1
|
Domínguez-Luis MJ, Castro-Hernández J, Santos-Concepción S, Díaz-Martín A, Arce-Franco M, Pérez-González N, Díaz M, Castrillo A, Salido E, Machado JD, Gumá M, Corr M, Díaz-González F. Modulation of the K/BxN arthritis mouse model and the effector functions of human fibroblast-like synoviocytes by liver X receptors. Eur J Immunol 2024; 54:e2451136. [PMID: 39148175 DOI: 10.1002/eji.202451136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The role of liver X receptors (LXR) in rheumatoid arthritis (RA) remains controversial. We studied the effect of LXR agonists on fibroblast-like synoviocytes (FLS) from RA patients and the K/BxN arthritis model in LXRα and β double-deficient (Nr1h2/3-/-) mice. Two synthetic LXR agonists, GW3965 and T0901317, were used to activate LXRs and investigate their effects on cell growth, proliferation and matrix metalloproteinases, and chemokine production in cultured FLS from RA patients. The murine model K/BxN serum transfer of inflammatory arthritis in Nr1h2/3-/- animals was used to investigate the role of LXRs on joint inflammation in vivo. LXR agonists inhibited the FLS proliferative capacity in response to TNF, the chemokine-induced migration, the collagenase activity in FLS supernatant and FLS CXCL12 production. In the K/BxN mouse model, Nr1h2/3-/- animals showed aggravated arthritis, histological inflammation, and joint destruction, as well as an increase in synovial metalloproteases and expression of proinflammatory mediators such as IL-1β and CCL2 in joints compared with wild type animals. Taken together, these data underscore the importance of LXRs in modulating the joint inflammatory response and highlight them as potential therapeutic targets in RA.
Collapse
MESH Headings
- Animals
- Humans
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- Mice
- Synoviocytes/metabolism
- Synoviocytes/pathology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Fibroblasts/metabolism
- Mice, Knockout
- Disease Models, Animal
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cells, Cultured
- Male
- Cell Proliferation
- Female
- Mice, Inbred C57BL
- Benzylamines/pharmacology
Collapse
Affiliation(s)
| | - Javier Castro-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | | | - Ana Díaz-Martín
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | - Mayte Arce-Franco
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
| | | | - Mercedes Díaz
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Antonio Castrillo
- Unidad de Biomedicina IIBM CSIC-Universidad de Las Palmas de Gran Canaria (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Las Palmas de Gran Canaria, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Salido
- Departamento de Anatomía Patológica, Universidad de La Laguna, La Laguna, Spain
| | - José David Machado
- Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - Mónica Gumá
- Department of Medicine, University of California, San Diego, California, USA
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, California, USA
| | - Federico Díaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, La Laguna, Spain
- Departamento de Medicina Interna, Dermatología, Universidad de La Laguna, La Laguna, Spain
- Instituto Universitario de Tecnologías Biomédicas (ITB), Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
2
|
Choa R, Harris JC, Yang E, Yokoyama Y, Okumura M, Kim M, To J, Lou M, Nelson A, Kambayashi T. Thymic stromal lymphopoietin induces IL-4/IL-13 from T cells to promote sebum secretion and adipose loss. J Allergy Clin Immunol 2024; 154:480-491. [PMID: 38157943 PMCID: PMC11211244 DOI: 10.1016/j.jaci.2023.11.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The cytokine TSLP promotes type 2 immune responses and can induce adipose loss by stimulating lipid loss from the skin through sebum secretion by sebaceous glands, which enhances the skin barrier. However, the mechanism by which TSLP upregulates sebaceous gland function is unknown. OBJECTIVES This study investigated the mechanism by which TSLP stimulates sebum secretion and adipose loss. METHODS RNA-sequencing analysis was performed on sebaceous glands isolated by laser capture microdissection and single-cell RNA-sequencing analysis was performed on sorted skin T cells. Sebocyte function was analyzed by histological analysis and sebum secretion in vivo and by measuring lipogenesis and proliferation in vitro. RESULTS This study found that TSLP sequentially stimulated the expression of lipogenesis genes followed by cell death genes in sebaceous glands to induce holocrine secretion of sebum. TSLP did not affect sebaceous gland activity directly. Rather, single-cell RNA-sequencing revealed that TSLP recruited distinct T-cell clusters that produce IL-4 and IL-13, which were necessary for TSLP-induced adipose loss and sebum secretion. Moreover, IL-13 was sufficient to cause sebum secretion and adipose loss in vivo and to induce lipogenesis and proliferation of a human sebocyte cell line in vitro. CONCLUSIONS This study proposes that TSLP stimulates T cells to deliver IL-4 and IL-13 to sebaceous glands, which enhances sebaceous gland function, turnover, and subsequent adipose loss.
Collapse
Affiliation(s)
- Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - EnJun Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - MinJu Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Meng Lou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Amanda Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pa
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
3
|
Yin X, Yan Y, Li J, Cao Z, Shen S, Chang Q, Zhao Y, Wang X, Wang P. Nuclear receptors for epidermal lipid barrier: Advances in mechanisms and applications. Exp Dermatol 2024; 33:e15107. [PMID: 38840418 DOI: 10.1111/exd.15107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 06/07/2024]
Abstract
The skin plays an essential role in preventing the entry of external environmental threats and the loss of internal substances, depending on the epidermal permeability barrier. Nuclear receptors (NRs), present in various tissues and organs including full-thickness skin, have been demonstrated to exert significant effects on the epidermal lipid barrier. Formation of the lipid lamellar membrane and the normal proliferation and differentiation of keratinocytes (KCs) are crucial for the development of the epidermal permeability barrier and is regulated by specific NRs such as PPAR, LXR, VDR, RAR/RXR, AHR, PXR and FXR. These receptors play a key role in regulating KC differentiation and the entire process of epidermal lipid synthesis, processing and secretion. Lipids derived from sebaceous glands are influenced by NRs as well and participate in regulation of the epidermal lipid barrier. Furthermore, intricate interplay exists between these receptors. Disturbance of barrier function leads to a range of diseases, including psoriasis, atopic dermatitis and acne. Targeting these NRs with agonists or antagonists modulate pathways involved in lipid synthesis and cell differentiation, suggesting potential therapeutic approaches for dermatosis associated with barrier damage. This review focuses on the regulatory role of NRs in the maintenance and processing of the epidermal lipid barrier through their effects on skin lipid synthesis and KC differentiation, providing novel insights for drug targets to facilitate precision medicine strategies.
Collapse
Affiliation(s)
- Xidie Yin
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiandan Li
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhi Cao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shuzhan Shen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiting Zhao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Liu Y, Gao H, Chen H, Ji S, Wu L, Zhang H, Wang Y, Fu X, Sun X. Sebaceous gland organoid engineering. BURNS & TRAUMA 2024; 12:tkae003. [PMID: 38699464 PMCID: PMC11063650 DOI: 10.1093/burnst/tkae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Indexed: 05/05/2024]
Abstract
Sebaceous glands (SGs), as holocrine-secreting appendages, lubricate the skin and play a central role in the skin barrier. Large full-thickness skin defects cause overall architecture disruption and SG loss. However, an effective strategy for SG regeneration is lacking. Organoids are 3D multicellular structures that replicate key anatomical and functional characteristics of in vivo tissues and exhibit great potential in regenerative medicine. Recently, considerable progress has been made in developing reliable procedures for SG organoids and existing SG organoids recapitulate the main morphological, structural and functional features of their in vivo counterparts. Engineering approaches empower researchers to manipulate cell behaviors, the surrounding environment and cell-environment crosstalk within the culture system as needed. These techniques can be applied to the SG organoid culture system to generate functionally more competent SG organoids. This review aims to provide an overview of recent advancements in SG organoid engineering. It highlights some potential strategies for SG organoid functionalization that are promising to forge a platform for engineering vascularized, innervated, immune-interactive and lipogenic SG organoids. We anticipate that this review will not only contribute to improving our understanding of SG biology and regeneration but also facilitate the transition of the SG organoid from laboratory research to a feasible clinical application.
