1
|
Abstract
Our bodies are colonized by a complex ecosystem of bacteria, unicellular eukaryotes and their viruses that together play a major role in our health. Over the past few years tools derived from the prokaryotic immune system known as CRISPR-Cas have empowered researchers to modify and study organisms with unprecedented ease and efficiency. Here we discuss how various types of CRISPR-Cas systems can be used to modify the genome of gut microorganisms and bacteriophages. CRISPR-Cas systems can also be delivered to bacterial population and programmed to specifically eliminate members of the microbiome. Finally, engineered CRISPR-Cas systems can be used to control gene expression and modulate the production of metabolites and proteins. Together these tools provide exciting opportunities to investigate the complex interplay between members of the microbiome and our bodies, and present new avenues for the development of drugs that target the microbiome. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.
Collapse
Affiliation(s)
| | - David Bikard
- Synthetic Biology Group, Department of Microbiology, Institut Pasteur, Paris 75015, France
| |
Collapse
|
2
|
Mei Y, Zhao L, Liu Y, Gong H, Song Y, Lei L, Zhu Y, Jin Z, Ma S, Hu B, Sun Q, Liu H. Combining DNA Vaccine and AIDA-1 in Attenuated Salmonella Activates Tumor-Specific CD4 + and CD8 + T-cell Responses. Cancer Immunol Res 2017; 5:503-514. [PMID: 28468915 DOI: 10.1158/2326-6066.cir-16-0240-t] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 11/16/2022]
Abstract
Stimulation of tumor-specific responses in both CD4+ and CD8+ T cells has been a challenge for effective tumor vaccines. We designed a vaccine vector containing the AIDA-1 autotransporter and DNA vaccine elements, generating a murine melanoma vaccine that was delivered by the attenuated Salmonella strain SL7207. Growth of murine subcutaneous melanoma was significantly inhibited by intranasal immunization with the Salmonella tumor vaccine. The vaccine activated tumor-specific CD4+ and CD8+ T-cell responses, with increased T-cell proliferation, tumor antigen-specific Th1 cytokine production, increased percentages of tetramer positive cells, and cytotoxicity. CD4+ or CD8+ T-cell depletion resulted in the loss of antitumor activity of the Salmonella tumor vaccine, suggesting that the efficacy of the vaccine was dependent on both CD4+ and CD8+ T cells. Lung metastasis of the tumor was also inhibited by vaccine treatment. Similarly, the percentages of tumor-specific Th1 cytokine production by CD4+ and CD8+ T cells in the spleen, tumor, and bronchoalveolar lavage were increased after vaccine treatment. Tumor-specific proliferation of CD4+ and CD8+ T cells was also promoted by the vaccine. Tetramer staining and cytotoxicity assay showed enhanced tumor-specific CD8+ T-cell response after vaccine treatment. Therefore, the Salmonella tumor vaccine could activate both tumor-specific CD4+ and CD8+ T-cell responses. This vaccine strategy may be widely applicable to the development of oral or nasal vaccines against tumors. Cancer Immunol Res; 5(6); 503-14. ©2017 AACR.
Collapse
Affiliation(s)
- Yu Mei
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China.,Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou, P.R. China
| | - Yonghao Liu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Huanle Gong
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Yuan Song
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Lei Lei
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Ying Zhu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Ziqi Jin
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Shoubao Ma
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Bo Hu
- Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Qing Sun
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, P.R. China
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute and Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G. Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biotechnol 2016; 100:8693-9. [PMID: 27640192 DOI: 10.1007/s00253-016-7829-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022]
Abstract
Escherichia coli strain Nissle 1917 (EcN) has been used as a probiotic. Genetic engineering has enhanced the utility of EcN in several vaccine and pharmaceutical preparations. We discuss in this mini review the genetics and physical properties of EcN. We also discuss the numerous genetic engineering strategies employed for EcN-based vaccine development, including recombinant plasmid transfer, genetic engineering of cryptic plasmids or the EcN chromosome, EcN bacterial ghosts and its outer membrane vesicles. We also provide a current update on the progress and the challenges regarding the use of EcN in vaccine development.
Collapse
Affiliation(s)
- Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ying Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wai Liang Tham
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T1Z4, Canada
| | - Lin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Jitao Guo
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Abstract
In order to relate the structural architecture of the BAM complex to its function in outer membrane protein assembly, the arrangement of each component within the complex is vital. This chapter explores the structure and topology of BamC, using a range of biochemical techniques to probe the topology and surface exposure.
Collapse
Affiliation(s)
- Chaille T Webb
- Department of Microbiology, Monash University, Building 77, 23 Innovation Walk, Clayton Campus, Melbourne, VIC, 3800, Australia.
| | - Trevor Lithgow
- Department of Microbiology, Monash University, Building 77, 23 Innovation Walk, Clayton Campus, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
5
|
Drobnak I, Braselmann E, Chaney JL, Leyton DL, Bernstein HD, Lithgow T, Luirink J, Nataro JP, Clark PL. Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion. Mol Microbiol 2014; 95:1-16. [PMID: 25345653 DOI: 10.1111/mmi.12838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 01/02/2023]
Abstract
Autotransporter (AT) proteins provide a diverse array of important virulence functions to Gram-negative bacterial pathogens, and have also been adapted for protein surface display applications. The 'autotransporter' moniker refers to early models that depicted these proteins facilitating their own translocation across the bacterial outer membrane. Although translocation is less autonomous than originally proposed, AT protein segments upstream of the C-terminal transmembrane β-barrel have nevertheless consistently been found to contribute to efficient translocation and/or folding of the N-terminal virulence region (the 'passenger'). However, defining the precise secretion functions of these AT regions has been complicated by the use of multiple overlapping and ambiguous terms to define AT sequence, structural, and functional features, including 'autochaperone', 'linker' and 'junction'. Moreover, the precise definitions and boundaries of these features vary among ATs and even among research groups, leading to an overall murky picture of the contributions of specific features to translocation. Here we propose a unified, unambiguous nomenclature for AT structural, functional and conserved sequence features, based on explicit criteria. Applied to 16 well-studied AT proteins, this nomenclature reveals new commonalities for translocation but also highlights that the autochaperone function is less closely associated with a conserved sequence element than previously believed.
Collapse
Affiliation(s)
- Igor Drobnak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Nicolay T, Vanderleyden J, Spaepen S. Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol 2013; 41:109-23. [PMID: 23855358 DOI: 10.3109/1040841x.2013.804032] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.
