1
|
Fiorini MR, Dilliott AA, Thomas RA, Farhan SMK. Transcriptomics of Human Brain Tissue in Parkinson's Disease: a Comparison of Bulk and Single-cell RNA Sequencing. Mol Neurobiol 2024; 61:8996-9015. [PMID: 38578357 PMCID: PMC11496323 DOI: 10.1007/s12035-024-04124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease leading to motor dysfunction and, in some cases, dementia. Transcriptome analysis is one promising approach for characterizing PD and other neurodegenerative disorders by informing how specific disease events influence gene expression and contribute to pathogenesis. With the emergence of single-cell and single-nucleus RNA sequencing (scnRNA-seq) technologies, the transcriptional landscape of neurodegenerative diseases can now be described at the cellular level. As the application of scnRNA-seq is becoming routine, it calls to question how results at a single-cell resolution compare to those obtained from RNA sequencing of whole tissues (bulk RNA-seq), whether the findings are compatible, and how the assays are complimentary for unraveling the elusive transcriptional changes that drive neurodegenerative disease. Herein, we review the studies that have leveraged RNA-seq technologies to investigate PD. Through the integration of bulk and scnRNA-seq findings from human, post-mortem brain tissue, we use the PD literature as a case study to evaluate the compatibility of the results generated from each assay and demonstrate the complementarity of the sequencing technologies. Finally, through the lens of the PD transcriptomic literature, we evaluate the current feasibility of bulk and scnRNA-seq technologies to illustrate the necessity of both technologies for achieving a comprehensive insight into the mechanism by which gene expression promotes neurodegenerative disease. We conclude that the continued application of both assays will provide the greatest insight into neurodegenerative disease pathology, providing both cell-specific and whole-tissue level information.
Collapse
Affiliation(s)
- Michael R Fiorini
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Allison A Dilliott
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Rhalena A Thomas
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Sali M K Farhan
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Zhao J, He Y, Duan Y, Ma Y, Dong H, Zhang X, Fang R, Zhang Y, Yu M, Huang F. HDAC6 Deficiency Has Moderate Effects on Behaviors and Parkinson's Disease Pathology in Mice. Int J Mol Sci 2023; 24:9975. [PMID: 37373121 DOI: 10.3390/ijms24129975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is involved in the regulation of protein aggregation and neuroinflammation, but its role in Parkinson's disease (PD) remains controversial. In this study, Hdac6-/- mice were generated by CRISPR-Cas9 technology for exploring the effect of HDAC6 on the pathological progression of PD. We found that male Hdac6-/- mice exhibit hyperactivity and certain anxiety. In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, though motor injury was slightly alleviated by HDAC6 deficiency, dopamine (DA) depletion in the striatum, the decrease in the number of DA neurons in the substantia nigra (SN) and the reduction in DA neuronal terminals were not affected. In addition, activation of glial cells and the expression of α-synuclein, as well as the levels of apoptosis-related proteins in the nigrostriatal pathway, were not changed in MPTP-injected wild-type and Hdac6-/- mice. Therefore, HDAC6 deficiency leads to moderate alterations of behaviors and Parkinson's disease pathology in mice.
Collapse
Affiliation(s)
- Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Rong Fang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yunhe Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
4
|
Chu Y, Hirst WD, Kordower JH. Mixed pathology as a rule, not exception: Time to reconsider disease nosology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:57-71. [PMID: 36796948 DOI: 10.1016/b978-0-323-85538-9.00012-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that is associated with motor and nonmotor symptoms. Accumulation of misfolded α-synuclein is considered a key pathological feature during disease initiation and progression. While clearly deemed a synucleinopathy, the development of amyloid-β plaques, tau-containing neurofibrillary tangles, and even TDP-43 protein inclusions occur within the nigrostriatal system and in other brain regions. In addition, inflammatory responses, manifested by glial reactivity, T-cell infiltration, and increased expression of inflammatory cytokines, plus other toxic mediators derived from activated glial cells, are currently recognized as prominent drivers of Parkinson's disease pathology. However, copathologies have increasingly been recognized as the rule (>90%) and not the exception, with Parkinson's disease cases on average exhibiting three different copathologies. While microinfarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy may have an impact on disease progression, α-synuclein, amyloid-β, and TDP-43 pathology do not seem to contribute to progression.
Collapse
Affiliation(s)
- Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Boston, MA, United States
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
5
|
Singh R, Zahra W, Singh SS, Birla H, Rathore AS, Keshri PK, Dilnashin H, Singh S, Singh SP. Oleuropein confers neuroprotection against rotenone-induced model of Parkinson's disease via BDNF/CREB/Akt pathway. Sci Rep 2023; 13:2452. [PMID: 36774383 PMCID: PMC9922328 DOI: 10.1038/s41598-023-29287-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/01/2023] [Indexed: 02/13/2023] Open
Abstract
Major pathological features of Parkinson's disease (PD) include increase in oxidative stress leading to the aggregation of α-synuclein, mitochondrial dysfunction and apoptosis of dopaminergic neurons. In addition, downregulation of the expression of neurotrophic factors like-Brain Derived Neurotrophic Factor (BDNF) is also involved in PD progression. There has been a lot of interest in trophic factor-based neuroprotective medicines over the past few decades to treat PD symptoms. Rotenone, an insecticide, inhibits the mitochondrial complex I causing overproduction of ROS, oxidative stress, and aggregation of α-synuclein. It has been shown that BDNF and Tropomyosin receptor kinase B (TrkB) interaction initiates the regulation of neuronal cell development and differentiation by the serine/threonine protein kinases like Akt and GSK-3β. Additionally, Transcription factor CREB (cAMP Response Element-binding protein) also determines the gene expression of BDNF. The homeostasis of these signalling cascades is compromised with the progression of PD. Therefore, maintaining the equilibrium of these signalling cascades will delay the onset of PD. Oleuropein (OLE), a polyphenolic compound present in olive leaves has been documented to cross blood brain barrier and shows potent antioxidative property. In the present study, the dose of 8, 16 and 32 mg/kg body weight (bwt) OLE was taken for dose standardisation. The optimised doses of 16 and 32 mg/kg bwt was found to be neuroprotective in Rotenone induced PD mouse model. OLE improves motor impairment and upregulate CREB regulation along with phosphorylation of Akt and GSK-3β in PD mouse. In addition, OLE also reduces the mitochondrial dysfunction by activation of enzyme complexes and downregulates the proapoptotic markers in Rotenone intoxicated mouse model. Overall, our study suggests that OLE may be used as a therapeutic agent for treatment of PD by regulating BDNF/CREB/Akt signalling pathway.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
6
|
Nainu F, Mamada SS, Harapan H, Emran TB. Inflammation-Mediated Responses in the Development of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:39-70. [PMID: 36949305 DOI: 10.1007/978-981-19-7376-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Since its first description over a century ago, neurodegenerative diseases (NDDs) have impaired the lives of millions of people worldwide. As one of the major threats to human health, NDDs are characterized by progressive loss of neuronal structure and function, leading to the impaired function of the CNS. While the precise mechanisms underlying the emergence of NDDs remains elusive, association of neuroinflammation with the emergence of NDDs has been suggested. The immune system is tightly controlled to maintain homeostatic milieu and failure in doing so has been shown catastrophic. Here, we review current concepts on the cellular and molecular drivers responsible in the induction of neuroinflammation and how such event further promotes neuronal damage leading to neurodegeneration. Experimental data generated from cell culture and animal studies, gross and molecular pathologies of human CNS samples, and genome-wide association study are discussed to provide deeper insights into the mechanistic details of neuroinflammation and its roles in the emergence of NDDs.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Sukamto S Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Harapan Harapan
- School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
7
|
Zhang L, Li Q. Neuroprotective effects of tanshinone IIA in experimental model of Parkinson disease in rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
8
|
Khezri MR, Ghasemnejad-Berenji M. Icariin: A Potential Neuroprotective Agent in Alzheimer's Disease and Parkinson's Disease. Neurochem Res 2022; 47:2954-2962. [PMID: 35802286 DOI: 10.1007/s11064-022-03667-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.
Collapse
Affiliation(s)
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Chavarría C, Ivagnes R, Souza JM. Extracellular Alpha-Synuclein: Mechanisms for Glial Cell Internalization and Activation. Biomolecules 2022; 12:655. [PMID: 35625583 PMCID: PMC9138387 DOI: 10.3390/biom12050655] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein composed of 140 amino acids and belongs to the group of intrinsically disordered proteins. It is a soluble protein that is highly expressed in neurons and expressed at low levels in glial cells. The monomeric protein aggregation process induces the formation of oligomeric intermediates and proceeds towards fibrillar species. These α-syn conformational species have been detected in the extracellular space and mediate consequences on surrounding neurons and glial cells. In particular, higher-ordered α-syn aggregates are involved in microglial and oligodendrocyte activation, as well as in the induction of astrogliosis. These phenomena lead to mitochondrial dysfunction, reactive oxygen and nitrogen species formation, and the induction of an inflammatory response, associated with neuronal cell death. Several receptors participate in cell activation and/or in the uptake of α-syn, which can vary depending on the α-syn aggregated state and cell types. The receptors involved in this process are of outstanding relevance because they may constitute potential therapeutic targets for the treatment of PD and related synucleinopathies. This review article focuses on the mechanism associated with extracellular α-syn uptake in glial cells and the consequent glial cell activation that contributes to the neuronal death associated with synucleinopathies.
