1
|
Duweb A, Schmiech M, Ulrich J, Abdel-Kahaar E, Pfeiffer M, El Gaafary M, Barth H, Simmet T, Syrovets T. Comparative analysis of micellar and native formulations of Boswellia serrata oleogum extracts in T-cell receptor-activated lymphocytes. Biomed Pharmacother 2025; 186:118009. [PMID: 40157006 DOI: 10.1016/j.biopha.2025.118009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Chronic inflammatory disorders represent one of the predominant healthcare burdens. There is evidence that the oleogum resin from Boswellia serrata trees can downmodulate pro-inflammatory processes. Lipid micellar preparations of Boswellia serrata have been introduced to the market to overcome the low bioavailability of nonformulated Boswellia oleogum resin preparations. In this study, we aimed to compare the anti-inflammatory effects of two different Boswellia serrata nutraceuticals: the native, nonformulated Biotikon® BS-85 and the micellar Boswellia-Loges®. We have previously shown that single oral administration of 800 mg of either formulation reduces the release of proinflammatory cytokines TNF-α, IL-1β, and IL-6 by LPS-activated blood of donors. Here we show that under the same conditions, the production of IL-17A was increased by the nonformulated, native extract of Boswellia serrata oleogum resin. In vitro, the nonformulated but not the micellar formulation of Boswellia serrata oleogum resin decreased the release of IFN-γ, TNF-α, and IL-2 by TCR-activated lymphocytes. Both formulations as well as the bioactive principles boswellic acids lowered NF-κB activity in TCR-activated T lymphocytes. Similarly, both Boswellia serrata formulations and boswellic acids reduced NFAT activity in TCR-activated T lymphocytes. The nonformulated Boswellia serrata extract exhibited higher inhibitory activity on the release of T-cell cytokines. The results suggest that nutraceuticals containing the nonformulated oleogum extract of Boswellia serrata might be more effective in hampering chronic inflammatory disorders characterized by increased activity of T cells than the micellar formulations.
Collapse
Affiliation(s)
- Amira Duweb
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany; Department of Pharmacology, Faculty of Medicine, University of Tripoli, Tripoli, Libya.
| | - Michael Schmiech
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Judith Ulrich
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Emaad Abdel-Kahaar
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany; Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maximilian Pfeiffer
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Menna El Gaafary
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Thomas Simmet
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| | - Tatiana Syrovets
- Institute of Experimental and Clinical Pharmacology, Toxicology, and Pharmacology of Natural Products, University of Ulm Medical Center, Ulm, Germany
| |
Collapse
|
2
|
Hussain MS, Bisht AS, Gupta G. Reduced interleukin-2 receptor subunit γ expression in Crohn's disease: A potential mechanism for γδ T cell deficiency. World J Gastroenterol 2025; 31:103180. [PMID: 40248067 PMCID: PMC12001172 DOI: 10.3748/wjg.v31.i13.103180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/26/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disorder characterized by dysregulated immune responses and significant disruption of intestinal immunity. A recent case-control study by Andreu-Ballester et al revealed decreased expression of interleukin (IL)-2 receptor subunit γ (CD132) in CD tissues, a finding that has profound implications for understanding immune dysregulation in CD. CD132, an essential component of the IL-7/IL-2 signaling axis, is critical for γδ T cell survival and function, which are pivotal for maintaining gut integrity and modulating inflammation. Here, we propose that reduced CD132 expression represents a key mechanism underlying γδ T cell deficiencies in CD, contributing to impaired immune surveillance and exacerbated inflammation. This hypothesis integrates emerging evidence from cytokine signaling and immunopathology in CD, offering new insights into its pathogenesis. These findings highlight the therapeutic potential of targeting the IL-7/IL-2 axis to restore immune homeostasis in CD, presenting a novel avenue for future research and intervention.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehra Dun 248007, Uttarākhand, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehra Dun 248001, Uttarākhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Al Jerf 00000, Ajman, United Arab Emirates
| |
Collapse
|
3
|
Calderon-Jofre R, Bernal G, Moraga D, Moraga FA. Interleukins expression by rat Lymphocytes exposed to chronic intermittent normobaric hypoxia. Front Physiol 2025; 16:1520174. [PMID: 40206385 PMCID: PMC11979230 DOI: 10.3389/fphys.2025.1520174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Acute and chronic hypoxia modulate the expression of inflammatory mediators known as cytokines. However, studies in chronic and intermittent hypobaric or normobaric hypoxia, like those described in miner's population, are scarce or absent. In this study, we evaluate the effect of chronic intermittent normobaric hypoxia (CINH) on the hematological response and the expression of lymphocyte cytokines IL-1, IL-2, IL-6, and IL-10 in rats. A total of 20 Sprague-Dawley rats were divided into two groups: a) CINH (FiO2 10%, n = 10) and b) Control (normoxic, n = 10). Systolic arterial pressure and heart rate were measured using a tail-cuff sensor. Blood samples were obtained from both groups for hematological studies, and expression of cytokines obtained from lymphocytes was determined by RT-PCR. Hematocrit, hemoglobin, platelet count, and hematological constant were elevated, and leucocyte count decreased in CINH rats. In addition, systolic arterial pressure in CINH rats was significantly increased (over 50%). Cytokine expression from lymphocytes showed that IL-2, and IL-10 increased by 140% and 38%, respectively; IL-6 showed no significant change, while IL-1β expression decreased by 18%. In this regard, CINH could activate an inflammatory response mediated by IL-2. However, this response could be attenuated by increased IL-10 expression, a known anti-inflammatory cytokine, and decreased IL-1β and IL-6 expression, indicative of an adaptation mechanism to CINH.
Collapse
Affiliation(s)
- Rodrigo Calderon-Jofre
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Giuliano Bernal
- Laboratorio de Biología Molecular y Celular del Cáncer, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Daniel Moraga
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, Chile
| | - Fernando A. Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| |
Collapse
|
4
|
Ye X, Liu R. Exercise-induced cytosolic calcium oscillations: mechanisms and modulation of T-cell function. Biochem Biophys Res Commun 2025; 748:151321. [PMID: 39826528 DOI: 10.1016/j.bbrc.2025.151321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/26/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
This study investigated time-dependent changes in intracellular Ca2⁺ levels in T cells, regulatory mechanisms, and functional effects after acute exercise. Male C57BL/6 mice were assigned to control and exercise groups, with the latter sacrificed at different intervals post-exercise. Murine splenic lymphocytes were isolated, and cytosolic Ca2⁺ levels were measured using Fluo-3/AM. T-cell proliferation was assessed by flow cytometry and CFSE labeling, apoptosis by Annexin V/PI staining, and cytokine levels by CBA. RNA sequencing results were validated by qRT-PCR. The findings revealed that exercise significantly altered intracellular calcium oscillations in CD3+ cells, leading to reduced mitogen-stimulated proliferation, increased IL-6, IL-5, and IL-13 production, and decreased IL-2 secretion. Additionally, there was an increase in the apoptotic fraction of CD3+ cells, with upregulated expression of Cav1.1, Cav3.2, Cav3.3, SERCA2B, PKCθ, Bcl-xL, and FADD, and downregulated Ryr3 (p < 0.05). Transcriptomic analysis identified 607 differentially expressed genes involved in calcium ion binding and related pathways, including calcium signaling and cytokine-cytokine receptor interactions. Thus, acute exercise induces specific calcium oscillation patterns in T cells, mediated by PKCθ, affecting proliferation, apoptosis, and cytokine production. These changes are attributed to increased calcium influx through Cav1.1, Cav3.2, and Cav3.3 channels, decreased calcium reuptake via SERCA2B, and reduced calcium release through Ryr3. This research provides novel insights into how exercise modulates immune cell function by altering calcium levels, potential implications for enhancing immune responses or reducing inflammation.
Collapse
Affiliation(s)
- Xing Ye
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China
| | - Renyi Liu
- School of Physical Education, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
5
|
Peterson IL, Scholpa NE, Bachtle KJ, Frye JB, Loppi SH, Thompson AD, Doyle K, Largent-Milnes TM, Schnellmann RG. Formoterol alters chemokine expression and ameliorates pain behaviors after moderate spinal cord injury in female mice. J Pharmacol Exp Ther 2025; 392:100015. [PMID: 40023611 DOI: 10.1124/jpet.124.002171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Secondary spinal cord injury (SCI) is characterized by increased cytokines and chemokines at the site of injury that have been associated with the development of neuropathic pain. Nearly 80% of SCI patients report suffering from chronic pain, which is poorly managed with available analgesics. While treatment with the US Food and Drug Administration-approved β2-adrenergic receptor agonist formoterol improves various aspects of recovery post-SCI in vivo, its effects on cytokines, chemokines, and neuropathic pain remain unknown. Female mice were subjected to moderate (60 kilodynes [kdyn]) or severe (80 kdyn) SCI followed by daily treatment with vehicle or formoterol (0.3 mg/kg, i.p.) beginning 8 hours after injury. The expression of proinflammatory cytokines/chemokines, such as interferon gamma-induced protein 10, macrophage inflammatory protein 1a, monocyte chemoattractant protein 1, B-cell attracting chemokine 1, and nuclear factor kappa-light-chain-enhancer of activated B-cells, was increased in the injury site of vehicle-treated mice 24 hours post-SCI, which was ameliorated with formoterol treatment, regardless of injury severity. Thermal hyperalgesia and mechanical allodynia, as measured by Hargreaves infrared apparatus and von Frey filaments, respectively, were assessed prior to SCI and then weekly beginning 21 days post-injury (DPI). While all injured mice exhibited decreased withdrawal latency following thermal stimulation compared with baseline, formoterol treatment reduced this response ∼15% by 35 DPI. Vehicle-treated mice displayed significant mechanical allodynia, as evidenced by a 55% decrease in withdrawal threshold from baseline. In contrast, mice treated with formoterol maintained a consistent withdrawal time at all times tested. These data indicate that formoterol reduces inflammation post-SCI, likely contributing to mitigation of neuropathic pain and further supporting the therapeutic potential of this treatment strategy. SIGNIFICANCE STATEMENT: Chronic pain is a detrimental consequence of spinal cord injury (SCI). We show that treatment with the US Food and Drug Administration-approved drug formoterol after SCI decreases injury site proinflammatory chemo-/cytokines and alters markers of glial cell activation and infiltration. Additionally, formoterol treatment improves locomotor function and body composition, and decreases lesion volume. Finally, formoterol treatment decreased mechanical allodynia and thermal hyperalgesia post-SCI. These data are suggestive of the mechanism of formoterol-induced recovery, and further indicate its potential as a therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ingrid L Peterson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; Southern Arizona VA Health Care System, Tucson, Arizona.
| | - Kiara J Bachtle
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Jennifer B Frye
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Sanna H Loppi
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Austin D Thompson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Kristian Doyle
- Southern Arizona VA Health Care System, Tucson, Arizona; Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | | | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona; Southern Arizona VA Health Care System, Tucson, Arizona; Department of Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona; Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona; Center for Innovation in Brain Science, University of Arizona, Tucson, Arizona.
| |
Collapse
|
6
|
Alesi S, Teede H, Moran L, Enticott J, De Silva K, Mousa A. Exploring Causal Associations Between Serum Inflammatory Markers and Female Reproductive Disorders: A Mendelian Randomisation Study. Biomolecules 2024; 14:1544. [PMID: 39766252 PMCID: PMC11674023 DOI: 10.3390/biom14121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Although inflammation may disrupt immunoendocrine crosstalk essential for female reproductive function, causal links to disorders like polycystic ovary syndrome (PCOS) and endometriosis remain unestablished. This study aimed to utilise Mendelian randomisation (MR) methods to explore causal associations between serum inflammatory markers and common reproductive disorders, aiming to identify novel mechanisms and potential avenues for treatment. Total causal effects of serum inflammatory markers (interleukins, monocyte chemoattractant protein-1, etc.) on female reproductive disorders in large sample cohorts of Finnish ancestry were assessed using univariable two-sample MR methods, including the inverse variance weighted (IVW) method as the primary analysis, with relevant quality assessments (e.g., leave-one out, heterogeneity, and horizontal pleiotropy testing). The main outcome measures were PCOS (642 cases and 118,228 controls) and endometriosis (8288 cases and 68,969 controls) from the FINNGEN cohort. Monocyte chemoattractant protein-1/C-C motif chemokine ligand demonstrated a positive causal association with polycystic ovary syndrome (odds ratio [95% CI]: 1.48 [1.10, 2.00], p = 0.0097), while higher interleukin-9 levels were positively associated with endometriosis (1.15 [1.02, 1.30], p = 0.0277), both via the IVW method. These markers should be investigated as key candidates for future research into the mechanistic pathways underpinning these conditions.