Collapse
Affiliation(s)
- Toon Nicolay
- Centre of Microbial and Plant Genetics , Leuven , Belgium
| | | | | |
Collapse
|
7
|
Jarmander J, Gustavsson M, Do TH, Samuelson P, Larsson G. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli. Microb Cell Fact 2012; 11:118. [PMID: 22943700 PMCID: PMC3511212 DOI: 10.1186/1475-2859-11-118] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/18/2012] [Indexed: 11/17/2022] Open
Abstract
Background The discovery of the autotransporter family has provided a mechanism for surface expression of proteins in laboratory strains of Escherichia coli. We have previously reported the use of the AIDA-I autotransport system to express the Salmonella enterica serovar Enteritidis proteins SefA and H:gm. The SefA protein was successfully exposed to the medium, but the orientation of H:gm in the outer membrane could not be determined due to proteolytic cleavage of the N-terminal detection-tag. The goal of the present work was therefore to construct a vector containing elements that facilitates analysis of surface expression, especially for proteins that are sensitive to proteolysis or otherwise difficult to express. Results The surface expression system pAIDA1 was created with two detection tags flanking the passenger protein. Successful expression of SefA and H:gm on the surface of E. coli was confirmed with fluorescently labeled antibodies specific for the N-terminal His6-tag and the C-terminal Myc-tag. While both tags were detected during SefA expression, only the Myc-tag could be detected for H:gm. The negative signal indicates a proteolytic cleavage of this protein that removes the His6-tag facing the medium. Conclusions Expression levels from pAIDA1 were comparable to or higher than those achieved with the formerly used vector. The presence of the Myc- but not of the His6-tag on the cell surface during H:gm expression allowed us to confirm the hypothesis that this fusion protein was present on the surface and oriented towards the cell exterior. Western blot analysis revealed degradation products of the same molecular weight for SefA and H:gm. The size of these fragments suggests that both fusion proteins have been cleaved at a specific site close to the C-terminal end of the passenger. This proteolysis was concluded to take place either in the outer membrane or in the periplasm. Since H:gm was cleaved to a much greater extent then the three times smaller SefA, it is proposed that the longer translocation time for the larger H:gm makes it more susceptible to proteolysis.
Collapse
Affiliation(s)
- Johan Jarmander
- School of Biotechnology, Division of Bioprocess Technology, Royal Institute of Technology, KTH, Stockholm, SE, 106 91, Sweden
| | | | | | | | | |
Collapse
|
8
|
Dynamic association of BAM complex modules includes surface exposure of the lipoprotein BamC. J Mol Biol 2012; 422:545-55. [PMID: 22683355 DOI: 10.1016/j.jmb.2012.05.035] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 05/09/2012] [Accepted: 05/30/2012] [Indexed: 11/21/2022]
Abstract
The β-barrel assembly machinery (BAM) complex drives the assembly of β-barrel proteins into the outer membrane of gram-negative bacteria. It is composed of five subunits: BamA, BamB, BamC, BamD, and BamE. We find that the BAM complex isolated from the outer membrane of Escherichia coli consists of a core complex of BamA:B:C:D:E and, in addition, a BamA:B module and a BamC:D module. In the absence of BamC, these modules are destabilized, resulting in increased protease susceptibility of BamD and BamB. While the N-terminus of BamC carries a highly conserved region crucial for stable interaction with BamD, immunofluorescence, immunoprecipitation, and protease-sensitivity assays show that the C-terminal domain of BamC, composed of two helix-grip motifs, is exposed on the surface of E. coli. This unexpected topology of a bacterial lipoprotein is reminiscent of the analogous protein subunits from the mitochondrial β-barrel insertion machinery, the SAM complex. The modular arrangement and topological features provide new insight into the architecture of the BAM complex, towards a better understanding of the mechanism driving β-barrel membrane protein assembly.
Collapse
|
9
|
Structures and functions of autotransporter proteins in microbial pathogens. Int J Med Microbiol 2011; 301:461-8. [DOI: 10.1016/j.ijmm.2011.03.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 12/23/2022] Open
|
10
|
Nhan NT, Gonzalez de Valdivia E, Gustavsson M, Hai TN, Larsson G. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Fact 2011; 10:22. [PMID: 21481238 PMCID: PMC3094208 DOI: 10.1186/1475-2859-10-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella enterica serotype Enteritidis (SE) is considered to be one of the most potent pathogenic Salmonella serotypes causing food-borne disease in humans. Since a live bacterial vaccine based on surface display of antigens has many advantages over traditional vaccines, we have studied the surface display of the SE antigenic proteins, H:gm and SefA in Escherichia coli by the β-autotransporter system, AIDA. This procedure was compared to protein translocation in Staphylococcus carnosus, using a staphylococci hybrid vector earlier developed for surface display of other vaccine epitopes. RESULTS Both SefA and H:gm were translocated to the outer membrane in Escherichia coli. SefA was expressed to full length but H:gm was shorter than expected, probably due to a proteolytic cleavage of the N-terminal during passage either through the periplasm or over the membrane. FACS analysis confirmed that SefA was facing the extracellular environment, but this could not be conclusively established for H:gm since the N-terminal detection tag (His6) was cleaved off. Polyclonal salmonella antibodies confirmed the sustained antibody-antigen binding towards both proteins. The surface expression data from Staphylococcus carnosus suggested that the H:gm and SefA proteins were transported to the cell wall since the detection marker was displayed by FACS analysis. CONCLUSION Apart from the accumulated knowledge and the existence of a wealth of equipment and techniques, the results indicate the selection of E. coli for further studies for surface expression of salmonella antigens. Surface expression of the full length protein facing the cell environment was positively proven by standard analysis, and the FACS signal comparison to expression in Staphylococcus carnosus shows that the distribution of the surface protein on each cell was comparatively very narrow in E. coli, the E. coli outer membrane molecules can serve as an adjuvant for the surface antigenic proteins and multimeric forms of the SefA protein were detected which would probably be positive for the realisation of a strong antigenic property. The detection of specific and similar proteolytic cleavage patterns for both the proteins provides a further starting point for the investigation and development of the Escherichia coli AIDA autotransporter efficiency.