Collapse
Affiliation(s)
- Yiqiong Liu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Lu Wu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Yujia Wang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China
| |
Collapse
|
5
|
Zhao D, Wang Y, Wu S, Ji X, Gong K, Zheng H, Zhu M. Research progress on the role of macrophages in acne and regulation by natural plant products. Front Immunol 2024; 15:1383263. [PMID: 38736879 PMCID: PMC11082307 DOI: 10.3389/fimmu.2024.1383263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 05/14/2024] Open
Abstract
Acne vulgaris is one of the most common skin diseases. The current understanding of acne primarily revolves around inflammatory responses, sebum metabolism disorders, aberrant hormone and receptor expression, colonization by Cutibacterium acnes, and abnormal keratinization of follicular sebaceous glands. Although the precise mechanism of action remains incompletely understood, it is plausible that macrophages exert an influence on these pathological features. Macrophages, as a constituent of the human innate immune system, typically manifest distinct phenotypes across various diseases. It has been observed that the polarization of macrophages toward the M1 phenotype plays a pivotal role in the pathogenesis of acne. In recent years, extensive research on acne has revealed an increasing number of natural remedies exhibiting therapeutic efficacy through the modulation of macrophage polarization. This review investigates the role of cutaneous macrophages, elucidates their potential significance in the pathogenesis of acne, a prevalent chronic inflammatory skin disorder, and explores the therapeutic mechanisms of natural plant products targeting macrophages. Despite these insights, the precise role of macrophages in the pathogenesis of acne remains poorly elucidated. Subsequent investigations in this domain will further illuminate the pathogenesis of acne and potentially offer guidance for identifying novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yun Wang
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuhui Wu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotian Ji
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ke Gong
- Department of Traditional Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Huie Zheng
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Mingfang Zhu
- Department of Dermatology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Zhang W, Jin M, Li T, Lu Z, Wang H, Yuan Z, Wei C. Whole-Genome Resequencing Reveals Selection Signal Related to Sheep Wool Fineness. Animals (Basel) 2023; 13:2944. [PMID: 37760343 PMCID: PMC10526036 DOI: 10.3390/ani13182944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Wool fineness affects the quality of wool, and some studies have identified about forty candidate genes that affect sheep wool fineness, but these genes often reveal only a certain proportion of the variation in wool thickness. We further explore additional genes associated with the fineness of sheep wool. Whole-genome resequencing of eight sheep breeds was performed to reveal selection signals associated with wool fineness, including four coarse wool and four fine/semi-fine wool sheep breeds. Multiple methods to reveal selection signals (Fst and θπ Ratio and XP-EHH) were applied for sheep wool fineness traits. In total, 269 and 319 genes were annotated in the fine wool (F vs. C) group and the coarse wool (C vs. F) group, such as LGR4, PIK3CA, and SEMA3C and NFIB, OPHN1, and THADA. In F vs. C, 269 genes were enriched in 15 significant GO Terms (p < 0.05) and 38 significant KEGG Pathways (p < 0.05), such as protein localization to plasma membrane (GO: 0072659) and Inositol phosphate metabolism (oas 00562). In C vs. F, 319 genes were enriched in 21 GO Terms (p < 0.05) and 16 KEGG Pathways (p < 0.05), such as negative regulation of focal adhesion assembly (GO: 0051895) and Axon guidance (oas 04360). Our study has uncovered genomic information pertaining to significant traits in sheep and has identified valuable candidate genes. This will pave the way for subsequent investigations into related traits.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Meilin Jin
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Taotao Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China;
| | - Huihua Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| | - Zehu Yuan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China;
| | - Caihong Wei
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Z.); (M.J.); (T.L.); (H.W.)
| |
Collapse
|
7
|
Okoro OE, Camera E, Flori E, Ottaviani M. Insulin and the sebaceous gland function. Front Physiol 2023; 14:1252972. [PMID: 37727660 PMCID: PMC10505787 DOI: 10.3389/fphys.2023.1252972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Insulin affects metabolic processes in different organs, including the skin. The sebaceous gland (SG) is an important appendage in the skin, which responds to insulin-mediated signals, either directly or through the insulin growth factor 1 (IGF-1) axis. Insulin cues are differently translated into the activation of metabolic processes depending on several factors, including glucose levels, receptor sensitivity, and sebocyte differentiation. The effects of diet on both the physiological function and pathological conditions of the SG have been linked to pathways activated by insulin and IGF-1. Experimental evidence and theoretical speculations support the association of insulin resistance with acne vulgaris, which is a major disorder of the SG. In this review, we examined the effects of insulin on the SG function and their implications in the pathogenesis of acne.
Collapse
Affiliation(s)
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Palmer MA, Dias IHK, Smart E, Benatzy Y, Haslam IS. Cholesterol homeostasis in hair follicle keratinocytes is disrupted by impaired ABCA5 activity. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159361. [PMID: 37348644 DOI: 10.1016/j.bbalip.2023.159361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The importance of cholesterol in hair follicle biology is underscored by its links to the pathogenesis of alopecias and hair growth disorders. Reports have associated defects in ABCA5, a membrane transporter, with altered keratinocyte cholesterol distribution in individuals with a form of congenital hypertrichosis, yet the biological basis for this defect in hair growth remains unknown. This study aimed to determine the impact of altered ABCA5 activity on hair follicle keratinocyte behaviour. Primary keratinocytes isolated from the outer root sheath of plucked human hair follicles were utilised as a relevant cell model. Following exogenous cholesterol loading, an increase in ABCA5 co-localisation to intracellular organelles was seen. Knockdown of ABCA5 revealed a dysregulation in cholesterol homeostasis, with LXR agonism leading to partial restoration of the homeostatic response. Filipin staining and live BODIPY cholesterol immunofluorescence microscopy revealed a reduction in endo-lysosomal cholesterol following ABCA5 knockdown. Analysis of oxysterols showed a significant increase in the fold change of 25-hydroxycholesterol and 7-β-hydroxycholesterol following cholesterol loading in ORS keratinocytes, after ABCA5 knockdown. These data suggest a role for ABCA5 in the intracellular compartmentalisation of free cholesterol in primary hair follicle keratinocytes. The loss of normal homeostatic response, following the delivery of excess cholesterol after ABCA5 knockdown, suggests an impact on LXR-mediated transcriptional activity. The loss of ABCA5 in the hair follicle could lead to impaired endo-lysosomal cholesterol transport, impacting pathways known to influence hair growth. This avenue warrants further investigation.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK; Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Eleanor Smart
- Centre for Dermatology Research, University of Manchester, UK
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Iain S Haslam
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
9
|
Lei V, Handfield C, Kwock JT, Kirchner SJ, Lee MJ, Coates M, Wang K, Han Q, Wang Z, Powers JG, Wolfe S, Corcoran DL, Fanelli B, Dadlani M, Ji RR, Zhang JY, MacLeod AS. Skin Injury Activates a Rapid TRPV1-Dependent Antiviral Protein Response. J Invest Dermatol 2022; 142:2249-2259.e9. [PMID: 35007556 PMCID: PMC9259761 DOI: 10.1016/j.jid.2021.11.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
The skin serves as the interface between the body and the environment and plays a fundamental role in innate antimicrobial host immunity. Antiviral proteins (AVPs) are part of the innate host defense system and provide protection against viral pathogens. How breach of the skin barrier influences innate AVP production remains largely unknown. In this study, we characterized the induction and regulation of AVPs after skin injury and identified a key role of TRPV1 in this process. Transcriptional and phenotypic profiling of cutaneous wounds revealed that skin injury induces high levels of AVPs in both mice and humans. Remarkably, pharmacologic and genetic ablation of TRPV1-mediated nociception abrogated the induction of AVPs, including Oas2, Oasl2, and Isg15 after skin injury in mice. Conversely, stimulation of TRPV1 nociceptors was sufficient to induce AVP production involving the CD301b+ cells‒IL-27‒mediated signaling pathway. Using IL-27 receptor‒knockout mice, we show that IL-27 signaling is required in the induction of AVPs after skin injury. Finally, loss of TRPV1 signaling leads to increased viral infectivity of herpes simplex virus. Together, our data indicate that TRPV1 signaling ensures skin antiviral competence on wounding.
Collapse
Affiliation(s)
- Vivian Lei
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chelsea Handfield
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jeffery T Kwock
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Stephen J Kirchner
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Min Jin Lee
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Margaret Coates
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kaiyuan Wang
- Duke Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Qingjian Han
- Duke Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Zilong Wang
- Duke Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer G Powers
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Dermatology, Carver College of Medicine, University of Iowa Health Care, Iowa, USA
| | - Sarah Wolfe
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Ru-Rong Ji
- Duke Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer Y Zhang
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Amanda S MacLeod
- Department of Dermatology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
11
|
Ferredoxin reductase regulates proliferation, differentiation, cell cycle and lipogenesis but not apoptosis in SZ95 sebocytes. Exp Cell Res 2021; 405:112680. [PMID: 34090862 DOI: 10.1016/j.yexcr.2021.112680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Ferredoxin reductase (FDXR), a mitochondrial membrane-associated flavoprotein, is essential for electron transfer and modulates p53-dependent apoptosis in cancer cells.FDXR may be implicated in epidermal and sebocytic differentiation, but its explicit function in sebocytes remains to be elucidated. In the present study, immunohistochemistry revealed that FDXR expression was increased in sebaceous cells of acne lesions. FDXR, PPARγ, LXRα/β, SREBP1 and Sox9 expression was incremental during sebocyte differentiation. FDXR overexpression induced by Ad-GFP-FDXR infection enhanced differentiation, reactive oxygen species (ROS), lipogenesis and PPARγ expression, and consequnently inhibited proliferation in SZ95 sebocytes. Flow cytometry showed that FDXR overexpression induced significant blockade of G2/M phase but had no effect on sub-G1 (apoptotic) sebocytes. Insulin-like growth factor-1 (IGF-1)-induced FDXR and PPARγ expression and lipogenesis were abolished by pretreatment with PI3K inhibitor LY294002. These results suggest that FDXR overexpression might promote differentiation and lipogenesis via ROS production and suppress proliferation via G2/S blockade in SZ95 sebocytes. IGF-1 could facilitate differentiation and lipogenesis through PI3K/Akt/FDXR pathway. FDXR could serve as a potential marker of advanced sebaceous differentiation, and its overexpression may be involved in the development of acne lesions.