Collapse
Affiliation(s)
| | | | - José M. Souza
- Departamento de Bioquímica, Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11400 Montevideo, Uruguay; (C.C.); (R.I.)
| |
Collapse
|
10
|
Morowitz JM, Pogson KB, Roque DA, Church FC. Role of SARS-CoV-2 in Modifying Neurodegenerative Processes in Parkinson's Disease: A Narrative Review. Brain Sci 2022; 12:536. [PMID: 35624923 PMCID: PMC9139310 DOI: 10.3390/brainsci12050536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, continues to impact global health regarding both morbidity and mortality. Although SARS-CoV-2 primarily causes acute respiratory distress syndrome (ARDS), the virus interacts with and influences other organs and tissues, including blood vessel endothelium, heart, gastrointestinal tract, and brain. We are learning much about the pathophysiology of SARS-CoV-2 infection; however, we are just beginning to study and understand the long-term and chronic health consequences. Since the pandemic's beginning in late 2019, older adults, those with pre-existing illnesses, or both, have an increased risk of contracting COVID-19 and developing severe COVID-19. Furthermore, older adults are also more likely to develop the neurodegenerative disorder Parkinson's disease (PD), with advanced age as the most significant risk factor. Thus, does SARS-CoV-2 potentially influence, promote, or accelerate the development of PD in older adults? Our initial focus was aimed at understanding SARS-CoV-2 pathophysiology and the connection to neurodegenerative disorders. We then completed a literature review to assess the relationship between PD and COVID-19. We described potential molecular and cellular pathways that indicate dopaminergic neurons are susceptible, both directly and indirectly, to SARS-CoV-2 infection. We concluded that under certain pathological circumstances, in vulnerable persons-with-Parkinson's disease (PwP), SARS-CoV-2 acts as a neurodegenerative enhancer to potentially support the development or progression of PD and its related motor and non-motor symptoms.
Collapse
Affiliation(s)
- Jeremy M. Morowitz
- Developmental and Stem Cell Biology Program, Duke University, Durham, NC 27708, USA;
| | - Kaylyn B. Pogson
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Daniel A. Roque
- Department of Neurology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Frank C. Church
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Nie L, Zhao P, Yue Z, Zhang P, Ji N, Chen Q, Wang Q. Diabetes induces macrophage dysfunction through cytoplasmic dsDNA/AIM2 associated pyroptosis. J Leukoc Biol 2021; 110:497-510. [PMID: 34085308 DOI: 10.1002/jlb.3ma0321-745r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Diabetes is emerging as a severe global health problem that threatens health and increases socioeconomic burden. Periodontal impairment is one of its well-recognized complications. The destruction of the periodontal defense barrier makes it easier for periodontal pathogens to invade in, triggering a greater inflammatory response, and causing secondary impairment. Macrophages are the major immune cells in periodontium, forming the frontier line of local innate immune barrier. Here, we explored the periodontal impairments and functional changes of macrophages under the diabetic and aging conditions. Besides, we further explored the molecular mechanism of how hyperglycemia and aging contribute to this pathogenesis. To test this, we used young and aged mice to build diabetic mice, and metformin treatment was applied to a group of them. We demonstrated that under hyperglycemia conditions, macrophage functions, such as inflammatory cytokines secretion, phagocytosis, chemotaxis, and immune response, were disturbed. Simultaneously, this condition elevated the local senescent cell burden and induced secretion of senescence-associated secretory phenotype. Meanwhile, we found that expressions of Gasdermin D (GSDMD) and caspase-1 were up-regulated in diabetic conditions, suggesting that the local senescent burden and systemic proinflammatory state during diabetes were accompanied by the initiation of pyroptosis. Furthermore, we found that the changes in aged condition were similar to those in diabetes, suggesting a hyperglycemia-induced pre-aging state. In addition, we show that metformin treatment alleviated and remarkably reversed these functional abnormalities. Our data demonstrated that diabetes initiated macrophage pyroptosis, which further triggered macrophage function impairments and gingival destructions. This pathogenesis could be reversed by metformin.
Collapse
Affiliation(s)
- Lulingxiao Nie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - PengFei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqi Yue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Chengdu, China
| |
Collapse
|
12
|
Leal-Lasarte M, Mannini B, Chiti F, Vendruscolo M, Dobson CM, Roodveldt C, Pozo D. Distinct responses of human peripheral blood cells to different misfolded protein oligomers. Immunology 2021; 164:358-371. [PMID: 34043816 PMCID: PMC8442237 DOI: 10.1111/imm.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence indicates that peripheral immune cells play a prominent role in neurodegeneration connected to protein misfolding, which are associated with formation of aberrant aggregates, including soluble protein misfolded oligomers. The precise links, however, between the physicochemical features of diverse oligomers and their effects on the immune system, particularly on adaptive immunity, remain currently unexplored, due partly to the transient and heterogeneous nature of the oligomers themselves. To overcome these limitations, we took advantage of two stable and well‐characterized types of model oligomers (A and B), formed by HypF‐N bacterial protein, type B oligomers displaying lower solvent‐exposed hydrophobicity. Exposure to oligomers of human peripheral blood mononuclear cells (PBMCs) revealed differential effects, with type B, but not type A, oligomers leading to a reduction in CD4+ cells. Type A oligomers promoted enhanced differentiation towards CD4+CD25HighFoxP3+ Tregs and displayed a higher suppressive effect on lymphocyte proliferation than Tregs treated with oligomers B or untreated cells. Moreover, our results reveal Th1 and Th17 lymphocyte differentiation mediated by type A oligomers and a differential balance of TGF‐β, IL‐6, IL‐23, IFN‐γ and IL‐10 mediators. These results indicate that type B oligomers recapitulate some of the biological responses associated with Parkinson's disease in peripheral immunocompetent cells, while type A oligomers resemble responses associated with Alzheimer's disease. We anticipate that further studies characterizing the differential effects of protein misfolded oligomers on the peripheral immune system may lead to the development of blood‐based diagnostics, which could report on the type and properties of oligomers present in patients.
Collapse
Affiliation(s)
- Magdalena Leal-Lasarte
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain
| | - Benedetta Mannini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.,Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Christopher M Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Cintia Roodveldt
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - David Pozo
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville, Spain.,Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
13
|
Piancone F, Saresella M, La Rosa F, Marventano I, Meloni M, Navarro J, Clerici M. Inflammatory Responses to Monomeric and Aggregated α-Synuclein in Peripheral Blood of Parkinson Disease Patients. Front Neurosci 2021; 15:639646. [PMID: 33867921 PMCID: PMC8044810 DOI: 10.3389/fnins.2021.639646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/19/2021] [Indexed: 12/20/2022] Open
Abstract
To investigate whether different forms of α-synuclein (α-syn) proteins can induce inflammation and activate the NLRP3 inflammasome, we stimulated with monomeric or aggregated α-syn peripheral blood mononuclear cells of Parkinson disease (PD) patients and age- and sex-matched healthy controls (HC). ASC-speck formation, i.e., the intracellular generation of functionally active inflammasome complexes, as well as the production of inflammasome-related [caspase-1, interleukin 1β (IL-18), and IL-1β], and pro–IL-6, or anti–IL-10 inflammatory cytokines were evaluated. Gastrointestinal permeability, suggested to be altered in PD, was also investigated by measuring plasma concentration of lipopolysaccharide (LPS) and I-FABP (fatty acid–binding protein). ASC-speck expression, as well as IL-18 and caspase-1 production and LPS and I-FABP plasma concentration, was comparable in PD and HC, indicating that α-syn does not stimulate the NLRP3 inflammasome and that PD does not associate with alterations of intestinal permeability. Interestingly, though, IL-1β and IL-6 production was increased, whereas that of IL-10 was reduced in α-syn–stimulated cells of PD compared to HC, suggesting that PD-associated neuroinflammation is not the consequence of the activation of the NLRP3 inflammasome but rather of an imbalance between proinflammatory and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Federica Piancone
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione don C Gnocchi, Milan, Italy
| | - Marina Saresella
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione don C Gnocchi, Milan, Italy
| | - Francesca La Rosa
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione don C Gnocchi, Milan, Italy
| | - Ivana Marventano
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione don C Gnocchi, Milan, Italy
| | - Mario Meloni
- Department of Neurology, IRCCS Fondazione don C Gnocchi, Milan, Italy
| | - Jorge Navarro
- Department of Neurology, IRCCS Fondazione don C Gnocchi, Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione don C Gnocchi, Milan, Italy.,Department of Physiopathology and Transplants, University of Milano, Milan, Italy
| |
Collapse
|
14
|
Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci 2020; 14:863. [PMID: 32982666 PMCID: PMC7483585 DOI: 10.3389/fnins.2020.00863] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a multifactorial disease in which environmental conditions and several genes play an important role in the development of this disease. Obesity is associated with neurodegenerative diseases (Alzheimer, Parkinson, and Huntington diseases) and with neurodevelopmental diseases (autism disorder, schizophrenia, and fragile X syndrome). Some of the environmental conditions that lead to obesity are physical activity, alcohol consumption, socioeconomic status, parent feeding behavior, and diet. Interestingly, some of these environmental conditions are shared with neurodegenerative and neurodevelopmental diseases. Obesity impairs neurodevelopment abilities as memory and fine-motor skills. Moreover, maternal obesity affects the cognitive function and mental health of the offspring. The common biological mechanisms involved in obesity and neurodegenerative/neurodevelopmental diseases are insulin resistance, pro-inflammatory cytokines, and oxidative damage, among others, leading to impaired brain development or cell death. Obesogenic environmental conditions are not the only factors that influence neurodegenerative and neurodevelopmental diseases. In fact, several genes implicated in the leptin-melanocortin pathway (LEP, LEPR, POMC, BDNF, MC4R, PCSK1, SIM1, BDNF, TrkB, etc.) are associated with obesity and neurodegenerative and neurodevelopmental diseases. Moreover, in the last decades, the discovery of new genes associated with obesity (FTO, NRXN3, NPC1, NEGR1, MTCH2, GNPDA2, among others) and with neurodegenerative or neurodevelopmental diseases (APOE, CD38, SIRT1, TNFα, PAI-1, TREM2, SYT4, FMR1, TET3, among others) had opened new pathways to comprehend the common mechanisms involved in these diseases. In conclusion, the obesogenic environmental conditions, the genes, and the interaction gene-environment would lead to a better understanding of the etiology of these diseases.