Collapse
Affiliation(s)
- Nguyen Thanh Nhan
- Vietnam Institute of Biotechnology (IBT), Vietnamese Academy of Science and Technology (VAST), Hanoi, Vietnam
| | | | | | | | | |
Collapse
|
11
|
Benz I, van Alen T, Bolte J, Wörmann ME, Schmidt MA. Modulation of transcription and characterization of the promoter organization of the autotransporter adhesin heptosyltransferase and the autotransporter adhesin AIDA-I. Microbiology (Reading) 2010; 156:1155-1166. [DOI: 10.1099/mic.0.032292-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Gram-negative bacteria, autotransporter proteins constitute the largest family of secreted proteins, and exhibit many different functions. In recent years, research has largely focused on mechanisms of autotransporter protein translocation, where several alternative models are still being discussed. In contrast, the biogenesis of only a few autotransporters has been studied and, likewise, regulation of expression has received only very limited attention. The glycosylated autotransporter adhesin involved in diffuse adherence (AIDA)-I system consists of the aah gene, encoding a specific autotransporter adhesin heptosyltransferase (AAH), and the aidA gene, encoding the autotransporter protein (AIDA-I). In this study, we investigated the promoter organization and transcription of these two genes using reporter plasmids carrying lacZ transcriptional fusions. The two genes, aah and aidA, are transcribed as a bicistronic message. However, aidA is additionally transcribed from its own promoter. There are two distinct start sites for each of the two genes. Interestingly, transcription of both genes is enhanced in hns and rfaH mutant backgrounds. Furthermore, we addressed the influence of environmental factors and different genetic backgrounds of Escherichia coli K-12 strains on transcription activity. We found that transcription varied considerably in different E. coli K-12 laboratory strains and under different growth conditions.
Collapse
Affiliation(s)
- Inga Benz
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Tessa van Alen
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Julia Bolte
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Mirka E. Wörmann
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - M. Alexander Schmidt
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
12
|
Exploring the Versatility of the Autotransporter BrkA for the Presentation of Enterovirus 71 Vaccine Candidates at the Surface of Attenuated Bordetella pertussis. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.provac.2010.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Identification, characterization, and molecular application of a virulence-associated autotransporter from a pathogenic Pseudomonas fluorescens strain. Appl Environ Microbiol 2009; 75:4333-40. [PMID: 19447960 DOI: 10.1128/aem.00159-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50 degrees C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.
Collapse
|
14
|
Van Gerven N, Sleutel M, Deboeck F, De Greve H, Hernalsteens JP. Surface display of the receptor-binding domain of the F17a-G fimbrial adhesin through the autotransporter AIDA-I leads to permeability of bacterial cells. MICROBIOLOGY-SGM 2009; 155:468-476. [PMID: 19202095 DOI: 10.1099/mic.0.022327-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surface exposure of antigens on bacterial cells can be critical for eliciting an effective antibody response. Therefore, we investigated the cellular localization of the fimbrial F17a-G receptor-binding domain, fused to the translocator domain of the AIDA-I autotransporter. Synthesis of the fusion protein, under the control of the L-arabinose-inducible PBAD promoter, was shown to permeabilize Escherichia coli K-12 and Salmonella enterica serovar Typhimurium cells. The presence of permeable cells interfered with several methods that are typically used to determine surface exposure of proteins, such as protease treatment and whole-cell ELISA. Double immunofluorescence microscopy, using a second antibody directed against beta-galactosidase, a bacterial protein expressed in the cytoplasm, allowed the simultaneous detection of antigen expression and permeability in individual cells.
Collapse
Affiliation(s)
- Nani Van Gerven
- Onderzoeksgroep Genetische Virologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Francine Deboeck
- Onderzoeksgroep Genetische Virologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Henri De Greve
- Structural Biology Brussels, Department of Molecular and Cellular Interactions, VIB, B-1050 Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jean-Pierre Hernalsteens
- Onderzoeksgroep Genetische Virologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
15
|
The autodisplay story, from discovery to biotechnical and biomedical applications. Microbiol Mol Biol Rev 2008; 71:600-19. [PMID: 18063719 DOI: 10.1128/mmbr.00011-07] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the pathways used by gram-negative bacteria for protein secretion, the autotransporter pathway represents a solution of impressive simplicity. Proteins are transported, independent of their nature as recombinant or native passengers, as long as the coding nucleotide sequence is inserted in frame between those of an N-terminal signal peptide and a C-terminal domain, referred to as the beta-barrel of the outer membrane translocation unit. The immunoglobulin A1 (IgA1) protease from Neisseria gonorrhoeae was the first identified member of the autotransporter family of secreted proteins. The IgA1 protease was employed in initial experiments investigating autotransporter-mediated surface display of recombinant proteins and to investigate structural and functional requirements. Various other autotransporter proteins have since been described, and the autodisplay system was developed on the basis of the natural Escherichia coli autotransporter protein AIDA-I (adhesin involved in diffuse adherence). Autodisplay has been used for the surface display of random peptide libraries to successfully screen for novel enzyme inhibitors. The autodisplay system was also used for the surface display of functional enzymes, including esterases, oxidoreductases, and electron transfer proteins. Whole E. coli cells displaying enzymes have been utilized to efficiently synthesize industrially important rare organic compounds with specific chirality. Autodisplay of epitopes on the surface of attenuated Salmonella carriers has also provided a novel way to induce immune protection after oral vaccination. This review summarizes the structural and functional features of the autodisplay system, illustrating its discovery and most recent applications. Autodisplay facilitates the export of more than 100,000 recombinant molecules per single cell and permits the oligomerization of subunits on the cell surface as well as the incorporation of inorganic prosthetic groups after transport of apoproteins onto the bacterial surface without disturbing bacterial integrity or viability. We discuss future biotechnical and biomedical applications in the light of these achievements.
Collapse
|
16
|
Are bacterial 'autotransporters' really transporters? Trends Microbiol 2008; 15:441-7. [PMID: 17935998 DOI: 10.1016/j.tim.2007.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/31/2007] [Accepted: 09/26/2007] [Indexed: 12/29/2022]
Abstract
Autotransporters are bacterial outer membrane proteins that consist of a large N-terminal extracellular domain ('passenger domain') and a C-terminal beta-barrel domain ('beta domain'). The beta domain was originally proposed to function as a channel that transports its own passenger domain across the outer membrane. Results of recent structural, biochemical and molecular genetic studies, however, have challenged this idea. Here I describe an alternative model in which translocation of the passenger domain is mediated by an exogenous factor (possibly a newly identified factor necessary for assembly of outer membrane proteins called 'Omp85/YaeT'), whereas the beta domain only targets the protein to the outer membrane and serves as a membrane anchor.
