1
|
Vidal A, Cézilly F, Pradel R. Contemporary Survival Selection Fails to Explain Observed Patterns of Phenotypic Divergence Between Suburban and Forest Populations of the Cuban Endemic Lizard, Anolis homolechis. BIOLOGY 2024; 13:1019. [PMID: 39765686 PMCID: PMC11673169 DOI: 10.3390/biology13121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Although urbanization is a major threat to biodiversity, some native species have managed to persist in urban areas. Populations of such species often show phenotypic differences with their rural counterparts. A crucial question is whether such differences result from different selection regimes between habitats. As previous studies showed that suburban and forest populations of Anolis homolechis differ in both body size and sex ratio, we tested the effect of urbanization on adult survival in those populations based on a long-term capture-marking-recapture survey and replicated design. We assessed the evidence for directional and stabilizing selection on size in two suburban and two forest populations by modeling apparent adult survival and recapture probability separately. Adult survival did not differ between habitat types. In addition, there was no evidence for size-related differential selection on adult survival between habitats. However, irrespective of habitat, we found significant stabilizing selection on female size, whereas male survival was independent of size. Overall, sex had a significant effect on survival independent of habitat type (monthly survival probability: 0.80 for males vs. up to 0.89 for females of optimal size). We discuss our results in relation to the potential mechanisms involved in the observed phenotypic differentiation of A. homolechis and other lizard species in areas transformed by urbanization.
Collapse
Affiliation(s)
- Annabelle Vidal
- Instituto de Ecología y Sistemática, Havana 11900, Cuba;
- Caribaea Initiative, Le Raizet, 97139 Les Abymes, Guadeloupe, France
- Centre d’Écologie Fonctionnelle et Évolutive CEFE, Université de Montpellier, CNRS, EPHE, IRD, CEDEX 5, 34293 Montpellier, Hérault, France;
| | - Frank Cézilly
- Caribaea Initiative, Le Raizet, 97139 Les Abymes, Guadeloupe, France
| | - Roger Pradel
- Centre d’Écologie Fonctionnelle et Évolutive CEFE, Université de Montpellier, CNRS, EPHE, IRD, CEDEX 5, 34293 Montpellier, Hérault, France;
| |
Collapse
|
2
|
Tan A, St. John M, Chau D, Clair C, Chan H, Holzman R, Martin CH. A multi-peak performance landscape for scale biting in an adaptive radiation of pupfishes. J Exp Biol 2024; 227:jeb247615. [PMID: 39054887 PMCID: PMC11418179 DOI: 10.1242/jeb.247615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The physical interactions between organisms and their environment ultimately shape diversification rates, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here, we estimated a performance landscape for biting in an adaptive radiation of Cyprinodon pupfishes, including scale-biting and molluscivore specialists, and compared performance peaks with previous estimates of the fitness landscape in this system. We used high-speed video to film feeding strikes on gelatin cubes by scale eater, molluscivore, generalist and hybrid pupfishes and measured bite dimensions. We then measured five kinematic variables from 227 strikes using the SLEAP machine-learning model. We found a complex performance landscape with two distinct peaks best predicted gel-biting performance, corresponding to a significant non-linear interaction between peak gape and peak jaw protrusion. Only scale eaters and their hybrids were able to perform strikes within the highest performance peak, characterized by larger peak gapes and greater jaw protrusion. A performance valley separated this peak from a lower performance peak accessible to all species, characterized by smaller peak gapes and less jaw protrusion. However, most individuals exhibited substantial variation in strike kinematics and species could not be reliably distinguished by their strikes, indicating many-to-many mapping of morphology to performance. The two performance peaks observed in the lab were partially consistent with estimates of a two-peak fitness landscape measured in the wild, with the exception of the new performance peak for scale eaters. We thus reveal a new bimodal non-linear biomechanical model that connects morphology to performance to fitness in a sympatric radiation of trophic niche specialists.
Collapse
Affiliation(s)
- Anson Tan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michelle St. John
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Dylan Chau
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chloe Clair
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - HoWan Chan
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Roi Holzman
- School of Zoology, Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
- Inter-University Institute for Marine Sciences, Eilat 8810302, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3140, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Barquero MD. Population variation in signaling behavior and contest outcome in the jacky dragon. Aggress Behav 2024; 50:e22166. [PMID: 39030757 DOI: 10.1002/ab.22166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Being aggressive and by extension, dominant, is an important mechanism for determining access to resources such as mates or territories. While predictors of contest outcome and dominance are increasingly studied, we have a poor understanding of how they vary across populations. Here, I use the widely distributed Australian agamid lizard, the Jacky dragon (Amphibolurus muricatus), to quantify variation in features predicting contest outcome among males of different populations. I measured physical attributes, maximal physiological performance capacity (sprint speed, endurance, bite force) and visual displays during staged encounters. I found that morphology, performance capacity and the type and frequency of visual displays used during agonistic interactions varied significantly across populations. Contest winners from the Cann River State Forest population favored tail-flicks and push-up/body-rocks, while those from Royal National Park were more likely to chase and individuals from Yarratt State Forest performed more bite-lunges than other populations. The losers of contests also differed in their displays. Individuals from the Cann River population were dominant over the others based on behavioral attributes (i.e., aggressive visual displays, chases and bite-lunges). I suggest that population differences in signal form and function could have implications for range dynamics as populations come into contact in an era of rapid environmental change.
Collapse
Affiliation(s)
- Marco D Barquero
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- Sede del Caribe, Universidad de Costa Rica, Montes de Oca, San José, Costa Rica
| |
Collapse
|
4
|
Acevedo MA, Fankhauser C, González L, Quigg M, Gonzalez B, Papa R. Recolonization of secondary forests by a locally extinct Caribbean anole through the lens of range expansion theory. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2960. [PMID: 38425089 DOI: 10.1002/eap.2960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/10/2024] [Indexed: 03/02/2024]
Abstract
Disturbance and recovery dynamics are characteristic features of many ecosystems. Disturbance dynamics are widely studied in ecology and conservation biology. Still, we know less about the ecological processes that drive ecosystem recovery. The ecological processes that mediate ecosystem recovery stand at the intersection of many theoretical frameworks. Range expansion theory is one of these complementary frameworks that can provide unique insights into the population-level processes that mediate ecosystem recovery, particularly fauna recolonization. Although the biodiversity patterns that follow the fauna recolonization of recovering forests have been well described in the literature, the ecological processes at the population level that drive these patterns remain conspicuously unknown. In this study, we tested three fundamental predictions of range expansion theory during the recolonization of recovering forests in Puerto Rico by a shade specialist anole, Anolis gundlachi. Range expansion theory predicts that individuals at the early stages of recolonization (i.e., younger forests) would have a high prevalence of dispersive traits, experience less density dependence, and suffer less parasitism. To test these predictions, we conducted a chronosequence study applying space-for-time substitution where we compared phenotypic traits (i.e., body size, body condition, and relative limb size), population density, population growth rates, and Plasmodium parasitism rates among lizard populations living in young (<30 years), mid (~40-70 years), and old-growth forests (>75 years). Lizard populations in younger forests had lower densities, higher population growth rates, and lower rates of Plasmodium parasitism compared with old-growth forests. Still, while we found that individuals had larger body sizes, and longer forelimbs in young forests in one site, this result was not consistent among sites. This suggests a potential trade-off between the traits that provide a dispersal advantage during the initial stages of recolonization and those that are advantageous to establish in novel environmental conditions. Overall, our study emphasizes the suitability of range expansion theory to describe fauna recolonization but also highlights that the ecological processes that drive recolonization are time-dependent, complex, and nuanced.
Collapse
Affiliation(s)
- Miguel A Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Carly Fankhauser
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Luis González
- Department of Biology, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico
| | - Marné Quigg
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Bella Gonzalez
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico-Río Piedras, San Juan, Puerto Rico
| |
Collapse
|
5
|
Bergmann PJ, Tonelli-Sippel I. Many-to-many mapping: A simulation study of how the number of traits and tasks affect the evolution of form and function. J Theor Biol 2024; 581:111744. [PMID: 38281541 DOI: 10.1016/j.jtbi.2024.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/30/2024]
Abstract
Many-to-many mapping of form-to-function posits that multiple morphological and physiological traits affect the performance of multiple tasks in an organism, and that redundancy and multitasking occur simultaneously to shape the evolution of an organism's phenotype. Many-to-many mapping is expected to be ubiquitous in nature, yet little is known about how it influences the evolution of organismal phenotype. The F-matrix is a powerful tool to study these issues because it describes how multiple traits affect multiple tasks. We undertook a simulation study using the F-matrix to test how the number of traits and the number of tasks affect trait integration and evolvability, as well as the relationships among tasks. We found that as the number of traits and/or tasks increases, the relationships between the tasks and the integration between the traits become weaker, and that the evolvability of the traits increases, all resulting in a system that is freer to evolve. We also found that as the number of traits increases, performance tradeoffs tend to become weaker, but only to a point. Our work shows that it is important to consider not only multiple traits, but also the multitude of tasks that those traits carry out when studying form-function relationships. We suggest that evolution of these relationships follows functional lines of least resistance, which are less defined in more complex systems, resulting in a mechanism for diversification.