Collapse
|
12
|
Shin HS, Lee Y, Shin MH, Cho SI, Zouboulis CC, Kim MK, Lee DH, Chung JH. Histone Deacetylase 1 Reduces Lipogenesis by Suppressing SREBP1 Transcription in Human Sebocyte Cell Line SZ95. Int J Mol Sci 2021; 22:ijms22094477. [PMID: 33922983 PMCID: PMC8123291 DOI: 10.3390/ijms22094477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023] Open
Abstract
Proper regulation of sebum production is important for maintaining skin homeostasis in humans. However, little is known about the role of epigenetic regulation in sebocyte lipogenesis. We investigated histone acetylation changes and their role in key lipogenic gene regulation during sebocyte lipogenesis using the human sebaceous gland cell line SZ95. Sebocyte lipogenesis is associated with a significant increase in histone acetylation. Treatment with anacardic acid (AA), a p300 histone acetyltransferase inhibitor, significantly decreased the lipid droplet number and the expression of key lipogenic genes, including sterol regulatory-binding protein 1 (SREBP1), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). In contrast, treatment with trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, increased the expression of these genes. Global HDAC enzyme activity was decreased, and HDAC1 and HDAC2 expression was downregulated during sebaceous lipogenesis. Interestingly, HDAC1 knockdown increased lipogenesis through SREBP1 induction, whereas HDAC1 overexpression decreased lipogenesis and significantly suppressed SREBP1 promoter activity. HDAC1 and SREBP1 levels were inversely correlated in human skin sebaceous glands as demonstrated in immunofluorescence images. In conclusion, HDAC1 plays a critical role in reducing SREBP1 transcription, leading to decreased sebaceous lipogenesis. Therefore, HDAC1 activation could be an effective therapeutic strategy for skin diseases related to excessive sebum production.
Collapse
Affiliation(s)
- Hye Sun Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (H.S.S.); (Y.L.); (M.H.S.); (S.I.C.)
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Yuri Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (H.S.S.); (Y.L.); (M.H.S.); (S.I.C.)
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Mi Hee Shin
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (H.S.S.); (Y.L.); (M.H.S.); (S.I.C.)
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Soo Ick Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (H.S.S.); (Y.L.); (M.H.S.); (S.I.C.)
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
| | - Christos C. Zouboulis
- Dessau Medical Center, Departments of Dermatology, Venereology, Allergology and Immunology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 06847 Dessau, Germany;
| | - Min Kyoung Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (H.S.S.); (Y.L.); (M.H.S.); (S.I.C.)
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
- Correspondence: (M.-K.K.); (D.H.L.); (J.H.C.)
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (H.S.S.); (Y.L.); (M.H.S.); (S.I.C.)
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
- Correspondence: (M.-K.K.); (D.H.L.); (J.H.C.)
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea; (H.S.S.); (Y.L.); (M.H.S.); (S.I.C.)
- Department of Biomedical Sciences, Graduate School, Seoul National University, Seoul 03080, Korea
- Medical Research Center, Institute of Human-Environment Interface Biology, Seoul National University, Seoul 03080, Korea
- Institute on Aging, Seoul National University, Seoul 03080, Korea
- Correspondence: (M.-K.K.); (D.H.L.); (J.H.C.)
| |
Collapse
|
13
|
Localisation and regulation of cholesterol transporters in the human hair follicle: mapping changes across the hair cycle. Histochem Cell Biol 2021; 155:529-545. [PMID: 33404706 PMCID: PMC8134313 DOI: 10.1007/s00418-020-01957-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Cholesterol has long been suspected of influencing hair biology, with dysregulated homeostasis implicated in several disorders of hair growth and cycling. Cholesterol transport proteins play a vital role in the control of cellular cholesterol levels and compartmentalisation. This research aimed to determine the cellular localisation, transport capability and regulatory control of cholesterol transport proteins across the hair cycle. Immunofluorescence microscopy in human hair follicle sections revealed differential expression of ATP-binding cassette (ABC) transporters across the hair cycle. Cholesterol transporter expression (ABCA1, ABCG1, ABCA5 and SCARB1) reduced as hair follicles transitioned from growth to regression. Staining for free cholesterol (filipin) revealed prominent cholesterol striations within the basement membrane of the hair bulb. Liver X receptor agonism demonstrated active regulation of ABCA1 and ABCG1, but not ABCA5 or SCARB1 in human hair follicles and primary keratinocytes. These results demonstrate the capacity of human hair follicles for cholesterol transport and trafficking. Future studies examining the role of cholesterol transport across the hair cycle may shed light on the role of lipid homeostasis in human hair disorders.
Collapse
|
14
|
Bharti S, Vadlamudi HC. A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. J Recept Signal Transduct Res 2020; 41:105-116. [PMID: 32787477 DOI: 10.1080/10799893.2020.1805626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acne vulgaris is a very common pilosebaceous inflammatory disease occurring primarily on the face and also rare on the upper arms, trunk, and back, which is caused by Propionibacterium, Staphylococcus, Corynebacterium, and other species. Pathophysiology of acne comprises of irregular keratinocyte proliferation, differentiation, increased sebum output, bacterial antigens and cytokines induced inflammatory response. Treatment of acne requires proper knowledge on the pathophysiology then only the clinician can come out with a proper therapeutic dosage regimen. Understanding the pathophysiology not only includes the mechanism but also involvement of receptors. Thus, this review is framed in such a way that the authors have focused on the disease acne vulgaris, pathophysiology, transcription factors viz. the Forkhead Box O1 (FoxO1) Transcription Factor, hormones like androgens and receptors such as Histamine receptors, Retinoic receptor, Fibroblast growth factor receptors, Toll like receptor, Androgen receptor, Liver X-receptor, Melanocortin receptor, Peroxisome proliferator-activated receptor and epidermal growth factor receptors involvement in the progression of acne vulgaris.
Collapse
Affiliation(s)
- Sneha Bharti
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bangalore, India
| | | |
Collapse
|
15
|
Helder RWJ, Boiten WA, van Dijk R, Gooris GS, El Ghalbzouri A, Bouwstra JA. The effects of LXR agonist T0901317 and LXR antagonist GSK2033 on morphogenesis and lipid properties in full thickness skin models. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158546. [PMID: 31678517 DOI: 10.1016/j.bbalip.2019.158546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 11/24/2022]
Abstract
Full thickness models (FTMs) are 3D-cultured human skin models that mimic many aspects of native human skin (NHS). However, their stratum corneum (SC) lipid composition differs from NHS causing a reduced skin barrier. The most pronounced differences in lipid composition are a reduction in lipid chain length and increased monounsaturated lipids. The liver-X-receptor (LXR) activates the monounsaturated lipid synthesis via stearoyl-CoA desaturase-1 (SCD-1). Therefore, the aim was to improve the SC lipid synthesis of FTMs by LXR deactivation. This was achieved by supplementing culture medium with LXR antagonist GSK2033. LXR agonist T0901317 was added for comparison. Subsequently, epidermal morphogenesis, lipid composition, lipid organization and the barrier functionality of these FTMs were assessed. We demonstrate that LXR deactivation resulted in a lipid composition with increased overall chain lengths and reduced levels of monounsaturation, whereas LXR activation increased the amount of monounsaturated lipids and led to a reduction in the overall chain length. However, these changes did not affect the barrier functionality. In conclusion, LXR deactivation led to the development of FTMs with improved lipid properties, which mimic the lipid composition of NHS more closely. These novel findings may contribute to design interventions to normalize SC lipid composition of atopic dermatitis patients.
Collapse
Affiliation(s)
- Richard W J Helder
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Walter A Boiten
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Rianne van Dijk
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | - Gerrit S Gooris
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| | | | - Joke A Bouwstra
- Division of Biotherapeutics, LACDR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
16
|
Palmer MA, Blakeborough L, Harries M, Haslam IS. Cholesterol homeostasis: Links to hair follicle biology and hair disorders. Exp Dermatol 2019; 29:299-311. [PMID: 31260136 DOI: 10.1111/exd.13993] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023]
Abstract
Lipids and lipid metabolism are critical factors in hair follicle (HF) biology, and cholesterol has long been suspected of influencing hair growth. Altered cholesterol homeostasis is involved in the pathogenesis of primary cicatricial alopecia, mutations in a cholesterol transporter are associated with congenital hypertrichosis, and dyslipidaemia has been linked to androgenic alopecia. The underlying molecular mechanisms by which cholesterol influences pathways involved in proliferation and differentiation within HF cell populations remain largely unknown. As such, expanding our knowledge of the role for cholesterol in regulating these processes is likely to provide new leads in the development of treatments for disorders of hair growth and cycling. This review describes the current state of knowledge with respect to cholesterol homeostasis in the HF along with known and putative links to hair pathologies.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Liam Blakeborough
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Matthew Harries
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Iain S Haslam
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
17
|
Shamilov R, Aneskievich BJ. Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
18
|
Beauvericin inhibits melanogenesis by regulating cAMP/PKA/CREB and LXR-α/p38 MAPK-mediated pathways. Sci Rep 2018; 8:14958. [PMID: 30297846 PMCID: PMC6175938 DOI: 10.1038/s41598-018-33352-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Melanogenesis is the process of production of melanin pigments that are responsible for the colors of skin, eye, and hair and provide protection from ultraviolet radiation. However, excessive levels of melanin formation cause hyperpigmentation disorders such as freckles, melasma, and age spots. Liver X receptors (LXR) are nuclear oxysterol receptors belonging to the family of ligand-activated transcription factors and physiological regulators of lipid and cholesterol metabolism. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanogenesis has not been clearly elucidated. In addition, although beauvericin, a well-known mycotoxin primarily isolated from several fungi, has various biological properties, its involvement in melanogenesis has not been reported. Therefore, in this study, we examined the effects of beauvericin on melanogenesis and its molecular mechanisms. Beauvericin decreased melanin content and tyrosinase activity without any cytotoxicity. Beauvericin also reduced protein levels of MITF, tyrosinase, TRP1, and TRP2. In addition, beauvericin suppressed cAMP-PKA-CREB signaling and upregulated expression of LXR-α, resulting in the suppression of p38 MAPK. Our results indicate that beauvericin attenuates melanogenesis by regulating both cAMP/PKA/CREB and LXR-α/p38 MAPK pathways, consequently leading to a reduction of melanin levels.