Collapse
|
17
|
Buddenborg C, Daudel D, Liebrecht S, Greune L, Humberg V, Schmidt MA. Development of a tripartite vector system for live oral immunization using a Gram-negative probiotic carrier. Int J Med Microbiol 2008; 298:105-14. [DOI: 10.1016/j.ijmm.2007.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Jong WSP, ten Hagen-Jongman CM, den Blaauwen T, Slotboom DJ, Tame JRH, Wickström D, de Gier JW, Otto BR, Luirink J. Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol Microbiol 2007; 63:1524-36. [PMID: 17302825 DOI: 10.1111/j.1365-2958.2007.05605.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many virulence factors secreted by pathogenic Gram-negative bacteria belong to the autotransporter (AT) family. ATs consist of a passenger domain, which is the actual secreted moiety, and a beta-domain that facilitates the transfer of the passenger domain across the outer membrane. Here, we analysed folding and translocation of the AT passenger, using Escherichia coli haemoglobin protease (Hbp) as a model protein. Dual cysteine mutagenesis, instigated by the unique crystal structure of the Hbp passenger, resulted in intramolecular disulphide bond formation dependent on the periplasmic enzyme DsbA. A small loop tied off by a disulphide bond did not interfere with secretion of Hbp. In contrast, a bond between different domains of the Hbp passenger completely blocked secretion resulting in degradation by the periplasmic protease DegP. In the absence of DegP, a translocation intermediate accumulated in the outer membrane. A similar jammed intermediate was formed upon insertion of a calmodulin folding moiety into Hbp. The data suggest that Hbp can fold in the periplasm but must retain a certain degree of flexibility and/or modest width to allow translocation across the outer membrane.
Collapse
Affiliation(s)
- Wouter S P Jong
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, 1081 HV Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rutherford N, Charbonneau ME, Berthiaume F, Betton JM, Mourez M. The periplasmic folding of a cysteineless autotransporter passenger domain interferes with its outer membrane translocation. J Bacteriol 2006; 188:4111-6. [PMID: 16707702 PMCID: PMC1482886 DOI: 10.1128/jb.01949-05] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autotransporters are single polypeptides consisting of an outer membrane translocation domain mediating the translocation of a passenger domain. The periplasmic folding state of the passenger domain is controversial. By comparisons of passenger domains differing in their folding properties, our results suggest that periplasmic folding of passenger domains interferes with translocation.
Collapse
Affiliation(s)
- Nancy Rutherford
- Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St.-Hyacinthe, J2S 7C6 Quebec, Canada
| | | | | | | | | |
Collapse
|
20
|
Rutherford N, Mourez M. Surface display of proteins by gram-negative bacterial autotransporters. Microb Cell Fact 2006; 5:22. [PMID: 16787545 PMCID: PMC1533851 DOI: 10.1186/1475-2859-5-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/20/2006] [Indexed: 11/10/2022] Open
Abstract
Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.
Collapse
Affiliation(s)
- Nancy Rutherford
- Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, J2S 7C6, Québec, Canada
| | - Michael Mourez
- Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, J2S 7C6, Québec, Canada
| |
Collapse
|
21
|
Zhu C, Ruiz-Perez F, Yang Z, Mao Y, Hackethal VL, Greco KM, Choy W, Davis K, Butterton JR, Boedeker EC. Delivery of heterologous protein antigens via hemolysin or autotransporter systems by an attenuated ler mutant of rabbit enteropathogenic Escherichia coli. Vaccine 2006; 24:3821-31. [PMID: 16098637 DOI: 10.1016/j.vaccine.2005.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this report, we describe the use of an attenuated regulatory mutant of a rabbit enteropathogenic Escherichia coli (rEPEC) as a live vaccine vector to deliver heterologous protein antigens using two dedicated transport systems, a Salmonella autotransporter and the E. coli hemolysin apparatus. We previously reported that an isogeneic ler (LEE encoded regulator) mutant of rEPEC O103:H2 is attenuated and immunogenic in rabbits. We first evaluated the Salmonella autotransporter MisL containing the immunodominant B-cell epitope of the circumsporozoite protein from Plasmodium falciparum, (NANP)8, fused to the C-terminal translocator domain under the control of the constitutive Tac17 promoter. The rEPEC ler mutant was able to express and to translocate the (NANP)8 passenger peptide to the bacterial surface. We next investigated the delivery of Shiga toxin B subunit (Stx1B) from human enterohemorrhagic E. coli by the rEPEC ler mutant via the MisL autotransporter or the E. coli hemolysin secretion apparatus. The autotransporter and hemolysin plasmids expressed similar levels of Stx1B (30-40 ng/ml/OD600). Only 6% of Stx1B was found in the autotransporter supernatants; the rest was cell-associated, with a small fraction of the Stx1B surface-exposed as determined by immunofluorescence. In contrast, 88% of Stx1B was secreted into culture supernatants by the hemolysin secretion system. In an in vivo study, no significant protection was observed in rabbits inoculated with the ler mutant harboring the Stx1B-autotransporter plasmid following experimental challenge with RDEC-H19A, the prototype rEPEC containing an Stx-converting phage. In contrast, rabbits inoculated with the rEPEC ler mutant containing the Stx1B-hemolysin fusion were partially protected from RDEC-H19A infection as demonstrated by decreased weight loss (p<0.008) when compared to rabbits inoculated with the parent ler mutant. Our results suggest that attenuated rEPEC are capable of serving as vaccine vectors to express heterologous protein antigens from different cellular locations and deliver these antigens to the intestinal mucosa. With this system, secreted proteins may be more effective than cell-associated antigens in generating protection.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Cell Membrane/chemistry
- Electrophoresis, Polyacrylamide Gel
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/immunology
- Escherichia coli Infections/pathology
- Escherichia coli Infections/prevention & control
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Proteins/metabolism
- Escherichia coli Vaccines/administration & dosage
- Escherichia coli Vaccines/genetics
- Escherichia coli Vaccines/immunology
- Feces/microbiology
- Genetic Vectors
- Hemolysin Proteins
- Immunity, Mucosal
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/immunology
- Plasmids
- Plasmodium falciparum/immunology
- Protein Transport
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Rabbits
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Shiga Toxin 1/genetics
- Shiga Toxin 1/immunology
- Shiga Toxin 1/metabolism
- Trans-Activators/genetics
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Chengru Zhu
- Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jose J. Autodisplay: efficient bacterial surface display of recombinant proteins. Appl Microbiol Biotechnol 2006; 69:607-14. [PMID: 16369779 DOI: 10.1007/s00253-005-0227-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/21/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
To display a protein or peptide with a distinct function at the surface of a living bacterial cell is a challenging exercise with constantly increasing impact in many areas of biochemistry and biotechnology. Among other systems in Gram-negative bacteria, the Autodisplay system provides striking advantages when used to express a recombinant protein at the surface of Escherichia coli or related bacteria. The Autodisplay system has been developed on the basis of and by exploiting the natural secretion mechanism of the AIDA-I autotransporter protein. It offers the expression of more than 10(5) recombinant molecules per single cell, permits the multimerization of subunits expressed from monomeric genes at the cell surface, and allows, after transport of an apoprotein to the cell surface, the incorporation of an inorganic prosthetic group without disturbing cell integrity or cell viability. Moreover, whole cells displaying recombinant proteins by Autodisplay can be subjected to high-throughput screening (HTS) methods such as ELISA or FACS, thus enabling the screening of surface display libraries and providing access to directed evolution of the recombinant protein displayed at the cell surface. In this review, the application of the Autodisplay system for the surface display of enzymes, enzyme inhibitors, epitopes, antigens, protein and peptide libraries is summarised and the perspectives of the system are discussed.