Collapse
Affiliation(s)
- Philip J Bergmann
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01602, United States.
| | - Isabel Tonelli-Sippel
- Department of Biology, Clark University, 950 Main Street, Worcester, MA 01602, United States
| |
Collapse
|
6
|
Mitchell DJ, Beckmann C, Biro PA. Maintenance of Behavioral Variation under Predation Risk: Effects on Personality, Plasticity, and Predictability. Am Nat 2024; 203:347-361. [PMID: 38358809 DOI: 10.1086/728421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractClassic evolutionary theory predicts that predation will shift trait means and erode variance within prey species; however, several studies indicate higher behavioral trait variance and trait integration in high-predation populations. These results come predominately from field-sampled animals comparing low- and high-predation sites and thus cannot isolate the role of predation from other ecological factors, including density effects arising from higher predation. Here, we study the role of predation on behavioral trait (co)variation in experimental populations of guppies (Poecilia reticulata) living with and without a benthic ambush predator (Jaguar cichlid) to better evaluate the role of predation and where density was equalized among replicates twice per year. At 2.5 years after introduction of the predators (∼10 overlapping generations), 40 males were sampled from each of the six replicate populations and extensively assayed for activity rates, water column use, and latency to feed following disturbance. Individual variation was pronounced in both treatments, with substantial individual variation in means, temporal plasticity, and predictability (inverse residual variance). Predators had little effect on mean behavior, although there was some evidence for greater use of the upper water column in predator-exposed fish. There was greater variance among individuals in water column use in predator-exposed fish, and they habituated more quickly over time; individuals higher in the water column fed slower and had a reduced positive correlation with activity, although again this effect was time specific. Predators also affected the integration of personality and plasticity-among-individual variances in water column use increased, and those in activity decreased, through time-which was absent in controls. Our results contrast with the extensive guppy literature showing rapid evolution in trait means, demonstrating either increases or maintenance of behavioral variance under predation.
Collapse
|
7
|
Goerge TM, Miles DB. Behavioral plasticity during acute heat stress: heat hardening increases the expression of boldness. J Therm Biol 2024; 119:103778. [PMID: 38171068 DOI: 10.1016/j.jtherbio.2023.103778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Climate change is creating novel thermal environments via rising temperatures and increased frequency of severe weather events. Short-term phenotypic adjustments, i.e., phenotypic plasticity, may facilitate species persistence during adverse environmental conditions. A plastic response that increases thermal tolerance is heat hardening, which buffers organisms from extreme heat and may enhance short term survival. However, heat hardening responses may incur a cost with concomitant decreases in thermal preference and physiological performance. Thus, phenotypic shifts accompanying a hardening response may be maladaptive in warming climates. Understanding how heat hardening influences other traits associated with fitness and survival will clarify its potential as an adaptive response to altered thermal niches. Here, we studied the effects of heat hardening on boldness behavior in the color polymorphic tree lizard, Urosaurus ornatus. Boldness in lizards influences traits such as territory maintenance, mating success, and survivorship and is repeatable in U. ornatus. We found that when lizards underwent a heat hardening response, boldness expression significantly increased. This trend was driven by males. Bolder individuals also exhibited lower field active body temperatures. This behavioral response to heat hardening may increase resource holding potential and territoriality in stressful environments but may also increase predation risk. This study highlights the need to detail associated phenotypic shifts with stress responses to fully understand their adaptive potential in rapidly changing environments.
Collapse
Affiliation(s)
- Tyler M Goerge
- Department of Biological Sciences, Ohio University, 7 Irvine Hall, Athens, OH 45701, USA.
| | - Donald B Miles
- Department of Biological Sciences, Ohio University, 7 Irvine Hall, Athens, OH 45701, USA.
| |
Collapse
|
8
|
Molina-Borja M, Bohórquez-Alonso ML. Morphology, Behaviour and Evolution of Gallotia Lizards from the Canary Islands. Animals (Basel) 2023; 13:2319. [PMID: 37508096 PMCID: PMC10376385 DOI: 10.3390/ani13142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
We summarize, here, the results from several studies conducted over many years on several endemic species of lizards (genus Gallotia) from the Canary Islands. Quantitative analyses show clear differences both among the species of every island and populations within each species. Sexual dimorphism exists in all analysed species, and a phylogenetic analysis shows that the degree of dimorphism did not change along the evolutionary history of the Canary Islands: species with large and small body sizes have a similar degree of sexual dimorphism, with male body size changes closely following those undergone by females. In G. caesaris (from El Hierro and La Gomera islands) and in G. stehlini (from Gran Canaria), longer hind limb length was correlated with more open habitats. Within most species, males are more conspicuous than females, mainly in terms of body size, behaviour and coloration pattern. Lateral colour spots are blue in most species and green in others. In G. galloti from Tenerife, male lateral spots have larger spot areas and percentage of reflectance in the ultraviolet/blue part of the spectrum than females. This trait shows a monthly variation along April to July, both in males and females, its magnitude being larger in May-June. Behaviour analysis, especially in the last species, shows a great diversity in behaviour patterns, and analysis of intrasexual male competition revealed that contest outcome depends on several morphological and colouration characteristics but mainly on the individual's behaviour. Detailed behavioural analyses were useful for managing a few captive individuals of the highly endangered G. bravoana from La Gomera island. Experimental analyses of some behaviours in the endemic Hierro island lizard (G. simonyi, in danger of extinction) show that individuals may learn to recognize predator models and increase their running speeds with training.
Collapse
Affiliation(s)
- Miguel Molina-Borja
- Department Animal Biology, Facultad Ciencias, Biología, Universidad La Laguna, 38203 La Laguna, Tenerife, Spain
| | - Martha L Bohórquez-Alonso
- Department Animal Biology, Facultad Ciencias, Biología, Universidad La Laguna, 38203 La Laguna, Tenerife, Spain
| |
Collapse
|
9
|
Freedman AH, Harrigan RJ, Zhen Y, Hamilton AM, Smith TB. Evidence for ecotone speciation across an African rainforest-savanna gradient. Mol Ecol 2023; 32:2287-2300. [PMID: 36718952 DOI: 10.1111/mec.16867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Accelerating climate change and habitat loss make it imperative that plans to conserve biodiversity consider species' ability to adapt to changing environments. However, in biomes where biodiversity is highest, the evolutionary mechanisms responsible for generating adaptative variation and, ultimately, new species are frequently poorly understood. African rainforests represent one such biome, as decadal debates continue concerning the mechanisms generating African rainforest biodiversity. These debates hinge on the relative importance of geographic isolation versus divergent natural selection across environmental gradients. Hindering progress is a lack of robust tests of these competing hypotheses. Because African rainforests are severely at-risk due to climate change and other anthropogenic activities, addressing this long-standing debate is critical for making informed conservation decisions. We use demographic inference and allele frequency-environment relationships to investigate mechanisms of diversification in an African rainforest skink, Trachylepis affinis, a species inhabiting the gradient between rainforest and rainforest-savanna mosaic (ecotone). We provide compelling evidence of ecotone speciation, in which gene flow has all but ceased between rainforest and ecotone populations, at a level consistent with infrequent hybridization between sister species. Parallel patterns of genomic, morphological, and physiological divergence across this environmental gradient and pronounced allele frequency-environment correlation indicate speciation is mostly probably driven by ecological divergence, supporting a central role for divergent natural selection. Our results provide strong evidence for the importance of ecological gradients in African rainforest speciation and inform conservation strategies that preserve the processes that produce and maintain biodiversity.
Collapse
Affiliation(s)
- Adam H Freedman
- Faculty of Arts and Sciences Informatics Group, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan J Harrigan
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Ying Zhen
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Alison M Hamilton
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, USA
| | - Thomas B Smith
- Centre for Tropical Research and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
10
|
Gilbert AL, Shine R, Warner DA. Carrying eggs uphill: are costs of reproduction stronger on steeper slopes? Biol Lett 2023; 19:20230025. [PMID: 37161295 PMCID: PMC10170190 DOI: 10.1098/rsbl.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Locomotor impairment during pregnancy is a well-documented cost of reproduction, but most empirical studies have not incorporated ecological complexity, such as locomotion on sloping inclines rather than horizontal surfaces. Biomechanical factors suggest that carrying a heavy burden-including shifts in the body's centre of mass-may impair locomotor ability even more when an animal is running uphill. If so, then measuring costs of reproduction on horizontal racetracks may underestimate these costs in nature for arboreal species. To evaluate this prediction, we measured the pregnancy-induced reduction in speed for jacky dragons (Amphibolurus muricatus) at inclines ranging from 0 to 45°. Both pregnancy and steeper slopes reduced lizard performance, but pregnancy did not exacerbate the locomotor decrement on steeper racetracks. An ability to maintain mobility on steep slopes during pregnancy may be a target of selection in arboreal taxa. To understand the evolutionary context of locomotion-based costs of reproduction, we also need studies on the relationship between organismal performance and ecologically relevant measures such as predation risk.
Collapse
Affiliation(s)
- Anthony L. Gilbert
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Richard Shine
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Daniel A. Warner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
11
|
Do Suburban Populations of Lizards Behave Differently from Forest Ones? An Analysis of Perch Height, Time Budget, and Display Rate in the Cuban Endemic Anolis homolechis. DIVERSITY 2023. [DOI: 10.3390/d15020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Urbanization transforms natural ecosystems into novel habitats, which can result in negative consequences for biodiversity. Therefore, it is important to understand the mechanisms of maintenance of native species in urbanized environments, including behavior—which can act as a fast response to rapid environmental changes. We compared some behavioral traits between two suburban and two forest populations of Anolis homolechis. Direct observations of 779 individuals revealed that perch height was positively influenced by body size, but not by sex. Suburban individuals perched higher than forest ones, and even more so in the afternoon compared to the morning; a behavior that was not observed in forests populations. These differences might be due to a change from foraging activities in the morning to vigilance, display, and/or thermoregulation in the afternoon, promoted by suburban habitat conditions (e.g., higher predator abundance, open habitat structure, and urban heat). Video recordings of 81 focal individuals showed that males were more active than females (i.e., spending less time in stationary behavior and having a higher display rate), with no significant effect of habitat type. As some of our results diverge from previous studies on invasive anoles, we recommend extending comparative studies of urban and non-urban populations to other native Anolis.