Collapse
Affiliation(s)
- Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, VIC 3800, Australia (L.M.)
| | - Helena Teede
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, VIC 3800, Australia (L.M.)
| | - Lisa Moran
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, VIC 3800, Australia (L.M.)
| | - Joanne Enticott
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, VIC 3800, Australia (L.M.)
| | - Kushan De Silva
- Department of Radiation Sciences, Faculty of Medicine, Umeå University, SE-901 87 Umeå, Sweden;
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), Monash University, Clayton, VIC 3800, Australia (L.M.)
| |
Collapse
|
7
|
Abreu H, Lallukka M, Raineri D, Leigheb M, Ronga M, Cappellano G, Spriano S, Chiocchetti A. Evaluation of the immune response of peripheral blood mononuclear cells cultured on Ti6Al4V-ELI polished or etched surfaces. Front Bioeng Biotechnol 2024; 12:1458091. [PMID: 39439551 PMCID: PMC11493608 DOI: 10.3389/fbioe.2024.1458091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION While titanium and its alloys exhibit excellent biocompatibility and corrosion resistance, their polished surfaces can hinder fast and effective osseointegration and other biological processes, such as angiogenesis, due to their inert and hydrophobic properties. Despite being commonly used for orthopedic implants, research focuses on developing surface treatments to improve osseointegration, promoting cell adhesion and proliferation, as well as increasing protein adsorption capacity. This study explores a chemical treatment intended for titanium-based implants that enhances tissue integration without compromising the mechanical properties of the Ti6Al4V substrate. However, recognizing that inflammation contributes to nearly half of early implant failures, we assessed the impact of this treatment on T-cell viability, cytokine production, and phenotype. METHODS Ti6Al4V with extra low interstitial (ELI) content discs were treated with hydrofluoric acid followed by a controlled oxidation step in hydrogen peroxide that creates a complex surface topography with micro- and nano-texture and modifies the chemistry of the surface oxide layer. The acid etched surface contains an abundance of hydroxyl groups, crucial for promoting bone growth and apatite precipitation, while also enabling further functionalization with biomolecules. RESULTS While cell viability remained high in both groups, untreated discs triggered an increase in Th2 cells and a decrease of the Th17 subset. Furthermore, peripheral blood mononuclear cells exposed to untreated discs displayed a rise in various pro-inflammatory and anti-inflammatory cytokines compared to the control and treated groups. Conversely, the treated discs showed a similar profile to the control, both in terms of immune cell subset frequencies and cytokine secretion. DISCUSSION The dysregulation of the cytokine profile upon contact with untreated Ti6Al4V-ELI discs, namely upregulation of IL-2 could be responsible for the decrease in Th17 frequency, and thus might contribute to implant-associated bacterial infection. Interestingly, the chemical treatment restores the immune response to levels comparable to the control condition, suggesting the treatment's potential to mitigate inflammation by enhancing biocompatibility.
Collapse
Affiliation(s)
- Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Mari Lallukka
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Davide Raineri
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Massimiliano Leigheb
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Mario Ronga
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Novara, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| | - Silvia Spriano
- Applied Science and Technology Department, Politecnico di Torino, Torino, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
8
|
Gęgotek A, Moniuszko-Malinowska A, Groth M, Skrzydlewska E. Changes in cerebrospinal fluid proteome of patients with tick-borne encephalitis. J Med Virol 2024; 96:e29763. [PMID: 38949193 DOI: 10.1002/jmv.29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Tick-borne encephalitis (TBE) is one of the main diseases transmitted by ticks, the incidence of which is increasing. Moreover, its diagnosis and therapy are often long and difficult according to nonspecific symptoms and complex etiology. This study aimed to observe changes in the proteome of cerebrospinal fluid from TBE patients. Cerebrospinal fluid (CSF) of TBE patients (n = 20) and healthy individuals (n = 10) was analyzed using a proteomic approach (QExactiveHF-Orbitrap mass spectrometer) and zymography. Obtained results show that in CSF of TBE patients, the top-upregulated proteins are involved in pro-inflammatory reaction (interleukins), as well as antioxidant/protective response (peroxiredoxins, heat shock proteins). Moreover, changes in the proteome of CSF are not only the result of this disease development, but they can also be an indicator of its course. This mainly applies to proteins involved in proteolysis including serpins and metalloproteinases, whose activity is proportional to the length of patients' convalescence. The obtained proteomic data strongly direct attention to the changes caused by the development of TBE to antioxidant, pro-inflammatory, and proteolytic proteins, knowledge about which can significantly contribute to faster and more accurate diagnosis of various clinical forms of TBE.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Ragab AAY, Doyle MF, Chen J, Fang Y, Lunetta KL, Murabito JM. Immune cell phenotypes and mortality in the Framingham Heart Study. Immun Ageing 2024; 21:37. [PMID: 38867269 PMCID: PMC11167945 DOI: 10.1186/s12979-024-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Global life expectancy is rising, with the 60 + age group projected to hit 2 billion by 2050. Aging impacts the immune system. A notable marker of immune system aging is the presence of Aging-Related Immune Cell Phenotypes (ARIPs). Despite their importance, links between immune cell phenotypes including ARIPs and mortality are underexplored. We prospectively investigated 16 different immune cell phenotypes using flow cytometry and IL-6 in relation to survival outcome among dementia-free Framingham Heart Study (FHS) offspring cohort participants who attended the seventh exam (1998-2001). RESULTS Among 996 participants (mean age 62 years, range 40 to 88 years, 52% female), the 19-year survival rate was 65%. Adjusting for age, sex, and cytomegalovirus (CMV) serostatus, higher CD4/CD8 and Tc17/CD8 + Treg ratios were significantly associated with lower all-cause mortality (HR: 0.86 [0.76-0.96], 0.84 [0.74-0.94], respectively), while higher CD8 regulatory cell levels (CD8 + CD25 + FoxP3 +) were associated with increased all-cause mortality risk (HR = 1.17, [1.03-1.32]). Elevated IL-6 levels correlated with higher all-cause, cardiovascular, and non-cardiovascular mortality (HR = 1.43 [1.26-1.62], 1.70 [1.31-2.21], and 1.36 [1.18-1.57], respectively). However, after adjusting for cardiovascular risk factors and prevalent cancer alongside age, sex, and CMV, immune cell phenotypes were no longer associated with mortality in our cohort. Nonetheless, IL-6 remained significantly associated with all-cause and cardiovascular mortality (HRs: 1.3 [1.13-1.49], 1.5 [1.12-1.99], respectively). CONCLUSIONS In 19-year follow-up, higher Tc17/CD8 + Treg and CD4/CD8 ratios were associated with lower all-cause mortality, while the CD8 + CD25 + FoxP3 + (CD8 + Treg) phenotype showed increased risk. Elevated IL-6 levels consistently correlated with amplified mortality risks. These findings highlight the links between immune phenotypes and mortality, suggesting implications for future research and clinical considerations.
Collapse
Affiliation(s)
- Ahmed A Y Ragab
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA.
| | - Margaret F Doyle
- Department of Pathology and Laboratory Medicine, University of Vermont, Larner College of Medicine, Burlington, VT, USA
| | - Jiachen Chen
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Yuan Fang
- Binghamton University, State University of New York, School of Pharmacy and Pharmaceutical Sciences, Binghamton, NY, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Joanne M Murabito
- Framingham Heart Study, National Heart, Lung, and Blood Institute and Boston University Chobanian & Avedisian School of Medicine, Framingham, MA, USA.
- Department of Medicine, Section of General Internal Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA.
| |
Collapse
|
10
|
Gerdle B, Dahlqvist Leinhard O, Lund E, Lundberg P, Forsgren MF, Ghafouri B. Pain and the biochemistry of fibromyalgia: patterns of peripheral cytokines and chemokines contribute to the differentiation between fibromyalgia and controls and are associated with pain, fat infiltration and content. FRONTIERS IN PAIN RESEARCH 2024; 5:1288024. [PMID: 38304854 PMCID: PMC10830731 DOI: 10.3389/fpain.2024.1288024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives This explorative study analyses interrelationships between peripheral compounds in saliva, plasma, and muscles together with body composition variables in healthy subjects and in fibromyalgia patients (FM). There is a need to better understand the extent cytokines and chemokines are associated with body composition and which cytokines and chemokines differentiate FM from healthy controls. Methods Here, 32 female FM patients and 30 age-matched female healthy controls underwent a clinical examination that included blood sample, saliva samples, and pain threshold tests. In addition, the subjects completed a health questionnaire. From these blood and saliva samples, a panel of 68 mainly cytokines and chemokines were determined. Microdialysis of trapezius and erector spinae muscles, phosphorus-31 magnetic resonance spectroscopy of erector spinae muscle, and whole-body magnetic resonance imaging for determination of body composition (BC)-i.e., muscle volume, fat content and infiltration-were also performed. Results After standardizing BC measurements to remove the confounding effect of Body Mass Index, fat infiltration and content are generally increased, and fat-free muscle volume is decreased in FM. Mainly saliva proteins differentiated FM from controls. When including all investigated compounds and BC variables, fat infiltration and content variables were most important, followed by muscle compounds and cytokines and chemokines from saliva and plasma. Various plasma proteins correlated positively with pain intensity in FM and negatively with pain thresholds in all subjects taken together. A mix of increased plasma cytokines and chemokines correlated with an index covering fat infiltration and content in different tissues. When muscle compounds were included in the analysis, several of these were identified as the most important regressors, although many plasma and saliva proteins remained significant. Discussion Peripheral factors were important for group differentiation between FM and controls. In saliva (but not plasma), cytokines and chemokines were significantly associated with group membership as saliva compounds were increased in FM. The importance of peripheral factors for group differentiation increased when muscle compounds and body composition variables were also included. Plasma proteins were important for pain intensity and sensitivity. Cytokines and chemokines mainly from plasma were also significantly and positively associated with a fat infiltration and content index. Conclusion Our findings of associations between cytokines and chemokines and fat infiltration and content in different tissues confirm that inflammation and immune factors are secreted from adipose tissue. FM is clearly characterized by complex interactions between peripheral tissues and the peripheral and central nervous systems, including nociceptive, immune, and neuroendocrine processes.