Collapse
Affiliation(s)
- Joachim Jose
- Bioanalytik, Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
23
|
Müller D, Benz I, Tapadar D, Buddenborg C, Greune L, Schmidt MA. Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface. Infect Immun 2005; 73:3851-9. [PMID: 15972470 PMCID: PMC1168569 DOI: 10.1128/iai.73.7.3851-3859.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters of gram-negative bacteria are single-peptide secretion systems that consist of a functional N-terminal alpha-domain ("passenger") fused to a C-terminal beta-domain ("translocator"). How passenger proteins are translocated through the outer membrane has not been resolved, and at present essentially three different models are discussed. In the widely accepted "hairpin model" the passenger proteins are translocated through a channel formed by the beta-barrel of the translocator that is integrated in the outer membrane. This model has been challenged by a recent proposal for a general autotransporter model suggesting that there is a hexameric translocation pore that is generated by the oligomerization of six beta-domains. A third model suggests that conserved Omp85 participates in autotransporter integration and passenger protein translocation. To examine these models, in this study we investigated the presence of putative oligomeric structures of the translocator of the autotransporter adhesin involved in diffuse adherence (AIDA) in vivo by cross-linking techniques. Furthermore, the capacity of isolated AIDA fusion proteins to form oligomers was studied in vitro by several complementary analytical techniques, such as analytical gel filtration, electron microscopy, immunogold labeling, and cross-linking of recombinant autotransporter proteins in which different passenger proteins were fused to the AIDA translocator. Our results show that the AIDA translocator is mostly present as a monomer. Only a fraction of the AIDA autotransporter was found to form dimers on the bacterial surface and in solution. Higher-order structures, such as hexamers, were not detected either in vivo or in vitro and can therefore be excluded as functional moieties for the AIDA autotransporter.
Collapse
Affiliation(s)
- Daniel Müller
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Westendorf AM, Gunzer F, Deppenmeier S, Tapadar D, Hunger JK, Schmidt MA, Buer J, Bruder D. Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. ACTA ACUST UNITED AC 2005; 43:373-84. [PMID: 15708311 DOI: 10.1016/j.femsim.2004.10.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 05/25/2004] [Accepted: 10/06/2004] [Indexed: 12/20/2022]
Abstract
The development of novel approaches that allow accurate targeting of therapeutics to the intestinal mucosa is a major task in the research on intestinal inflammation. For the first time, a live genetically modified bacterial strain has been approved by Dutch authorities as a therapeutic agent for experimental therapy of intestinal bowel disease (IBD) in humans. Genetically modified probiotics can very well be used as carriers for localized antigen delivery into the intestine. Therapeutic safety, however, of such a carrier organism, is crucial, especially when a specific probiotic strain has to be used under diseased conditions. In this study, we tested the potential of Escherichia coli NISSLE 1917 to serve as a safe carrier for targeted delivery of recombinant proteins to the intestinal mucosa. In a well-defined and very sensitive immunological system, we demonstrate that intestinal recombinant E. coli NISSLE 1917 has no effect on migration, clonal expansion and activation status of specific CD4+ T cells, neither in healthy mice nor in animals with acute colitis. Furthermore, recombinant E. coli NISSLE 1917 has no effect on the induction or breakdown of peripheral T-cell tolerance in an autoimmune environment. The excellent colonization properties of E. coli NISSLE 1917 render this strain an ideal candidate as carrier organism for gut-focused in situ synthesis of therapeutic molecules.
Collapse
Affiliation(s)
- Astrid M Westendorf
- Arbeitsgruppe Mukosale Immunität, Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Protein secretion through autotransporter and two-partner pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:235-57. [PMID: 15546669 DOI: 10.1016/j.bbamcr.2004.03.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/18/2004] [Accepted: 03/26/2004] [Indexed: 01/19/2023]
Abstract
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.
Collapse
|
26
|
Yang TH, Pan JG, Seo YS, Rhee JS. Use of Pseudomonas putida EstA as an anchoring motif for display of a periplasmic enzyme on the surface of Escherichia coli. Appl Environ Microbiol 2005; 70:6968-76. [PMID: 15574889 PMCID: PMC535197 DOI: 10.1128/aem.70.12.6968-6976.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The functional expression of proteins on the surface of bacteria has proven important for numerous biotechnological applications. In this report, we investigated the N-terminal fusion display of the periplasmic enzyme beta-lactamase (Bla) on the surface of Escherichia coli by using the translocator domain of the Pseudomonas putida outer membrane esterase (EstA), which is a member of the lipolytic autotransporter enzymes. To find out the transport function of a C-terminal domain of EstA, we generated a set of Bla-EstA fusion proteins containing N-terminally truncated derivatives of the EstA C-terminal domain. The surface exposure of the Bla moiety was verified by whole-cell immunoblots, protease accessibility, and fluorescence-activated cell sorting. The investigation of growth kinetics and host cell viability showed that the presence of the EstA translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed Bla moiety was shown to be enzymatically active. These results demonstrate for the first time that the translocator domain of a lipolytic autotransporter enzyme is an effective anchoring motif for the functional display of heterologous passenger protein on the surface of E. coli. This investigation also provides a possible topological model of the EstA translocator domain, which might serve as a basis for the construction of fusion proteins containing heterologous passenger domains.
Collapse
Affiliation(s)
- Taek Ho Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Torres AG, Zhou X, Kaper JB. Adherence of diarrheagenic Escherichia coli strains to epithelial cells. Infect Immun 2005; 73:18-29. [PMID: 15618137 PMCID: PMC538947 DOI: 10.1128/iai.73.1.18-29.2005] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
28
|
Sijbrandi R, Den Blaauwen T, Tame JRH, Oudega B, Luirink J, Otto BR. Characterization of an iron-regulated alpha-enolase of Bacteroides fragilis. Microbes Infect 2005; 7:9-18. [PMID: 15716066 DOI: 10.1016/j.micinf.2004.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 09/16/2004] [Accepted: 09/22/2004] [Indexed: 10/26/2022]
Abstract
This study describes the identification, cloning and molecular characterization of the alpha-enolase P46 of Bacteroides fragilis. The gram-negative anaerobic bacterium B. fragilis is a member of the commensal flora of the human intestine but is also frequently found in severe intra-abdominal infections. Several virulence factors have been described that may be involved in the development of these infections. Many of these virulence factors are upregulated under conditions of iron- or heme-starvation. We found a major protein of 46 kDa (P46) that is upregulated under iron-depleted conditions. This protein was identified as an alpha-enolase. Alpha-enolases in several gram-positive bacteria and eukaryotic cells are located at the cell surface and function as plasminogen-binding proteins. Localization studies demonstrated that P46 is mainly located in the cytoplasm and partly associated with the inner membrane (IM). Under iron-restricted conditions, however, P46 is localized primarily in the IM fraction. Plasminogen-binding to B. fragilis cells did occur but was not P46 dependent. A 60-kDa protein was identified as a putative plasminogen-binding protein in B. fragilis.
