mimic slow and fast pace. We found that fewer workers and, importantly, fewer last-generation workers that are responsible for rearing sexuals were infected in colonies with faster pace. This translates into increased fitness in fast-paced colonies, as daughter queens exposed to fewer infected workers in the nest are less likely to become infected themselves, and have a higher chance of founding their own colonies in the next year. High worker turnover rate can thus act as a strategy of defence against a spreading infection in social insect colonies.
Collapse
Affiliation(s)
- Séverine Denise Buechel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH Zentrum CHN Universitätsstrasse 16, Zürich 8092, Switzerland
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, ETH Zentrum CHN Universitätsstrasse 16, Zürich 8092, Switzerland
| |
Collapse
|
45
|
PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries. J Invertebr Pathol 2015; 134:1-5. [PMID: 26721451 DOI: 10.1016/j.jip.2015.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/01/2015] [Accepted: 12/21/2015] [Indexed: 12/15/2022]
Abstract
The recently described trypanosome Lotmaria passim is currently considered the most predominant trypanosomatid in honey bees worldwide and could be a factor in honey bee declines. For a specific and quick detection of this pathogen, we developed primers based on the SSU rRNA and gGAPDH genes for the detection of L. passim in Chilean honey beehives. PCR products amplified and sequenced for these primers shared 99-100% identity with other sequences of L. passim. The designed primers were specific and we were able to detect a high prevalence (40-90%) of L. passim in bee hives distributed throughout Chile. Our described PCR-based method offers a feasible and specific detection of L. passim in any honey bee samples.
Collapse
|
46
|
Biller OM, Adler LS, Irwin RE, McAllister C, Palmer-Young EC. Possible Synergistic Effects of Thymol and Nicotine Against Crithidia bombi Parasitism in Bumble Bees. PLoS One 2015; 10:e0144668. [PMID: 26657643 PMCID: PMC4686078 DOI: 10.1371/journal.pone.0144668] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023] Open
Abstract
Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite resistance. In both experiments, uninfected Bombus impatiens were inoculated with Crithidia and then fed particular diet treatments for 7 days, after which infection levels were assessed. In the synergism experiment, thymol and nicotine alone and in combination did not significantly affect parasite load or host mortality. However, the thymol-nicotine combination treatment reduced log-transformed parasite counts by 30% relative to the control group (P = 0.08). For the experiment in which we manipulated thymol concentration, we found no significant effect of any thymol concentration on Crithidia load, but moderate (2 ppm) thymol concentrations incurred a near-significant increase in mortality (P = 0.054). Our results tentatively suggest the value of a mixed diet for host immunity, yet contrast with research on the antimicrobial activity of dietary thymol and nicotine in vertebrate and other invertebrate systems. We suggest that future research evaluate genetic variation in Crithidia virulence, multi-strain competition, and Crithidia interactions with the gut microbe community that may mediate antimicrobial activities of secondary compounds.
Collapse
Affiliation(s)
- Olivia Masi Biller
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Rebecca E. Irwin
- Department of Biology, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Caitlin McAllister
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Evan C. Palmer-Young
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Gallot-Lavallée M, Schmid-Hempel R, Vandame R, Vergara CH, Schmid-Hempel P. Large scale patterns of abundance and distribution of parasites in Mexican bumblebees. J Invertebr Pathol 2015; 133:73-82. [PMID: 26678506 DOI: 10.1016/j.jip.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 11/28/2022]
Abstract
Bumblebees are highly valued for their pollination services in natural ecosystems as well as for agricultural crops. These precious pollinators are known to be declining worldwide, and one major factor contributing to this decline are infections by parasites. Knowledge about parasites in wild bumblebee populations is thus of paramount importance for conservation purposes. We here report the geographical distribution of Crithidia and Nosema, two common parasites of bumblebees, in a yet poorly investigated country: Mexico. Based on sequence divergence of the Cytochrome b and Glycosomal glyceraldehyde phosphate deshydrogenase (gGPDAH) genes, we discovered the presence of a new Crithidia species, which is mainly distributed in the southern half of the country. It is placed by Bayesian inference as a sister species to C. bombi. We suggest the name Crithidia mexicana for this newly discovered organism. A population of C. expoeki was encountered concentrated on the flanks of the dormant volcanic mountain, Iztaccihuatl, and microsatellite data showed evidence of a bottleneck in this population. This study is the first to provide a large-scale insight into the health status of endemic bumblebees in Mexico, based on a large sample size (n=3,285 bees examined) over a variety of host species and habitats.