Collapse
Affiliation(s)
- María Teresa Flores-Dorantes
- Laboratorio de Biología Molecular y Farmacogenómica, Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Yael Efren Díaz-López
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México “Federico Gómez,”Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
15
|
Garofalo S, Picard K, Limatola C, Nadjar A, Pascual O, Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol 2020; 10:687-712. [PMID: 32163207 DOI: 10.1002/cphy.c190022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sleep is a naturally occurring physiological state that is required to sustain physical and mental health. Traditionally viewed as strictly regulated by top-down control mechanisms, sleep is now known to also originate locally. Glial cells are emerging as important contributors to the regulation of sleep-wake cycles, locally and among dedicated neural circuits. A few pioneering studies revealed that astrocytes and microglia may influence sleep pressure, duration as well as intensity, but the precise involvement of these two glial cells in the regulation of sleep remains to be fully addressed, across contexts of health and disease. In this overview article, we will first summarize the literature pertaining to the role of astrocytes and microglia in the regulation of sleep under normal physiological conditions. Afterward, we will discuss the beneficial and deleterious consequences of glia-mediated neuroinflammation, whether it is acute, or chronic and associated with brain diseases, on the regulation of sleep. Sleep disturbances are a main comorbidity in neurodegenerative diseases, and in several brain diseases that include pain, epilepsy, and cancer. Identifying the relationships between glia-mediated neuroinflammation, sleep-wake rhythm disruption and brain diseases may have important implications for the treatment of several disorders. © 2020 American Physiological Society. Compr Physiol 10:687-712, 2020.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Katherine Picard
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, UMR 1286, Institut National de la Recherche Agronomique, Bordeaux University, Bordeaux, France
| | - Olivier Pascual
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Université Claude Bernard Lyon, Lyon, France
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada.,Départment de médecine moleculaire, Faculté de médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
16
|
Pathological Changes to the Subcortical Visual System and its Relationship to Visual Hallucinations in Dementia with Lewy Bodies. Neurosci Bull 2019; 35:295-300. [PMID: 30729454 DOI: 10.1007/s12264-019-00341-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
|
17
|
Role of Inflammasomes in Neuroimmune and Neurodegenerative Diseases: A Systematic Review. Mediators Inflamm 2018; 2018:1549549. [PMID: 29849483 PMCID: PMC5932495 DOI: 10.1155/2018/1549549] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/26/2017] [Accepted: 01/01/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are multiprotein complexes that can sense pathogen-associated molecular patterns and damage-associated molecular signals. They are involved in the initiation and development of inflammation via activation of IL-1β and IL-18. Many recent studies suggest a strong correlation between inflammasomes and neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Several components of inflammasomes, such as nucleotide-binding oligomerization domain- (NOD-) like receptor, absent in melanoma 2- (AIM2-) like receptors (ALRs), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1, as well as the upstream factors and downstream effectors, are associated with the initiation and development of MS and its animal model, experimental autoimmune encephalomyelitis. Additionally, inflammasomes affect the efficacy of interferon-β therapy in patients with MS. Finally, the strong association of inflammasomes with AD and PD needs to be further studied. In this review of latest literatures, we comprehensively tease out diverse roles of different kinds of inflammasomes in neuroimmune and neurodegenerative diseases, especially in the perspective of double roles involved in pathogenesis, and identify future research priorities.
Collapse
|
18
|
Soveyd N, Abdolahi M, Bitarafan S, Tafakhori A, Sarraf P, Togha M, Okhovat AA, Hatami M, Sedighiyan M, Djalali M, Mohammadzadeh Honarvar N. Molecular mechanisms of omega-3 fatty acids in the migraine headache. IRANIAN JOURNAL OF NEUROLOGY 2017; 16:210-217. [PMID: 29736227 PMCID: PMC5937007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/25/2017] [Indexed: 06/08/2023]
Abstract
Migraine is a common chronic inflammatory neurological disease with the progressive and episodic course. Much evidence have shown a role of inflammation in the pathogenesis of migraine. Omega-3 fatty acids are an important components of cell membranes phospholipids. The intake of these fatty acids is related to decrease concentration of C-reactive protein (CRP), proinflammatory eicosanoids, cytokines, chemokines and other inflammation biomarkers. Many of clinical trials have shown the beneficial effect of dietary supplementation with omega-3 fatty acids in inflammatory and autoimmune diseases in human, including Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), multiple sclerosis (MS) and migraine headaches. Therefore, omega-3 fatty acids as an alternative therapy can be potentially important. This review focuses on the pathogenesis of a migraine, with an emphasis on the role of omega-3 fatty acid and its molecular mechanisms.
Collapse
Affiliation(s)
- Neda Soveyd
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abdolahi
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sama Bitarafan
- Iranian Centre of Neurological Research, Neuroscience institute, Department of Neurology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Centre of Neurological Research, Neuroscience institute, Department of Neurology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payam Sarraf
- Iranian Centre of Neurological Research, Neuroscience institute, Department of Neurology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Togha
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Okhovat
- Headache Department, Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Hatami
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Sedighiyan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Djalali
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Niyaz Mohammadzadeh Honarvar
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. J Neurosci 2017; 36:5144-59. [PMID: 27147665 DOI: 10.1523/jneurosci.4658-15.2016] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/22/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Parkinson's Disease (PD) is an age-related, chronic neurodegenerative disorder. At present, there are no disease-modifying therapies to prevent PD progression. Activated microglia and neuroinflammation are associated with the pathogenesis and progression of PD. Accumulation of α-synuclein (α-SYN) in the brain is a core feature of PD and leads to microglial activation, inflammatory cytokine/chemokine production, and ultimately to neurodegeneration. Given the importance of the JAK/STAT pathway in activating microglia and inducing cytokine/chemokine expression, we investigated the therapeutic potential of inhibiting the JAK/STAT pathway using the JAK1/2 inhibitor, AZD1480. In vitro, α-SYN exposure activated the JAK/STAT pathway in microglia and macrophages, and treatment with AZD1480 inhibited α-SYN-induced major histocompatibility complex Class II and inflammatory gene expression in microglia and macrophages by reducing STAT1 and STAT3 activation. For in vivo studies, we used a rat model of PD induced by viral overexpression of α-SYN. AZD1480 treatment inhibited α-SYN-induced neuroinflammation by suppressing microglial activation, macrophage and CD4(+) T-cell infiltration and production of proinflammatory cytokines/chemokines. Numerous genes involved in cell-cell signaling, nervous system development and function, inflammatory diseases/processes, and neurological diseases are enhanced in the substantia nigra of rats with α-SYN overexpression, and inhibited upon treatment with AZD1480. Importantly, inhibition of the JAK/STAT pathway prevented the degeneration of dopaminergic neurons in vivo These results indicate that inhibiting the JAK/STAT pathway can prevent neuroinflammation and neurodegeneration by suppressing activation of innate and adaptive immune responses to α-SYN. Furthermore, this suggests the feasibility of targeting the JAK/STAT pathway as a neuroprotective therapy for neurodegenerative diseases. SIGNIFICANCE STATEMENT α-SYN plays a central role in the pathophysiology of PD through initiation of neuroinflammatory responses. Using an α-SYN overexpression PD model, we demonstrate a beneficial therapeutic effect of AZD1480, a specific inhibitor of JAK1/2, in suppressing neuroinflammation and neurodegeneration. Our findings document that inhibition of the JAK/STAT pathway influences both innate and adaptive immune responses by suppressing α-SYN-induced microglia and macrophage activation and CD4(+) T-cell recruitment into the CNS, ultimately suppressing neurodegeneration. These findings are the first documentation that suppression of the JAK/STAT pathway disrupts the circuitry of neuroinflammation and neurodegeneration, thus attenuating PD pathogenesis. JAK inhibitors may be a viable therapeutic option for the treatment of PD patients.