Collapse
Affiliation(s)
- Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Eva Lund
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Department of Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Mikael Fredrik Forsgren
- Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden
- Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Ragab AAY, Doyle MF, Chen J, Fang Y, Lunetta KL, Murabito JM. Aging-Related Immune Cell Phenotypes and Mortality in the Framingham Heart Study. RESEARCH SQUARE 2023:rs.3.rs-3773986. [PMID: 38234796 PMCID: PMC10793514 DOI: 10.21203/rs.3.rs-3773986/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Background The global increase in human life expectancy is evident. The total number of individuals aged 60 or above is anticipated to reach 2 billion by 2050. Aging, an inherently complex process, manifests prominently in the changes observed in the immune system. A notable marker of immune system aging is the presence of Aging-Related Immune Cell Phenotypes (ARIPs). Despite their significance, the connections between various ARIPs and mortality have not been thoroughly investigated. We prospectively investigated 16 different ARIPs using flow cytometry, namely, CD4/CD8 ratio, Granzyme B + CD8/Granyzme B + CD4, TN/TM = Tn / (Teff + Tem + Tcm) for TN/TM CD4 + and TN/TM CD8 + ratios, Th17/CD4 + Treg, Tc17/CD8 + Treg, Th17, Tc17, CD4 + Temra, CD8 + Temra, CD4 + CD25 + FoxP3+ (CD4 + Treg), CD8 + CD25 + FoxP3+ (CD8 + Treg) CD4 + CD27-, CD4 + CD28-CD27-, CD8 + CD27-, CD8 + CD28-CD27- and IL-6 in relation to survival outcome among dementia-free Framingham Heart Study (FHS) offspring cohort participants who attended the seventh exam (1998-2001). Results Among 996 participants (mean age 62 years, range 40 to 88 years, 52% female), the survival rate was 65% during 19 years of follow-up. For the model adjusting for age, sex, and cytomegalovirus (CMV) serostatus, higher CD4/CD8 and Tc17/CD8 + Treg ratios were significantly associated with lower all-cause mortality (HR:0.86 [0.76-0.96], 0.84 [0.74-0.94], respectively) and higher CD8 regulatory cell levels (CD8 + CD25 + FoxP3+) were associated with higher all-cause mortality (HR = 1.17, [1.03-1.32]). Higher IL-6 levels were associated with higher all-cause, cardiovascular, and non-cardiovascular mortality (HR = 1.43 [1.26-1.62], 1.70 [1.31-2.21], and 1.36 [1.18-1.57], respectively).
Collapse
Affiliation(s)
| | | | | | - Yuan Fang
- Binghamton University, State University of New York
| | | | | |
Collapse
|
12
|
Peng C, Zhang Y, Chen L, Li Z, Lv P, Wang P, Li N, Wang F. Bacillus subtilis expressing duck Tembusu virus E protein induces immune protection in ducklings. Microb Pathog 2023; 185:106419. [PMID: 37866549 DOI: 10.1016/j.micpath.2023.106419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
Duck Tembusu virus (DTMUV) is an infectious disease that emerged in China in 2010. It has caused serious economic losses to the poultry industry and may pose a threat to public health. We aimed to develop a new Bacillus subtilis (B. subtilis)-based oral vaccine to control DTMUV transmission among poultry; to this end, we constructed a B. subtilis strain that can secrete DTMUV E protein. Ducklings were orally immunized, and serum antibodies, mucosal antibodies, and splenic cytokines were detected. The results showed that, in addition to high levels of specific IgG, there were also high levels of specific secretory immunoglobulin A (sIgA) in ducklings orally treated with recombinant B. subtilis. In addition, the levels of IFN-γ, IL-2, IL-4, and IL-10 in spleens were significantly boosted by recombinant B. subtilis. Recombinant B. subtilis could effectively enhance ducklings resistance to DTMUV and significantly reduce viral load (p<0.01), along with pathological damage in the brain, heart, and spleen. This is the first study to apply a B. subtilis live-vector vaccine platform for DTMUV disease prevention and control, and our results suggest that B. subtilis expressing DTMUV E protein may be a candidate vaccine against DTMUV.
Collapse
Affiliation(s)
- Chong Peng
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Yuxuan Zhang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Lijun Chen
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Zixuan Li
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Penghao Lv
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Peng Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China
| | - Fangkun Wang
- Department of Veterinary Public Health, College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong Province, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian City, Shandong Province, China.
| |
Collapse
|
13
|
Bishehsari F, Drees M, Adnan D, Sharma D, Green S, Koshy J, Giron LB, Goldman A, Abdel-Mohsen M, Rasmussen HE, Miller GE, Keshavarzian A. Multi-omics approach to socioeconomic disparity in metabolic syndrome reveals roles of diet and microbiome. Proteomics 2023; 23:e2300023. [PMID: 37525324 DOI: 10.1002/pmic.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023]
Abstract
The epidemy of metabolic syndrome (MetS) is typically preceded by adoption of a "risky" lifestyle (e.g., dietary habit) among populations. Evidence shows that those with low socioeconomic status (SES) are at an increased risk for MetS. To investigate this, we recruited 123 obese subjects (body mass index [BMI] ≥ 30) from Chicago. Multi-omic data were collected to interrogate fecal microbiota, systemic markers of inflammation and immune activation, plasma metabolites, and plasma glycans. Intestinal permeability was measured using the sugar permeability testing. Our results suggest a heterogenous metabolic dysregulation among obese populations who are at risk of MetS. Systemic inflammation, linked to poor diet, intestinal microbiome dysbiosis, and gut barrier dysfunction may explain the development of MetS in these individuals. Our analysis revealed 37 key features associated with increased numbers of MetS features. These features were used to construct a composite metabolic-inflammatory (MI) score that was able to predict progression of MetS among at-risk individuals. The MI score was correlated with several markers of poor diet quality as well as lower levels of gut microbial diversity and abnormalities in several species of bacteria. This study reveals novel targets to reduce the burden of MetS and suggests access to healthy food options as a practical intervention.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Michael Drees
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Darbaz Adnan
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| | - Jane Koshy
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Leila B Giron
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Aaron Goldman
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | - Gregory E Miller
- Institute for Policy Research and Dept of Psychology, Northwestern Univ, Evanston, Illinois, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
14
|
Allers K, Moos V, Hofmann J, Witkowski M, Haibel H, Angermair S, Schneider T. Cytolytic CD8 + T cell response to SARS-CoV-2 and non-SARS-CoV-2-related viruses is associated with severe manifestation of COVID-19. Clin Immunol 2023; 254:109712. [PMID: 37506745 DOI: 10.1016/j.clim.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Little is known about the CD8+ T cell functionality in the coronavirus disease 2019 (COVID-19). Therefore, we examined twenty-five hospitalized COVID-19 patients with moderate (MD) or severe disease (SD) as well as seventeen SARS-CoV-2-unexposed persons regarding the cytolytic and cytokine-producing reactivity of their CD8+ T cells. Reactive CD8+ T cells were detectable in 90% of the unexposed persons, confirming high cross-reactive immune memory in the general population. Compared to unexposed persons and MD patients, SD patients had higher numbers of SARS-CoV-2 reactive CD8+ T cells with cytolytic function that can simultaneously produce inflammatory cytokines. In addition, SD patients showed higher CD8+ T cell reactivity against non-SARS-CoV-2-related viruses, which was mainly mediated by cytolytic response. Sequence alignments showed that cross-reactivities with the Spike protein could contribute to the expansion of such cells. Since insufficiently regulated cytolytic CD8+ T cells can damage peripheral and vascular tissue structures, high levels of both SARS-CoV-2-reactive and heterologously activated cytolytic CD8+ T cells could favor severe disease progression.
Collapse
Affiliation(s)
- Kristina Allers
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Verena Moos
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jörg Hofmann
- Labor Berlin - Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Stefan Angermair
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Thomas Schneider
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
15
|
Xue RY, Liu C, Wang JQ, Deng Y, Feng R, Li GC, Liu JY, Cheng H, Shan Zhang S, Duan H, Jin Z, Zou QM, Li HB. Synthetic Self-Adjuvanted Lipopeptide Vaccines Conferred Protection against Helicobacter pylori Infection. Adv Healthc Mater 2023; 12:e2300085. [PMID: 37171889 DOI: 10.1002/adhm.202300085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Indexed: 05/14/2023]
Abstract
Helicobacter pylori (H. pylori) colonizes the stomach epithelium of half the world's population and is responsible for various digestive diseases and even stomach cancer. Vaccine-mediated protection against H. pylori infection depends primarily on the specific mucosal and T-cell responses. In this study, the synthetic lipopeptide vaccines, Hp4 (Pam2 Cys modified UreB T-cell epitope) and Hp10 (Pam2 Cys modified CagA T/B cell combined epitope), not only induce the bone marrow derived dendritic cells (BMDCs) maturation by activating a variety of pattern-recognition receptors (PRRs) such as Toll-like receptor (TLR), Nod-like receptor (NLR), and retinoic acid-inducing gene (RIG) I-like receptor (RLR), and but also stimulate BMDCs to secret cytokines that have the potential to modulate T-cell activation and differentiation. Although intranasal immunization with Hp4 or Hp10 elicits robust epitope-specific T-cell responses in mice, only Hp10 confers protection against H. pylori infection, possibly due to the fact that Hp10 also induces substantial specific sIgA response at mucosal sites. Interestingly, Hp4 elevates the protective response against H. pylori infection of Hp10 when administrated in combination, characterized by better protective effect and enhanced specific T-cell and mucosal antibody responses. The results suggest that synthetic lipopeptide vaccines based on the epitopes derived from the protective antigens are promising candidates for protection against H. pylori infection.
Collapse
Affiliation(s)
- Ruo-Yi Xue
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Chang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jia-Qi Wang
- Laboratory of Stem Cell and Developmental Biology, Department of Histology and Embryology, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yan Deng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Rang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Guo-Cheng Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jing-Yi Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hao Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Shan- Shan Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hao Duan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Zhe Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|
16
|
Ahmad A, Khan P, Rehman AU, Batra SK, Nasser MW. Immunotherapy: an emerging modality to checkmate brain metastasis. Mol Cancer 2023; 22:111. [PMID: 37454123 PMCID: PMC10349473 DOI: 10.1186/s12943-023-01818-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
The diagnosis of brain metastasis (BrM) has historically been a dooming diagnosis that is nothing less than a death sentence, with few treatment options for palliation or prolonging life. Among the few treatment options available, brain radiotherapy (RT) and surgical resection have been the backbone of therapy. Within the past couple of years, immunotherapy (IT), alone and in combination with traditional treatments, has emerged as a reckoning force to combat the spread of BrM and shrink tumor burden. This review compiles recent reports describing the potential role of IT in the treatment of BrM in various cancers. It also examines the impact of the tumor microenvironment of BrM on regulating the spread of cancer and the role IT can play in mitigating that spread. Lastly, this review also focuses on the future of IT and new clinical trials pushing the boundaries of IT in BrM.
Collapse
Affiliation(s)
- Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA.
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
17
|
Chrun T, Maze EA, Roper KJ, Vatzia E, Paudyal B, McNee A, Martini V, Manjegowda T, Freimanis G, Silesian A, Polo N, Clark B, Besell E, Booth G, Carr BV, Edmans M, Nunez A, Koonpaew S, Wanasen N, Graham SP, Tchilian E. Simultaneous co-infection with swine influenza A and porcine reproductive and respiratory syndrome viruses potentiates adaptive immune responses. Front Immunol 2023; 14:1192604. [PMID: 37287962 PMCID: PMC10242126 DOI: 10.3389/fimmu.2023.1192604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Porcine respiratory disease is multifactorial and most commonly involves pathogen co-infections. Major contributors include swine influenza A (swIAV) and porcine reproductive and respiratory syndrome (PRRSV) viruses. Experimental co-infection studies with these two viruses have shown that clinical outcomes can be exacerbated, but how innate and adaptive immune responses contribute to pathogenesis and pathogen control has not been thoroughly evaluated. We investigated immune responses following experimental simultaneous co-infection of pigs with swIAV H3N2 and PRRSV-2. Our results indicated that clinical disease was not significantly exacerbated, and swIAV H3N2 viral load was reduced in the lung of the co-infected animals. PRRSV-2/swIAV H3N2 co-infection did not impair the development of virus-specific adaptive immune responses. swIAV H3N2-specific IgG serum titers and PRRSV-2-specific CD8β+ T-cell responses in blood were enhanced. Higher proportions of polyfunctional CD8β+ T-cell subset in both blood and lung washes were found in PRRSV-2/swIAV H3N2 co-infected animals compared to the single-infected groups. Our findings provide evidence that systemic and local host immune responses are not negatively affected by simultaneous swIAV H3N2/PRRSV-2 co-infection, raising questions as to the mechanisms involved in disease modulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam McNee
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Noemi Polo
- The Pirbright Institute, Woking, United Kingdom
| | - Becky Clark
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | - Alejandro Nunez
- Pathology and Animal Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Nanchaya Wanasen
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | | | | |
Collapse
|
18
|
Beldowska A, Barszcz M, Dunislawska A. State of the art in research on the gut-liver and gut-brain axis in poultry. J Anim Sci Biotechnol 2023; 14:37. [PMID: 37038205 PMCID: PMC10088153 DOI: 10.1186/s40104-023-00853-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/12/2023] [Indexed: 04/12/2023] Open
Abstract
The relationship between the intestines and their microbiota, the liver, and the neuronal system is called the gut-liver-brain axis. This relationship has been studied and observed for a relatively short time but is considered in the development of research focused on, e.g., liver diseases and intestinal dysbiosis. The role of the gut microbiota in this relationship is crucial, as it acts on poultry's performance and feed utilization, affecting meat and egg quality. The correct composition of the intestinal microbiota makes it possible to determine the essential metabolic pathways and biological processes of the individual components of the microbiota, allowing further speculation of the role of microbial populations on internal organs such as the liver and brain in the organism. The gut microbiota forms a complex, dense axis with the autonomic and enteric nervous systems. The symbiotic relationship between the liver and gut microbiota is based on immune, metabolic and neuroendocrine regulation, and stabilization. On the other hand, the gut-brain axis is a bidirectional interaction and information transfer system between the gastrointestinal tract and the central nervous system. The following paper will discuss the current state of knowledge of the gut-liver-brain axis of poultry, including factors that may affect this complex relationship.