Collapse
Affiliation(s)
- Marie Gallot-Lavallée
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| | - Regula Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Rémy Vandame
- Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Carlos H Vergara
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Mexico
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| |
Collapse
|
48
|
Thorburn LP, Adler LS, Irwin RE, Palmer-Young EC. Variable effects of nicotine, anabasine, and their interactions on parasitized bumble bees. F1000Res 2015; 4:880. [PMID: 26998225 PMCID: PMC4786900 DOI: 10.12688/f1000research.6870.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 11/20/2022] Open
Abstract
Secondary metabolites in floral nectar have been shown to reduce parasite load in two common bumble bee species. Previous studies on the effects of nectar secondary metabolites on parasitized bees have focused on single compounds in isolation; however, in nature, bees are simultaneously exposed to multiple compounds. We tested for interactions between the effects of two alkaloids found in the nectar of Nicotiana spp. plants, nicotine and anabasine, on parasite load and mortality in bumble bees ( Bombus impatiens) infected with the intestinal parasite Crithidia bombi. Adult worker bees inoculated with C. bombi were fed nicotine and anabasine diet treatments in a factorial design, resulting in four nectar treatment combinations: 2 ppm nicotine, 5 ppm anabasine, 2ppm nicotine and 5 ppm anabasine together, or a control alkaloid-free solution. We conducted the experiment twice: first, with bees incubated under variable environmental conditions ('Variable'; temperatures varied from 10-35°C with ambient lighting); and second, under carefully controlled environmental conditions ('Stable'; 27°C incubator, constant darkness). In 'Variable', each alkaloid alone significantly decreased parasite loads, but this effect was not realized with the alkaloids in combination, suggesting an antagonistic interaction. Nicotine but not anabasine significantly increased mortality, and the two compounds had no interactive effects on mortality. In 'Stable', nicotine significantly increased parasite loads, the opposite of its effect in 'Variable'. While not significant, the relationship between anabasine and parasite loads was also positive. Interactive effects between the two alkaloids on parasite load were non-significant, but the pattern of antagonistic interaction was similar to that in the variable experiment. Neither alkaloid, nor their interaction, significantly affected mortality under controlled conditions. Our results do not indicate synergy between Nicotiana nectar alkaloids; however, they do suggest a complex interaction between secondary metabolites, parasites, and environmental variables, in which secondary metabolites can be either toxic or medicinal depending on context.
Collapse
Affiliation(s)
- Lukas P Thorburn
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
| | - Rebecca E Irwin
- Department of Biology, Dartmouth College Hanover, New Hampshire, USA; Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Evan C Palmer-Young
- Department of Biology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
49
|
Ravoet J, Schwarz RS, Descamps T, Yañez O, Tozkar CO, Martin-Hernandez R, Bartolomé C, De Smet L, Higes M, Wenseleers T, Schmid-Hempel R, Neumann P, Kadowaki T, Evans JD, de Graaf DC. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J Invertebr Pathol 2015; 130:21-7. [PMID: 26146231 DOI: 10.1016/j.jip.2015.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/26/2015] [Accepted: 06/30/2015] [Indexed: 01/23/2023]
Abstract
Trypanosomatids infecting honey bees have been poorly studied with molecular methods until recently. After the description of Crithidia mellificae (Langridge and McGhee, 1967) it took about forty years until molecular data for honey bee trypanosomatids became available and were used to identify and describe a new trypanosomatid species from honey bees, Lotmaria passim (Evans and Schwarz, 2014). However, an easy method to distinguish them without sequencing is not yet available. Research on the related bumble bee parasites Crithidia bombi and Crithidia expoeki revealed a fragment length polymorphism in the internal transcribed spacer 1 (ITS1), which enabled species discrimination. In search of fragment length polymorphisms for differential diagnostics in honey bee trypanosomatids, we studied honey bee trypanosomatid cell cultures of C. mellificae and L. passim. This research resulted in the identification of fragment length polymorphisms in ITS1 and ITS1-2 markers, which enabled us to develop a diagnostic method to differentiate both honey bee trypanosomatid species without the need for sequencing. However, the amplification success of the ITS1 marker depends probably on the trypanosomatid infection level. Further investigation confirmed that L. passim is the dominant species in Belgium, Japan and Switzerland. We found C. mellificae only rarely in Belgian honey bee samples, but not in honey bee samples from other countries. C. mellificae was also detected in mason bees (Osmia bicornis and Osmia cornuta) besides in honey bees. Further, the characterization and comparison of additional markers from L. passim strain SF (published as C. mellificae strain SF) and a Belgian honey bee sample revealed very low divergence in the 18S rRNA, ITS1-2, 28S rRNA and cytochrome b sequences. Nevertheless, a variable stretch was observed in the gp63 virulence factor.