Collapse
|
20
|
Horvath I, Iashchishyn IA, Forsgren L, Morozova-Roche LA. Immunochemical Detection of α-Synuclein Autoantibodies in Parkinson's Disease: Correlation between Plasma and Cerebrospinal Fluid Levels. ACS Chem Neurosci 2017; 8:1170-1176. [PMID: 28263550 DOI: 10.1021/acschemneuro.7b00063] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autoantibodies to Parkinson's disease (PD) amyloidogenic protein, α-synuclein, were recognized as a prospective biomarker for early disease diagnostics, yet there is inconsistency in previous reports, potentially related to PD status. Therefore, plasma and cerebrospinal fluid (CSF) of the cross-sectional cohort of 60 individuals, including recently diagnosed PD patients with mild and moderate PD and age-matched controls, were examined by enzyme-linked immunosorbent assay (ELISA). Nonparametric statistics was used for data analysis. We found significantly elevated levels of α-synuclein autoantibodies in both plasma and CSF in mild PD compared to controls, followed by some decrease in moderate PD. Receiver operating characteristic and effect size analyses confirmed the diagnostic power of α-synuclein antibodies in both plasma and CSF. For the first time, we showed the correlation between plasma and CSF α-synuclein antibody levels for mild, moderate, and combined PD groups. This indicates the potentiality of α-synuclein antibodies as PD biomarker and the increased diagnostic power of their simultaneous analysis in plasma and CSF.
Collapse
Affiliation(s)
- Istvan Horvath
- Department of Medical
Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Igor A. Iashchishyn
- Department of Medical
Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
- Department of General
Chemistry, Sumy State University, Sumy 40000, Ukraine
| | - Lars Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå 901 87, Sweden
| | | |
Collapse
|
21
|
Angelova PR, Abramov AY. Alpha-synuclein and beta-amyloid – different targets, same players: calcium, free radicals and mitochondria in the mechanism of neurodegeneration. Biochem Biophys Res Commun 2017; 483:1110-1115. [DOI: 10.1016/j.bbrc.2016.07.103] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/23/2016] [Indexed: 01/31/2023]
|
22
|
Automated Ex Situ Assays of Amyloid Formation on a Microfluidic Platform. Biophys J 2017; 110:555-560. [PMID: 26840721 PMCID: PMC4744157 DOI: 10.1016/j.bpj.2015.11.3523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/14/2015] [Accepted: 11/25/2015] [Indexed: 01/24/2023] Open
Abstract
Increasingly prevalent neurodegenerative diseases are associated with the formation of nanoscale amyloid aggregates from normally soluble peptides and proteins. A widely used strategy for following the aggregation process and defining its kinetics involves the use of extrinsic dyes that undergo a spectral shift when bound to β-sheet-rich aggregates. An attractive route to carry out such studies is to perform ex situ assays, where the dye molecules are not present in the reaction mixture, but instead are only introduced into aliquots taken from the reaction at regular time intervals to avoid the possibility that the dye molecules interfere with the aggregation process. However, such ex situ measurements are time-consuming to perform, require large sample volumes, and do not provide for real-time observation of aggregation phenomena. To overcome these limitations, here we have designed and fabricated microfluidic devices that offer continuous and automated real-time ex situ tracking of the protein aggregation process. This device allows us to improve the time resolution of ex situ aggregation assays relative to conventional assays by more than one order of magnitude. The availability of an automated system for tracking the progress of protein aggregation reactions without the presence of marker molecules in the reaction mixtures opens up the possibility of routine noninvasive study of protein aggregation phenomena.
Collapse
|
23
|
Kong X, Yuan Z, Cheng J. The function of NOD-like receptors in central nervous system diseases. J Neurosci Res 2016; 95:1565-1573. [PMID: 28029680 DOI: 10.1002/jnr.24004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022]
Abstract
NOD-like receptors (NLRs) are critical cytoplasmic pattern-recognition receptors (PRRs) that play an important role in the host innate immune response and immunity homeostasis. There is a growing body of evidence that NLRs are involved in a wide range of inflammatory diseases, including cancer, metabolic diseases, and autoimmune disorders. Recent studies have indicated that the proteins of the NLR family are linked with the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), and psychological diseases. In this review, we mainly focus on the role of NLRs and the underlying signaling pathways in central nervous system (CNS) diseases. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiangxi Kong
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,School of Basic Medical Science, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zengqiang Yuan
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Jinbo Cheng
- The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
24
|
Hung KC, Huang HJ, Wang YT, Lin AMY. Baicalein attenuates α-synuclein aggregation, inflammasome activation and autophagy in the MPP +-treated nigrostriatal dopaminergic system in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:522-529. [PMID: 27742410 DOI: 10.1016/j.jep.2016.10.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neuroinflammation, oxidative stress, and protein aggregation form a vicious cycle in the pathophysiology of Parkinson's disease (PD); activated microglia is the main location of neuroinflammation. A Chinese medicine book, "Shanghan Lun", known as the "Treatises on Cold damage Diseases" has suggested that Scutellaria baicalensis Georgi is effective in treating CNS diseases. The anti-inflammatory mechanisms of baicalein, a phenolic flavonoid in the dried root of Scutellaria baicalensis Georgi, remain to be explored. AIM OF THE STUDY The neuroprotective mechanisms of baicalein involving α-synuclein aggregation, inflammasome activation, and programmed cell death were investigated in the nigrostriatal dopaminergic system of rat brain in vivo. MATERIALS AND METHODS Intranigral infusion of 1-methyl-4-phenylpyridinium (MPP+, a Parkinsonian neurotoxin) was performed on anesthetized Sprague-Dawley rats. Baicalein was daily administered via intraperitoneal injection. Striatal dopamine levels were measured using high performance liquid chromatography coupled with electrochemical detection. Cellular signalings were measured by Western blot assay, immunofluorescent staining assay and enzyme-linked immunosorbent assay. RESULTS Systemic administration of baicalein attenuated MPP+-induced reductions in striatal dopamine content and tyrosine hydroxylase (a biomarker of dopaminergic neurons) in the infused substantia nigra (SN). Furthermore, MPP+-induced elevations in α-synuclein aggregates (a pathological hallmark of PD), ED-1 (a biomarker of activated microglia), activated caspase-1 (a proinflammatory caspase), IL-1β and cathepsin B (a cysteine lysosomal protease) in the infused SN were attenuated in the baicalein-treated rats. Moreover, intense immunoreactivities of caspase 1 and cathepsin B were co-localized with that of ED-1 in the MPP+-infused SN. At the same time, baicalein inhibited MPP+-induced increases in active caspases 9 and 12 (biomarkers of apoptosis) as well as LC3-II levels (a biomarker of autophagy) in the rat nigrostriatal dopaminergic system. CONCLUSION Our in vivo study showed that baicalein possesses anti-inflammatory activities by inhibiting α-synuclein aggregation, inflammasome activation and cathepsin B production in the MPP+-infused SN. Moreover, baicalein is of therapeutic significance because it inhibits MPP+-induced apoptosis and autophagy in the nigrostriatal dopaminergic system of rat brain.
Collapse
Affiliation(s)
- Kai-Chih Hung
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan.
| | - Hui-Ju Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yi-Ting Wang
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan.
| | - Anya Maan-Yuh Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Pharmacy, Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
25
|
Main BS, Zhang M, Brody KM, Ayton S, Frugier T, Steer D, Finkelstein D, Crack PJ, Taylor JM. Type-1 interferons contribute to the neuroinflammatory response and disease progression of the MPTP mouse model of Parkinson's disease. Glia 2016; 64:1590-604. [PMID: 27404846 DOI: 10.1002/glia.23028] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 12/24/2022]
Abstract
Type-1 interferons (IFNs) are pleiotropic cytokines with a critical role in the initiation and regulation of the pro-inflammatory response. However, the contribution of the type-1 IFNs to CNS disorders, specifically chronic neuropathologies such as Parkinson's disease is still unknown. Here, we report increased type-1 IFN signaling in both post mortem human Parkinson's disease samples and in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model. In response to MPTP, mice lacking the type-1 IFN receptor (IFNAR1(-/-) ) displayed decreased type-1 IFN signaling, an attenuated pro-inflammatory response and reduced loss of dopaminergic neurons. The neuroprotective potential of targeting the type-1 IFN pathway was confirmed by reduced neuroinflammation and DA cell death in mice treated with a blocking monoclonal IFNAR1 (MAR-1) antibody. The MPTP/MAR-1 treated mice also displayed increased striatal dopamine levels and improved behavioural outcomes compared to their MPTP/IgG controls. These data, implicate for the first time, a deleterious role for the type-1 IFNs as key modulators of the early neuroinflammatory response and therefore the neuronal cell death in Parkinson's disease. GLIA 2016;64:1590-1604.