Collapse
|
19
|
Bakry OA, Shoeib MAEM, El Kady N, Attalla S. Re-appraisal of Keratinocytes' Role in Vitiligo Pathogenesis. Indian J Dermatol 2018; 63:231-240. [PMID: 29937560 PMCID: PMC5996628 DOI: 10.4103/ijd.ijd_520_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Vitiligo is a common pigmentary disorder. Studies on its pathogenesis extensively investigated melanocytes' abnormalities and few studies searched for keratinocytes' role in disease development. Liver X receptor-α (LXR-α) is a member of nuclear hormone receptors that acts as a transcription factor. Its target genes are the main regulators of melanocyte functions. Aim The aim of this study is to investigate keratinocytes' role in vitiligo pathogenesis through immunohistochemical expression of LXR-α in lesional, perilesional, and distant nonlesional vitiligo skin. Materials and Methods This case-control study was carried out on 44 participants. These included 24 patients with vitiligo and 20 age- and sex-matched normal individuals as a control group. Biopsies, from cases, were taken from lesional, perilesional, and distant nonlesional areas. Evaluation was done using immunohistochemical technique. Results Keratinocyte LXR-α expression was upregulated in the lesional and perilesional skin (follicular and interfollicular epidermis) compared with control skin (P <0.001 for all). There was significant association between higher histoscore (H-score) in lesional epidermis (P <0.001) and in hair follicle (P =0.001) and the presence of angiogenesis. There was significant association between higher H-score in lesional epidermis and suprabasal vacuolization (P =0.02). No significant association was found between H-score or expression percentage and clinical data of selected cases. Conclusion LXR-α upregulation is associated with keratinocyte damage in vitiligo lesional skin that leads to decreased keratinocyte-derived mediators and growth factors supporting the growth and/or melanization of surrounding melanocytes. Therefore, melanocyte function and survival are affected.
Collapse
Affiliation(s)
- Ola Ahmed Bakry
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| | | | - Noha El Kady
- Department of Pathology, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| | - Shereen Attalla
- Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shebeen El-Kom, Egypt
| |
Collapse
|
20
|
Lovászi M, Szegedi A, Zouboulis CC, Törőcsik D. Sebaceous-immunobiology is orchestrated by sebum lipids. DERMATO-ENDOCRINOLOGY 2017; 9:e1375636. [PMID: 29484100 PMCID: PMC5821166 DOI: 10.1080/19381980.2017.1375636] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022]
Abstract
The major role of sebaceous glands in mammals is to produce sebum, which coats the epidermis and the hair providing waterproofing, thermoregulation and photoprotection. However, as the need for these functions decreased along the evolutionary changes in humans, a relevant question has been raised: are sebaceous glands and sebum the remnants of our mammalian heritage or do they have overtaken a far more complex role in human skin biology? Trying to provide answers to this question, this review introduces the evolving field of sebaceous immunobiology and puts into the focus the pathways that sebum lipids use to influence the immune milieu of the skin. By introducing possible modifiers of sebaceous lipogenesis and discussing the – human-specific – alterations in composition and amount of sebum, the attribute of sebum as a sensitive tool, which is capable of translating multiple signalling pathways into the dermal micro environment is presented. Further their interaction with macrophages and keratinocytes involves sebum lipid fractions into disease pathogenesis, which could lead – on the other side – to the development of novel sebum-based therapeutic strategies.
Collapse
Affiliation(s)
- Marianna Lovászi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Dermatological Allergology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Pillaiyar T, Manickam M, Jung SH. Recent development of signaling pathways inhibitors of melanogenesis. Cell Signal 2017; 40:99-115. [PMID: 28911859 DOI: 10.1016/j.cellsig.2017.09.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/10/2017] [Accepted: 09/10/2017] [Indexed: 02/08/2023]
Abstract
Human skin, eye and hair color rely on the production of melanin, depending on its quantity, quality, and distribution, Melanin plays a monumental role in protecting the skin against the harmful effect of ultraviolet radiation and oxidative stress from various environmental pollutants. However, an excessive production of melanin causes serious dermatological problems such as freckles, solar lentigo (age spots), melasma, as well as cancer. Hence, the regulation of melanin production is important for controlling the hyper-pigmentation. Melanogenesis, a biosynthetic pathway to produce melanin pigment in melanocyte, involves a series of intricate enzymatic and chemical catalyzed reactions. Several extrinsic factors include ultraviolet radiation and chemical drugs, and intrinsic factors include molecules secreted by surrounding keratinocytes or melanocytes, and fibroblasts, all of which regulate melanogenesis. This article reviews recent advances in the development of melanogenesis inhibitors that directly/indirectly target melanogenesis-related signaling pathways. Efforts have been made to provide a description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| | - Sang-Hun Jung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National, University, Daejeon 34134, Republic of Korea
| |
Collapse
|
22
|
Bakry OA, El Farargy SM, El Kady NNED, Dawy HFA. Immunohistochemical Expression of Cyclo-oxygenase 2 and Liver X Receptor-α in Acne Vulgaris. J Clin Diagn Res 2017; 11:WC01-WC07. [PMID: 29207817 DOI: 10.7860/jcdr/2017/28754.10577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
Abstract
Introduction Acne Vulgaris (AV) is a common inflammatory disease of pilosebaceous units. Liver X Receptor-α (LXR-α) is a ligand activated transcription factor. It controls transcription of genes involved in lipid and fatty acid synthesis. Cyclo-oxygenase 2 (COX2) is a rate limiting enzyme in prostaglandin synthesis. It plays important role in inflammation. Aim To evaluate the immunohistochemical expression of LXR-α and COX2 in acne vulgaris skin biopsies to explore their possible pathogenic role in this disease. Materials and Methods Sixty five subjects were included (45 cases with AV and 20 age and gender-matched healthy controls). Skin biopsies were taken from lesional and perilesional skin of cases and from site-matched areas of control subjects. The evaluation of LXR-α and COX2 was done using immunohistochemical technique. Data were collected, tabulated and statistically analysed using a personal computer with "(SPSS) version 11" program. Chi-square test was used to study the association between qualitative variables. Mann-Whitney test was used for comparison between quantitative variables. Student's t-test was used for comparison between two groups having quantitative variables. Spearman's coefficient was used to study the correlation between two different variables. Differences were considered statistically significant with p<0.05. Results COX2 was upregulated in lesional skin compared with peilesional and control skin both in epidermis and pilosebaceous units (p<0.001 for all). Higher epidermal COX2% was significantly associated with papulopustular acne (p=0.009) and higher acne score (p=0.018). Higher pilosebaceous units COX2% was significantly associated with papulopustular acne (p=0.04). LXR-α was upregulated in lesional skin compared with peilesional and control skin both in epidermis and pilosebaceous units (p<0.001 for all). Higher LXR-α % in epidermis and pilosebaceous units was significantly associated with papulopustular acne (p=0.01 for both) and higher acne score (p=0.03 for both). Significant positive correlation was detected between COX2% and LXR-α % in epidermis (p=0.001, r=0.87) and pilosebaceous units (p=0.001, r=0.65). Conclusion Both LXR-α and COX-2 play a role in the pathogenesis of acne vulgaris through their effects on cellular proliferation, inflammation and lipid synthesis. Research for new therapeutic modalities based on their inhibition is needed. More understanding of the interaction between LXR-α, COX2 and acne lesions may lead to effective interference, possibly directed toward specific cell types or steps within inflammatory pathways.