Collapse
Affiliation(s)
- Jorgen Ravoet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium.
| | - Ryan S Schwarz
- USDA-ARS Bee Research Laboratory, Beltsville Agricultural Research Center - East, Beltsville, United States
| | - Tine Descamps
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Cansu Ozge Tozkar
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | | | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Spain
| | - Lina De Smet
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium
| | - Mariano Higes
- Bee Pathology Laboratory, Centro Apícola Regional, Marchamalo, Spain
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, K.U. Leuven, Leuven, Belgium
| | - Regula Schmid-Hempel
- Institute of Integrative Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu, China
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville Agricultural Research Center - East, Beltsville, United States
| | - Dirk C de Graaf
- Laboratory of Molecular Entomology and Bee Pathology, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Pampell R, Sikes D, Pantoja A, Holloway P, Knight C, Ranft R. Bumble Bees (Hymenoptera: Apidae: Bombus spp.) of Interior Alaska: Species Composition, Distribution, Seasonal Biology, and Parasites. Biodivers Data J 2015:e5085. [PMID: 25977613 PMCID: PMC4426341 DOI: 10.3897/bdj.3.e5085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 04/30/2015] [Indexed: 11/17/2022] Open
Abstract
Background Despite the ecological and agricultural significance of bumble bees in Alaska, very little is known and published about this important group at the regional level. The objectives of this study were to provide baseline data on species composition, distribution, seasonal biology, and parasites of the genus Bombus at three major agricultural locations within Alaska: Fairbanks, Delta Junction, and Palmer, to lay the groundwork for future research on bumble bee pollination in Alaska. New information A total of 8,250 bumble bees representing 18 species was collected from agricultural settings near Delta Junction, Fairbanks, and Palmer, Alaska in 2009 and 2010. Of the 8,250 specimens, 51% were queens, 32.7% were workers, and 16.2% were males. The species composition and relative abundances varied among sites and years. Delta Junction had the highest relative abundance of bumble bees, representing 51.6% of the specimens collected; the other two locations, Fairbanks and Palmer represented 26.5% and 21.8% of the overall catch respectively. The species collected were: BombusbohemicusSeidl 1837 (= B.ashtoni (Cresson 1864)), B.balteatusDahlbom 1832, B.bifariusCresson 1878, B.centralisCresson 1864, B.cryptarum (Fabricius 1775) (=B.moderatusCresson 1863), B.distinguendusMorawitz 1869, B.flavidusEversmann 1852 (=B.fernaldaeFranklin 1911), B.flavifronsCresson 1863, B.frigidusSmith 1854, B.insularis (Smith 1861), B.jonellus (Kirby 1802), B.melanopygusNylander 1848, B.mixtusCresson 1878, B.neoboreusSladen 1919, B.occidentalisGreene 1858, B.perplexusCresson 1863, B.rufocinctusCresson 1863, and B.sylvicolaKirby 1837. Overall, the most common bumble bees near agricultural lands were B.centralis, B.frigidus, B.jonellus, B.melanopygus, B.mixtus, and B.occidentalis. Species' relative population densities and local diversity were highly variable from year to year. Bombusoccidentalis, believed to be in decline in the Pacific Northwest states, represented 10.4% of the overall specimens collected from the three sites studied. Bumble bees were found to be infected by Nosema and nematodes with infection rates up to 2.1% and 16.7% respectively. Of the eight species infected by parasites, B.occidentalis displayed the highest Nosema infection, while B.centralis was the species with the highest infection of nematodes. To our knowledge this represents the first multi-year study on bumble bees from the main agricultural areas of Alaska to provide baseline data on species composition, distribution, seasonal biology, and parasites of the genus Bombus.
Collapse
Affiliation(s)
- Rehanon Pampell
- United States Department of Agriculture, Agricultural Research Service, Subarctic Agricultural Research Unit, AK, Fairbanks, United States of America
| | - Derek Sikes
- University of Alaska Museum, Fairbanks, United States of America
| | - Alberto Pantoja
- United States Department of Agriculture, Agricultural Research Service, Subarctic Agricultural Research Unit, AK, Fairbanks, United States of America
| | - Patricia Holloway
- University of Alaska Fairbanks, School of Natural resources and Agricultural Sciences, Fairbanks, United States of America
| | - Charles Knight
- State of Alaska, Department of Natural Resources, Division of Agriculture, Fairbanks, United States of America
| | - Richard Ranft
- United States Department of Agriculture, Agricultural Research Service, Subarctic Agricultural Research Unit, Fairbanks, United States of America
| |
Collapse
|