Collapse
Affiliation(s)
- Robert Sijbrandi
- Department of Molecular Microbiology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
29
|
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 2004; 68:692-744. [PMID: 15590781 PMCID: PMC539010 DOI: 10.1128/mmbr.68.4.692-744.2004] [Citation(s) in RCA: 604] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.
Collapse
Affiliation(s)
- Ian R Henderson
- Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
30
|
Desvaux M, Parham NJ, Henderson IR. The autotransporter secretion system. Res Microbiol 2004; 155:53-60. [PMID: 14990256 DOI: 10.1016/j.resmic.2003.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/03/2003] [Indexed: 01/13/2023]
Abstract
The type V secretion system includes the autotransporter family, the two-partner system and the Oca family. The autotransporter secretion process involving first the translocation of the precursor through the inner membrane and then its translocation through the outer membrane via a pore formed by a beta-barrel is reviewed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
31
|
Rizos K, Lattemann CT, Bumann D, Meyer TF, Aebischer T. Autodisplay: efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in Salmonella vaccine strains. Infect Immun 2003; 71:6320-8. [PMID: 14573651 PMCID: PMC219551 DOI: 10.1128/iai.71.11.6320-6328.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Live attenuated Salmonella strains expressing antigens of pathogens are promising oral vaccine candidates. There is growing evidence that the topology of expression of the foreign antigens can have a dramatic impact on the immunogenicity. We examined the potential of the AIDA-I (Escherichia coli adhesin involved in diffuse adherence) autotransporter domain to display antigenic fragments of the urease A subunit of Helicobacter pylori for the induction of a protective immune response. In the murine H. pylori model, protection is mainly mediated by CD4(+) T cells, and we therefore used the AIDA-I expression system to successfully express both nearly full-length UreA and defined T-helper-cell epitopes on the surface of an attenuated Salmonella enterica serovar Typhimurium vaccine strain. Surface exposure of the large UreA fragment or of one UreA T-cell epitope mediated a significant reduction in the level of H. pylori in immunized mice after challenge infection, whereas conventional cytoplasmic expression of UreA in Salmonella had no effect. These results support the concept that surface display increases the immunogenicity of recombinant antigens expressed on oral live vaccine carriers and further demonstrate the feasibility of immunizing against H. pylori with Salmonella vaccine strains expressing CD4(+) T-cell epitopes.
Collapse
Affiliation(s)
- Konstantin Rizos
- Creatogen AG, D-86156 Augsburg. Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Hahn HP, von Specht BU. Secretory delivery of recombinant proteins in attenuated Salmonella strains: potential and limitations of Type I protein transporters. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 37:87-98. [PMID: 12832111 DOI: 10.1016/s0928-8244(03)00092-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Live attenuated Salmonella strains have been extensively explored as oral delivery systems for recombinant vaccine antigens and effector proteins with immunoadjuvant and immunomodulatory potential. The feasibility of this approach was demonstrated in human vaccination trials for various antigens. However, immunization efficiencies with live vaccines are generally significantly lower compared to those monitored in parenteral immunizations with the same vaccine antigen. This is, at least partly, due to the lack of secretory expression systems, enabling large-scale extracellular delivery of vaccine and effector proteins by these strains. Because of their low complexity and the terminal location of the secretion signal in the secreted protein, Type I (ATP-binding cassette) secretion systems appear to be particularly suited for development of such recombinant extracellular expression systems. So far, the Escherichia coli hemolysin system is the only Type I secretion system, which has been adapted to recombinant protein secretion in Salmonella. However, this system has a number of disadvantages, including low secretion capacity, complex genetic regulation, and structural restriction to the secreted protein, which eventually hinder high-level in vivo delivery of recombinant vaccines and effector proteins. Thus, the development of more efficient recombinant protein secretion systems, based on Type I exporters can help to improve efficacies of live recombinant Salmonella vaccines. Type I secretion systems, mediating secretion of bacterial surface layer proteins, such as RsaA in Caulobacter crescentus, are discussed as promising candidates for improved secretory delivery systems.
Collapse
Affiliation(s)
- Heinz P Hahn
- Chirurgische Universitätsklinik, Chirurgische Forschung, i. Br., Freiburg, Germany.
| | | |
Collapse
|
33
|
Laarmann S, Schmidt MA. The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1871-1882. [PMID: 12855738 DOI: 10.1099/mic.0.26264-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AIDA-I autotransporter adhesin, as a prototype of the AIDA adhesin family, represents a tripartite antigen consisting of the functional adhesin AIDA-I (alpha-domain), which mediates the specific attachment of bacteria to target cells, and a two-domain translocator (AIDA(c)) organized in the beta(1)- and beta(2)-domains. Cellular receptor moieties for the adhesin AIDA-I have not been identified. Here, it is demonstrated that the purified adhesin binds specifically to a high-affinity class of receptors on HeLa cells. Additionally, the adhesin was found to bind to a variety of mammalian cell types, indicating a broad tissue distribution of the receptor moiety. By using complementary techniques, including co-immunoprecipitation and one- and two-dimensional gel electrophoresis, the AIDA-I binding protein on HeLa cells was identified as a surface glycoprotein of about 119 kDa (gp119). The gp119 AIDA-I cellular receptor protein was characterized biochemically and found to be an integral N-glycosylated membrane protein with a pI of 5.2.
Collapse
Affiliation(s)
- Sven Laarmann
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| | - M Alexander Schmidt
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
34
|
Kramer U, Rizos K, Apfel H, Autenrieth IB, Lattemann CT. Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains. Infect Immun 2003; 71:1944-52. [PMID: 12654812 PMCID: PMC152032 DOI: 10.1128/iai.71.4.1944-1952.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.