Collapse
|
12
|
Le Roy C, Silva N, Godoy-Diana R, Debat V, Llaurens V, Muijres FT. Divergence of climbing escape flight performance in Morpho butterflies living in different microhabitats. J Exp Biol 2022; 225:276180. [PMID: 35851402 PMCID: PMC9440751 DOI: 10.1242/jeb.243867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Habitat specialization can influence the evolution of animal movement in promoting divergent locomotor abilities adapted to contrasting environmental conditions, differences in vegetation clutter or predatory communities. While the effect of habitat on the evolution of locomotion and particularly escape performance has been well investigated in terrestrial animals, it remains understudied in flying animals. Here, we investigated whether specialization of Morpho butterfly species into different vertical strata of the Amazonian forest affects the performance of upward escape flight manoeuvres. Using stereoscopic high-speed videography, we compared the climbing flight kinematics of seven Morpho species living either in the forest canopy or in the understory. We show that butterflies from canopy species display strikingly higher climbing speed and steeper ascent angle compared with understory species. Although climbing speed increased with wing speed and angle of attack, the higher climb angle observed in canopy species was best explained by their higher body pitch angle, resulting in more upward-directed aerodynamic thrust forces. Climb angle also scales positively with weight-normalized wing area, and this weight-normalized wing area was higher in canopy species. This shows that a combined divergence in flight behaviour and morphology contributes to the evolution of increased climbing flight abilities in canopy species. Summary: Quantification of climbing flight kinematics among closely related butterfly species living in different strata reveals contrasted climbing flight ability, probably resulting from divergent flight behaviour and morphology.
Collapse
Affiliation(s)
- Camille Le Roy
- 1 Department of Experimental Zoology, Wageningen University, 6709 PG Wageningen, the Netherlands
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
- 3 Université Paris Cité, 12 rue de l’École de Médecine, 75006 Paris, France
| | - Nicolas Silva
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Ramiro Godoy-Diana
- 4 Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH, UMR 7636), CNRS, ESPCI Paris Université PSL, Sorbonne Université, Université de Paris Cité, 75005 Paris, France
| | - Vincent Debat
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Violaine Llaurens
- 2 Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005 Paris, France
| | - Florian Titus Muijres
- 1 Department of Experimental Zoology, Wageningen University, 6709 PG Wageningen, the Netherlands
| |
Collapse
|
13
|
Vidal A, Iturriaga M, Mancina CA, Cézilly F. Differences in sex ratio, tail autotomy, body size and body condition between suburban and forest populations of the cuban endemic lizard Anolis homolechis. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Holzman R, Keren T, Kiflawi M, Martin CH, China V, Mann O, Olsson KH. A new theoretical performance landscape for suction feeding reveals adaptive kinematics in a natural population of reef damselfish. J Exp Biol 2022; 225:jeb243273. [PMID: 35647659 PMCID: PMC9339911 DOI: 10.1242/jeb.243273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
Understanding how organismal traits determine performance and, ultimately, fitness is a fundamental goal of evolutionary eco-morphology. However, multiple traits can interact in non-linear and context-dependent ways to affect performance, hindering efforts to place natural populations with respect to performance peaks or valleys. Here, we used an established mechanistic model of suction-feeding performance (SIFF) derived from hydrodynamic principles to estimate a theoretical performance landscape for zooplankton prey capture. This performance space can be used to predict prey capture performance for any combination of six morphological and kinematic trait values. We then mapped in situ high-speed video observations of suction feeding in a natural population of a coral reef zooplanktivore, Chromis viridis, onto the performance space to estimate the population's location with respect to the topography of the performance landscape. Although the kinematics of the natural population closely matched regions of high performance in the landscape, the population was not located on a performance peak. Individuals were furthest from performance peaks on the peak gape, ram speed and mouth opening speed trait axes. Moreover, we found that the trait combinations in the observed population were associated with higher performance than expected by chance, suggesting that these combinations are under selection. Our results provide a framework for assessing whether natural populations occupy performance optima.
Collapse
Affiliation(s)
- Roi Holzman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Tal Keren
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Moshe Kiflawi
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Christopher H. Martin
- Department of Integrative Biology, and the Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - Victor China
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Ofri Mann
- Department of Life Sciences, Ben Gurion University, Beer Sheva 8410501, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| | - Karin H. Olsson
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Inter-University Institute for Marine Sciences, PO Box 469, Eilat 88103, Israel
| |
Collapse
|
15
|
Richards EJ, Martin CH. We get by with a little help from our friends: shared adaptive variation provides a bridge to novel ecological specialists during adaptive radiation. Proc Biol Sci 2022; 289:20220613. [PMID: 35611537 PMCID: PMC9130792 DOI: 10.1098/rspb.2022.0613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Adaptive radiations involve astounding bursts of phenotypic, ecological and species diversity. However, the microevolutionary processes that underlie the origins of these bursts are still poorly understood. We report the discovery of an intermediate C. sp. 'wide-mouth' scale-eating ecomorph in a sympatric radiation of Cyprinodon pupfishes, illuminating the transition from a widespread algae-eating generalist to a novel microendemic scale-eating specialist. We first show that this ecomorph occurs in sympatry with generalist C. variegatus and scale-eating specialist C. desquamator on San Salvador Island, Bahamas, but is genetically differentiated, morphologically distinct and often consumes scales. We then compared the timing of selective sweeps on shared and unique adaptive variants in trophic specialists to characterize their adaptive walk. Shared adaptive regions swept first in both the specialist desquamator and the intermediate 'wide-mouth' ecomorph, followed by unique sweeps of introgressed variation in 'wide-mouth' and de novo variation in desquamator. The two scale-eating populations additionally shared 9% of their hard selective sweeps with the molluscivore C. brontotheroides, despite no single common ancestor among specialists. Our work provides a new microevolutionary framework for investigating how major ecological transitions occur and illustrates how both shared and unique genetic variation can provide a bridge for multiple species to access novel ecological niches.
Collapse
Affiliation(s)
- Emilie J. Richards
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Christopher H. Martin
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| |
Collapse
|
16
|
Simon MN, Cespedes AM, Lailvaux SP. Sex-specific multivariate morphology/performance relationships in Anolis carolinensis. J Exp Biol 2022; 225:275160. [PMID: 35363299 DOI: 10.1242/jeb.243471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
Animals rely on their ability to perform certain tasks sufficiently well to survive, secure mates, and reproduce. Performance traits depend on morphology, and so morphological traits should predict performance, yet this relationship is often confounded by multiple competing performance demands. Males and females experience different selection pressures on performance, and the consequent sexual conflict over performance expression can either constrain performance evolution or drive sexual dimorphism in both size and shape. Furthermore, change in a single morphological trait may benefit some performance traits at the expense of others, resulting in functional trade-offs. Identifying general or sex-specific relationships between morphology and performance at the organismal level thus requires a multivariate approach, as individuals are products both of an integrated phenotype and the ecological environment in which they have developed and evolved. We estimated the multivariate morphology→performance gradient in wild-caught, green anoles (Anolis carolinensis) by measuring external morphology and fore- and hindlimb musculature, and mapping these morphological traits to seven measured performance traits that cover the broad range of ecological challenges faced by these animals (sprint speed, endurance, exertion distance, climbing power, jump power, cling force, and bite force). We demonstrate that males and females differ in their multivariate mapping of traits on performance, indicating that sex-specific ecological demands likely shape these relationships, but do not differ in performance integration.
Collapse
Affiliation(s)
| | - Ann M Cespedes
- Biology Department, Delgado Community College, 615 City Park Avenue, New Orleans, LA 70119, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, The University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| |
Collapse
|
17
|
Badillo-Saldaña LM, García-Rosales A, Ramírez-Bautista A. Influence of microhabitat use on morphology traits of three species of the Anolis sericeus complex (Squamata: Dactyloidae) in Mexico. ZOOLOGY 2022; 152:126003. [DOI: 10.1016/j.zool.2022.126003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
18
|
Fargevieille A, Reedy AM, Kahrl AF, Mitchell TS, Durso AM, Delaney DM, Pearson PR, Cox RM, Warner DA. Propagule size and sex ratio influence colonisation dynamics after introduction of a non-native lizard. J Anim Ecol 2022; 91:845-857. [PMID: 35114034 DOI: 10.1111/1365-2656.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
The composition of founding populations plays an important role in colonisation dynamics and can influence population growth during early stages of biological invasion. Specifically, founding populations with small propagules (i.e., low number of founders) are vulnerable to the Allee effect and have reduced likelihood of establishment compared to those with large propagules. The founding sex ratio can also impact establishment via its influence on mating success and offspring production. Our goal was to test the effects of propagule size and sex ratio on offspring production and annual population growth following introductions of a non-native lizard species (Anolis sagrei). We manipulated propagule composition on nine small islands, then examined offspring production, population growth, and survival rate of founders and their descendants encompassing three generations. By the third reproductive season, per capita offspring production was higher on islands seeded with a relatively large propagule size, but population growth was not associated with propagule size. Propagule sex ratio did not affect offspring production, but populations with a female-biased propagule had positive growth, whereas those with a male-biased propagule had negative growth in the first year. Populations were not affected by propagule sex ratio in subsequent years, possibly due to rapid shifts towards balanced (or slightly female-biased) population sex ratios. Overall, we show that different components of population fitness have different responses to propagule size and sex ratio in ways that could affect early stages of biological invasion. Despite these effects, the short lifespan and high fecundity of A. sagrei likely helped small populations to overcome Allee effects and enabled all populations to successfully establish. Our rare experimental manipulation of propagule size and sex ratio can inform predictions of colonisation dynamics in response to different compositions of founding populations, which is critical in the context of population ecology and invasion dynamics.