Collapse
Affiliation(s)
- Ola Ahmed Bakry
- Assistant Professor, Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Shawky Mahmoud El Farargy
- Professor, Department of Dermatology, Andrology and STDs, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Noha Nour El Din El Kady
- Lecturer, Department of Pathology, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| | - Hend Farag Abu Dawy
- Dermatology Specialist, Faculty of Medicine, Menoufiya University, Shibeen El Koom, Egypt
| |
Collapse
|
23
|
Ouedraogo ZG, Fouache A, Trousson A, Baron S, Lobaccaro JMA. Role of the liver X receptors in skin physiology: Putative pharmacological targets in human diseases. Chem Phys Lipids 2017; 207:59-68. [PMID: 28259649 DOI: 10.1016/j.chemphyslip.2017.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023]
Abstract
Liver X receptors (LXRs) are members of the nuclear receptor superfamily that have been shown to regulate various physiological functions such as lipid metabolism and cholesterol homeostasis. Concordant reports have elicited the possibility to target them to cure many human diseases including arteriosclerosis, cancer, arthritis, and diabetes. The high relevance of modulating LXR activities to treat numerous skin diseases, mainly those with exacerbated inflammation processes, contrasts with the lack of approved therapeutic use. This review makes an assessment to sum up the findings regarding the physiological roles of LXRs in skin and help progress towards the therapeutic and safe management of their activities. It focuses on the possible pharmacological targeting of LXRs to cure or prevent selected skin diseases.
Collapse
Affiliation(s)
- Zangbéwendé Guy Ouedraogo
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Allan Fouache
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| | - Jean-Marc A Lobaccaro
- Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, F63001, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France.
| |
Collapse
|
24
|
Yin K, Smith AG. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes. Cell Mol Life Sci 2016; 73:3789-800. [PMID: 27544210 PMCID: PMC11108460 DOI: 10.1007/s00018-016-2329-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis.
Collapse
Affiliation(s)
- Kelvin Yin
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aaron G Smith
- Dermatology Research Centre, School of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
25
|
Zouboulis CC, Picardo M, Ju Q, Kurokawa I, Törőcsik D, Bíró T, Schneider MR. Beyond acne: Current aspects of sebaceous gland biology and function. Rev Endocr Metab Disord 2016; 17:319-334. [PMID: 27726049 DOI: 10.1007/s11154-016-9389-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sebaceous gland is most commonly found in association with a hair follicle. Its traditional function is the holocrine production of sebum, a complex mixture of lipids, cell debris, and other rather poorly characterized substances. Due to the gland's central role in acne pathogenesis, early research had focused on its lipogenic activity. Less studied aspects of the sebaceous gland, such as stem cell biology, the regulation of cellular differentiation by transcription factors, the significance of specific lipid fractions, the endocrine and specially the neuroendocrine role of the sebaceous gland, and its contribution to the innate immunity, the detoxification of the skin, and skin aging have only recently attracted the attention of researchers from different disciplines. Here, we summarize recent multidisciplinary progress in sebaceous gland research and discuss how sebaceous gland research may stimulate the development of novel therapeutic strategies targeting specific molecular pathways of the pathogenesis of skin diseases.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ichiro Kurokawa
- Department of Dermatology, Meiwa Hospital, Nishinomiya, Japan
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
26
|
Kaneko T, Kanno C, Ichikawa-Tomikawa N, Kashiwagi K, Yaginuma N, Ohkoshi C, Tanaka M, Sugino T, Imura T, Hasegawa H, Chiba H. Liver X receptor reduces proliferation of human oral cancer cells by promoting cholesterol efflux via up-regulation of ABCA1 expression. Oncotarget 2016; 6:33345-57. [PMID: 26452260 PMCID: PMC4741770 DOI: 10.18632/oncotarget.5428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/18/2015] [Indexed: 11/25/2022] Open
Abstract
Liver X receptors (LXRs) contribute not only to maintain cholesterol homeostasis but also to control cell growth. However, the molecular mechanisms behind the LXR-mediated anti-proliferative effects are largely unknown. Here we show, by immunohistochemistry, that LXRα and LXRβ are differentially distributed in oral stratified squamous epithelia. By immunohistochemical and Western blot analyses, we also reveal that LXRα is abundantly expressed in human oral squamous cell carcinoma (HOSCC) tissues and cell lines. Cell counting, BrdU labeling and cell cycle assay indicated that LXR stimulation led to significant reduction of proliferation in HOSCC cells. Importantly, our study highlights, by using RNA interference, that the ATP-binding cassette transporter A1 (ABCA1)-accelerated cholesterol efflux is critical for the growth inhibitory action of LXRs in HOSCC cells. Moreover, we demonstrate that LXR activation reduces the growth of xenograft tumour of HOSCC cells in mice accompanied by the upregulation of ABCA1 expression and the decline of cholesterol levels in the tumour. These findings strongly suggested that targeting the LXR-regulated cholesterol transport, yielding in lowering intracellular cholesterol levels, could be a promising therapeutic option for certain types of cancers.
Collapse
Affiliation(s)
- Tetsuharu Kaneko
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.,Division of Dentistry and Oral Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chihiro Kanno
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan.,Division of Dentistry and Oral Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Nanae Yaginuma
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Chihiro Ohkoshi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mizuko Tanaka
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Sugino
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Tetsuya Imura
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Hasegawa
- Division of Dentistry and Oral Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
27
|
Agarwal S, Kaur G, Randhawa R, Mahajan V, Bansal R, Changotra H. Liver X Receptor-α polymorphisms (rs11039155 and rs2279238) are associated with susceptibility to vitiligo. Meta Gene 2016; 8:33-36. [PMID: 27014589 PMCID: PMC4792900 DOI: 10.1016/j.mgene.2016.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 12/22/2022] Open
Abstract
Vitiligo is a complex genetic skin depigmentation disorder caused by the destruction of melanocyte from the lesional site. Liver X Receptor-α (LXR-α) expression is upregulated in the melanocytes from perilesional skin as compared to the normal skin of vitiligo patient suggesting its involvement in vitiligo pathogenesis. Polymorphisms in LXR-α have been associated with several diseases including cardiovascular disease, polycystic ovary syndrome, cancer, inflammatory bowel disease and diabetes. In this study, for the first time, we have investigated the association of LXR-α gene polymorphisms and risk of vitiligo. Sixty six vitiligo patients and 75 matched healthy control subjects who did not have any history of vitiligo or any other autoimmune disorder were recruited. The DNA isolated from patients and healthy controls was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for both rs11039155 (- 6 G > A) and rs2279238 (+ 1257 C > T) variants. Our data suggest significant association between the LXR-α gene polymorphisms and vitiligo susceptibility (rs11039155: odds ratio (OR) = 1.99, 95% CI = 1.07-3.71, p = 0.03; rs2279238: OR = 1.70, 95% CI = 1.06-2.73, p = 0.027). Our results provide an evidence that the LXR-α - 6A and + 1257T alleles contribute to risk of vitiligo in North Indian population and highlight the importance of this gene in the vitiligo pathogenesis.
Collapse
Affiliation(s)
- Silky Agarwal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India
| | - Gurjinder Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India
| | - Rohit Randhawa
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India
| | - Vikram Mahajan
- Department of Dermatology, Venereology and Leprosy, Dr. Rajendra Prasad Government Medical College Kangra, Tanda 176 001, Himachal Pradesh, India
| | - Rohit Bansal
- Dr. Bansal Skin Laser Center Clinic, Board Chowk, Nac Manimajra, Chandigarh 160 002, India
| | - Harish Changotra
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India
| |
Collapse
|
28
|
Kim MO, Park YS, Nho YH, Yun SK, Kim Y, Jung E, Paik JK, Kim M, Cho IH, Lee J. Emodin isolated from Polygoni Multiflori Ramulus inhibits melanogenesis through the liver X receptor-mediated pathway. Chem Biol Interact 2016; 250:78-84. [PMID: 26972667 DOI: 10.1016/j.cbi.2016.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/17/2016] [Accepted: 03/08/2016] [Indexed: 12/22/2022]
Abstract
Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which play a crucial protective role against skin photocarcinogenesis. We investigated the effects of a Polygoni Multiflori Ramulus extract on melanogenesis and isolated emodin from Polygoni Multiflori as an active compound. In addition, the possible mechanisms of action were examined. We found that emodin inhibited both melanin content and tyrosinase activity concentration and time dependently. Tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 mRNA levels decreased following emodin treatment. However, while the mRNA levels of microphthalmia-associated transcription factor (MITF) were not affected by emodin, emodin reduced MITF protein levels. Furthermore, expression of the liver X-receptor (LXR) α gene, but not the LXR β gene was upregulated by emodin. Moreover, emodin regulated melanogenesis by promoting degradation of the MITF protein by upregulating the LXR α gene. The emodin effects on MITF was found to be mediated by phosphorylation of p42/44 MAPK. Taken together, these findings indicate that the inhibition of melanogenesis by emodin occurs through reduced MITF protein expression, which is mediated by upregulation of the LXR α gene and suggest that emodin may be useful as a hyperpigmentation inhibitor.