Collapse
MESH Headings
- Adhesins, Escherichia coli/genetics
- Adhesins, Escherichia coli/immunology
- Adhesins, Escherichia coli/metabolism
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Chaperonin 60/genetics
- Chaperonin 60/immunology
- Chaperonin 60/metabolism
- Female
- Genetic Vectors
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/immunology
- Immunization
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred C57BL
- Recombinant Fusion Proteins/immunology
- Salmonella Vaccines/genetics
- Salmonella Vaccines/immunology
- Salmonella Vaccines/metabolism
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Uwe Kramer
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
35
|
Oliver DC, Huang G, Fernandez RC. Identification of secretion determinants of the Bordetella pertussis BrkA autotransporter. J Bacteriol 2003; 185:489-95. [PMID: 12511495 PMCID: PMC145336 DOI: 10.1128/jb.185.2.489-495.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The autotransporters comprise a functionally diverse family of gram-negative proteins that mediate their own export across the bacterial outer membrane. They consist of an amino-terminal passenger region called the "alpha-domain" and the structural hallmark of the autotransporter family, a carboxy-terminal transporter region usually referred to as the "beta-domain." The passenger region can be quite diverse and constitutes the effector functions of these proteins, whereas the C-terminal region is conserved and is responsible for translocating the passenger moiety across the outer membrane. BrkA is the 103-kDa autotransporter protein in Bordetella pertussis that is cleaved to yield a 73-kDa N-terminal alpha-domain and a 30-kDa C-terminal beta-domain. We have previously shown that a recombinant form of the beta-domain of BrkA is capable of forming channels in artificial membranes. Here, we define two additional secretion determinants of BrkA. N-terminal sequencing of the 73-kDa BrkA passenger from B. pertussis and Escherichia coli revealed that BrkA has a 42-amino-acid signal peptide. In addition, deletion analysis of BrkA identified a 31- to 39-amino-acid region found immediately upstream of the beta-domain that was essential for surface expression. This 31- to 39-amino-acid linker region, together with the beta-domain, defines the minimal BrkA translocation unit. The linker region may also serve to anchor the BrkA passenger to the bacterial surface.
Collapse
Affiliation(s)
- David C Oliver
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
36
|
Casali N, Konieczny M, Schmidt MA, Riley LW. Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect Immun 2002; 70:6846-52. [PMID: 12438361 PMCID: PMC133103 DOI: 10.1128/iai.70.12.6846-6852.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mce1A gene of Mycobacterium tuberculosis was initially identified by its ability to promote uptake of Escherichia coli into HeLa cells. It was subsequently shown that this activity was confined to a 58-amino-acid region of the protein. A 72-amino-acid fragment (InvX) incorporating this active peptide was expressed in E. coli as a fusion to the AIDA (adhesin involved in diffuse adherence) autotransporter translocator, and its stable expression on the surface of the bacterium was demonstrated. Recombinant E. coli expressing InvX-AIDA showed extensive association with HeLa cells, and InvX was shown to be sufficient for internalization. Uptake was found to be both microtubule and microfilament dependent and required the Rho family of GTPases. Thus, the E. coli AIDA system facilitated both the qualitative and quantitative analysis of the functional domain of a heterologous protein.
Collapse
Affiliation(s)
- Nicola Casali
- School of Public Health, University of California at Berkeley, 94720, USA
| | | | | | | |
Collapse
|
37
|
Ruiz-Pérez F, León-Kempis R, Santiago-Machuca A, Ortega-Pierres G, Barry E, Levine M, González-Bonilla C. Expression of the Plasmodium falciparum immunodominant epitope (NANP)(4) on the surface of Salmonella enterica using the autotransporter MisL. Infect Immun 2002; 70:3611-20. [PMID: 12065502 PMCID: PMC128084 DOI: 10.1128/iai.70.7.3611-3620.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacterial proteins which are exported from the cytosol to the external environment by the type V secretion system are also known as autotransporters. Once translocated to the periplasmic compartment by the sec-dependent general secretory pathway, their C-terminal domain forms a pore through which the N-terminal domain travels to the outer membrane without the need of other accessory proteins. MisL (protein of membrane insertion and secretion) is a protein of unknown function located in the pathogenicity island SPI-3 of Salmonella enterica and classified as an autotransporter due to its high homology to Escherichia coli AIDA-I. In the present work, the MisL C-terminal translocator domain was used to display the immunodominant B-cell epitope of the circumsporozoite protein (CSP) from Plasmodium falciparum on the surface of Salmonella enterica serovar Typhimurium (serovar Typhimurium SL3261) and serovar Typhi (serovar Typhi CVD 908). The MisL beta domain was predicted by alignment with AIDA-I, amplified from serovar Typhimurium SL3261, cloned in a plasmid fused to four repeats of the tetrapeptide NANP behind the Escherichia coli heat-labile enterotoxin B subunit signal peptide to ensure periplasmic traffic, and expressed under the control of the anaerobically inducible nirB promoter. The fusion protein was translocated to the outer membrane of both bacterial strains, although the foreign epitope was displayed more efficiently in serovar Typhimurium SL3261, which elicited a better specific antibody response in BALB/c mice. More importantly, antibodies were able to recognize the native CSP in P. falciparum sporozoites. These results confirm that MisL is indeed an autotransporter and that it can be used to express foreign immunogenic epitopes on the surface of gram-negative bacteria.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/biosynthesis
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Cell Membrane/metabolism
- DNA, Complementary
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Gene Expression
- Genetic Engineering
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Genetic Vectors/metabolism
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Membrane Transport Proteins
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptides/genetics
- Peptides/immunology
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Salmonella typhimurium/metabolism
- Sequence Homology, Amino Acid
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Fernando Ruiz-Pérez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología Dr. Daniel Méndez Hernández, Centro Médico La Raza, Instituto Mexicano del Seguro Social, Mexico D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
38
|
Sciutto E, Fragoso G, Manoutcharian K, Gevorkian G, Rosas-Salgado G, Hernández-Gonzalez M, Herrera-Estrella L, Cabrera-Ponce J, López-Casillas F, González-Bonilla C, Santiago-Machuca A, Ruíz-Pérez F, Sánchez J, Goldbaum F, Aluja A, Larralde C. New approaches to improve a peptide vaccine against porcine Taenia solium cysticercosis. Arch Med Res 2002; 33:371-8. [PMID: 12234527 DOI: 10.1016/s0188-4409(02)00376-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cysticercosis caused by Taenia solium frequently affects human health and rustic porciculture. Cysticerci may localize in the central nervous system of humans causing neurocysticercosis, a major health problem in undeveloped countries. Prevalence and intensity of this disease in pigs and humans are related to social factors (poor personal hygiene, low sanitary conditions, rustic rearing of pigs, open fecalism) and possibly to biological factors such as immunity, genetic background, and gender. The indispensable role of pigs as an obligatory intermediate host in the life cycle offers the possibility of interfering with transmission through vaccination of pigs. An effective vaccine based on three synthetic peptides against pig cysticercosis has been successfully developed and proved effective in experimental and field conditions. The well-defined peptides that constitute the cysticercosis vaccine offer the possibility to explore alternative forms of antigen production and delivery systems that may improve the cost/benefit of this and other vaccines. Encouraging results were obtained in attempts to produce large amounts of these peptides and increased its immunogenicity by expression in recombinant filamentous phage (M13), in transgenic plants (carrots and papaya), and associated to bacterial immunogenic carrier proteins.