Collapse
Affiliation(s)
- Amélie Fargevieille
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aaron M Reedy
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Ariel F Kahrl
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.,Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg, 18B SE-10691, Stockholm, Sweden
| | - Timothy S Mitchell
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Andrew M Durso
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - David M Delaney
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80302, USA
| | - Phillip R Pearson
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Centre for Conservation, Ecology and Genomics, University of Canberra, Bruce, ACT, 2617, Australia
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
19
|
Reed AA, Lattanzio MS. Deterring predator pursuit and attracting potential mates? The conspicuous melanized tail display of the zebra-tailed lizard. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.2024268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abigail A. Reed
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA 23606, USA
| | | |
Collapse
|
20
|
Gomes LG, Stocco MB, Sousa NPD, Martini AC, Morgado TO, Spiller PR, Moreira LFB, de Souza RL. Influence of incubation temperature and embryonic motility on the growth of members of Caiman yacare (Daudin, 1802). BRAZ J BIOL 2021; 84:e252845. [PMID: 34932637 DOI: 10.1590/1519-6984.252845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate whether skeletal development of the Pantanal Caiman (Caiman yacare) is similarly influenced by temperature variation and controlled increases in embryo motility. All eggs were incubated at 90% humidity and 29 °C for the first 45 days. Thereafter, the incubation temperature was either maintained at 29 °C and embryos were treated with 4-aminopyridine (4-AP) on days 46, 47, 48, and 49 (Group I, 29 °C 4-AP, n = 15); maintained at 29 °C (n = 14; Group II); or at 33 °C (n = 14, Group III). Embryonic movement was measured using an Egg Buddy® digital monitor on days 30, 35, 42, 49, 56, and 60, at which point embryos were euthanized and samples were collected for analysis. No differences were observed between groups with varying incubation temperatures. In contrast, embryonic motility was greater in embryos treated with 4-AP (P < 0.001) on day 49, and this was associated with higher proportions of snout-vent and hand lengths. This study demonstrates for the first time that pharmacologically induced increases in embryo motility result in phenotypic changes to the proportion of elements during prenatal ontogeny, thereby effectively altering the adaptation of the species to specific environments.
Collapse
Affiliation(s)
- L G Gomes
- Universidade Federal de Mato Grosso - UFMT, Faculdade de Medicina Veterinária - FAVET, Cuiabá, MT, Brasil
| | - M B Stocco
- Universidade Federal de Mato Grosso - UFMT, Faculdade de Medicina Veterinária - FAVET, Cuiabá, MT, Brasil
| | - N P de Sousa
- Universidade Federal de Mato Grosso - UFMT, Faculdade de Medicina Veterinária - FAVET, Cuiabá, MT, Brasil
| | - A C Martini
- Universidade de Mineiros - UNIFIMES, Departamento de Ciências Agrárias, Mineiros, GO, Brasil
| | - T O Morgado
- Universidade Federal de Mato Grosso - UFMT, Faculdade de Medicina Veterinária - FAVET, Cuiabá, MT, Brasil
| | - P R Spiller
- Universidade de Cuiabá - UNIC, Programa de Pós-Graduação em Biociência Animal, Cuiabá, MT, Brasil
| | - L F B Moreira
- Universidade Federal de Mato Grosso - UFMT, Instituto Nacional de Pesquisas do Pantanal - INPP, Museu Paraense Emílio Goeldi - MPEG, Cuiabá, MT, Brasil
| | - R L de Souza
- Universidade Federal de Mato Grosso - UFMT, Faculdade de Medicina Veterinária - FAVET, Cuiabá, MT, Brasil
| |
Collapse
|
21
|
Simon MN, Marroig G, Arnold SJ. Detecting patterns of correlational selection with sampling error: A simulation study. Evolution 2021; 76:207-224. [PMID: 34888853 DOI: 10.1111/evo.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
The adoption of a multivariate perspective of selection implies the existence of multivariate adaptive peaks and pervasive correlational selection that promotes co-adaptation between traits. However, to test for the ubiquity of correlational selection in nature, we must first have a sense of how well can we estimate multivariate nonlinear selection (i.e., the γ-matrix) in the face of sampling error. To explore the sampling properties of estimated γ-matrices, we simulated inidividual traits and fitness under a wide range of sample sizes, using different strengths of correlational selection and of stabilizing selection, combined with different number of traits under selection, different amounts of residual variance in fitness, and distinct patterns of selection. We then ran nonlinear regressions with these simulated datasets to simulate γ-matrices after adding random error to individual fitness. To test how well could we detect the imposed pattern of correlational selection at different sample sizes, we measured the similarity between simulated and imposed γ-matrices. We show that detection of the pattern of correlational selection is highly dependent on the total strength of selection on traits and on the amount of residual variance in fitness. Minimum sample size needs to be at least 500 to precisely estimate the pattern of correlational selection. Furthermore, a pattern of selection in which different sets of traits contribute to different functions is the easiest to diagnose, even when using a large number of traits (10 traits), but with sample sizes in the order of 1000 individuals. Consequently, we recommend working with sets of traits from distinct functional complexes and fitness proxies less prone to effects of environmental and demographic stochasticity to test for correlational selection with lower sample sizes.
Collapse
Affiliation(s)
| | - Gabriel Marroig
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Stevan J Arnold
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
22
|
Balakrishna S, Amdekar MS, Thaker M. Morphological divergence, tail loss, and predation risk in urban lizards. Urban Ecosyst 2021. [DOI: 10.1007/s11252-021-01122-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Mcelroy EJ, Mcbrayer LD. Escape behaviour varies with distance from safe refuge. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Locomotor performance and behaviour are important for escape from predators, yet the intersection of these strategies is poorly studied. Escape behaviour is context dependent, and optimal escape theory predicts that animals that are farther from a safe refuge will generally use faster running speeds but might choose to use more variable escape paths. We studied locomotor performance and behaviour of six-lined racerunner lizards (Aspidoscelis sexlineata) escaping on natural surface runways that were varied experimentally to be either 5 or 10 m from a safe refuge. On the 5 m runway, lizards usually escaped directly towards the refuge, attained a slower maximal running speed (3.2 m s−1) at ~3 m from the start, and reached the target refuge in most of the trials (80%). On the 10 m runway, lizards used more variable behaviour, including reversals and turns, attained a faster maximal running speed (3.7 m s−1) at ~6 m from the start, and reached the final refuge in only 43% of trials. Free-ranging racerunners were rarely > 5 m from their nearest refuge and used escape paths that were typically < 5 m. Our findings align with predictions from optimal escape theory, in that the perceived risk of a predator–prey encounter can drive adjustments in locomotor behaviour and performance. Additionally, we show that the escape behaviour of free-ranging lizards closely matches their escape behaviour and performance during controlled escape trials.
Collapse
Affiliation(s)
- Eric J Mcelroy
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Lance D Mcbrayer
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| |
Collapse
|
24
|
González-Ortega C, Mesa-Avila G, Suárez-Rancel M, Rodríguez-Domínguez MA, Molina-Borja M. Daily running trials increase sprint speed in endangered lizards (Gallotia simonyi). Behav Processes 2021; 193:104509. [PMID: 34547378 DOI: 10.1016/j.beproc.2021.104509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
Due to increasing number of animal species in danger of extinction, captive breeding of individuals has become a necessary procedure for many recovery programs. As specimens born and raised in captivity during several generations may not develop some behavioral and performance aptitudes properly, several types of training are useful to apply before releasing them into the wild. We present here the results of experiments aiming to detect the effect of daily running trials in young males of the endangered lizard (Gallotia simonyi) from El Hierro (Canary Islands). We made individuals run in a racetrack twice every day, for five days a week between the end of July and the end of September. We filmed all running trials and calculated running speed for each individual dividing the distance run by the time used. Running speed did not correlate with body condition of the lizards but there was variation in running speeds of some individuals with similar body conditions. Running speed of lizards used in the experiments significantly increased along the whole trial period. By contrast, mean running speed did not change significantly in a control group, participating twice in running trials, one at the beginning and the other at the end of the experimental period. From these results we suggest that locomotor training contributed to increasing final running speeds of experimental lizards.
Collapse
Affiliation(s)
- Claribel González-Ortega
- Centro para la Reproducción e Investigación del lagarto gigante de El Hierro, Frontera, El Hierro, Canary Islands, Spain
| | - Gara Mesa-Avila
- Grupo Etología y Ecología del Comportamiento, Depto. Biología Animal, Fac. Ciencias, Sección Biología, Univ. La Laguna, Tenerife, Canary Islands, Spain
| | - Mercedes Suárez-Rancel
- Depto. De Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
| | - Miguel A Rodríguez-Domínguez
- Centro para la Reproducción e Investigación del lagarto gigante de El Hierro, Frontera, El Hierro, Canary Islands, Spain
| | - Miguel Molina-Borja
- Grupo Etología y Ecología del Comportamiento, Depto. Biología Animal, Fac. Ciencias, Sección Biología, Univ. La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
25
|
Unraveling the content of tail displays in an Asian agamid lizard. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Poe S, Donald LAH, Anderson C. What constrains adaptive radiation? Documentation and explanation of under-evolved morphologies in Anolis lizards. Proc Biol Sci 2021; 288:20210340. [PMID: 34187191 DOI: 10.1098/rspb.2021.0340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adaptive radiations fill ecological and morphological space during evolutionary diversification. Why do some trait combinations evolve during such radiations, whereas others do not? 'Required' constraints of pleiotropy and developmental interaction frequently are implicated in explanations for such patterns, but selective forces also may discourage particular trait combinations. Here, we use a dataset of 351 species to demonstrate the dearth of some theoretically plausible trait combinations of limb, toe and tail length in Anolis lizards. For example, disproportionately few Anolis species display long limbs and short toes. We evaluate recovered patterns within three species of Anolis, and find that cladewide patterns are not evident at intraspecific levels. For example, within species, the combination of long limbs and short toes is not significantly rarer than long limbs and long toes. Differences in scale complicate inter- and intraspecific comparisons and disallow concrete conclusions of cause. However, the absence of the interspecific pattern at the intraspecific level is more compatible with selection favouring particular trait combinations than with 'required' forces dictating which trait combinations are available for selection. We also demonstrate the isometry of toe, tail and hindlimb length relative to body length between species but allometry in four of nine trait-body comparisons within species.