Collapse
Affiliation(s)
- Aleksandra Beldowska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics, Bydgoszcz University of Science and Technology, Mazowiecka 28, Bydgoszcz, 85-084, Poland.
| |
Collapse
|
19
|
The Effect of Combined Treatment of Psilocybin and Eugenol on Lipopolysaccharide-Induced Brain Inflammation in Mice. Molecules 2023; 28:molecules28062624. [PMID: 36985596 PMCID: PMC10056123 DOI: 10.3390/molecules28062624] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Inflammation is an organism’s biological defense mechanism. Acute and chronic inflammation of the body triggers the production of pro- and anti-inflammatory pathways that can affect the content of cytokines in the brain and thus cause brain inflammation. Disorders such as depression and posttraumatic stress disorder (PTSD) are often associated with elevated inflammation. Recently, positive and promising clinical results of psilocybin for the treatment of depression and PTSD were reported. Thus, we decided to test whether psilocybin alone or in combination with eugenol, an anti-inflammatory and antioxidant agent, would prevent the increase in or decrease the content of cytokines in the brain of C57BL/6J mice injected with lipopolysaccharides (LPS). Two experiments were performed, one with pre-treatment of mice through gavage with psilocybin (0.88 mg/kg), eugenol (17.6 mg/kg), or combinations of psilocybin and eugenol (1:10, 1:20, or 1:50), followed by intraperitoneal injection of LPS, and the second, post-treatment, with initial injection with LPS, followed by treatment with psilocybin, eugenol, or their combination. Brain tissues were collected, and cytokines were analyzed by qRT-PCR, Western blot, and ELISA. Data were analyzed with a one-way ANOVA followed by Tukey’s post hoc test or with multiple unpaired t-tests. LPS upregulated mRNA expression of COX-2, TNF-α, IL-1β, and IL-6. All pre-treatments decreased the expression of COX-2 and TNF-α, with psilocybin alone and in 1:50 combination, with eugenol being the most effective. In the post-treatment, all combinations of psilocybin and eugenol were effective in reducing inflammation, with the 1:50 ratio displaying the most prominent results in reducing the mRNA content of tested cytokines. Western blot analysis confirmed the effect on COX-2 and IL-1β proteins. Finally, the ELISA showed that post-treatment with psilocybin + eugenol (1:50) demonstrated the best results, decreasing the expression of multiple markers including IL-6 and IL-8. This demonstrates the anti-inflammatory effects of a combination of psilocybin and eugenol in the brain of animals with systemically induced inflammation.
Collapse
|
20
|
Qian Y, Shi C, Cheng C, Liao D, Liu J, Chen GT. Ginger polysaccharide UGP1 suppressed human colon cancer growth via p53, Bax/Bcl-2, caspase-3 pathways and immunomodulation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Liang Y, Li X, Yang Y, Xiao L, Liang Y, Mi J, Xue Y, Gong W, Wang L, Wang J, Zhang J, Shi Y, Peng B, Chen X, Zhao W, Wu X. Preventive effects of Mycobacterium tuberculosis DNA vaccines on the mouse model with latent tuberculosis infection. Front Immunol 2023; 14:1110843. [PMID: 36860878 PMCID: PMC9968874 DOI: 10.3389/fimmu.2023.1110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Background About a quarter of the world's population with latent tuberculosis infection (LTBI) are the main source of active tuberculosis. Bacillus Calmette Guerin (BCG) cannot effectively control LTBI individuals from developing diseases. Latency-related antigens can induce T lymphocytes of LTBI individuals to produce higher IFN-γ levels than tuberculosis patients and normal subjects. Herein, we firstly compared the effects of M. tuberculosis (MTB) ag85ab and 7 latent DNA vaccines on clearing latent MTB and preventing its activation in the mouse LTBI model. Methods A mouse LTBI model was established, and then immunized respectively with PBS, pVAX1 vector, Vaccae vaccine, ag85ab DNA and 7 kinds of latent DNAs (including rv1733c, rv2660c, rv1813c, rv2029c, rv2628, rv2659c and rv3407) for three times. The mice with LTBI were injected with hydroprednisone to activate the latent MTB. Then, the mice were sacrificed for the bacterial count, histopathological examination, and immunological evaluation. Results Using chemotherapy made the MTB latent in the infected mice, and then using hormone treatment reactivated the latent MTB, indicating that the mouse LTBI model was successfully established. After the mouse LTBI model was immunized with the vaccines, the lung colony-forming units (CFUs) and lesion degree of mice in all vaccines group were significantly decreased than those in the PBS group and vector group (P<0.0001, P<0.05). These vaccines could induce antigen-specific cellular immune responses. The number of IFN-γ effector T cells spots secreted by spleen lymphocytes in the ag85ab DNA group was significantly increased than those in the control groups (P<0.05). In the splenocyte culture supernatant, IFN-γ and IL-2 levels in the ag85ab, rv2029c, and rv2659c DNA groups significantly increased (P<0.05), and IL-17A levels in ag85ab and rv2659c DNA groups also significantly increased (P<0.05). Compared with the PBS and vector groups, the proportion of CD4+CD25+FOXP3+ regulatory T cells in spleen lymphocytes of ag85ab, rv2660c, rv2029c, and rv3407 DNA groups were significantly reduced (P<0.05). Conclusions MTB ag85ab and 7 kinds of latent DNA vaccines showed immune preventive efficacies on a mouse model of LTBI, especially the rv2659c, and rv1733c DNA. Our findings will provide candidates for the development of new multi-stage vaccines against TB.
Collapse
Affiliation(s)
- Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoping Li
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China,Department of Respiration, Hengdong People’s Hospital, Hengyang, China
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Department of Respiration, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yumei Liang
- Department of Pathology, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Junxian Zhang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yingchang Shi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Bizhen Peng
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyang Chen
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Weiguo Zhao
- Department of Respiration, the Eighth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Weiguo Zhao, ; Xueqiong Wu,
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, the Eighth Medical Center of PLA General Hospital, Beijing, China,*Correspondence: Weiguo Zhao, ; Xueqiong Wu,
| |
Collapse
|
22
|
Soflaei SS, Saberi-Karimian M, Baktashian M, Tajfard M, Alimi H, Tayefi M, Moohebati M, Ebrahimi M, Kosari N, Dehghani M, Esmaily H, Hashemi SM, Ferns GA, Salehi M, Pasdar A, Ghayour-Mobarhan M. Investigating the inflammatory status in the patients candidate for second angiography after coronary stent implantation. Acta Cardiol 2023; 78:80-85. [PMID: 35946611 DOI: 10.1080/00015385.2022.2040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Inflammation has been shown to be an important feature of atherosclerosis. We aimed to assess a profile of inflammatory cytokines and growth factors in patients with established coronary artery disease (CAD), 12 months after stent implantation. METHODS A total of 193 patients with CAD, who were candidates for angiography, 12 months after stent implantation (cases), were compared with 107 patients with CAD, who were candidates for their first angiography (controls). Fasting blood glucose (FBG), triglycerides (TGs), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and high-sensitive C-reactive protein (hs-CRP) were measured using routine methods. The serum concentrations of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, TNF-α, IFN-γ, MCP-1, EGF and VEGF were determined using competitive chemiluminescence immunoassays. RESULTS Serum levels of FBG (p = .002), TG (p = .029) and hs-CRP (p = .005) were significantly lower in cases than controls. The cytokines and growth factor profiles in cases were significantly different from controls. After multivariate analysis, serum levels of IL-2 (p < .001), IL-4 (p = .028) were significantly lower in cases compared with the controls while serum levels of IL-8, TNF-α, MCP-1, EGF and VEGF were significantly higher in the cases (p < .001). CONCLUSIONS In patients with CAD and higher consumption of drug used (statins, aspirin and glucose lowering agents) to mitigate the risk of a secondary event, the level of hs-CRP one year after stent implantation decreased despite of significant higher serum levels of pro- and anti-inflammatory cytokines and growth factors.
Collapse
Affiliation(s)
- Sara Saffar Soflaei
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Baktashian
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Tajfard
- Department of Health Education and Health Promotion, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran.,Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedieh Alimi
- Vascular and Endovascular Surgery Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Moohebati
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ebrahimi
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Kosari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mashallah Dehghani
- Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibollah Esmaily
- Department of Biostatistics and Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Hashemi
- Department of Cardiology, Chamran Hospital, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gordon A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Mansoor Salehi
- Department of Genetics, Faculty of Medicine and Genetics Laboratory AL Zahra Hospital, Isfahan University of Medicine, Isfahan, Iran
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Applied Medicine, Medical School, University of Aberdeen, Aberdeen, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cardiovascular Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Okeke CO, Amilo GI, Manafa PO, Ibeh NC. Inflammation-mediated changes in haemostatic variables of pulmonary tuberculosis patients during treatment. Tuberculosis (Edinb) 2023; 138:102285. [PMID: 36436460 DOI: 10.1016/j.tube.2022.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Tuberculosis (TB) disease is usually marked by inflammation which is closely linked to haemostasis both in health and disease. Close monitoring of haemostatic response to inflammatory changes during treatment is important to improve TB management. Here we studied associations between haemostatic markers and inflammatory cytokines in 60 TB-infected individuals, aged 18-65 years who received anti-TB therapy. They were recruited before commencement of therapy and followed up till completion of therapy after 6-months. The TNF-α, IL-6, IL-2 (pro-inflammatory cytokines) and P-selectin, GP IIb/IIIa, thrombopoietin (haemostatic variables) were significantly increased at 2 month into therapy compared to pre-treatment values and decreased at 6 month into therapy. Also at 6 month into therapy in comparison to 2-month into therapy, there were significant increase in IL-10 and TGF-β (anti-inflammatory cytokines) as well as a significant decline in PF-4. There were significant positive correlations between GP IIb/IIIa and TNF-α, IL-6 and PSEL, IL-6 and TPO, PF4 and TGF-β. Conclusively, the changes in the TNF-α, IL-6, IL-2 aligned with changes in the levels of P-selectin, GP IIb/IIIa, and TPO in the course of TB therapy. This may suggest that the levels of inflammatory cytokines are linked to the levels of these haemostatic variables in TB individuals.