Collapse
Affiliation(s)
- Bevan S Main
- Neuropharmacology Laboratory, Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - Moses Zhang
- Neuropharmacology Laboratory, Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - Kate M Brody
- Neuropharmacology Laboratory, Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Tony Frugier
- Neuropharmacology Laboratory, Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - David Steer
- Monash Biomedical Proteomics Facility, Monash University, Clayton, 3800, Australia
| | - David Finkelstein
- The Florey Institute of Neuroscience and Mental Health, Parkville, 3010, Australia
| | - Peter J Crack
- Neuropharmacology Laboratory, Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Melbourne, 3010, Australia
| | - Juliet M Taylor
- Neuropharmacology Laboratory, Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, Melbourne, 3010, Australia
| |
Collapse
|
26
|
Maetzler W, Deleersnijder W, Hanssens V, Bernard A, Brockmann K, Marquetand J, Wurster I, Rattay TW, Roncoroni L, Schaeffer E, Lerche S, Apel A, Deuschle C, Berg D. GDF15/MIC1 and MMP9 Cerebrospinal Fluid Levels in Parkinson's Disease and Lewy Body Dementia. PLoS One 2016; 11:e0149349. [PMID: 26938614 PMCID: PMC4777571 DOI: 10.1371/journal.pone.0149349] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/29/2016] [Indexed: 11/18/2022] Open
Abstract
Based on animal and ex-vivo experiments, Growth/Differentiation Factor-15 (GDF15, also called Macrophage Inhibitory Cytokine-1, MIC1), a member of the transforming growth factor-beta family, and Matrix Metalloproteinase-9 (MMP9), a member of the matrix metalloprotease family may be potential markers for Lewy body disorders, i.e. Parkinson’s disease with (PDD) and without dementia (PDND) and Lewy body dementia (DLB). GDF15 has a prominent role in development, cell proliferation, differentiation, and repair, whereas MMP9 degrades, as a proteolytic enzyme, components of the extracellular matrix. In this study, cerebrospinal fluid GDF15 and MMP9 levels of 59 PDND, 17 PDD and 23 DLB patients, as well as of 95 controls were determined, and associated with demographic, clinical and biochemical parameters. Our analysis confirmed the already described association of GDF15 levels with age and gender. Corrected GDF15 levels were significantly higher in PDD than in PDND patients, and intermediate in DLB patients. Within Lewy body disorders, GDF15 levels correlated positively with age at onset of Parkinsonism and dementia, Hoehn & Yahr stage and cerebrospinal fluid t-Tau and p-Tau levels, and negatively with the Mini Mental State Examination. Remarkably, it does not relevantly correlate with disease duration. MMP9 was not relevantly associated with any of these parameters. Cerebrospinal GDF15, but not MMP9, may be a potential marker of and in Lewy body disorders.
Collapse
Affiliation(s)
- Walter Maetzler
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
- * E-mail:
| | | | | | - Alice Bernard
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Justus Marquetand
- Department of Epileptology, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| | - Isabel Wurster
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Tim W. Rattay
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Lorenzo Roncoroni
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Eva Schaeffer
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Stefanie Lerche
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Anja Apel
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Christian Deuschle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| | - Daniela Berg
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
27
|
Uchihara T, Giasson BI. Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 2016; 131:49-73. [PMID: 26446103 PMCID: PMC4698305 DOI: 10.1007/s00401-015-1485-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/15/2015] [Accepted: 09/26/2015] [Indexed: 12/15/2022]
Abstract
Progressive aggregation of alpha-synuclein (αS) through formation of amorphous pale bodies to mature Lewy bodies or in neuronal processes as Lewy neurites may be the consequence of conformational protein changes and accumulations, which structurally represents "molecular template". Focal initiation and subsequent spread along anatomically connected structures embody "structural template". To investigate the hypothesis that both processes might be closely associated and involved in the progression of αS pathology, which can be observed in human brains, αS amyloidogenic precursors termed "seeds" were experimentally injected into the brain or peripheral nervous system of animals. Although these studies showed that αS amyloidogenic seeds can induce αS pathology, which can spread in the nervous system, the findings are still not unequivocal in demonstrating predominant transsynaptic or intraneuronal spreads either in anterograde or retrograde directions. Interpretation of some of these studies is further complicated by other concurrent aberrant processes including neuroimmune activation, injury responses and/or general perturbation of proteostasis. In human brain, αS deposition and neuronal degeneration are accentuated in distal axon/synapse. Hyperbranching of axons is an anatomical commonality of Lewy-prone systems, providing a structural basis for abundance in distal axons and synaptic terminals. This neuroanatomical feature also can contribute to such distal accentuation of vulnerability in neuronal demise and the formation of αS inclusion pathology. Although retrograde progression of αS aggregation in hyperbranching axons may be a consistent feature of Lewy pathology, the regional distribution and gradient of Lewy pathology are not necessarily compatible with a predictable pattern such as upward progression from lower brainstem to cerebral cortex. Furthermore, "focal Lewy body disease" with the specific isolated involvement of autonomic, olfactory or cardiac systems suggests that spread of αS pathology is not always consistent. In many instances, the regional variability of Lewy pathology in human brain cannot be explained by a unified hypothesis such as transsynaptic spread. Thus, the distribution of Lewy pathology in human brain may be better explained by variable combinations of independent focal Lewy pathology to generate "multifocal Lewy body disease" that could be coupled with selective but variable neuroanatomical spread of αS pathology. More flexible models are warranted to take into account the relative propensity to develop Lewy pathology in different Lewy-prone systems, even without interconnections, compatible with the expanding clinicopathological spectra of Lewy-related disorders. These revised models are useful to better understand the mechanisms underlying the variable progression of Lewy body diseases so that diagnostic and therapeutic strategies are improved.
Collapse
Affiliation(s)
- Toshiki Uchihara
- Laboratory of Structural Neuropathology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKinght Brain Institute, University of Florida, 1275 Center Drive, PO Box 100159, Gainesville, FL, 32610-0159, USA.
| |
Collapse
|
28
|
Abstract
The discovery of alpha-synuclein's prion-like behaviors in mammals, as well as a non-Mendelian type of inheritance, has led to a new concept in biology, the "prion hypothesis" of Parkinson's disease. The misfolding and aggregation of alpha-synuclein (α-syn) within the nervous system occur in many neurodegenerative diseases including Parkinson's disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). The molecular basis of synucleinopathies appears to be tightly coupled to α-syn's conformational conversion and fibril formation. The pathological form of α-syn consists of oligomers and fibrils with rich in β-sheets. The conversion of its α-helical structure to the β-sheet rich fibril is a defining pathologic feature of α-syn. These kinds of disorders have been classified as protein misfolding diseases or proteopathies which share key biophysical and biochemical characteristics with prion diseases. In this review, we highlight α-syn's prion-like activities in PD and PD models, describe the idea of a prion-like mechanism contributing to PD pathology, and discuss several key molecules that can modulate the α-syn accumulation and propagation.
Collapse
Affiliation(s)
- Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison Street, Chicago, IL, 60612, USA,
| | | |
Collapse
|
29
|
Kim BW, Koppula S, Park SY, Kim YS, Park PJ, Lim JH, Kim IS, Choi DK. Attenuation of neuroinflammatory responses and behavioral deficits by Ligusticum officinale (Makino) Kitag in stimulated microglia and MPTP-induced mouse model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:388-397. [PMID: 25449453 DOI: 10.1016/j.jep.2014.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum officinale (Makino) Kitag (L. officinale) is one of the important traditional herbs used in traditional Oriental medicine for the treatment of various disorders including pain and inflammation. However, there is limited scientific basis for its activity and mechanism in brain inflammation. AIM OF THE STUDY This study aimed to evaluate the effects of L. officinale on microglia-mediated neuroinflammation and behavioral impairments using in vitro cellular and in vivo mouse model of PD, as well as investigate the molecular mechanisms involved including the finger printing analysis of its ethanol extract. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to stimulate BV-2 microglial cells. The changes in neuroinflammatory expressional levels were measured by Western blotting and immunofluorescence techniques. 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-intoxicated mice model of PD was developed to evaluate the behavioral impairments and the brain tissues were used for immunohistochemical studies. High performance liquid chromatography (HPLC) technique was performed for finger printing analysis of L. officinale extract used in the study. RESULTS L. officinale significantly attenuated the LPS-stimulated increase in inflammatory mediators in BV-2 cells. L. officinale also inhibited the LPS-induced activation of nuclear factor-kappa beta by blocking the degradation of IκB-α and suppressing the increase in p38-mitogen-activated protein kinase phosphorylation in BV-2 cells. Furthermore, L. officinale exhibited significant antioxidant properties by inhibiting the 1-diphenyl-2-picrylhydrazyl radicals. An in vivo evaluation in MPTP (20mg/kg, four times, 1 day, i.p.) intoxicated mice resulted in brain microglial activation and significant behavioral deficits. Prophylactic treatment with L. officinale prevented microglial activation and attenuated PD-like behavioral changes as assessed by the pole test. HPLC finger printing analysis revealed that L. officinale extract contained ferulic acid (FA) as one of the major constituents compared with reference standard. FA also inhibited the LPS-stimulated excessive release of NO and suppressed the increased the expressional levels of proinflammatory mediators in BV-2 microglia. CONCLUSIONS The findings observed in this study indicated that L. officinale extract significantly attenuated the neuroinflammatory processes in stimulated microglia and restored the behavioral impairments in a mouse model of PD providing a scientific basis for its traditional claims.