Collapse
Affiliation(s)
- Steven Poe
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | | |
Collapse
|
27
|
Shi JJ, Westeen EP, Rabosky DL. A test for rate-coupling of trophic and cranial evolutionary dynamics in New World bats. Evolution 2021; 75:861-875. [PMID: 33565084 DOI: 10.1111/evo.14188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 01/19/2023]
Abstract
Morphological evolution is often assumed to be causally related to underlying patterns of ecological trait evolution. However, few studies have directly tested whether evolutionary dynamics of-and major shifts in-ecological resource use are coupled with morphological shifts that may facilitate trophic innovation. Using diet and multivariate cranial (microCT) data, we tested whether rates of trophic and cranial evolution are coupled in the radiation of New World bats. We developed a generalizable information-theoretic method for describing evolutionary rate heterogeneity across large candidate sets of multirate evolutionary models, without relying on a single best-fitting model. We found considerable variation in trophic evolutionary dynamics, in sharp contrast to a largely homogeneous cranial evolutionary process. This dichotomy is surprising given established functional associations between overall skull morphology and trophic ecology. We suggest that assigning discrete trophic states may underestimate trophic generalism and opportunism, and that this radiation could be characterized by labile crania and a homogeneous dynamic of generally high morphological rates. Overall, we discuss how trophic classifications could substantively impact our interpretation of how these dynamics covary in adaptive radiations.
Collapse
Affiliation(s)
- Jeff J Shi
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, 55455.,Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109
| | - Erin P Westeen
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109.,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, 94720.,Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, 94720
| | - Daniel L Rabosky
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
28
|
Geng WH, Wang XP, Che LF, Wang X, Liu R, Zhou T, Roos C, Irwin DM, Yu L. Convergent Evolution of Locomotory Modes in Euarchontoglires. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.615862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The research of phenotypic convergence is of increasing importance in adaptive evolution. Locomotory modes play important roles in the adaptive evolution of species in the Euarchontoglires, however, the investigation of convergent evolution of the locomotory modes across diverse Euarchontoglire orders is incomplete. We collected measurements of three phalangeal indices of manual digit III, including metacarpal of digit III (MC3), manus proximal phalanx of digit III (MPP3), and manus intermediate phalanx of digit III (MIP3), from 203 individuals of 122 Euarchontoglires species representing arboreal (orders Scandentia, Rodentia, and Primates), terrestrial (orders Scandentia and Rodentia), and gliding (orders Dermoptera and Rodentia) locomotory modes. This data can be separated into seven groups defined by order and locomotory mode. Based on combination of the three phalangeal indices, the Principle component analyses (PCA), phylomorphospace plot, and C-metrics analyses clustered the arboreal species of Scandentia, Rodentia, and Primates together and the terrestrial species of Scandentia and Rodentia together, showing the convergent signal in evolution of the arboreal (C1 = 0.424, P < 0.05) and terrestrial (C1 = 0.560, P < 0.05) locomotory modes in Euarchontoglires. Although the gliding species from Dermoptera and Rodentia did not cluster together, they also showed the convergent signal (C1 = 0.563, P < 0.05). Our work provides insight into the convergent evolution of locomotory modes in Euarchontoglires, and reveals that these three indices contribute valuable information to identify convergent evolution in Euarchontoglires.
Collapse
|
29
|
Frýdlová P, Mrzílková J, Šeremeta M, Křemen J, Dudák J, Žemlička J, Minnich B, Kverková K, Němec P, Zach P, Frynta D. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc Biol Sci 2020; 287:20202737. [PMID: 33352069 PMCID: PMC7779497 DOI: 10.1098/rspb.2020.2737] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Body growth is typically thought to be indeterminate in ectothermic vertebrates. Indeed, until recently, this growth pattern was considered to be ubiquitous in ectotherms. Our recent observations of a complete growth plate cartilage (GPC) resorption, a reliable indicator of arrested skeletal growth, in many species of lizards clearly reject the ubiquity of indeterminate growth in reptiles and raise the question about the ancestral state of the growth pattern. Using X-ray micro-computed tomography (µCT), here we examined GPCs of long bones in three basally branching clades of squamate reptiles, namely in Gekkota, Scincoidea and Lacertoidea. A complete loss of GPC, indicating skeletal growth arrest, was the predominant finding. Using a dataset of 164 species representing all major clades of lizards and the tuataras, we traced the evolution of determinate growth on the phylogenetic tree of Lepidosauria. The reconstruction of character states suggests that determinate growth is ancestral for the squamate reptiles (Squamata) and remains common in the majority of lizard lineages, while extended (potentially indeterminate) adult growth evolved several times within squamates. Although traditionally associated with endotherms, determinate growth is coupled with ectothermy in this lineage. These findings combined with existing literature suggest that determinate growth predominates in both extant and extinct amniotes.
Collapse
Affiliation(s)
- Petra Frýdlová
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Jana Mrzílková
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Martin Šeremeta
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Jan Křemen
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Jan Dudák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 110 00, Czech Republic
| | - Jan Žemlička
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 110 00, Czech Republic
| | - Bernd Minnich
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg 5020, Austria
| | - Kristina Kverková
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Petr Zach
- Specialized Laboratory of Experimental Imaging, Third Faculty of Medicine of Charles University, Institute of Technical and Applied Physics and Faculty of Bioengineering, Prague 100 00, Czech Republic.,Department of Anatomy, Third Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| |
Collapse
|
30
|
Dayananda B, Jeffree RA, Webb JK. Body temperature and time of day both affect nocturnal lizard performance: An experimental investigation. J Therm Biol 2020; 93:102728. [PMID: 33077139 DOI: 10.1016/j.jtherbio.2020.102728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
The locomotor performance of reptiles is profoundly influenced by temperature, but little is known about how the time of day when the animal is usually active may influence performance. Time of day may be particularly relevant for studies on nocturnal reptiles that thermoregulate by day, but are active at night when ambient temperatures are cooler. If selection favours individuals that match their performance to activity times, then nocturnal species should perform better during the night, when they are normally active, than during the day. To test this hypothesis, we investigated how the time of day and body temperature affected the locomotor performance of adult females of the velvet gecko (Amalosia lesueurii). We measured the sprint speeds, running speeds and number of stops of 43 adult females at four different body temperatures (20, 25, 30 and 35 °C) during the day and at night. At night, sprint speeds were higher at 20 and 35 °C but sprint speeds were similar at 25 and 30 °C. By day, sprint speed increased with body temperature, peaking at 30 °C, before declining at 35 °C. However, gecko speeds over 1 m was higher at night at all four test temperatures than by day. Number of stops showed broadly similar patterns and females stopped almost twice as often on the racetrack during the day than they did at night. Furthermore, the thermal breadth of performance differed depending on when geckos were tested. Our results demonstrate that both body temperature and the time of day affects the behaviour and locomotor performance of female velvet geckos, with geckos running faster at night, the time of day when they are usually active. This study adds to evidence that both body temperature and the time of day are crucial for estimating the performance of ectotherms and evaluations and predictions of their vulnerability to climate warming should consider the context of laboratory experimental design.
Collapse
Affiliation(s)
- Buddhi Dayananda
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; School of Life Sciences, University of Technology Sydney, Broadway, 2007, NSW, Australia.