Collapse
Affiliation(s)
- C O Okeke
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria.
| | - G I Amilo
- Department of Haematology, Faculty of Medicine, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| | - P O Manafa
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| | - N C Ibeh
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi Campus P.M.B. 5001, Anambra State, Nigeria
| |
Collapse
|
24
|
Khan MM, Mortuza A, Ibrahim M, Mustafa A. Assessment of the role of anthocyanin standardized elderberry (Sambucus nigra) extract as an immune-stimulating nutraceutical of Nile tilapia, Oreochromis niloticus. PLoS One 2022; 17:e0279471. [PMID: 36584192 PMCID: PMC9803303 DOI: 10.1371/journal.pone.0279471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
The study of nutraceuticals and their connection to immunity is an expanding field of research. The use of nutraceuticals to alleviate stress and enhance immunity in adverse aquaculture environments have been examined to a certain extent. To elucidate the understanding, we focused on the immunological effect of membrane-separated 13% anthocyanin standardized elderberry (EB) extract with maltodextrin excipient, widely used first-line nutraceuticals to augment the immunity, in aquaculture fish, Nile tilapia. To evaluate the potential of EB-extract, we assessed their capability to enhance lymphocyte proliferation and interleukin-2 production in an in-vitro condition using spleen and thymus lymphocytes. The experiments on spleen and thymus T-cells demonstrated significantly higher T-cell proliferation by EB-extract when lectin mitogen Con A was present as a stimulator. Likewise, our spleen B-cell proliferation result reveals a significant effect of EB-extracts, along with B-cell stimulator non-lectin mitogen LPS. Further, the quantification of IL-2 indicates elevated IL-2 levels when spleen T-cells were cultured with EB-extracts and with Con A present as a stimulator. These suggest that 13% anthocyanin standardized EB-extracts can aggrandize fish cells' cellular and humoral immune responses. With further research, elderberry extracts could be used to supplement commercial feed in aquaculture to reduce stress and stimulate the immune response.
Collapse
Affiliation(s)
- Md Mursalin Khan
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Asif Mortuza
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Md Ibrahim
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Ahmed Mustafa
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
- * E-mail:
| |
Collapse
|
25
|
El-Banna AA, Darwish RS, Ghareeb DA, Yassin AM, Abdulmalek SA, Dawood HM. Metabolic profiling of Lantana camara L. using UPLC-MS/MS and revealing its inflammation-related targets using network pharmacology-based and molecular docking analyses. Sci Rep 2022; 12:14828. [PMID: 36050423 PMCID: PMC9436993 DOI: 10.1038/s41598-022-19137-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Lantana camara L. is widely used in folk medicine for alleviation of inflammatory disorders, but studies that proved this folk use and that revealed the molecular mechanism of action in inflammation mitigation are not enough. Therefore, this study aimed to identify L. camara phytoconstituents using UPLC-MS/MS and explain their multi-level mechanism of action in inflammation alleviation using network pharmacology analysis together with molecular docking and in vitro testing. Fifty-seven phytoconstituents were identified in L. camara extract, from which the top hit compounds related to inflammation were ferulic acid, catechin gallate, myricetin and iso-ferulic acid. Whereas the most enriched inflammation related genes were PRKCA, RELA, IL2, MAPK 14 and FOS. Furthermore, the most enriched inflammation-related pathways were PI3K-Akt and MAPK signaling pathways. Molecular docking revealed that catechin gallate possessed the lowest binding energy against PRKCA, RELA and IL2, while myricetin had the most stabilized interaction against MAPK14 and FOS. In vitro cytotoxicity and anti-inflammatory testing indicated that L. camara extract is safer than piroxicam and has a strong anti-inflammatory activity comparable to it. This study is a first step in proving the folk uses of L. camara in palliating inflammatory ailments and institutes the groundwork for future clinical studies.
Collapse
Affiliation(s)
- Alaa A El-Banna
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdelrahman M Yassin
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt
| | - Shaymaa A Abdulmalek
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications, New Borg El Arab, Alexandria, Egypt.,Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
26
|
Peng J, Zhang K, Wang L, Peng F, Zhang C, Long K, Chen J, Zhou X, Gao P, Fan G. Integrating network pharmacology and molecular docking to explore the potential mechanism of Xinguan No. 3 in the treatment of COVID-19. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Xinguan No. 3 has been recommended for the treatment of coronavirus disease 2019 (COVID-19); however, its potential mechanisms are unclear. This study aims to explore the mechanisms of Xinguan No. 3 against COVID-19 through network pharmacology and molecular docking. We first searched the ingredients of Xinguan No. 3 in three databases (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Traditional Chinese Medicines Integrated Database, and The Encyclopedia of Traditional Chinese Medicine). The active components and their potential targets were predicted through the SwissTargetPrediction website. The targets of COVID-19 can be found on the GeneCards website. Protein interaction analysis, screening of key targets, functional enrichment of key target genes, and signaling pathway analysis were performed through Search Tool for the Retrieval of Interacting Genes databases, Metascape databases, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases. Finally, the affinity of the key active components with the core targets was verified by molecular docking. The results showed that five core targets had been screened, including MAPK1, NF-κB1, RELA, AKT1, and MAPK14. Gene ontology enrichment analysis revealed that the key targets were associated with inflammatory responses and responses to external stimuli. KEGG enrichment analysis indicated that the main pathways were influenza A, hepatitis B, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and TNF signaling pathway. Therefore, Xinguan No. 3 might play a role in treating COVID-19 through anti-inflammatory, immune responses, and regulatory responses to external stimuli.
Collapse
Affiliation(s)
- Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Chuantao Zhang
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| |
Collapse
|
27
|
Dworzański W, Cholewińska E, Fotschki B, Juśkiewicz J, Ognik K. Oxidative, epigenetic changes and fermentation processes in the intestine of rats fed high-fat diets supplemented with various chromium forms. Sci Rep 2022; 12:9817. [PMID: 35701510 PMCID: PMC9198011 DOI: 10.1038/s41598-022-13328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of the study was to determine how feeding rats a high-fat diet (F) supplemented with various forms of chromium affects the responses of the immune and redox systems, as well as epigenetic changes in the ileal tissue and the course of fermentation processes in the caecum. The rats received a pharmacologically relevant dose 0.3 mg Cr/kg body weight in form of chromium(III) picolinate (Cr-Pic), chromium (III)-methionine (Cr-Met), or chromium nanoparticles (Cr-NPs). The F increased DNA oxidation and raised the level of interleukin IL-6. The F was shown to reduce the intensity of fermentation processes in the caecum while increasing the activity of potentially harmful enzymes in the faeces. The addition of Cr in the form of Cr-NPs and Cr-Met in rats fed F beneficially increased mobilization of enzymes of the DNA repair pathway. All forms of Cr, but especially Cr-NPs, beneficially decreased the activity of caecal bacterial β-glucuronidase, faecal β-glucosidase and β-glucuronidase. However, due to the increase in level of cytokine IL-2 in small intestinal wall, induced by all tested forms of chromium, it is difficult to state conclusively that this element can mitigate unfavourable pro-inflammatory and oxidative changes induced by a F in the small intestinal wall.
Collapse
Affiliation(s)
- Wojciech Dworzański
- Chair and Department of Human Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090, Lublin, Poland
| | - Ewelina Cholewińska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Bartosz Fotschki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jerzy Juśkiewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| |
Collapse
|
28
|
Kim R, Kim HJ, Shin JH, Lee CY, Jeon SH, Jeon B. Serum Inflammatory Markers and Progression of Nonmotor Symptoms in Early Parkinson's Disease. Mov Disord 2022; 37:1535-1541. [PMID: 35596676 DOI: 10.1002/mds.29056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The influence of peripheral inflammation on nonmotor symptoms (NMSs) in Parkinson's disease (PD) remains unclear. OBJECTIVE The aim of this study was to explore whether serum inflammatory marker profiles are associated with the progression of NMSs in early PD. METHODS We included 45 patients with early PD and 20 healthy control subjects. Six inflammatory markers, including interleukin (IL)-1β, IL-2, IL-6, IL-10, tumor necrosis factor-α, and high-sensitivity C-reactive protein, were measured. NMSs were assessed using the Non-Motor Symptoms Scale, Montreal Cognitive Assessment, and Composite Autonomic Symptom Score-31 at baseline and after 3 years. RESULTS Principal component (PC) analysis showed that only PC3 scores, mainly loaded by IL-2 and IL-6, were significantly elevated in the PD group compared with the control group. Higher PC3 scores in the PD group were associated with faster progression of Non-Motor Symptoms Scale total and mood/apathy domain scores. There were no significant associations of PC scores with Montreal Cognitive Assessment and Composite Autonomic Symptom Score-31 score changes. CONCLUSIONS Peripheral inflammation may be related to the evolution of NMSs, particularly mood symptoms, in the early stages of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ryul Kim
- Department of Neurology, Inha University Hospital, Inha University College of Medicine, Incheon, South Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Hwan Shin
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Chan Young Lee
- Department of Neurology, School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea
| | | | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
29
|
Han NR, Kim KC, Kim JS, Ko SG, Park HJ, Moon PD. A mixture of Panax ginseng and Scrophularia buergeriana improves immune function in an immunosuppressed murine model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153984. [PMID: 35189478 DOI: 10.1016/j.phymed.2022.153984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunomodulatory drugs are currently used for immunosuppressed individuals, but adverse side effects have been reported. Although Panax ginseng and Scrophularia buergeriana are known to have respective pharmacological properties, the potential of a mixture of Panax ginseng and Scrophularia buergeriana (Isam-Tang, IST) as an immunomodulatory drug has not yet been studied. PURPOSE The present study was designed to assess the immunomodulatory activity of IST and p-coumaric acid (pCA), an active compound of IST, in the immune system. METHODS The levels of immunostimulatory cytokines, nitrite, inducible nitric oxide synthase (iNOS), NF-kB activation, and proliferation were examined in RAW264.7 cells, primary splenocytes and splenic NK cells isolated from normal mouse spleen, and in cyclophosphamide-induced immunosuppressed mice using ELISA, quantitative real-time PCR, Western blotting, and immunofluorescence staining. RESULTS IST or pCA treatment increased the production of immunostimulatory cytokines and nitrite and the expression of iNOS in RAW264.7 cells and splenocytes. IST or pCA also induced NF-κB signaling activation and promoted the phagocytic activity of RAW264.7 cells. In addition, the splenocyte proliferation and splenic NK activity were enhanced by IST or pCA. IST or pCA increased the levels of immunostimulatory cytokines in immunosuppressed mice and ameliorated splenic tissue damage. CONCLUSION These findings suggest that IST supplementation may be used to enhance immune function.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, South Korea
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, South Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
30
|
Alkharfy K, Ahmad A, Jan B, Raish M, Rehman M. Thymoquinone modulates the expression of sepsis‑related microRNAs in a CLP model. Exp Ther Med 2022; 23:395. [PMID: 35495595 PMCID: PMC9047025 DOI: 10.3892/etm.2022.11322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome common in critical care settings. In the present study, the therapeutic effect of thymoquinone (TQ) on the expression of sepsis-related microRNAs (miRNAs/miRs), levels of inflammatory markers, organ dysfunction and mortality were investigated in a cecal ligation and puncture (CLP) rat model. A single dose of TQ (1 mg/kg) was administered to animals 24 h after CLP and the mortality rate was assessed up to 7 days following the induction of sepsis. In addition, blood samples were collected at different time points and the expression levels of miRNAs (i.e. miR-16, miR-21, miR-27a and miR-34a) were examined, along with the levels of inflammatory cytokines (i.e. TNF-α, IL-1α, IL-2, IL-6 and IL-10) and sepsis markers (i.e. C-reactive protein, endothelial cell-specific molecule-1, VEGF, procalcitonin and D-dimer). Liver, kidney and lung tissues were also collected for further histological examination. Treatment with TQ significantly downregulated the miRNA expression levels, as well as the levels of inflammatory cytokines and early-stage sepsis biomarkers by 30-70% at 12-36 h (P<0.05). Furthermore, CLP model rats treated with TQ exhibited an ~80% increase in survival rate compared with that in the untreated CLP group. In addition, TQ induced the preservation of organ function and structure. In conclusion, the present study demonstrated a promising therapeutic effect of TQ against the sequelae of sepsis.