Collapse
Affiliation(s)
- Byung-Wook Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | - Shin-Young Park
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Ji-Hong Lim
- Department of Biomedical chemistry, Konkuk University, Chungju, Korea
| | - In-Su Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju, Korea.
| |
Collapse
|
30
|
Brain injection of α-synuclein induces multiple proteinopathies, gliosis, and a neuronal injury marker. J Neurosci 2015; 34:12368-78. [PMID: 25209277 DOI: 10.1523/jneurosci.2102-14.2014] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracerebral injection of amyloidogenic α-synuclein (αS) has been shown to induce αS pathology in the CNS of nontransgenic mice and αS transgenic mice, albeit with varying efficiencies. In this study, using wild-type human αS transgenic mice (line M20), we demonstrate that intracerebral injection of recombinant amyloidogenic or soluble αS induces extensive αS intracellular inclusion pathology that is associated with robust gliosis. Near the injection site, a significant portion of αS inclusions are detected in neurons but also in astrocytes and microglia. Aberrant induction of expression of the intermediate filament protein peripherin, which is associated with CNS neuronal injury, was also observed predominantly near the site of injection. In addition, many pSer129 αS-induced inclusions colocalize with the low-molecular-mass neurofilament subunit (NFL) or peripherin staining. αS inclusion pathology was also induced in brain regions distal from the injection site, predominantly in neurons. Unexpectedly, we also find prominent p62-immunoreactive, αS-, NFL-, and peripherin-negative inclusions. These findings provide evidence that exogenous αS challenge induces αS pathology but also results in the following: (1) a broader disruption of proteostasis; (2) glial activation; and (3) a marker of a neuronal injury response. Such data suggest that induction of αS pathology after exogenous seeding may involve multiple interdependent mechanisms.
Collapse
|
31
|
Xiao W, Shameli A, Harding CV, Meyerson HJ, Maitta RW. Late stages of hematopoiesis and B cell lymphopoiesis are regulated by α-synuclein, a key player in Parkinson's disease. Immunobiology 2014; 219:836-44. [PMID: 25092570 DOI: 10.1016/j.imbio.2014.07.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022]
Abstract
α-Synuclein plays a crucial role in Parkinson's disease and dementias defined as synucleinopathies. α-Synuclein is expressed in hematopoietic and immune cells, but its functions in hematopoiesis and immune responses are unknown. We utilized α-synuclein(-/-) (KO) mice to investigate its role in hematopoiesis and B cell lymphopoiesis. We demonstrated hematologic abnormalities including mild anemia, smaller platelets, lymphopenia but relatively normal early hematopoiesis in KO mice compared to wild-type (WT) as measured in hematopoietic stem cells and progenitors of the different cell lineages. However, the absolute number of B220(+)IgM(+) B cells in bone marrow was reduced by 4-fold in KO mice (WT: 104±23×10(5) vs. KO: 27±5×10(5)). B cells were also reduced in KO spleens associated with effacement of splenic and lymph node architecture. KO mice showed reduced total serum IgG but no abnormality in serum IgM was noted. When KO mice were challenged with a T cell-dependent antigen, production of antigen specific IgG1 and IgG2b was abolished, but antigen specific IgM was not different from WT mice. Our study shows hematologic abnormalities including anemia and smaller platelets, reduced B cell lymphopoiesis and defects in IgG production in the absence of α-synuclein. This is the first report to show an important role of α-synuclein late in hematopoiesis, B cell lymphopoiesis and adaptive immune response.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Afshin Shameli
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Clifford V Harding
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Howard J Meyerson
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert W Maitta
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH, United States; Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
32
|
Biochemical and immunological aspects of protein aggregation in neurodegenerative diseases. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-014-0491-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
33
|
Fiandaca MS, Federoff HJ. Using viral-mediated gene delivery to model Parkinson's disease: Do nonhuman primate investigations expand our understanding? Exp Neurol 2014; 256:117-25. [DOI: 10.1016/j.expneurol.2013.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/08/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
|
34
|
Hypochlorite-induced structural modifications enhance the chaperone activity of human α2-macroglobulin. Proc Natl Acad Sci U S A 2014; 111:E2081-90. [PMID: 24799681 DOI: 10.1073/pnas.1403379111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hypochlorite, an oxidant generated in vivo by the innate immune system, kills invading pathogens largely by inducing the misfolding of microbial proteins. Concomitantly, the nonspecific activity of hypochlorite also damages host proteins, and the accumulation of damaged (misfolded) proteins is implicated in the pathology of a variety of debilitating human disorders (e.g., Alzheimer's disease, atherosclerosis, and arthritis). It is well-known that cells respond to oxidative stress by up-regulating proteostasis machinery, but the direct activation of mammalian chaperones by hypochlorite has not, to our knowledge, been previously reported. In this study, we show that hypochlorite-induced modifications of human α2-macroglobulin (α2M) markedly increase its chaperone activity by generating species, particularly dimers formed by dissociation of the native tetramer, which have enhanced surface hydrophobicity. Moreover, dimeric α2M is generated in whole-blood plasma in the presence of physiologically relevant amounts of hypochlorite. The chaperone activity of hypochlorite-modified α2M involves the formation of stable soluble complexes with misfolded client proteins, including heat-denatured enzymes, oxidized fibrinogen, oxidized LDL, and native or oxidized amyloid β-peptide (Aβ1-42). Here, we show that hypochlorite-modified α2M delivers its misfolded cargo to lipoprotein receptors on macrophages and reduces Aβ1-42 neurotoxicity. Our results support the conclusion that α2M is a specialized chaperone that prevents the extracellular accumulation of misfolded and potentially pathogenic proteins, particularly during innate immune system activity.
Collapse
|
35
|
Sacino AN, Brooks M, Thomas MA, McKinney AB, McGarvey NH, Rutherford NJ, Ceballos-Diaz C, Robertson J, Golde TE, Giasson BI. Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice. Acta Neuropathol 2014; 127:645-65. [PMID: 24659240 DOI: 10.1007/s00401-014-1268-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/06/2014] [Accepted: 03/06/2014] [Indexed: 02/02/2023]
Abstract
In order to further evaluate the parameters whereby intracerebral administration of recombinant α-synuclein (αS) induces pathological phenotypes in mice, we conducted a series of studies where αS fibrils were injected into the brains of M83 (A53T) and M47 (E46K) αS transgenic (Tg) mice, and non-transgenic (nTg) mice. Using multiple markers to assess αS inclusion formation, we find that injected fibrillar human αS induced widespread cerebral αS inclusion formation in the M83 Tg mice, but in both nTg and M47 Tg mice, induced αS inclusion pathology is largely restricted to the site of injection. Furthermore, mouse αS fibrils injected into nTg mice brains also resulted in inclusion pathology restricted to the site of injection with no evidence for spread. We find no compelling evidence for extensive spread of αS pathology within white matter tracts, and we attribute previous reports of white matter tract spreading to cross-reactivity of the αS pSer129/81A antibody with phosphorylated neurofilament subunit L. These studies suggest that, with the exception of the M83 Tg mice which appear to be uniquely susceptible to induction of inclusion pathology by exogenous forms of αS, there are significant barriers in mice to widespread induction of αS pathology following intracerebral administration of amyloidogenic αS.
Collapse
|
36
|
Gangapuram M, Mazzio E, Eyunni S, Soliman KFA, Redda KK. Synthesis and biological evaluation of substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydropyridin-1-yl]benzamide/benzene sulfonamides as anti-inflammatory agents. Arch Pharm (Weinheim) 2014; 347:360-9. [PMID: 24585402 PMCID: PMC4042835 DOI: 10.1002/ardp.201300379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022]
Abstract
The pharmacological activities of tetrahydropyridine (THP) derivatives are dependent on the substituent ring moiety. In this study, we investigate the anti-inflammatory activities of 12 newly synthesized substituted N-[3-(1H-pyrrol-1-yl)methyl]-1,2,5,6-tetrahydrobenzamide/benzene sulfonamides (9a-l) in murine BV-2 microglial cells. All compounds were initially screened for attenuation of nitric oxide (NO) production in lipopolysaccharide (LPS) (1 µg/mL)-activated microglial cells. The data show that only SO2 -substituted THPs were effective at sub-lethal concentrations (IC50 values of 12.92 µM (9i), 14.64 µM (9j), 19.63 µM (9k)) relative to L-N6-(1-iminoethyl)lysine positive control (IC50 = 3.1 µM). The most potent SO2 -substituted compound (9i) also blocked the LPS-inducible nitric oxide synthase (iNOS) and attenuated the release of several cytokines including IL-1α, IL-10, and IL-6. These findings establish the moderate immuno-modulating effects of SO2 -substituted THP derivatives.