| | - Ross A Jeffree
- Jeffree Conservation & Research, 45 Casuarina Road, Alfords Point, Sydney, 2234, Australia
| | - Jonathan K Webb
- School of Life Sciences, University of Technology Sydney, Broadway, 2007, NSW, Australia
| |
Collapse
|
31
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Geckos cling best to, and prefer to use, rough surfaces. Front Zool 2020; 17:32. [PMID: 33088332 PMCID: PMC7566132 DOI: 10.1186/s12983-020-00374-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Locomotor performance on different substrates is likely to require different abilities, so we expect alignment between species' locomotor performance and the habitats they use in nature. In addition, we expect behaviour to enhance performance, such that animals will use substrates on which they perform well. METHODS We examined the associations between habitat selection and performance in three species of Oedura geckos, including two specialists, (one arboreal, and one saxicolous), and one generalist species, which used both rocks and trees. First, we described their microhabitat use in nature (tree and rock type) for these species, examined the surface roughnesses they encountered, and selected materials with comparable surface microtopographies (roughness measured as peak-to-valley heights) to use as substrates in lab experiments quantifying behavioural substrate preferences and clinging performance. RESULTS The three Oedura species occupied different ecological niches and used different microhabitats in nature, and the two specialist species used a narrower range of surface roughnesses compared to the generalist. In the lab, Oedura geckos preferred substrates (coarse sandpaper) with roughness characteristics similar to substrates they use in nature. Further, all three species exhibited greater clinging performance on preferred (coarse sandpaper) substrates, although the generalist used fine substrates in nature and had good performance capabilities on fine substrates as well. CONCLUSION We found a relationship between habitat use and performance, such that geckos selected microhabitats on which their performance was high. In addition, our findings highlight the extensive variation in surface roughnesses that occur in nature, both among and within microhabitats.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Eric Nordberg
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| |
Collapse
|
32
|
Attenuated phenotypic responses of lizard morphology to logging and fire-related forest disturbance. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Taverne M, King-Gillies N, Krajnović M, Lisičić D, Mira Ó, Petricioli D, Sabolić I, Štambuk A, Tadić Z, Vigliotti C, Wehrle B, Herrel A. Proximate and ultimate drivers of variation in bite force in the insular lizards Podarcis melisellensis and Podarcis sicula. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Bite force is a key performance trait in lizards because biting is involved in many ecologically relevant tasks, including foraging, fighting and mating. Several factors have been suggested to impact bite force in lizards, such as head morphology (proximate factors), or diet, intraspecific competition and habitat characteristics (ultimate factors). However, these have been generally investigated separately and mostly at the interspecific level. Here we tested which factors drive variation in bite force at the population level and to what extent. Our study includes 20 populations of two closely related lacertid species, Podarcis melisellensis and Podarcis sicula, which inhabit islands in the Adriatic. We found that lizards with more forceful bites have relatively wider and taller heads, and consume more hard prey and plant material. Island isolation correlates with bite force, probably by driving resource availability. Bite force is only poorly explained by proxies of intraspecific competition. The linear distance from a large island and the proportion of difficult-to-reduce food items consumed are the ultimate factors that explain most of the variation in bite force. Our findings suggest that the way in which morphological variation affects bite force is species-specific, probably reflecting the different selective pressures operating on the two species.
Collapse
Affiliation(s)
- Maxime Taverne
- Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Nina King-Gillies
- Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Maria Krajnović
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Duje Lisičić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Óscar Mira
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Donat Petricioli
- D.I.I.V. Ltd, for Marine, Freshwater and Subterranean Ecology, Sali, Croatia
| | - Iva Sabolić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anamaria Štambuk
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Zoran Tadić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Chloé Vigliotti
- Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Beck Wehrle
- Department of Ecology & Evolutionary Biology, University of California, Irvine, CA, USA
| | - Anthony Herrel
- Département Adaptations du Vivant, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
34
|
Moreno-Rueda G, Requena-Blanco A, Zamora-Camacho FJ, Comas M, Pascual G. Morphological determinants of jumping performance in the Iberian green frog. Curr Zool 2020; 66:417-424. [PMID: 32617090 PMCID: PMC7319472 DOI: 10.1093/cz/zoz062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
Predation is one of the main selective forces in nature, frequently selecting potential prey for developing escape strategies. Escape ability is typically influenced by several morphological parameters, such as morphology of the locomotor appendices, muscular capacity, body mass, or fluctuating asymmetry, and may differ between sexes and age classes. In this study, we tested the relationship among these variables and jumping performance in 712 Iberian green frogs Pelophylax perezi from an urban population. The results suggest that the main determinant of jumping capacity was body size (explaining 48% of variance). Larger frogs jumped farther, but jumping performance reached an asymptote for the largest frogs. Once controlled by structural body size, the heaviest frogs jumped shorter distances, suggesting a trade-off between fat storage and jumping performance. Relative hind limb length also determined a small but significant percentage of variance (2.4%) in jumping performance—that is, the longer the hind limbs, the greater the jumping capacity. Juveniles had relatively shorter and less muscular hind limbs than adults (for a given body size), and their jumping performance was poorer. In our study population, the hind limbs of the frogs were very symmetrical, and we found no effect of fluctuating asymmetry on jumping performance. Therefore, our study provides evidence that jumping performance in frogs is not only affected by body size, but also by body mass and hind limb length, and differ between age classes.
Collapse
Affiliation(s)
- Gregorio Moreno-Rueda
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, E-18071, Spain
| | - Abelardo Requena-Blanco
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, E-18071, Spain
| | - Francisco J Zamora-Camacho
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, E-18071, Spain.,Department of Biological Sciences, Dartmouth College, Hanover, NH, 03055, USA
| | - Mar Comas
- Departamento de Zoología, Facultad de Ciencias, Universidad de Granada, Granada, E-18071, Spain
| | | |
Collapse
|
35
|
McElroy EJ, Sustaita D, McBrayer LD. Applied Functional Biology: Linking Ecological Morphology to Conservation and Management. Integr Comp Biol 2020. [DOI: 10.1093/icb/icaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Synopsis
Many researchers work at the interface of organisms and environment. Too often, the insights that organismal, or functional, biologists can bring to the understanding of natural history, ecology, and conservation of species are overlooked. Likewise, natural resource managers are frequently focused on the management of populations and communities, while ignoring key functional traits that might explain variation in abundance and shifts in species composition at these ecological levels. Our intention for this symposium is two-fold: (1) to bring to light current and future research in functional and ecological morphology applicable to concerns and goals of wildlife management and conservation and (2) to show how such studies can result in measurable benchmarks useful to regulatory agencies. Symposium topics reveal past, present, and future collaborations between functional morphologists/biomechanists and conservation/wildlife biologists. During the SICB 2020 Annual Meeting, symposium participants demonstrated how data gathered to address fundamental questions regarding the causes and consequences of organismal form and function can also help address issues of conservation and wildlife management. Here we review how these, and other, studies of functional morphology, biomechanics, ecological development morphology and performance can inform wildlife conservation and management, principally by identifying candidate functional traits that have clear fitness consequences and population level implications.
Collapse
Affiliation(s)
- Eric J McElroy
- Department of Biology, College of Charleston, Charleston, SC 29412, USA
| | - Diego Sustaita
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA
| | - Lance D McBrayer
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| |
Collapse
|
36
|
Siliceo‐Cantero HH, Benítez‐Malvido J, Suazo‐Ortuño I. Insularity effects on the morphological space and sexual dimorphism of a tropical tree lizard in western Mexico. J Zool (1987) 2020. [DOI: 10.1111/jzo.12783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- H. H. Siliceo‐Cantero
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Morelia Michoacán Mexico
| | - J. Benítez‐Malvido
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Morelia Michoacán Mexico
| | - I. Suazo‐Ortuño
- Instituto de Investigaciones Sobre los Recursos Naturales Universidad Michoacana de San Nicolás Hidalgo Morelia Michoacán Mexico
| |
Collapse
|
37
|
Shi B, Wang Y, Gong L, Chang Y, Liu T, Zhao X, Lin A, Feng J, Jiang T. Correlation of skull morphology and bite force in a bird-eating bat ( Ia io; Vespertilionidae). Front Zool 2020; 17:8. [PMID: 32206076 PMCID: PMC7082990 DOI: 10.1186/s12983-020-00354-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/11/2020] [Indexed: 04/05/2023] Open
Abstract
Background Genetic and ecological factors influence morphology, and morphology is compatible with function. The morphology and bite performance of skulls of bats show a number of characteristic feeding adaptations. The great evening bat, Ia io (Thomas, 1902), eats both insects and birds (Thabah et al. J Mammal 88: 728-735, 2007), and as such, it is considered to represent a case of dietary niche expansion from insects to birds. How the skull morphology or bite force in I. io are related to the expanded diet (that is, birds) remains unknown. We used three-dimensional (3D) geometry of the skulls and measurements of bite force and diets from I. io and 13 other species of sympatric or closely related bat species to investigate the characteristics and the correlation of skull morphology and bite force to diets. Results Significant differences in skull morphology and bite force among species and diets were observed in this study. Similar to the carnivorous bats, bird-eaters (I. io) differed significantly from insectivorous bats; I. io had a larger skull size, taller crania, wider zygomatic arches, shorter but robust mandibles, and larger bite force than the insectivores. The skull morphology of bats was significantly associated with bite force whether controlling for phylogeny or not, but no significant correlations were found between diets and the skulls, or between diets and residual bite force, after controlling for phylogeny. Conclusions These results indicated that skull morphology was independent of diet, and phylogeny had a greater impact on skull morphology than diet in these species. The changes in skull size and morphology have led to variation in bite force, and finally different bat species feeding on different foods. In conclusion, I. io has a larger skull size, robust mandibles, shortened dentitions, longer coronoid processes, expanded angular processes, low condyles, and taller cranial sagittal crests, and wider zygomatic arches that provide this species with mechanical advantages; their greater bite force may help them use larger and hard-bodied birds as a dietary component.
Collapse
Affiliation(s)
- Biye Shi
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| | - Yuze Wang
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| | - Lixin Gong
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| | - Yang Chang
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| | - Tong Liu
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| | - Xin Zhao
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| | - Aiqing Lin
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| | - Jiang Feng
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,3College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118 China
| | - Tinglei Jiang
- 1Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China.,2Key Laboratory of Vegetation Ecology of Education Ministry, Institute of Grassland Science, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117 China
| |
Collapse
|
38
|
Lailvaux SP, Cespedes AM, Weber WD, Husak JF. Sprint speed is unaffected by dietary manipulation in trained male Anolis carolinensis lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:164-170. [PMID: 31867872 DOI: 10.1002/jez.2338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 11/11/2022]
Abstract
Performance traits are energetically costly, and their expression and use can drive trade-offs with other energetically costly life-history traits. However, different performance traits incur distinct costs and may be sensitive to both resource limitation and to the types of resources that are accrued. Protein is likely to be especially important for supporting burst performance traits such as sprint speed, but the effect of varying diet composition on sprint training in lizards, an emerging model system for exercise training, is unknown. We tested the hypothesis that the response to sprint training is sensitive to both the type and amount of resources in Anolis carolinensis. We also measured bite force across all treatments as a control whole-organism performance trait that should be unaffected by locomotor training. Both mass and bite force are reduced by dietary restriction over the course of 9 weeks of sprint training, but sprint speed is unaffected by either training or dietary restriction relative to controls. Furthermore, protein supplementation does not rescue a decline in either mass or bite force in trained, diet-restricted males. These results contrast with those for endurance training, and suggest that sprint speed is more canalized than either endurance or bite force in green anoles.