Collapse
Affiliation(s)
- Khalid Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basit Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muneeb Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
31
|
Salas-Venegas V, Flores-Torres RP, Rodríguez-Cortés YM, Rodríguez-Retana D, Ramírez-Carreto RJ, Concepción-Carrillo LE, Pérez-Flores LJ, Alarcón-Aguilar A, López-Díazguerrero NE, Gómez-González B, Chavarría A, Konigsberg M. The Obese Brain: Mechanisms of Systemic and Local Inflammation, and Interventions to Reverse the Cognitive Deficit. Front Integr Neurosci 2022; 16:798995. [PMID: 35422689 PMCID: PMC9002268 DOI: 10.3389/fnint.2022.798995] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Overweight and obesity are now considered a worldwide pandemic and a growing public health problem with severe economic and social consequences. Adipose tissue is an organ with neuroimmune-endocrine functions, which participates in homeostasis. So, adipocyte hypertrophy and hyperplasia induce a state of chronic inflammation that causes changes in the brain and induce neuroinflammation. Studies with obese animal models and obese patients have shown a relationship between diet and cognitive decline, especially working memory and learning deficiencies. Here we analyze how obesity-related peripheral inflammation can affect central nervous system physiology, generating neuroinflammation. Given that the blood-brain barrier is an interface between the periphery and the central nervous system, its altered physiology in obesity may mediate the consequences on various cognitive processes. Finally, several interventions, and the use of natural compounds and exercise to prevent the adverse effects of obesity in the brain are also discussed.
Collapse
Affiliation(s)
- Verónica Salas-Venegas
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Rosa Pamela Flores-Torres
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana - Unidad Iztapalapa, Mexico City, Mexico
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Yesica María Rodríguez-Cortés
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Diego Rodríguez-Retana
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Ricardo Jair Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Luis Edgar Concepción-Carrillo
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Laura Josefina Pérez-Flores
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Adriana Alarcón-Aguilar
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Norma Edith López-Díazguerrero
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
| | - Beatriz Gómez-González
- Departamento de Biología de la Reproducción, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México (CDMX), Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Mina Konigsberg
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, CDMX, Mexico City, Mexico
- *Correspondence: Mina Konigsberg,
| |
Collapse
|
32
|
Kim S, Lahu G, Vakilynejad M, Soldatos TG, Jackson DB, Lesko LJ, Trame MN. Application of a patient-centered reverse translational systems-based approach to understand mechanisms of an adverse drug reaction of immune checkpoint inhibitors. Clin Transl Sci 2022; 15:1430-1438. [PMID: 35191192 PMCID: PMC9199880 DOI: 10.1111/cts.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/04/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Immunotherapy became a key pillar of cancer therapeutics with the approvals of ipilimumab, nivolumab, and pembrolizumab, which inhibit either cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4) or programmed death‐1 (PD‐1) that are negative regulators of T‐cell activation. However, boosting T‐cell activation is often accompanied by autoimmunity, leading to adverse drug reactions (ADRs), including high grade 3–4 colitis and its severe complications whose prevalence may reach 14% for combination checkpoint inhibitors. In this research, we investigated how mechanistic differences between anti‐CTLA‐4 (ipilimumab) and anti‐PD‐1 (nivolumab and pembrolizumab) affect colitis, a general class toxicity. The data analytical platform Molecular Health Effect was utilized to map population ADR data from the US Food and Drug Administration (FDA) Adverse Event Reporting System to chemical and biological databases for hypothesis generation regarding the underlying molecular mechanisms causing colitis. Disproportionality analysis was used to assess the statistical relevance between adverse events of interest and molecular causation. We verified that the anti‐CTLA‐4 drug is associated with an approximately three‐fold higher proportional reporting ratio associated with colitis than those of the anti‐PD‐1 drugs. The signal of the molecular mechanisms, including signaling pathways of inflammatory cytokines, was statistically insignificant to test the hypothesis that the severer rate of colitis associated with ipilimumab would be due to a greater magnitude of T‐cell activation as a result of earlier response of the anti‐CTLA‐4 drug in the immune response. This patient‐centered systems‐based approach provides an exploratory process to better understand drug pair adverse events at pathway and target levels through reverse translation from postmarket surveillance safety reports.
Collapse
Affiliation(s)
- Sarah Kim
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Orlando, FL, USA
| | | | | | | | | | - Lawrence J Lesko
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Orlando, FL, USA
| | - Mirjam N Trame
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, Orlando, FL, USA
| |
Collapse
|
33
|
Little M, Dutta M, Li H, Matson A, Shi X, Mascarinas G, Molla B, Weigel K, Gu H, Mani S, Cui JY. Understanding the physiological functions of the host xenobiotic-sensing nuclear receptors PXR and CAR on the gut microbiome using genetically modified mice. Acta Pharm Sin B 2022; 12:801-820. [PMID: 35256948 PMCID: PMC8897037 DOI: 10.1016/j.apsb.2021.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/29/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids (BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. hPXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.
Collapse
Key Words
- BA, bile acid
- BSH, bile salt hydrolase
- Bile acids
- CA, cholic acid
- CAR
- CAR, constitutive androstane receptor
- CDCA, chenodeoxycholic acid
- CITCO, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime
- CV, conventional
- CYP, cytochrome P450
- DCA, deoxycholic acid
- EGF, epidermal growth factor
- Feces
- GF, germ free
- GLP-1, glucagon-like peptide-1
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- Gut microbiome
- HDCA, hyodeoxycholic acid
- IBD, inflammatory bowel disease
- IFNγ, interferon-gamma
- IL, interleukin
- IS, internal standards
- Inflammation
- LCA, lithocholic acid
- LC–MS/MS, liquid chromatography–tandem mass spectrometry
- MCA, muricholic acid
- MCP-1, monocyte chemoattractant protein-1
- Mice
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NSAID, non-steroidal anti-inflammatory drug
- Nuclear receptor
- OH, hydroxylated
- OTUs, operational taxonomy units
- PA, indole-3 propionic acid
- PBDEs, polybrominated diphenyl ethers
- PCBs, polychlorinated biphenyls
- PCoA, Principle Coordinate Analysis
- PXR
- PXR, pregnane X receptor
- PiCRUSt, Phylogenetic Investigation of Communities by Reconstruction of Observed States
- QIIME, Quantitative Insights Into Microbial Ecology
- SCFAs, short-chain fatty acids
- SNP, single-nucleotide polymorphism
- SPF, specific-pathogen-free
- T, wild type
- T-, taurine conjugated
- TCPOBOP, 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene, 3,3′,5,5′-Tetrachloro-1,4-bis(pyridyloxy)benzene
- TGR-5, Takeda G-protein-coupled receptor 5
- TLR4, toll-like receptor 4
- TNF, tumor necrosis factor
- UDCA, ursodeoxycholic acid
- YAP, yes-associated protein
- hPXR-TG, humanized PXR transgenic
Collapse
Affiliation(s)
- Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Hao Li
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam Matson
- University of Connecticut, Hartford, CT 06106, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Gabby Mascarinas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Bruk Molla
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kris Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Sridhar Mani
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
34
|
Kozlova EV, Carabelli B, Bishay AE, Liu R, Denys ME, Macbeth JC, Piamthai V, Crawford MS, McCole DF, Zur Nieden NI, Hsiao A, Curras-Collazo MC. Induction of distinct neuroinflammatory markers and gut dysbiosis by differential pyridostigmine bromide dosing in a chronic mouse model of GWI showing persistent exercise fatigue and cognitive impairment. Life Sci 2022; 288:120153. [PMID: 34801513 PMCID: PMC9048156 DOI: 10.1016/j.lfs.2021.120153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/03/2022]
Abstract
AIMS To characterize neuroinflammatory and gut dysbiosis signatures that accompany exaggerated exercise fatigue and cognitive/mood deficits in a mouse model of Gulf War Illness (GWI). METHODS Adult male C57Bl/6N mice were exposed for 28 d (5 d/wk) to pyridostigmine bromide (P.O.) at 6.5 mg/kg/d, b.i.d. (GW1) or 8.7 mg/kg/d, q.d. (GW2); topical permethrin (1.3 mg/kg), topical N,N-diethyl-meta-toluamide (33%) and restraint stress (5 min). Animals were phenotypically evaluated as described in an accompanying article [124] and sacrificed at 6.6 months post-treatment (PT) to allow measurement of brain neuroinflammation/neuropathic pain gene expression, hippocampal glial fibrillary acidic protein, brain Interleukin-6, gut dysbiosis and serum endotoxin. KEY FINDINGS Compared to GW1, GW2 showed a more intense neuroinflammatory transcriptional signature relative to sham stress controls. Interleukin-6 was elevated in GW2 and astrogliosis in hippocampal CA1 was seen in both GW groups. Beta-diversity PCoA using weighted Unifrac revealed that gut microbial communities changed after exposure to GW2 at PT188. Both GW1 and GW2 displayed systemic endotoxemia, suggesting a gut-brain mechanism underlies the neuropathological signatures. Using germ-free mice, probiotic supplementation with Lactobacillus reuteri produced less gut permeability than microbiota transplantation using GW2 feces. SIGNIFICANCE Our findings demonstrate that GW agents dose-dependently induce differential neuropathology and gut dysbiosis associated with cognitive, exercise fatigue and mood GWI phenotypes. Establishment of a comprehensive animal model that recapitulates multiple GWI symptom domains and neuroinflammation has significant implications for uncovering pathophysiology, improving diagnosis and treatment for GWI.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA; Neuroscience Graduate Program, University of California, Riverside, CA, USA
| | - Bruno Carabelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Anthony E Bishay
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA; Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, USA
| | - Maximillian E Denys
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - John C Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Varadh Piamthai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | - Meli'sa S Crawford
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| | | |
Collapse
|
35
|
Motiee M, Zavaran Hosseini A, Soudi S. Evaluating the effects of Cyclosporine A immunosuppression on Mycobacterial infection by inhaling of Cyclosporine A administrated BALB/c mice with live Bacillus Calmette Guérin. Tuberculosis (Edinb) 2021; 132:102163. [PMID: 34999486 DOI: 10.1016/j.tube.2021.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/30/2022]
Abstract
Cyclosporine A (CsA) is an immunosuppressive drug used in organ transplantation and treatment of autoimmune diseases. Effects of CsA on determining the direction of the immune response and pathogenesis of infections by altering immune responses particulary T cells functions have always been questionable. We evaluated the effect of different doses of CsA on course of infection in BALB/c mice infected with live Bacillus Calmette Guérin (BCG) (as an example of Mycobacterial infections). Four groups of mice (n = 5) receiving 5, 25, 125, and 0 mg/kg of CsA, three times a week, were infected with BCG aerosolly. Before BCG inhalation and 40-/60- days post-infection, cell proliferation and CD4+CD25+ cell percentage were evaluated in splenocytes of mice after culture and stimulation with PHA or BCG lysate. The histopathological alterations and bacterial burden were assessed in lung tissue. Cells showed a dose-dependent decrease in proliferation and the percentage of CD4+ CD25+ cells. After BCG infection, in presence of dose 125 mg/kg, there were some exceptions. The number of bacteria and histopathological lesions and inflammation in lung tissues increased in a dose-dependent manner. CsA immunosuppressed BCG infected mice can be used as a safe model for studying Mycobacterium species pathogenesis and related cellular immune responses.