Collapse
Affiliation(s)
- Madhavi Gangapuram
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
37
|
Hebron ML, Lonskaya I, Olopade P, Selby ST, Pagan F, Moussa CEH. Tyrosine Kinase Inhibition Regulates Early Systemic Immune Changes and Modulates the Neuroimmune Response in α-Synucleinopathy. ACTA ACUST UNITED AC 2014; 5:259. [PMID: 25635231 PMCID: PMC4308054 DOI: 10.4172/2155-9899.1000259] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objectives Neuro-inflammation is common in α-Synucleinopathies and Tauopathies; and evidence suggests a link between the tyrosine kinase Abl and neurodegeneration. Abl upregulates α-Synuclein and promotes Tau hyper-phosphorylation (p-Tau), while Abl inhibitors facilitate autophagic clearance. Methods A model of α-Synucleinopathy harboring human mutant A53T α-Synuclein and exhibits concomitant increase in murine p-Tau was used to determine the immunological response to Abl inhibition. Results Age-dependent alterations of brain immunity, including loss of IL-10 and decreased levels of IL-2 and IL-3 were observed in old A53T mice. Brain CCL2 and CCL5 were decreased, but CX3CL1 remained constantly elevated. Young A53T mice exhibited differential systemic and central immune profiles in parallel with increased blood markers of adaptive immunity, suggesting an early systemic immune response. Tyrosine kinase inhibitors (TKIs), including nilotinib and bosutinib reduced brain and peripheral α-Synuclein and p-Tau and modulated blood immunological responses. TKIs did not affect brain IL-10, but they changed the levels of all measured blood immune markers, except CX3CL1. TKIs altered microglia morphology and reduced the number of astrocyte and dendritic cells, suggesting beneficial regulation of microglia. Conclusions These data indicate that tyrosine kinase inhibition affects neuro-inflammation via early changes of the peripheral immune profile, leading to modulation of the neuro-immune response to α-Synuclein and p-Tau.
Collapse
Affiliation(s)
- Michaeline L Hebron
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Irina Lonskaya
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Paul Olopade
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Sandra T Selby
- Department of Oncology, Lombardi Cancer Center, Georgetown University Medical Center, Washington D.C., 20007, USA
| | - Fernando Pagan
- Neurorestoration Group, Movement Disorders Program, National Parkinson Foundation Center of Excellence, Georgetown University Hospital, Washington D.C., 20007, USA ; Deparment of Neurology, Georgetown University Hospital, Washington D.C., 20007, USA
| | - Charbel E-H Moussa
- Department of Neuroscience, Laboratory for Dementia and Parkinsonism, Georgetown University Medical Center, Washington D.C., 20007, USA ; Neurorestoration Group, Movement Disorders Program, National Parkinson Foundation Center of Excellence, Georgetown University Hospital, Washington D.C., 20007, USA
| |
Collapse
|
38
|
Rodrigues MCO, Sanberg PR, Cruz LE, Garbuzova-Davis S. The innate and adaptive immunological aspects in neurodegenerative diseases. J Neuroimmunol 2013; 269:1-8. [PMID: 24161471 DOI: 10.1016/j.jneuroim.2013.09.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/03/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases affect a considerable percentage of the elderly population. New therapeutic approaches are warranted, aiming to at least delay and possibly reverse disease progression. Strategies to elaborate such approaches require knowledge of specific immune system involvement in disease pathogenesis. In this review, innate and adaptive immunological aspects of neurodegenerative disorders, in particular Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS), are discussed. Initiating disease factors, as well as common mechanistic pathways, are detailed and potential immunological therapeutic targets are identified.
Collapse
Affiliation(s)
- Maria C O Rodrigues
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto School of Medicine, University of Sao Paulo, Brazil
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States
| | - Luis Eduardo Cruz
- Cryopraxis, Cell Praxis, BioRio, Polo de Biotechnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States.
| |
Collapse
|
39
|
Sacino AN, Brooks M, McGarvey NH, McKinney AB, Thomas MA, Levites Y, Ran Y, Golde TE, Giasson BI. Induction of CNS α-synuclein pathology by fibrillar and non-amyloidogenic recombinant α-synuclein. Acta Neuropathol Commun 2013; 1:38. [PMID: 24252149 PMCID: PMC3893388 DOI: 10.1186/2051-5960-1-38] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 01/10/2023] Open
Abstract
Background α-Synuclein (αS) is the major component of several types of brain inclusions including Lewy bodies, a hallmark of Parkinson’s disease. Aberrant aggregation of αS also is associated with cellular demise in multiple neurologic disorders collectively referred to as synucleinopathies. Recent studies demonstrate the induction of αS pathology by a single intracerebral injection of exogenous amyloidogenic αS in adult non-transgenic and transgenic mice expressing human αS. To further investigate the mechanism of pathology induction and evaluate an experimental paradigm with potential for higher throughput, we performed similar studies in neonatal mice injected with αS. Results In non-transgenic mice, we observed limited induction of neuronal αS inclusions predominantly 8 months after brain injection of aggregated, amyloidogenic human αS. More robust inclusion pathology was induced in transgenic mice expressing wild-type human αS (line M20), and inclusion pathology was observed at earlier time points. Injection of a non-amyloidogenic (Δ71-82) deletion protein of αS was also able to induce similar pathology in a subset of M20 transgenic mice. M20 transgenic mice injected with amyloidogenic or non-amyloidogenic αS demonstrated a delayed and robust induction of brain neuroinflammation that occurs in mice with or without αS pathological inclusions implicating this mechanism in aggregate formation. Conclusions The finding that a non-amyloidogenic Δ71-82 αS can induce pathology calls into question the simple interpretation that exogenous αS catalyzes aggregation and spread of intracellular αS pathology solely through a nucleation dependent conformational templating mechanism. These results indicate that several mechanisms may act synergistically or independently to promote the spread of αS pathology.
Collapse
|
40
|
Koehler NKU, Stransky E, Shing M, Gaertner S, Meyer M, Schreitmüller B, Leyhe T, Laske C, Maetzler W, Kahle P, Celej MS, Jovin TM, Fallgatter AJ, Batra A, Buchkremer G, Schott K, Richartz-Salzburger E. Altered serum IgG levels to α-synuclein in dementia with Lewy bodies and Alzheimer's disease. PLoS One 2013; 8:e64649. [PMID: 23741358 PMCID: PMC3669378 DOI: 10.1371/journal.pone.0064649] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/16/2013] [Indexed: 12/04/2022] Open
Abstract
Natural self-reactive antibodies in the peripheral blood may play a considerable role in the control of potentially toxic proteins that may otherwise accumulate in the aging brain. The significance of serum antibodies reactive against α-synuclein is not well known. We explored serum IgG levels to monomeric α-synuclein in dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD) with a novel and validated highly sensitive ELISA assay. Antibody levels revealed stark differences in patients compared to healthy subjects and were dependent on diagnosis, disease duration and age. Anti-α-synuclein IgG levels were increased in both patient groups, but in early DLB to a much greater extent than in AD. Increased antibody levels were most evident in younger patients, while with advanced age relatively low levels were observed, similar to healthy individuals, exhibiting stable antibody levels independent of age. Our data show the presence of differentially altered IgG levels against α-synuclein in DLB and AD, which may relate to a disturbed α-synuclein homeostasis triggered by the disease process. These observations may foster the development of novel, possibly preclinical biomarkers and immunotherapeutic strategies that target α-synuclein in neurodegenerative disease.