Collapse
Affiliation(s)
- Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Moormann C, Benz I, Schmidt MA. Functional substitution of the TibC protein of enterotoxigenic Escherichia coli strains for the autotransporter adhesin heptosyltransferase of the AIDA system. Infect Immun 2002; 70:2264-70. [PMID: 11953358 PMCID: PMC127912 DOI: 10.1128/iai.70.5.2264-2270.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasmid-encoded AIDA (adhesin involved in diffuse adherence) autotransporter protein derived from diffuse-adhering clinical Escherichia coli isolate 2787 and the TibA (enterotoxigenic invasion locus B) protein encoded by the chromosomal tib locus of enterotoxigenic E. coli (ETEC) strain H10407 are posttranslationally modified by carbohydrate substituents. Analysis of the AIDA-I adhesin showed that the modification involved heptose residues. AIDA-I is modified by the heptosyltransferase activity of the product of the aah gene, which is located directly upstream of adhesin-encoding gene aidA. The carbohydrate modification of the TibA adhesin/invasin is mediated by the TibC protein but has not been elucidated. Based on the sequence similarities between TibC and AAH (autotransporter adhesin heptosyltransferase) and between the TibA and the AIDA proteins we hypothesized that the AIDA system and the Tib system encoded by the tib locus are structurally and functionally related. Here we show that (i) TibC proteins derived from different ETEC strains appear to be highly conserved, (ii) recombinant TibC proteins can substitute for the AAH heptosyltransferase in introducing the heptosyl modification to AIDA-I, (iii) this modification is functional in restoring the adhesive function of AIDA-I, (iv) a single amino acid substitution at position 358 completely abolishes this activity, and (v) antibodies directed at the functionally active AIDA-I recognize a protein resembling modified TibA in ETEC strains. In summary, we conclude that, like AAH, TibC represents an example of a novel class of heptosyltransferases specifically transferring heptose residues onto multiple sites of a protein backbone. A potential consensus sequence for the modification site is suggested.
Collapse
Affiliation(s)
- Corinna Moormann
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
40
|
Hoischen C, Fritsche C, Gumpert J, Westermann M, Gura K, Fahnert B. Novel bacterial membrane surface display system using cell wall-less L-forms of Proteus mirabilis and Escherichia coli. Appl Environ Microbiol 2002; 68:525-31. [PMID: 11823186 PMCID: PMC126673 DOI: 10.1128/aem.68.2.525-531.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe a novel membrane surface display system that allows the anchoring of foreign proteins in the cytoplasmic membrane (CM) of stable, cell wall-less L-form cells of Escherichia coli and Proteus mirabilis. The reporter protein, staphylokinase (Sak), was fused to transmembrane domains of integral membrane proteins from E. coli (lactose permease LacY, preprotein translocase SecY) and P. mirabilis (curved cell morphology protein CcmA). Both L-form strains overexpressed fusion proteins in amounts of 1 to 100 microg ml(-1), with higher expression for those with homologous anchor motifs. Various experimental approaches, e.g., cell fractionation, Percoll gradient purification, and solubilization of the CM, demonstrated that the fusion proteins are tightly bound to the CM and do not form aggregates. Trypsin digestion, as well as electron microscopy of immunogold-labeled replicas, confirmed that the protein was localized on the outside surface. The displayed Sak showed functional activity, indicating correct folding. This membrane surface display system features endotoxin-poor organisms and can provide a novel platform for numerous applications.
Collapse
Affiliation(s)
- Christian Hoischen
- Department of Molecular Biology, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Gentschev I, Dietrich G, Goebel W. The E. coli alpha-hemolysin secretion system and its use in vaccine development. Trends Microbiol 2002; 10:39-45. [PMID: 11755084 DOI: 10.1016/s0966-842x(01)02259-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many Gram-negative bacteria use a type I secretion system to translocate proteins, including pore-forming toxins, proteases, lipases and S-layer proteins, across both the inner and outer membranes into the extracellular surroundings. The Escherichia coli alpha-hemolysin (HlyA) secretion system is the prototypical and best characterized type I secretion system. The structure and function of the components of the HlyA secretion apparatus, HlyB, HlyD and TolC, have been studied in great detail. The functional characteristics of this secretion system enable it to be used in a variety of different applications, including the presentation of heterologous antigens in live-attenuated bacterial vaccines. Such vaccines can be an effective delivery system for heterologous antigens, and the use of a type I secretion system allows the antigens to be actively exported from the cytoplasm of the bacterial carrier rather than only becoming accessible to the host immune system after bacterial disintegration.
Collapse
Affiliation(s)
- Ivaylo Gentschev
- Department of Microbiology, University of Würzburg, D-97074 Würzburg, Germany.
| | | | | |
Collapse
|
42
|
Abstract
Production of heterologous proteins or parts thereof in different extra-cytoplasmic compartments (in the periplasm, outer membrane or extracellularly) of Escherichia coli offers multiple applications, for example, in vaccine development, immobilised enzymes and bioremediation. Nowadays, not only surface display of short peptides, but also cell-surface anchoring or secretion of functional proteins is possible. Factors influencing folding, stability and export of extra-cytoplasmic proteins are also better understood.
Collapse
Affiliation(s)
- P Cornelis
- Laboratory of Microbial Interactions, Department of Immunology, Parasitology and Ultrastructure, Flanders Interuniversity Institute of Biotechnology, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint, Genesius Rode, Belgium.
| |
Collapse
|
43
|
Autenrieth IB, Schmidt MA. Bacterial interplay at intestinal mucosal surfaces: implications for vaccine development. Trends Microbiol 2000; 8:457-64. [PMID: 11044680 DOI: 10.1016/s0966-842x(00)01828-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The discovery of 'molecular syringes' in several important gastrointestinal pathogens including Escherichia coli, Salmonella, Shigella and Yersinia, together with a better understanding of M cells and the mucosal immune system, has advanced our appreciation of multistage microorganism-host cell interactions. Recent studies suggest that these molecular strategies could be adapted for the development of modular mucosal vaccines.
Collapse
Affiliation(s)
- I B Autenrieth
- Institut für Medizinische Mikrobiologie, Eberhard-Karls Universität Tübingen, 72076, Tübingen, Germany.
| | | |
Collapse
|