Collapse
Affiliation(s)
- Mahdieh Motiee
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Zavaran Hosseini
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Soudi
- Immunology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
36
|
Highton PJ, March DS, Churchward DR, Grantham CE, Young HML, Graham-Brown MPM, Estruel S, Martin N, Brunskill NJ, Smith AC, Burton JO, Bishop NC. Intradialytic cycling does not exacerbate microparticles or circulating markers of systemic inflammation in haemodialysis patients. Eur J Appl Physiol 2021; 122:599-609. [PMID: 34854982 PMCID: PMC8854296 DOI: 10.1007/s00421-021-04846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022]
Abstract
Purpose Patients receiving haemodialysis (HD) display elevated circulating microparticle (MP) concentration, tissue factor (TF) expression and markers of systemic inflammation, though regular intradialytic cycling (IDC) may have a therapeutic effect. This study investigated the impact of regular, moderate-intensity IDC on circulating MPs and inflammatory markers in unit-based HD patients. Methods Patients were cluster-randomised to intervention (n = 20, age: 51.4 ± 18.1 years, body mass: 77.6 ± 18.3 kg, mean ± SD) or no-exercise control (n = 20, 56.8 ± 14.0 years, 80.5 ± 26.5 kg). Intervention participants completed 30 min of moderate intensity (rating of perceived exertion [RPE] of 12–14) IDC, thrice weekly for 6 months. Pre-dialysis venous blood samples were obtained at 0, 3 and 6 months. Circulating MP phenotypes, cytokines, chemokine and MP TF expression were quantified using flow cytometry and cytometric bead array assays. Results Despite high exercise compliance (82%), no IDC-dependent effects were observed for any MP, cytokine or chemokine measure (p ≥ 0.051, ηρ2 ≤ 0.399) other than TNF-α (p = 0.001, ηρ2 = 0.186), though no significance was revealed upon post hoc analysis. Conclusion Six months of regular, moderate-intensity IDC had no effect on MPs, cytokines or chemokines. This suggests that the exercise did not exacerbate thrombotic or inflammatory status, though further functional assays are required to confirm this. Trial registration ISRCTN1129707, prospectively registered on 05/03/2015.
Collapse
Affiliation(s)
- Patrick J Highton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,NIHR Applied Research Collaboration East Midlands, Leicester Diabetes Centre of Research, University of Leicester, Leicester, UK
| | - Daniel S March
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,John Walls Renal Unit, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK
| | - Darren R Churchward
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | - Hannah M L Young
- John Walls Renal Unit, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK.,Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Matthew P M Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,John Walls Renal Unit, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK
| | - Seila Estruel
- Department of Physiological Sciences, University of Barcelona, Barcelona, Spain
| | - Naomi Martin
- Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester, UK
| | - Nigel J Brunskill
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,John Walls Renal Unit, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK
| | - Alice C Smith
- John Walls Renal Unit, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK.,Department of Health Sciences, University of Leicester, Leicester, UK
| | - James O Burton
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,John Walls Renal Unit, Leicester General Hospital, University Hospitals of Leicester, Leicester, UK
| | - Nicolette C Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| |
Collapse
|
37
|
Profiling inflammatory cytokines following zinc supplementation: a systematic review and meta-analysis of controlled trials. Br J Nutr 2021; 126:1441-1450. [PMID: 33468279 DOI: 10.1017/s0007114521000192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chronic inflammation has been considered as the main cause of chronic diseases. Zn has anti-inflammatory effects by decreasing the expression of inflammatory markers. The present systematic review and meta-analysis study aims to evaluate the impact of Zn supplementation on inflammation. PubMed (Medline), Scopus, Web of Science, and Embase databases were searched up to 10 December 2020. Controlled trials which have investigated the effects of Zn supplementation on serum/plasma levels of inflammatory cytokines in subjects aged >15 years were included. A pooled meta-analysis was performed using a random effect model. Sensitivity analysis was performed to determine the robustness of the observed effect sizes. A total of twelve studies was included in meta-analysis. Zn could decrease IL-6 levels (standardised mean difference (SMD) = -0·76 pg/ml; 95 % CI -1·28, -0·24; P = 0·004). There was no significant change in TNF-α (SMD = 0·42 pg/ml; 95 % CI -0·31, 1·16; P = 0·257) and IL-2 levels (SMD = 1·64 pg/ml; 95 % CI -1·31, 4·59; P = 0·277) following Zn supplementation. However, Zn could increase IL-2 significantly after the deletion of one arm in sensitivity analysis (SMD = 2·96 pg/ml; 95 % CI 2·03, 3·88; P < 0·05). Conclusively, Zn supplementation can decrease the IL-6 level. Zn increased IL-2 level after the sensitivity analysis. Zn supplementation has not ameliorative effects on TNF-α.
Collapse
|
38
|
Lee KJ, Ratih K, Kim GJ, Lee YR, Shin JS, Chung KH, Choi EJ, Kim EK, An JH. Immunomodulatory and anti-inflammatory efficacy of hederagenin-coated maghemite (γ-Fe 2O 3) nanoparticles in an atopic dermatitis model. Colloids Surf B Biointerfaces 2021; 210:112244. [PMID: 34896691 DOI: 10.1016/j.colsurfb.2021.112244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
We investigated the immunomodulatory and anti-inflammatory efficacy of hederagenin coating on maghemite (γ-Fe2O3) nanoparticles (HM) in atopic dermatitis (AD), as well as the physical and optical properties of maghemite nanoparticles (MP) using SEM, XRD spectroscopy, UV-vis spectra, Raman spectra, and FTIR spectroscopy. Dose-dependent treatment with HM (10, 50, 100, 200 μg/mL) inhibited the expression of Interleukin-2 (IL-2) and Tumor necrosis factor- α (TNF-α) in inflammatory induced HaCaT and Jurkat cells with inflammation caused by TNF/IFN-γ and PMA/A23187. AD model was induced by performing topical application of 2,4-dinitrochlorobenzene (DNCB) and dermatophagoides farinae extract (DFE) for a 31-day period on 8-week-old BALB/c mice. The HM treatments efficiently diminished the AD-like cutaneous lesion induced by DNCB-DFE sensitization in mice. Compared to the AD-only groups, HM treatment considerably attenuated mast cell infiltration and lowered epidermal, and dermal thickness of mice ears skin. In addition, HM treatment prominently alleviated the enlarged size and weight of lymph nodes. Furthermore, HM treatment resulted in a notable reduction in the mRNA expression of Th1 cytokines (TNF-α and IFN-γ), Th2 cytokines (IL-4 and IL-6), Th17 (IL-17), and TSLP. Our data showed that HM provides better AD attenuation compared to MP. Additionally, HM had synergistic effect and act as anti-inflammatory and immunomodulatory agent. Thus, HM shows great potential in AD medication and as a substitution of non-steroid-based medication.
Collapse
Affiliation(s)
- Kwon-Jai Lee
- College of H-LAC, Daejeon University, Daejeon 34520, Republic of Korea
| | - Khoirunnisa Ratih
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Gyeong-Ji Kim
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Yu-Rim Lee
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea; Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea
| | - Jae-Soo Shin
- Department of Advanced Materials Engineering, Daejeon University, Daejeon 34520, Republic of Korea
| | - Kang-Hyun Chung
- Department of Food Science and Technology, Seoul National University of Science & Technology, Seoul 01811, Republic of Korea
| | - Eun-Ju Choi
- Department of Physical Education, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Eun-Kyung Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea
| | - Jeung Hee An
- Department of Food Science and Nutrition, KC University, Seoul 07661, Republic of Korea.
| |
Collapse
|
39
|
Cao C, Chowdhury VS, Cline MA, Gilbert ER. The Microbiota-Gut-Brain Axis During Heat Stress in Chickens: A Review. Front Physiol 2021; 12:752265. [PMID: 34744792 PMCID: PMC8563997 DOI: 10.3389/fphys.2021.752265] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Heat stress is a global issue for the poultry industries with substantial annual economic losses and threats to bird health and welfare. When chickens are exposed to high ambient temperatures, like other species they undergo multiple physiological alterations, including behavioral changes, such as cessation of feeding, initiation of a stress signaling cascade, and intestinal immune, and inflammatory responses. The brain and gut are connected and participate in bidirectional communication via the nervous and humoral systems, this network collectively known as the gut-brain axis. Moreover, heat stress not only induces hyperthermia and oxidative stress at the gut epithelium, leading to impaired permeability and then susceptibility to infection and inflammation, but also alters the composition and abundance of the microbiome. The gut microflora, primarily via bacterially derived metabolites and hormones and neurotransmitters, also communicate via similar pathways to regulate host metabolic homeostasis, health, and behavior. Thus, it stands to reason that reshaping the composition of the gut microbiota will impact intestinal health and modulate host brain circuits via multiple reinforcing and complementary mechanisms. In this review, we describe the structure and function of the microbiota-gut-brain axis, with an emphasis on physiological changes that occur in heat-stressed poultry.
Collapse
Affiliation(s)
- Chang Cao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Vishwajit S Chowdhury
- Laboratory of Stress Physiology and Metabolism, Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | - Mark A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
40
|
Sung SE, Seo MS, Kang KK, Choi JH, Lee S, Sung M, Kim K, Lee GW, Lim JH, Yang SY, Yim SG, Kim SK, Park S, Kwon YS, Yun S. Mesenchymal Stem Cell Exosomes Derived from Feline Adipose Tissue Enhance the Effects of Anti-Inflammation Compared to Fibroblasts-Derived Exosomes. Vet Sci 2021; 8:182. [PMID: 34564576 PMCID: PMC8473240 DOI: 10.3390/vetsci8090182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AD-MSCs) release extracellular vesicles such as exosomes, apoptotic bodies, and microparticles. In particular, exosomes are formed inside cells via multivesicular bodies (MVBs), thus their protein, DNA, and RNA content are similar to those of the parent cells. Exosome research is rapidly expanding, with an increase in the number of related publications observed in recent years; therefore, the function and application of MSC-derived exosomes could emerge as cell-free therapeutics. Exosomes have been isolated from feline AD-MSCs and feline fibroblast cell culture media using ultracentrifugation. Feline exosomes have been characterized by FACS, nanoparticle tracking analysis, and transmission electron microscopy imaging. Moreover, cytokine levels were detected by sandwich enzyme-linked immunosorbent assay in exosomes and LPS-induced THP-1 macrophages. The size of the isolated exosomes was that of a typical exosome, i.e., approximately 150 nm, and they expressed tetraspanins CD9 and CD81. The anti-inflammatory factor IL-10 was increased in feline AD-MSC-derived exosomes. However, pro-inflammatory factors such as IL-1β, IL-8, IL-2, RANTES, and IFN-gamma were significantly decreased in feline AD-MSC-derived exosomes. This was the first demonstration that feline AD-MSC-derived exosomes enhance the inflammatory suppressive effects and have potential for the treatment of immune diseases or as an inflammation-inhibition therapy.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Korea; (S.Y.Y.); (S.-G.Y.)
| | - Min-Soo Seo
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Kyung-Ku Kang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Joo-Hee Choi
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Sijoon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Minkyoung Sung
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
| | - Kilsoo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea; (S.-E.S.); (M.-S.S.); (K.-K.K.); (J.-H.C.); (S.L.); (M.S.); (K.K.)
- College of Veterinary Medicine, Kyungpook National University, 80 Daehakro, Daegu 41566, Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyochung-ro, Daegu 42415, Korea; (G.W.L.); (J.-H.L.)
| | - Ju-Hyeon Lim
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, 170 Hyochung-ro, Daegu 42415, Korea; (G.W.L.); (J.-H.L.)
- New Drug Development Center, Osong Medical Innovation Foundation, Chungbuk 28160, Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Korea; (S.Y.Y.); (S.-G.Y.)
| | - Sang-Gu Yim
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Miryang 50463, Korea; (S.Y.Y.); (S.-G.Y.)