Collapse
Affiliation(s)
- Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana
| | - Ann M Cespedes
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana
| | - William D Weber
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana.,Department of Biology, University of Maryland, College Park, Maryland
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, Saint Paul, Minnesota
| |
Collapse
|
39
|
Holand H, Kvalnes T, Røed KH, Holand Ø, Saether BE, Kumpula J. Stabilizing selection and adaptive evolution in a combination of two traits in an arctic ungulate. Evolution 2019; 74:103-115. [PMID: 31808544 DOI: 10.1111/evo.13894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/03/2019] [Indexed: 11/29/2022]
Abstract
Stabilizing selection is thought to be common in wild populations and act as one of the main evolutionary mechanisms, which constrain phenotypic variation. When multiple traits interact to create a combined phenotype, correlational selection may be an important process driving adaptive evolution. Here, we report on phenotypic selection and evolutionary changes in two natal traits in a semidomestic population of reindeer (Rangifer tarandus) in northern Finland. The population has been closely monitored since 1969, and detailed data have been collected on individuals since they were born. Over the length of the study period (1969-2015), we found directional and stabilizing selection toward a combination of earlier birth date and heavier birth mass with an intermediate optimum along the major axis of the selection surface. In addition, we demonstrate significant changes in mean traits toward earlier birth date and heavier birth mass, with corresponding genetic changes in breeding values during the study period. Our results demonstrate evolutionary changes in a combination of two traits, which agree closely with estimated patterns of phenotypic selection. Knowledge of the selective surface for combinations of genetically correlated traits are vital to predict how population mean phenotypes and fitness are affected when environments change.
Collapse
Affiliation(s)
- Håkon Holand
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Thomas Kvalnes
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, NO-0033, Oslo, Norway
| | - Øystein Holand
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432, Ås, Norway
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Jouko Kumpula
- Natural Resources Institute Finland (Luke), Terrestrial Population Dynamics, FIN-999870, Kaamanen, Inari, Finland
| |
Collapse
|
40
|
Gilbert AL, Brooks OL, Lattanzio MS. Multiple behavioral contexts of a melanized tail display in a desert lizard. Ethology 2019. [DOI: 10.1111/eth.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anthony L. Gilbert
- Department of Biological Sciences Ohio University Athens Ohio
- Ohio Center for Ecological and Evolutionary Studies Athens Ohio
| | - Olivia L. Brooks
- Department of Biology John Carroll University University Heights Ohio
| | - Matthew S. Lattanzio
- Department of Organismal and Environmental Biology Christopher Newport University Newport News Virginia
| |
Collapse
|
41
|
De Oliveira-Lagôa S, Cruz FB, Azócar DLM, Lavilla EO, Abdala V. Anuran forelimb muscle tendinous structures and their relationship with locomotor modes and habitat use. Curr Zool 2019; 65:599-608. [PMID: 31616491 PMCID: PMC6784496 DOI: 10.1093/cz/zoy086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/11/2018] [Indexed: 01/01/2023] Open
Abstract
The interaction between organisms and their environment is central in functional morphology. Differences in habitat usage may imply divergent morphology of locomotor systems; thus, detecting which morphological traits are conservative across lineages and which ones vary under environmental pressure is important in evolutionary studies. We studied internal and external morphology in 28 species of Neotropical anurans. Our aim was to determine if internal morphology (muscle and tendons) shows lower phylogenetic signal than external morphology. In addition, we wanted to know if morphology varies in relation to the habitat use and if there are different functional groups. We found differences in the degree of phylogenetic signal on the groups of traits. Interestingly, postaxial regions of the forelimb are evolutionarily more labile than the preaxial regions. Phylomorphospace plots show that arboreal (jumpers and graspers) and swimmer frogs cluster based on length of fingers and the lack of sesamoid, also reflected by the use of habitat. These functional clusters are also related to phylogeny. Sesamoid and flexor plate dimensions together with digit tendons showed to be important to discriminate functional groups as well as use of habitat classification. Our results allow us to identify a "grasping syndrome" in the hand of these frogs, where palmar sesamoid and flexor plate are absent and a third metacarpal with a bony knob are typical. Thus, a lighter skeleton, long fingers and a prensile hand may be key for arboreality.
Collapse
Affiliation(s)
- Silvia De Oliveira-Lagôa
- Facultad de Ciencias Exactas y Naturales - Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Félix B Cruz
- Instituto de Investigaciones en Biodiversidad y Medioambiente INIBIOMA (CONICET-UNCOMA) Quintral Bariloche, Rio Negro, Argentina
| | - Débora L Moreno Azócar
- Instituto de Investigaciones en Biodiversidad y Medioambiente INIBIOMA (CONICET-UNCOMA) Quintral Bariloche, Rio Negro, Argentina
| | - Esteban O Lavilla
- Instituto de Herpetología, UEL (Fundación Miguel Lillo - CONICET), Tucumán, Argentina
| | - Virginia Abdala
- Instituto de Biodiversidad Neotropical (UNT-CONICET) Horco Molle s/n Yerba Buena, Tucumán. Cátedra de Biología General, Facultad de Ciencias Naturales, UNT, Tucumán, Argentina
| |
Collapse
|
42
|
Gilbert AL, Miles DB. Antagonistic Responses of Exposure to Sublethal Temperatures: Adaptive Phenotypic Plasticity Coincides with a Reduction in Organismal Performance. Am Nat 2019; 194:344-355. [DOI: 10.1086/704208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Martin CH, McGirr JA, Richards EJ, St. John ME. How to Investigate the Origins of Novelty: Insights Gained from Genetic, Behavioral, and Fitness Perspectives. Integr Org Biol 2019; 1:obz018. [PMID: 33791533 PMCID: PMC7671130 DOI: 10.1093/iob/obz018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Biologists are drawn to the most extraordinary adaptations in the natural world, often referred to as evolutionary novelties, yet rarely do we understand the microevolutionary context underlying the origins of novel traits, behaviors, or ecological niches. Here we discuss insights gained into the origins of novelty from a research program spanning biological levels of organization from genotype to fitness in Caribbean pupfishes. We focus on a case study of the origins of novel trophic specialists on San Salvador Island, Bahamas and place this radiation in the context of other rapid radiations. We highlight questions that can be addressed about the origins of novelty at different biological levels, such as measuring the isolation of novel phenotypes on the fitness landscape, locating the spatial and temporal origins of adaptive variation contributing to novelty, detecting dysfunctional gene regulation due to adaptive divergence, and connecting behaviors with novel traits. Evolutionary novelties are rare, almost by definition, and we conclude that integrative case studies can provide insights into this rarity relative to the dynamics of adaptation to more common ecological niches and repeated parallel speciation, such as the relative isolation of novel phenotypes on fitness landscapes and the transient availability of ecological, genetic, and behavioral opportunities.
Collapse
Affiliation(s)
- C H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - J A McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - E J Richards
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| | - M E St. John
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
HervÍas-Parejo S, Heleno R, Rumeu B, Guzmán B, Vargas P, Olesen JM, Traveset A, Vera C, Benavides E, Nogales M. Small size does not restrain frugivory and seed dispersal across the evolutionary radiation of Galápagos lava lizards. Curr Zool 2019; 65:353-361. [PMID: 31413708 PMCID: PMC6688575 DOI: 10.1093/cz/zoy066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Frugivory in lizards is often assumed to be constrained by body size; only large individuals are considered capable of consuming fruits, with the potential of acting as seed dispersers. However, only one previous study has tested the correlation of frugivory with body and head size at an archipelago scale across closely related species. All nine lava lizards (Microlophus spp.) were studied on the eleven largest Galápagos islands from 2010 to 2016 to investigate whether frugivory is related to body and head size. We also tested whether fruit abundance influences fruit consumption and explored the effect of seed ingestion on seedling emergence time and percentage. Our results showed that across islands, lava lizards varied considerably in size (64-102 mm in mean snout-vent length) and level of frugivory (1-23%, i.e., percentage of droppings with seeds). However, level of frugivory was only weakly affected by size as fruit consumption was also common among small lizards. Lava lizards consumed fruits throughout the year and factors other than fruit abundance may be more important drivers of fruit selection (e.g., fruit size, energy content of pulp). From 2,530 droppings, 1,714 seeds of at least 61 plant species were identified, 76% of the species being native to the Galápagos. Most seeds (91%) showed no external structural damage. Seedling emergence time (44 versus 118 days) and percentage (20% versus 12%) were enhanced for lizard-ingested seeds compared to control (uningested) fruits. De-pulping by lizards (i.e., removal of pulp with potential germination inhibitors) might increase the chances that at least some seeds find suitable recruitment conditions. We concluded that lizards are important seed dispersers throughout the year and across the whole archipelago, regardless of body size.