Collapse
Affiliation(s)
- Niklas K U Koehler
- Department of Psychiatry and Psychotherapy, Eberhard-Karls-University, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62:803-19. [DOI: 10.1016/j.neuint.2012.12.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
|
42
|
Nasal inoculation with α-synuclein aggregates evokes rigidity, locomotor deficits and immunity to such misfolded species as well as dopamine. Behav Brain Res 2013; 243:205-12. [DOI: 10.1016/j.bbr.2013.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/06/2013] [Accepted: 01/10/2013] [Indexed: 12/26/2022]
|
43
|
Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One 2013; 8:e55375. [PMID: 23383169 PMCID: PMC3561263 DOI: 10.1371/journal.pone.0055375] [Citation(s) in RCA: 460] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/22/2012] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. It is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. Another feature is represented by the formation in these cells of inclusions called Lewy bodies (LB), principally constituted by fibrillar α-synuclein (αSyn). This protein is considered a key element in the aetiology of a group of neurodegenerative disorders termed synucleinopathies, which include PD, but the cellular and molecular mechanisms involved are not completely clear. It is established that the inflammatory process plays a crucial role in the pathogenesis and/or progression of PD; moreover, it is known that aggregated αSyn, released by neurons, activates microglia cells to produce pro-inflammatory mediators, such as IL-1β. IL-1β is one of the strongest pro-inflammatory cytokines; it is produced as an inactive mediator, and its maturation and activation requires inflammasome activation. In particular, the NLRP3 inflammasome is activated by a wide variety of stimuli, among which are crystallized and particulate material. In this work, we investigated the possibility that IL-1β production, induced by fibrillar αSyn, is involved the inflammasome activation. We demonstrated the competence of monomeric and fibrillar αSyn to induce synthesis of IL-1β, through TLR2 interaction; we found that the secretion of the mature cytokine was a peculiarity of the fibrillated protein. Moreover, we observed that the secretion of IL-1β involves NLRP3 inflammasome activation. The latter relies on the phagocytosis of fibrillar αSyn, followed by increased ROS production and cathepsin B release into the cytosol. Taken together, our data support the notion that fibrillar αSyn, likely released by neuronal degeneration, acts as an endogenous trigger inducing a strong inflammatory response in PD.
Collapse
Affiliation(s)
- Gaia Codolo
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | | | | | - Marco Brucale
- National Research Council (CNR), Institute of Nanostructured Materials (ISMN), Montelibretti, Rome, Italy
| | | | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
- * E-mail: (MdB); (LB)
| | - Marina de Bernard
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
- * E-mail: (MdB); (LB)
| |
Collapse
|
44
|
Neuronal autophagy, α-synuclein clearance, and LRRK2 regulation: a lost equilibrium in parkinsonian brain. J Neurosci 2013; 32:14851-3. [PMID: 23100407 DOI: 10.1523/jneurosci.3588-12.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:461-91. [PMID: 24252804 PMCID: PMC4135313 DOI: 10.3233/jpd-130230] [Citation(s) in RCA: 1159] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
Collapse
Affiliation(s)
- Vera Dias
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
46
|
Lee YH, Goto Y. Kinetic intermediates of amyloid fibrillation studied by hydrogen exchange methods with nuclear magnetic resonance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1307-23. [DOI: 10.1016/j.bbapap.2012.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/24/2012] [Accepted: 07/26/2012] [Indexed: 01/28/2023]
|
47
|
Ferrer I, López-Gonzalez I, Carmona M, Dalfó E, Pujol A, Martínez A. Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 2012; 46:508-26. [PMID: 22737710 DOI: 10.1016/j.nbd.2011.10.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Parkinson disease (PD) is a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment and psychiatric symptoms, in addition to the classical motor symptoms. Many non-motor symptoms appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a relationship, albeit not causal, between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. This may apply to complex alterations interfering with olfactory and autonomic nervous systemfunctions, emotions, sleep regulation, and behavioral, cognitive and mental performance. Involvement of the cerebral cortex leading to impaired behavior and cognition is related to several convergent altered factors including: a. dopaminergic, noradrenergic, serotoninergic and cholinergic cortical innervation; b. synapses; c. cortical metabolism; d. mitochondrial function and energy production; e. oxidative damage; f. transcription; g. protein expression; h. lipid composition; and i. ubiquitin–proteasome system and autophagy, among others. This complex situation indicates that multiple subcellular failure in selected cell populations is difficult to reconcilewith a reductionistic scenario of a single causative cascade of events leading to non-motor symptoms in PD. Furthermore, these alterationsmay appear at early stages of the disease and may precede the appearance of substantial irreversible cell loss by years. These observations have important implications in the design of therapeutic approaches geared to prevention and treatment of PD.
Collapse
Affiliation(s)
- I Ferrer
- Institute of Neuropathology, Service of Pathology, University Hospital of Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
48
|
Gruden MA, Yanamandra K, Kucheryanu VG, Bocharova OR, Sherstnev VV, Morozova-Roche LA, Sewell RDE. Correlation between protective immunity to α-synuclein aggregates, oxidative stress and inflammation. Neuroimmunomodulation 2012; 19:334-342. [PMID: 22986484 DOI: 10.1159/000341400] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/15/2012] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Protein aggregation leading to central amyloid deposition is implicated in Parkinson's disease (PD). During disease progression, inflammation and oxidative stress may well invoke humoral immunity against pathological aggregates of PD-associated α-synuclein. The aim was to investigate any possible concurrence between autoimmune responses to α-synuclein monomers, oligomers or fibrils with oxidative stress and inflammation. METHODS The formation of α-synuclein amyloid species was assessed by thioflavin-T assay and atomic force microscopy was employed to confirm their morphology. Serum autoantibody titers to α-synuclein conformations were determined by ELISA. Enzyme activity and concentrations of oxidative stress/inflammatory indicators were evaluated by enzyme and ELISA protocols. RESULTS In PD patient sera, a differential increase in autoantibody titers to α-synuclein monomers, toxic oligomers or fibrils was associated with boosted levels of the pro-inflammatory cytokine interleukin-6 and tumour necrosis factor-α, but a decrease in interferon-γ concentration. In addition, levels of malondialdehyde were elevated whilst those of glutathione were reduced along with decrements in the activity of the antioxidants: superoxide dismutase, catalase and glutathione transferase. CONCLUSIONS It is hypothesized that the generation of α-synuclein amyloid aggregates allied with oxidative stress and inflammatory reactions may invoke humoral immunity protecting against dopaminergic neuronal death. Hence, humoral immunity is a common integrative factor throughout PD progression which is directed towards prevention of further neurodegeneration, so potential treatment strategies should attempt to maintain PD patient immune status.
Collapse
|
49
|
Desforges NM, Hebron ML, Algarzae NK, Lonskaya I, Moussa CEH. Fractalkine Mediates Communication between Pathogenic Proteins and Microglia: Implications of Anti-Inflammatory Treatments in Different Stages of Neurodegenerative Diseases. Int J Alzheimers Dis 2012; 2012:345472. [PMID: 22919540 PMCID: PMC3420133 DOI: 10.1155/2012/345472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 01/22/2023] Open
Abstract
The role of inflammation in neurodegenerative diseases has been widely demonstrated. Intraneuronal protein accumulation may regulate microglial activity via the fractalkine (CX3CL1) signaling pathway that provides a mechanism through which neurons communicate with microglia. CX3CL1 levels fluctuate in different stages of neurodegenerative diseases and in various animal models, warranting further investigation of the mechanisms underlying microglial response to pathogenic proteins, including Tau, β-amyloid (Aβ), and α-synuclein. The temporal relationship between microglial activity and localization of pathogenic proteins (intra- versus extracellular) likely determines whether neuroinflammation mitigates or exacerbates disease progression. Evidence in transgenic models suggests a beneficial effect of microglial activity on clearance of proteins like Aβ and a detrimental effect on Tau modification, but the role of CX3CL1 signaling in α-synucleinopathies is less clear. Here we review the nature of fractalkine-mediated neuronmicroglia interaction, which has significant implications for the efficacy of anti-inflammatory treatments during different stages of neurodegenerative pathology. Specifically, it is likely that anti-inflammatory treatment in early stages of disease during intraneuronal accumulation of proteins could be beneficial, while anti-inflammatory treatment in later stages when proteins are secreted to the extracellular space could exacerbate disease progression.
Collapse
Affiliation(s)
- Nicole M. Desforges
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Michaeline L. Hebron
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Norah K. Algarzae
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Charbel E.-H. Moussa
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
50
|
Mori K, Kaneko YS, Nakashima A, Nagasaki H, Nagatsu T, Nagatsu I, Ota A. Subventricular zone under the neuroinflammatory stress and Parkinson's disease. Cell Mol Neurobiol 2012; 32:777-85. [PMID: 22189676 PMCID: PMC11498532 DOI: 10.1007/s10571-011-9783-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/08/2011] [Indexed: 12/20/2022]
Abstract
This review summarizes the effects of neuroinflammatory stress on the subventricular zone (SVZ), where new neurons are constitutively produced in the adult brain, especially focusing on the relation with Parkinson's disease (PD), because the SVZ is under the control of dopaminergic afferents from the substantia nigra (SN). In Lewy bodies-positive-PD, microglia is known to phagocytoze aggregated α-synuclein, resulting in the release of inflammatory cytokines. The neurogenesis in the SVZ should be affected in PD brain by the neuroinflammatory process. The administration of lipopolysaccaharide is available as an alternative model for microglia-induced loss of dopaminergic neurons and also the impairment of stem cell maintenance. Therefore, the research on the neuroinflammatory process in the SVZ gives us a hint to prevent the outbreak of PD or at least slow the disease process.
Collapse
Affiliation(s)
- Keiji Mori
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Yoko S. Kaneko
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Akira Nakashima
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Hiroshi Nagasaki
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Toshiharu Nagatsu
- Department of Pharmacology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Ikuko Nagatsu
- Department of Anatomy, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| | - Akira Ota
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192 Japan
| |
Collapse
|