Collapse
Affiliation(s)
- Mi Ok Kim
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19 Gyunggi Do, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, 024-53 Seoul, Republic of Korea
| | - Youn Hwa Nho
- COSMAX R&I Center, COSMAX Inc., Seongnam City, 134-86 Gyunggi Do, Republic of Korea
| | - Seok Kyun Yun
- COSMAX R&I Center, COSMAX Inc., Seongnam City, 134-86 Gyunggi Do, Republic of Korea
| | - Youngsoo Kim
- Biospectrum Life Science Institute, Seongnam City, 132-16 Gyunggi Do, Republic of Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Seongnam City, 132-16 Gyunggi Do, Republic of Korea
| | - Jean Kyung Paik
- Department of Food and Nutrition, College of Health Industry, Eulji University, Seongnam City, 131-35 Gyunggi Do, Republic of Korea
| | - Minhee Kim
- Department of Physical Therapy, College of Health Science, Eulji University, Seongnam City, 131-35 Gyunggi Do, Republic of Korea
| | - Il-Hoon Cho
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam City, 131-35 Gyunggi Do, Republic of Korea.
| | - Jongsung Lee
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon City, 164-19 Gyunggi Do, Republic of Korea.
| |
Collapse
|
29
|
Skrok A, Bednarczuk T, Skwarek A, Popow M, Rudnicka L, Olszewska M. The effect of parathyroid hormones on hair follicle physiology: implications for treatment of chemotherapy-induced alopecia. Skin Pharmacol Physiol 2016; 28:213-225. [PMID: 25721772 DOI: 10.1159/000375319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022]
Abstract
Parathyroid hormone (PTH) and parathyroid hormone-related protein (PTHrP) influence hair follicles through paracrine and intracrine routes. There is significant evidence that PTH and PTHrP influence the proliferation and differentiation of hair follicle cells. The PTH/PTHrP receptor signalling plays an important role in the hair follicle cycle and may induce premature catagen-telogen transition. Transgenic mice with an overexpression or blockade (PTH/PTHrP receptor knockout mice) of PTHrP activity revealed impaired or increased hair growth, respectively. Some findings also suggest that PTHrP may additionally influence the hair cycle by inhibiting angiogenesis. Antagonists of the PTH/PTHrP receptor have been shown to stimulate proliferation of hair follicle cells and hair growth. A hair-stimulating effect of a PTH/PTHrP receptor antagonist applied topically to the skin has been observed in hairless mice, as well as in mice treated with cyclophosphamide. These data indicate that the PTH/PTHrP receptor may serve as a potential target for new (topical) hair growth-stimulating drugs, especially for chemotherapy-induced alopecia.
Collapse
|
30
|
Kovács D, Lovászi M, Póliska S, Oláh A, Bíró T, Veres I, Zouboulis CC, Ståhle M, Rühl R, Remenyik É, Törőcsik D. Sebocytes differentially express and secrete adipokines. Exp Dermatol 2016; 25:194-9. [PMID: 26476096 DOI: 10.1111/exd.12879] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/14/2022]
Abstract
In addition to producing sebum, sebocytes link lipid metabolism with inflammation at a cellular level and hence, greatly resemble adipocytes. However, so far no analysis was performed to identify and characterize the adipocyte-associated inflammatory proteins, the members of the adipokine family in sebocytes. Therefore, we determined the expression profile of adipokines [adiponectin, interleukin (IL) 6, resistin, leptin, serpin E1, visfatin, apelin, chemerin, retinol-binding protein 4 (RBP4) and monocyte chemoattractant protein 1 (MCP1)] in sebaceous glands of healthy and various disease-affected (acne, rosacea, melanoma and psoriasis) skin samples. Sebaceous glands in all examined samples expressed adiponectin, IL6, resistin, leptin, serpin E1 and visfatin, but not apelin, chemerin, RBP4 and MCP1. Confirming the presence of the detected adipokines in the human SZ95 sebaceous gland cell line we further characterized their expression and secretion patterns under different stimuli mimicking bacterial invasion [by using Toll-like receptor (TLR)2 and 4 activators], or by 13-cis retinoic acid (13CRA; also known as isotretinoin), a key anti-acne agent. With the exception of resistin, the expression of all of the detected adipokines (adiponectin, IL6, leptin, serpin E1 and visfatin) could be further regulated at the level of gene expression, showing a close correlation with the secreted protein levels. Besides providing further evidence on similarities between adipocytes and sebocytes, our results strongly suggest that sebocytes are not simply targets of inflammation but may exhibit initiatory and modulatory roles in the inflammatory processes of the skin through the expression and secretion of adipokines.
Collapse
Affiliation(s)
- Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE, Public Health Research group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Marianna Lovászi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Genomic Medicine and Bioinformatics Core Facility, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Oláh
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, University of Debrecen, Debrecen, Hungary.,Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Imre Veres
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Mona Ståhle
- Unit of Dermatology and Venereology, Department of Medicine, Karolinska lnstitutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ralph Rühl
- MTA-DE, Public Health Research group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Éva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Unit of Dermatology and Venereology, Department of Medicine, Karolinska lnstitutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Hu M, Yang YL, Chan P, Tomlinson B. Pharmacogenetics of cutaneous flushing response to niacin/laropiprant combination in Hong Kong Chinese patients with dyslipidemia. Pharmacogenomics 2015; 16:1387-97. [PMID: 26226939 DOI: 10.2217/pgs.15.79] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIM Cutaneous flushing with niacin varies between individuals and is substantially reduced by concomitant laropiprant. We investigated associations between baseline phenotypes and selected genotypes and flushing symptoms with niacin/laropiprant combination. PATIENTS & METHODS Flushing symptoms were quantified in 196 Chinese dyslipidaemic patients treated with niacin/laropiprant, and associations with phenotypes and selected polymorphisms were analyzed. RESULTS Moderate or severe flushing was associated with lower body mass index and the rs2279238 polymorphism in the LXRα on multivariate regression analysis and these factors accounted for 18.9% of the total variance. CONCLUSION Lower body mass index and the LXRα polymorphism appear to be associated with flushing symptoms with niacin/laropiprant. Whether these findings can be applicable to other niacin formulations without laropiprant needs to be verified.
Collapse
Affiliation(s)
- Miao Hu
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ya-Ling Yang
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,Diabetes Center, Second Xiangya Hospital, Institute of Metabolism & Endocrinology, Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha, Hunan, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Brian Tomlinson
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| |
Collapse
|
32
|
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| |
Collapse
|
33
|
Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:463-73. [PMID: 24315978 DOI: 10.1016/j.bbalip.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/19/2022]
Abstract
Epidermal lipid synthesis and metabolism are regulated by nuclear hormone receptors (NHR) and in turn epidermal lipid metabolites can serve as ligands to NHR. NHR form a large superfamily of receptors modulating gene transcription through DNA binding. A subgroup of these receptors is ligand-activated and heterodimerizes with the retinoid X receptor including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR) and pregnane X receptor (PXR). Several isotypes of these receptors exist, all of which are expressed in skin. In keratinocytes, ligand activation of PPARs and LXRs stimulates differentiation, induces lipid accumulation, and accelerates epidermal barrier regeneration. In the cutaneous immune system, ligand activation of all three receptors, PPAR, LXR, and PXR, has inhibitory properties, partially mediated by downregulation of the NF-kappaB pathway. PXR also has antifibrotic effects in the skin correlating with TGF-beta inhibition. In summary, ligands of PPAR, LXR and PXR exert beneficial therapeutic effects in skin disease and represent promising targets for future therapeutic approaches in dermatology. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Stefan Blunder
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
34
|
Radner FPW, Fischer J. The important role of epidermal triacylglycerol metabolism for maintenance of the skin permeability barrier function. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:409-15. [PMID: 23928127 DOI: 10.1016/j.bbalip.2013.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 12/29/2022]
Abstract
Survival in a terrestrial, dry environment necessitates a permeability barrier for regulated permeation of water and electrolytes in the cornified layer of the skin (the stratum corneum) to minimize desiccation of the body. This barrier is formed during cornification and involves a cross-linking of corneocyte proteins as well as an extensive remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by various hydrolytic enzymes generates ceramides, cholesterol, and non-esterified fatty acids for the extracellular lipid lamellae in the stratum corneum. However, the important role of epidermal triacylglycerol (TAG) metabolism during formation of a functional permeability barrier in the skin was only recently discovered. Humans with mutations in the ABHD5/CGI-58 (α/β hydrolase domain containing protein 5, also known as comparative gene identification-58, CGI-58) gene suffer from a defect in TAG catabolism that causes neutral lipid storage disease with ichthyosis. In addition, mice with deficiencies in genes involved in TAG catabolism (Abhd5/Cgi-58 knock-out mice) or TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2, Dgat2 knock-out mice) also develop severe skin permeability barrier dysfunctions and die soon after birth due to increased dehydration. As a result of these defects in epidermal TAG metabolism, humans and mice lack ω-(O)-acylceramides, which leads to malformation of the cornified lipid envelope of the skin. In healthy skin, this epidermal structure provides an interface for the linkage of lamellar membranes with corneocyte proteins to maintain permeability barrier homeostasis. This review focuses on recent advances in the understanding of biochemical mechanisms involved in epidermal neutral lipid metabolism and the generation of a functional skin permeability barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Franz P W Radner
- Institute for Human Genetics, University Medical Center Freiburg, Freiburg 79106, Germany.
| | - Judith Fischer
- Institute for Human Genetics, University Medical Center Freiburg, Freiburg 79106, Germany
| |
Collapse
|
35
|
|
36
|
Hyter S, Indra AK. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis. FEBS Lett 2013; 587:529-41. [PMID: 23395795 PMCID: PMC3670764 DOI: 10.1016/j.febslet.2013.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/12/2012] [Accepted: 01/18/2013] [Indexed: 12/19/2022]
Abstract
Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management.