Collapse
Affiliation(s)
- Sandra HervÍas-Parejo
- Institut Mediterrani d’Estudis Avançats (CSIC-UIB), Global Change Research Group, Mallorca, Balearic Islands, Spain
| | - Ruben Heleno
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Portugal
| | - Beatriz Rumeu
- Institut Mediterrani d’Estudis Avançats (CSIC-UIB), Global Change Research Group, Mallorca, Balearic Islands, Spain
| | | | | | - Jens M Olesen
- Department of Bioscience, Aarhus University, Denmark
| | - Anna Traveset
- Institut Mediterrani d’Estudis Avançats (CSIC-UIB), Global Change Research Group, Mallorca, Balearic Islands, Spain
| | - Carlos Vera
- Galápagos National Park, Puerto Ayora, Santa Cruz, Galápagos, Ecuador
| | - Edgar Benavides
- Department of Ecology and Evolutionary Biology, Yale University, USA
| | - Manuel Nogales
- Instituto de Productos Naturales y Agrobiología (CSIC-IPNA), Island Ecology and Evolution Research Group, Canary Islands, Spain
| |
Collapse
|
45
|
Simon MN, Brandt R, Kohlsdorf T, Arnold SJ. Bite performance surfaces of three ecologically divergent Iguanidae lizards: relationships with lower jaw bones. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Traits that interact to perform an ecologically relevant function are expected to be under multivariate non-linear selection. Using the lower jaw morphology as a biomechanical model, we test the hypothesis that lower jaw bones of lizards are subjected to stabilizing and correlational selection, associated with mechanical advantage and maximum bite force. We used three closely related tropidurine species that differ in size, head shape and microhabitat: Eurolophosaurus nanuzae, Tropidurus hispidus and Tropidurus semitaeniatus. We predicted a common pattern of correlational selection on bones that are part of in-levers or part of the out-lever of the lower jaw. The predicted pattern was found in E. nanuzae and T. hispidus, but this could not be shown to be statistically significant. For T. semitaeniatus, we found significant disruptive selection on a contrast involving the surangular, and also significant directional selection on linear combinations of traits in all species. The results indicate that the non-linear selection on lower jaw bones does not reflect an optimum to enhance mechanical advantage in all species. Divergent functional demands and specific ecological contexts of species seem relevant in shaping patterns of selection on morphology.
Collapse
Affiliation(s)
- Monique Nouailhetas Simon
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, Butantã, São Paulo, Brazil
- Department of Integrative Biology, Oregon State University, Corvallis, OR USA
| | - Renata Brandt
- Department of Biology, FFCLRP, University of São Paulo, Monte Alegre, Ribeirão Preto, Brazil
| | - Tiana Kohlsdorf
- Department of Biology, FFCLRP, University of São Paulo, Monte Alegre, Ribeirão Preto, Brazil
| | - Stevan J Arnold
- Department of Integrative Biology, Oregon State University, Corvallis, OR USA
| |
Collapse
|
46
|
Zamora-Camacho FJ, Aragón P. Hindlimb abnormality reduces locomotor performance in Pelobates cultripes metamorphs but is not predicted by larval morphometrics. HERPETOZOA 2019. [DOI: 10.3897/herpetozoa.32.e35654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Locomotor performance is a fundamental feature commonly related to many animals’ fitness. In most cases, locomotor performance is closely related to morphology of the structures responsible for it, which is therefore under strong selective pressure. Hence, limb abnormality could hinder locomotion and, for that reason, be eradicated by selection, which could explain its overall low prevalence that makes proper research difficult. Here, we took advantage of the moderately high prevalence of hindlimb abnormality in a sample of Iberian spadefoot (Pelobatescultripes) metamorphs developed from tadpoles captured and transferred to the laboratory before selection could act against metamorph abnormality. We tested the hypothesis that limb abnormality impairs locomotor performance. Moreover, we measured several larval and metamorph morphometrics, and checked for differences between normal and abnormal-limbed individuals. We also assessed correlations between hindlimb ratio (hindlimb length/SVL) and jumping performance in normal and abnormal-limbed metamorphs. Larval traits measured could not predict hindlimb abnormality. In metamorphs, only hindlimb ratio differed between normal and abnormal-limbed individuals, being shorter in the latter. Abnormal-limbed metamorphs jumped considerably shorter distances than normal-limbed conspecifics. Therefore, selection against reduced locomotor performance could eliminate limb abnormality from populations. Hindlimb ratio was included in the model as a covariable, and thus controlled for. Consequently, other factors besides shorter hindlimbs, probably hindlimb abnormality itself, could play a role in worse jumping capability of abnormal-limbed individuals. Hindlimb ratio was positively related to jumping distance in both groups, although the relationship was weaker in abnormal-limbed metamorphs.
Collapse
|
47
|
Gilbert AL, Miles DB. Spatiotemporal variation in thermal niches suggests lability rather than conservatism of thermal physiology along an environmental gradient. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Temperature variation throughout a species range can be extensive and exert divergent spatiotemporal patterns of selection. The estimation of phenotypic differences of populations along environmental gradients provides information regarding population-level responses to changing environments and evolutionary lability in climate-relevant traits. However, few studies have found physiological differentiation across environmental gradients attributable to behavioural thermoregulation buffering physiological evolution. Here, we compared thermal sensitivity of physiological performance among three populations of the ornate tree lizard (Urosaurus ornatus) along a 1100 m elevational gradient in southeastern Arizona across years in order to determine whether spatial differences in thermal environments are capable of driving local physiological differentiation. Lizards exhibited significant population-level differences in thermal physiology. The thermal traits of lizards at low elevations included warmer body temperatures and higher preferred and critical thermal temperatures. In contrast, lizards at higher elevations had cooler body temperatures and lower preferred and critical thermal temperatures. Populations also exhibited differences in the optimal temperature for performance and thermal performance breadth. The direction of population variation was consistent across years. Environmental gradients can provide model systems for studying the evolution of thermal physiology, and our study is one of the first to suggest that population differentiation in thermal physiology could be more prominent than previously thought.
Collapse
Affiliation(s)
- Anthony L Gilbert
- Department of Biological Sciences, Ohio University, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Athens, OH, USA
| | - Donald B Miles
- Department of Biological Sciences, Ohio University, Athens, OH, USA
- Ohio Center for Ecological and Evolutionary Studies, Athens, OH, USA
| |
Collapse
|
48
|
Winchell KM, Maayan I, Fredette JR, Revell LJ. Linking locomotor performance to morphological shifts in urban lizards. Proc Biol Sci 2019; 285:rspb.2018.0229. [PMID: 29875296 DOI: 10.1098/rspb.2018.0229] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/11/2018] [Indexed: 11/12/2022] Open
Abstract
Urban habitats are drastically modified from their natural state, creating unique challenges and selection pressures for organisms that reside in them. We compared locomotor performance of Anolis lizards from urban and forest habitats on tracks differing in angle and substrate, and found that using artificial substrates came at a cost: lizards ran substantially slower and frequently lost traction on man-made surfaces compared to bark. We found that various morphological traits were positively correlated with sprint speed and that these same traits were significantly larger in urban compared to forest lizards. We found that urban lizards ran faster on both man-made and natural surfaces, suggesting similar mechanisms improve locomotor performance on both classes of substrate. Thus, lizards in urban areas may be under selection to run faster on all flat surfaces, while forest lizards face competing demands of running, jumping and clinging to narrow perches. Novel locomotor challenges posed by urban habitats likely have fitness consequences for lizards that cannot effectively use man-made surfaces, providing a mechanistic basis for observed phenotypic shifts in urban populations of this species.
Collapse
Affiliation(s)
- Kristin M Winchell
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Inbar Maayan
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Jason R Fredette
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.,Programa de Biología, Universidad del Rosario, Cra. 26 No. 63B-48, Bogotá, D.C., Colombia
| |
Collapse
|
49
|
Thawley CJ, Goldy-Brown M, McCormick GL, Graham SP, Langkilde T. Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. GLOBAL CHANGE BIOLOGY 2019; 25:620-628. [PMID: 30488524 DOI: 10.1111/gcb.14510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/02/2018] [Indexed: 06/09/2023]
Abstract
Understanding the processes driving formation and maintenance of latitudinal clines has become increasingly important in light of accelerating global change. Many studies have focused on the role of abiotic factors, especially temperature, in generating clines, but biotic factors, including the introduction of non-native species, may also drive clinal variation. We assessed the impact of invasion by predatory fire ants on latitudinal clines in multiple fitness-relevant traits-morphology, physiological stress responsiveness, and antipredator behavior-in a native fence lizard. In areas invaded by fire ants, a latitudinal cline in morphology is opposite both the cline found in museum specimens from historical populations across the species' full latitudinal range and that found in current populations uninvaded by fire ants. Similarly, clines in stress-relevant hormone response to a stressor and in antipredator behavior differ significantly between the portions of the fence lizard range invaded and uninvaded by fire ants. Changes in these traits within fire ant-invaded areas are adaptive and together support increased and more effective antipredator behavior that allows escape from attacks by this invasive predator. However, these changes may mismatch lizards to the environments under which they historically evolved. This research shows that novel biotic pressures can alter latitudinal clines in multiple traits within a single species on ecological timescales. As global change intensifies, a greater understanding of novel abiotic and biotic pressures and how affected organisms adapt to them across space and time will be central to predicting and managing our changing environment.
Collapse
Affiliation(s)
- Christopher J Thawley
- Department of Biological Sciences, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Mark Goldy-Brown
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
| | - Gail L McCormick
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| | - Sean P Graham
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, Texas
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania
- Intercollege Graduate Degree Program in Ecology, The Center for Brain, Behavior and Cognition, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
50
|
Winchell KM, Briggs D, Revell LJ. The perils of city life: patterns of injury and fluctuating asymmetry in urban lizards. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/bly205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kristin M Winchell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Derek Briggs
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
- Departamento de Ecología, Facultad de Ciencias, Universidad Cátolica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|