Collapse
Affiliation(s)
- Stephen Hyter
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
- Environmental Health Science Center, Oregon State University, Corvallis, Oregon, USA
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
37
|
Liver X receptor activation inhibits melanogenesis through the acceleration of ERK-mediated MITF degradation. J Invest Dermatol 2012; 133:1063-71. [PMID: 23223141 DOI: 10.1038/jid.2012.409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Liver X receptors (LXRs) are nuclear receptors that act as ligand-activated transcription factors regulating lipid metabolism and inflammation. In the skin, activation of LXRs stimulates differentiation of keratinocytes and augments lipid synthesis in sebocytes. However, the function of LXRs in melanocytes remains largely unknown. We investigated whether LXR activation would affect melanogenesis. In human primary melanocytes, MNT-1, and B16 melanoma cells, TO901317, a synthetic LXR ligand, inhibited melanogenesis. Small interfering RNA (siRNA) experiments revealed the dominant role of LXRβ in TO901317-mediated antimelanogenesis. Enzymatic activities of tyrosinase were unaffected, but the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2 was suppressed by TO901317. Expressions of microphthalmia-associated transcription factor (MITF), a master transcriptional regulator of melanogenesis, and cAMP-responsive element-binding activation were not affected. It is noteworthy that the degradation of MITF was accelerated by TO901317. Extracellular signal-regulated kinase (ERK) contributed to TO901317-induced antimelanogenesis, which was evidenced by recovery of melanogenesis with ERK inhibitor. Other LXR ligands, 22(R)-hydroxycholesterol (22(R)HC) and GW3965, also activated ERK and suppressed melanogenesis. The intermediary role of Ras was confirmed in TO901317-induced ERK phosphorylation. Finally, antimelanogenic effects of TO901317 were confirmed in vivo in UVB-tanning model in brown guinea pigs, providing a previously unreported line of evidence that LXRs may be important targets for antimelanogenesis.
Collapse
|
38
|
Kumar R, Parsad D, Kanwar A, Kaul D. Altered levels of LXR-α: crucial implications in the pathogenesis of vitiligo. Exp Dermatol 2012; 21:853-8. [DOI: 10.1111/exd.12017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2012] [Indexed: 01/13/2023]
Affiliation(s)
- Ravinder Kumar
- Department of Dermatology; Postgraduate Institute of Medical Education and Research; Chandigarh; India
| | - Davinder Parsad
- Department of Dermatology; Postgraduate Institute of Medical Education and Research; Chandigarh; India
| | - Amrinderjit Kanwar
- Department of Dermatology; Postgraduate Institute of Medical Education and Research; Chandigarh; India
| | - Deepak Kaul
- Department of Experimental Medicine and Biotechnology; Postgraduate Institute of Medical Education and Research; Chandigarh; India
| |
Collapse
|
39
|
Chen WC, Zouboulis CC. Hormones and the pilosebaceous unit. DERMATO-ENDOCRINOLOGY 2011; 1:81-6. [PMID: 20224689 DOI: 10.4161/derm.1.2.8354] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 03/09/2009] [Indexed: 01/14/2023]
Abstract
Hormones can exert their actions through endocrine, paracrine, juxtacrine, autocrine and intracrine pathways. The skin, especially the pilosebaceous unit, can be regarded as an endocrine organ meanwhile a target of hormones, because it synthesizes miscellaneous hormones and expresses diverse hormone receptors. Over the past decade, steroid hormones, phospholipid hormones, retinoids and nuclear receptor ligands as well as the so-called stress hormones have been demonstrated to play pivotal roles in controlling the development of pilosebaceous units, lipogenesis of sebaceous glands and hair cycling. Among them, androgen is most extensively studied and of highest clinical significance. Androgen-mediated dermatoses such as acne, androgenetic alopecia and seborrhea are among the most common skin disorders, with most patients exhibiting normal circulating androgen levels. The "cutaneous hyperandrogenism" is caused by in stiu overexpression of the androgenic enzymes and hyperresponsiveness of androgen receptors. Regulation of cutaneous steroidogenesis is analogous to that in gonads and adrenals. More work is needed to explain the regional difference within and between the androgn-mediated dermatoses. The pilosebaceous unit can act as an ideal model for studies in dermato-endocrinology.
Collapse
|
40
|
Makrantonaki E, Ganceviciene R, Zouboulis C. An update on the role of the sebaceous gland in the pathogenesis of acne. DERMATO-ENDOCRINOLOGY 2011; 3:41-9. [PMID: 21519409 DOI: 10.4161/derm.3.1.13900] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/05/2010] [Indexed: 12/21/2022]
Abstract
The pathogenesis of acne, a disease of the pilosebaceous follicle and one of the most common chronic skin disorders, is attributed to multiple factors such as increased sebum production, alteration of the quality of sebum lipids, inflammatory processes, dysregulation of the hormone microenvironment, interaction with neuropeptides, follicular hyperkeratinisation and the proliferation of Propionibacterium acnes within the follicle. In particular, the sebaceous gland plays an exquisite role in the initiation of the disease as it possesses all the enzyme machinery for the production of hormones and cytokines. In addition, in response to the altered tissue environment in the pilosebaceous follicle as well as in answer to emotional fret, stress response system mechanisms with induction of central and local expression of neuropeptides, are also initiated. This review summarises the latest advances in understanding the role of sebaceous gland cells in the pathomechanism of acne.
Collapse
Affiliation(s)
- Evgenia Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology; Dessau Medical Center; Dessau, Germany
| | | | | |
Collapse
|
41
|
Zouboulis CC. Sebaceous gland receptors. DERMATO-ENDOCRINOLOGY 2011; 1:77-80. [PMID: 20224688 DOI: 10.4161/derm.1.2.7804] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/08/2009] [Indexed: 01/26/2023]
Abstract
Receptors are proteins, embedded in a cell or cytoplasmic membrane, to which a mobile signaling molecule may attach. Receptor ligands may be peptides (such as neurotransmitters), hormones, pharmaceutical drugs and/or a toxins, whereas "binding" ordinarily initiates a cellular response. Human sebocytes are biologically and metabolically very active cells and consequently express numerous receptors. Three of four groups of peptide/neurotransmitter receptors, the so-called serpentine receptor group are present (corticotropin-releasing hormone receptors 1 and 2, melanocortin-1 and 5 receptors, mu-opiate receptors, VPAC receptors, cannabinoid receptors 1 and 2, vascular endothelial growth factor receptor and histamine 1 receptor). The single-transmembrane domain receptors are represented by the insulin-like growth factor-I receptor and the third group, which does not possess intrinsic tyrosine kinase activity, by the growth factor receptor. Nuclear receptors expressed in sebocytes are grouped into two major subtypes. From the steroid receptor family, the androgen receptor and the progesterone receptor are expressed. The thyroid receptor family includes the estrogen receptors (alpha and beta isotypes), the retinoic acid receptors (isotypes alpha and gamma) and retinoid X receptors (isotypes alpha, beta, gamma), the vitamin D receptor, the peroxisome proliferator-activated receptors (isotypes alpha, delta and gamma) and the liver X receptors (alpha and beta isotypes). The vanilloid receptor belongs to the transient ion channels and is expressed in differentiating human sebocytes. Further sebocyte receptors, which may influence their function are fibroblast growth factor receptor 2, epidermal growth factor receptor, c-MET, CD14, Toll-like receptor 2, Toll-like receptor 4 and Toll-like receptor 6. Receptor-ligand interactions control sebocyte proliferation, differentiation and lipid synthesis. However, not every ligand that binds to a sebocyte receptor also activates it, such ligands are receptor antagonists and inverse agonists.
Collapse
|
42
|
Radner FP, Grond S, Haemmerle G, Lass A, Zechner R. Fat in the skin: Triacylglycerol metabolism in keratinocytes and its role in the development of neutral lipid storage disease. DERMATO-ENDOCRINOLOGY 2011; 3:77-83. [PMID: 21695016 PMCID: PMC3117006 DOI: 10.4161/derm.3.2.15472] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/11/2022]
Abstract
Keratinocyte differentiation is essential for skin development and the formation of the skin permeability barrier. This process involves an orchestrated remodeling of lipids. The cleavage of precursor lipids from lamellar bodies by β-glucocerebrosidase, sphingomyelinase, phospholipases and sterol sulfatase generates ceramides, non-esterified fatty acids and cholesterol for the lipid-containing extracellular matrix, the lamellar membranes in the stratum corneum. The importance of triacylglycerol (TAG) hydrolysis for the formation of a functional permeability barrier was only recently appreciated. Mice with defects in TAG synthesis (acyl-CoA:diacylglycerol acyltransferase-2-knock-out) or TAG catabolism (comparative gene identification-58, -CGI-58-knock-out) develop severe permeability barrier defects and die soon after birth because of desiccation. In humans, mutations in the CGI-58 gene also cause (non-lethal) neutral lipid storage disease with ichthyosis. As a result of defective TAG synthesis or catabolism, humans and mice lack ω-(O)-acylceramides, which are essential lipid precursors for the formation of the corneocyte lipid envelope. This structure plays an important role in linking the lipid-enriched lamellar membranes to highly cross-linked corneocyte proteins. This review focuses on the current knowledge of biochemical mechanisms that are essential for epidermal neutral lipid metabolism and the formation of a functional skin permeability barrier.
Collapse
Affiliation(s)
- Franz Pw Radner
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | | | | | | | | |
Collapse
|
43
|
“Sebocytes’ makeup” - Novel mechanisms and concepts in the physiology of the human sebaceous glands. Pflugers Arch 2011; 461:593-606. [DOI: 10.1007/s00424-011-0941-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|
44
|
Abstract
The development and function of the sebaceous gland in the fetal and neonatal periods appear to be regulated by maternal androgens and by endogenous steroid synthesis, as well as by other morphogens. The most apparent function of the glands is to excrete sebum. A strong increase in sebum excretion occurs a few hours after birth; this peaks during the first week and slowly subsides thereafter. A new rise takes place at about age 9 years with adrenarche and continues up to age 17 years, when the adult level is reached. The sebaceous gland is a target organ but also an important formation site of hormones, and especially of active androgens. Hormonal activity is based on an hormone (ligand)-receptor interaction, whereas sebocytes express a wide spectrum of hormone receptors. Androgens are well known for their effects on sebum excretion, whereas terminal sebocyte differentiation is assisted by peroxisome proliferator-activated receptor ligands. Estrogens, glucocorticoids, and prolactin also influence sebaceous gland function. In addition, stress-sensing cutaneous signals lead to the production and release of corticotrophin-releasing hormone from dermal nerves and sebocytes with subsequent dose-dependent regulation of sebaceous nonpolar lipids. Among other lipid fractions, sebaceous glands have been shown to synthesize considerable amounts of free fatty acids without exogenous influence. Atopic dermatitis, seborrheic dermatitis, psoriasis and acne vulgaris are some of the disease on which pathogenesis and severity sebaceous lipids may or are surely involved.
Collapse
|
45
|
Abstract
Five main factors play a pivotal role in the pathogenesis of acne: androgen dependence, follicular retention hyperkeratosis, increased sebaceous lipogenesis, increased colonization with P. acnes, and inflammatory events. This paper offers a solution for the pathogenesis of acne and explains all major pathogenic factors at the genomic level by a relative deficiency of the nuclear transcription factor FoxO1. Nuclear FoxO1 suppresses androgen receptor, other important nuclear receptors and key genes of cell proliferation, lipid biosynthesis and inflammatory cytokines. Elevated growth factors during puberty and persistent growth factor signals due to Western life style stimulate the export of FoxO1 out of the nucleus into the cytoplasm via activation of the phos-phoinositide-3-kinase (PI3K)/Akt pathway. By this mechanism, genes and nuclear receptors involved in acne are derepressed leading to increased androgen receptor-mediated signal transduction, increased cell proliferation of androgen-dependent cells, induction of sebaceous lipogenesis and upregulation of Toll-like-receptor-2-dependent inflammatory cytokines. All known acne-inducing factors exert their action by reduction of nuclear FoxO1 levels. In contrast, retinoids, antibiotics and dietary intervention will increase the nuclear content of FoxO1, thereby normalizing increased transcription of genes involved in acne. Various receptor-mediated growth factor signals are integrated at the level of PI3K/Akt activation which finally results in nuclear FoxO1 deficiency.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Enviromental Medicine and Health Theory, University of Osnabrück, Germany.
| |
Collapse
|
46
|
Kumar R, Parsad D, Kaul D, Kanwar A. Liver X receptor expression in human melanocytes, does it have a role in the pathogenesis of vitiligo? Exp Dermatol 2010; 19:62-4. [DOI: 10.1111/j.1600-0625.2009.00940.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Ford CT, Sherratt MJ, Griffiths CEM, Watson REB. Liver X receptor β: maintenance of epidermal expression in intrinsic and extrinsic skin aging. AGE (DORDRECHT, NETHERLANDS) 2009; 31:365-372. [PMID: 19697157 PMCID: PMC2813049 DOI: 10.1007/s11357-009-9111-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 07/27/2009] [Indexed: 05/28/2023]
Abstract
Aging in human skin is the composite of time-dependent intrinsic aging plus photoaging induced by chronic exposure to ultraviolet radiation. Nuclear hormone receptors coordinate diverse processes including metabolic homeostasis. Liver X receptor β (LXRβ) is a close human homologue of daf-12, a regulator of nematode longevity. LXRβ is positively regulated by sirtuin-1 and resveratrol, while LXRβ-null mice show transcriptional profiles similar to those seen in aged human skin. In these studies, we examined LXRβ expression in aged and photoaged human skin. Volunteers were recruited to assess intrinsic aging and photoaging. Epidermal LXRβ mRNA was examined by in situ hybridization while protein was identified by immunofluorescence. No significant changes were observed in either LXRβ mRNA or protein expression between young and aged volunteers (mRNA p = 0.90; protein p = 0.26). Similarly, LXRβ protein expression was unaltered in photoaged skin (p = 0.75). Our data therefore suggest that, while not playing a major role in skin aging, robust cutaneous expression implies a fundamental role for LXRβ in epidermal biology.
Collapse
Affiliation(s)
- Christopher T. Ford
- Dermatological Sciences, The University of Manchester, 1.443 Stopford Building, Oxford Road, Manchester, M13 9PT UK
| | - Michael J. Sherratt
- Tissue Injury and Repair, The University of Manchester, 1.443 Stopford Building, Oxford Road, Manchester, M13 9PT UK
| | - Christopher E. M. Griffiths
- Dermatological Sciences, The University of Manchester, 1.443 Stopford Building, Oxford Road, Manchester, M13 9PT UK
| | - Rachel E. B. Watson
- Dermatological Sciences, The University of Manchester, 1.443 Stopford Building, Oxford Road, Manchester, M13 9PT UK
| |
Collapse
|
48
|
Zouboulis CC. Propionibacterium acnes and sebaceous lipogenesis: a love-hate relationship? J Invest Dermatol 2009; 129:2093-6. [PMID: 19809423 DOI: 10.1038/jid.2009.190] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this issue, Iinuma et al. show that Propionibacterium acnes (P. acnes)-conditioned medium and formalin-killed P. acnes augment intracellular lipid formation in hamster sebocytes by increasing the de novo synthesis of triacylglycerols. This commentary summarizes the current knowledge of the association of P. acnes with sebaceous lipogenesis, inflammation, and innate immunity, and points out the concurrent evidence that P. acnes-induced lipids may represent a recruitment of allies and/or enemies of the human skin.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Dessau, Germany
| |
Collapse
|
49
|
Gupta DS, Kaul D, Kanwar AJ, Parsad D. Psoriasis: crucial role of LXR-α RNomics. Genes Immun 2009; 11:37-44. [DOI: 10.1038/gene.2009.63] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Kurokawa I, Danby FW, Ju Q, Wang X, Xiang LF, Xia L, Chen W, Nagy I, Picardo M, Suh DH, Ganceviciene R, Schagen S, Tsatsou F, Zouboulis CC. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol 2009; 18:821-32. [PMID: 19555434 DOI: 10.1111/j.1600-0625.2009.00890.x] [Citation(s) in RCA: 354] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interest in sebaceous gland physiology and its diseases is rapidly increasing. We provide a summarized update of the current knowledge of the pathobiology of acne vulgaris and new treatment concepts that have emerged in the last 3 years (2005-2008). We have tried to answer questions arising from the exploration of sebaceous gland biology, hormonal factors, hyperkeratinization, role of bacteria, sebum, nutrition, cytokines and toll-like receptors (TLRs). Sebaceous glands play an important role as active participants in the innate immunity of the skin. They produce neuropeptides, excrete antimicrobial peptides and exhibit characteristics of stem cells. Androgens affect sebocytes and infundibular keratinocytes in a complex manner influencing cellular differentiation, proliferation, lipogenesis and comedogenesis. Retention hyperkeratosis in closed comedones and inflammatory papules is attributable to a disorder of terminal keratinocyte differentiation. Propionibacterium acnes, by acting on TLR-2, may stimulate the secretion of cytokines, such as interleukin (IL)-6 and IL-8 by follicular keratinocytes and IL-8 and -12 in macrophages, giving rise to inflammation. Certain P. acnes species may induce an immunological reaction by stimulating the production of sebocyte and keratinocyte antimicrobial peptides, which play an important role in the innate immunity of the follicle. Qualitative changes of sebum lipids induce alteration of keratinocyte differentiation and induce IL-1 secretion, contributing to the development of follicular hyperkeratosis. High glycemic load food and milk may induce increased tissue levels of 5alpha-dihydrotestosterone. These new aspects of acne pathogenesis lead to the considerations of possible customized therapeutic regimens. Current research is expected to lead to innovative treatments in the near future.
Collapse
Affiliation(s)
- Ichiro Kurokawa
- Department of Dermatology, Mie Universtity Graduate School of Medicine, Tsu, Mie, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|