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH CO., LTD., 61Heolleungro 8-gil, Seoul 06800, Korea;
| | - Sangbum Park
- Institute for Quantitative Health Science & Engineering (IQ), Michigan State University, Auditorium Road 775 Woodlot Drive, East Lansing, MI 48824, USA;
- Division of Dermatology, Department of Medicine, College of Human Medicine, Michigan State University, Auditorium Road 775 Woodlot Drive, East Lansing, MI 48824, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48824, USA
| | - Young-Sam Kwon
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Sungho Yun
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
41
|
Wertheim KY, Puniya BL, La Fleur A, Shah AR, Barberis M, Helikar T. A multi-approach and multi-scale platform to model CD4+ T cells responding to infections. PLoS Comput Biol 2021; 17:e1009209. [PMID: 34343169 PMCID: PMC8376204 DOI: 10.1371/journal.pcbi.1009209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Immune responses rely on a complex adaptive system in which the body and infections interact at multiple scales and in different compartments. We developed a modular model of CD4+ T cells, which uses four modeling approaches to integrate processes at three spatial scales in different tissues. In each cell, signal transduction and gene regulation are described by a logical model, metabolism by constraint-based models. Cell population dynamics are described by an agent-based model and systemic cytokine concentrations by ordinary differential equations. A Monte Carlo simulation algorithm allows information to flow efficiently between the four modules by separating the time scales. Such modularity improves computational performance and versatility and facilitates data integration. We validated our technology by reproducing known experimental results, including differentiation patterns of CD4+ T cells triggered by different combinations of cytokines, metabolic regulation by IL2 in these cells, and their response to influenza infection. In doing so, we added multi-scale insights to single-scale studies and demonstrated its predictive power by discovering switch-like and oscillatory behaviors of CD4+ T cells that arise from nonlinear dynamics interwoven across three scales. We identified the inflamed lymph node’s ability to retain naive CD4+ T cells as a key mechanism in generating these emergent behaviors. We envision our model and the generic framework encompassing it to serve as a tool for understanding cellular and molecular immunological problems through the lens of systems immunology. CD4+ T cells are a key part of the adaptive immune system. They differentiate into different phenotypes to carry out different functions. They do so by secreting molecules called cytokines to regulate other immune cells. Multi-scale modeling can potentially explain their emergent behaviors by integrating biological phenomena occurring at different spatial (intracellular, cellular, and systemic), temporal, and organizational scales (signal transduction, gene regulation, metabolism, cellular behaviors, and cytokine transport). We built a computational platform by combining disparate modeling frameworks (compartmental ordinary differential equations, agent-based modeling, Boolean network modeling, and constraint-based modeling). We validated the platform’s ability to predict CD4+ T cells’ emergent behaviors by reproducing their differentiation patterns, metabolic regulation, and population dynamics in response to influenza infection. We then used it to predict and explain novel switch-like and oscillatory behaviors for CD4+ T cells. On the basis of these results, we believe that our multi-approach and multi-scale platform will be a valuable addition to the systems immunology toolkit. In addition to its immediate relevance to CD4+ T cells, it also has the potential to become the foundation of a virtual immune system.
Collapse
Affiliation(s)
- Kenneth Y. Wertheim
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
- Department of Computer Science and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Bhanwar Lal Puniya
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Alyssa La Fleur
- Department of Biochemistry, Department of Mathematics and Computer Science, Whitworth University, Spokane, Washington, United States of America
| | - Ab Rauf Shah
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: , (MB); (TH)
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: , (MB); (TH)
| |
Collapse
|
42
|
Wang X, Feng C. The Association between IL2 Genotypes and Risk and Severity of Chronic Periodontitis in a Chinese Han Population: A Case-control Study. Immunol Invest 2021; 51:924-930. [PMID: 33682577 DOI: 10.1080/08820139.2021.1885438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic periodontitis (CP) is a kind of multifactorial common oral diseases. Multiple immune molecules including interleukin-2 (IL-2) are involved in the occurrence and development of CP. To investigate the association between the IL2 rs2069762 polymorphism and the risk of CP in Chinese individuals, we recruited 375 CP patients and 443 controls in this case-control study. The PCR-RFLP method was used for genotyping. Data revealed that the GG genotype was related with a decreased risk of CP (GG vs TT: OR, 0.58, 95%CI, 0.37-0.92, P-value = 0.020; GG vs TG+TT: OR, 0.61, 95%CI, 0.39-0.94, P-value = 0.027). Besides, G allele was shown to decrease the risk of CP. In addition, the IL2 rs2069762 polymorphism was related with the severity of CP. To sum up, the IL2 rs2069762 polymorphism is related with a decreased risk and severity of CP in Chinese individuals.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Stomatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Chao Feng
- Department of Stomatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
43
|
Ravisankar S, Ting AY, Murphy MJ, Redmayne N, Wang D, McArthur CA, Takahashi DL, Kievit P, Chavez SL, Hennebold JD. Short-term Western-style diet negatively impacts reproductive outcomes in primates. JCI Insight 2021; 6:138312. [PMID: 33616080 PMCID: PMC7934943 DOI: 10.1172/jci.insight.138312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
A maternal Western-style diet (WSD) is associated with poor reproductive outcomes, but whether this is from the diet itself or underlying metabolic dysfunction is unknown. Here, we performed a longitudinal study using regularly cycling female rhesus macaques (n = 10) that underwent 2 consecutive in vitro fertilization (IVF) cycles, one while consuming a low-fat diet and another 6–8 months after consuming a high-fat WSD. Metabolic data were collected from the females prior to each IVF cycle. Follicular fluid (FF) and oocytes were assessed for cytokine/steroid levels and IVF potential, respectively. Although transition to a WSD led to weight gain and increased body fat, no difference in insulin levels was observed. A significant decrease in IL-1RA concentration and the ratio of cortisol/cortisone was detected in FF after WSD intake. Despite an increased probability of isolating mature oocytes, a 44% reduction in blastocyst number was observed with WSD consumption, and time-lapse imaging revealed delayed mitotic timing and multipolar divisions. RNA sequencing of blastocysts demonstrated dysregulation of genes involved in RNA binding, protein channel activity, mitochondrial function and pluripotency versus cell differentiation after WSD consumption. Thus, short-term WSD consumption promotes a proinflammatory intrafollicular microenvironment that is associated with impaired preimplantation development in the absence of large-scale metabolic changes.
Collapse
Affiliation(s)
- Sweta Ravisankar
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Alison Y Ting
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,21st Century Medicine Inc., Fontana, California, USA
| | - Melinda J Murphy
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Nash Redmayne
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Dorothy Wang
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Carrie A McArthur
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Molecular & Medical Genetics, Oregon Health & Science University School of Medicine, Portland, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| | - Jon D Hennebold
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA.,Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Oregon, USA
| |
Collapse
|
44
|
The safety and efficacy of BCG encapsulated alginate particle (BEAP) against M.tb H37Rv infection in Macaca mulatta : A pilot study. Sci Rep 2021; 11:3049. [PMID: 33542363 PMCID: PMC7862294 DOI: 10.1038/s41598-021-82614-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/22/2021] [Indexed: 01/18/2023] Open
Abstract
Due to the limited utility of Bacillus Calmette–Guérin (BCG), the only approved vaccine available for tuberculosis, there is a need to develop a more effective and safe vaccine. We evaluated the safety and efficacy of a dry powder aerosol (DPA) formulation of BCG encapsulated alginate particle (BEAP) and the conventional intradermal BCG immunization in infant rhesus macaques (Macaca mulatta). The infant macaques were immunized intratracheally with DPA of BEAP into the lungs. Animals were monitored for their growth, behaviour, any adverse and allergic response. The protective efficacy of BEAP was estimated by the ex-vivo H37Rv infection method. Post-immunization with BEAP, granulocytes count, weight gain, chest radiography, levels of liver secreted enzymes, cytokines associated with inflammation like TNF and IL-6 established that BEAP is non-toxic and it does not elicit an allergic response. The T cells isolated from BEAP immunized animals’ blood, upon stimulation with M.tb antigen, secreted high levels of IFN-γ, TNF, IL-6 and IL-2. The activated T cells from BEAP group, when co-cultured with M.tb infected macrophages, eliminated largest number of infected macrophages compared to the BCG and control group. This study suggests the safety and efficacy of BEAP in Non-human primate model.
Collapse
|
45
|
Scott KM, Cohen DJ, Hays M, Nielson DW, Grinstaff MW, Lawson TB, Snyder BD, Boyan BD, Schwartz Z. Regulation of inflammatory and catabolic responses to IL-1β in rat articular chondrocytes by microRNAs miR-122 and miR-451. Osteoarthritis Cartilage 2021; 29:113-123. [PMID: 33161100 DOI: 10.1016/j.joca.2020.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/30/2020] [Accepted: 09/14/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE miR-122 stimulates proliferation of growth plate chondrocytes whereas miR-451 stimulates terminal differentiation and matrix turnover. Here, we examined the potential of these microRNA as regulators of articular chondrocytes using an in vitro model of osteoarthritis. METHODS miR-122 and miR-451 presence in rat articular cartilage was assessed using the anterior cruciate ligament transection model of OA. In vitro testing used first passage rat articular chondrocytes (rArCs) that were transfected with lipofectamine (Lipo) and miR-122 or miR-451 for 24-h, then treated with 10 ng/mL IL-1β in order to mimic an osteoarthritic environment. Conditioned media were collected and MMP13, PGE2 and OA-related cytokines were measured. Matrix vesicles were collected from cell layer lysates using ultra-centrifugation. Cells were treated with miR-122 or miR-451 inhibitors to verify miR-specific effects. RESULTS Both miR-122 and miR-451 were increased in the OA articular cartilage compared to healthy tissue; rArCs expressed both microRNAs in MVs. miR-122 prevented IL-1β-dependent increases in MMP-13 and PGE2, whereas miR-451 significantly increased the IL-1β effect. Multiplex data indicated that miR-122 reduced the stimulatory effect of IL-1β on IL-1α, IL-2, Il-4, IL-6, GM-CSF, MIP-1A, RANTES and VEGF. In contrast, IL-2, IL-4, IL-6, GM-CSF, and MIP-1A were increased by miR-451 while VEGF was decreased. Inhibiting miR-122 exacerbated the response to IL-1β indicating endogenous levels of miR-122 were present. There were no differences in MMP-13 or PGE2 with miR-451 Locked Nucleic Acid (LNA) inhibitor treatment. CONCLUSIONS Both miRs were elevated in OA in a rat bilateral anterior cruciate ligament transection (ACLT) model. miR-122 prevented, while miR-451 exacerbated the effects of IL-1β on rArCs.
Collapse
Affiliation(s)
- K M Scott
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - D J Cohen
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - M Hays
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - D W Nielson
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - M W Grinstaff
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA.
| | - T B Lawson
- Department of Biomedical Engineering and Chemistry, Boston University, Boston, MA, USA; Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, USA.
| | - B D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA, USA.
| | - B D Boyan
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Z Schwartz
- College of Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
46
|
Mullins GN, Valentine KM, Al-Kuhlani M, Davini D, Jensen KDC, Hoyer KK. T cell signaling and Treg dysfunction correlate to disease kinetics in IL-2Rα-KO autoimmune mice. Sci Rep 2020; 10:21994. [PMID: 33319815 PMCID: PMC7738527 DOI: 10.1038/s41598-020-78975-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
IL-2Rα, in part, comprises the high affinity receptor for IL-2, a cytokine important in immune proliferation, activation, and regulation. IL-2Rα deficient mice (IL-2Rα-KO) develop systemic autoimmune disease and die from severe anemia between 18 and 80 days of age. These mice develop kinetically distinct autoimmune progression, with approximately a quarter dying by 21 days of age and half dying after 30 days. This research aims to define immune parameters and cytokine signaling that distinguish cohorts of IL-2Rα-KO mice that develop early- versus late-stage autoimmune disease. To investigate these differences, we evaluated complete blood counts (CBC), antibody binding of RBCs, T cell numbers and activation, hematopoietic progenitor changes, and signaling kinetics, during autoimmune hemolytic anemia (AIHA) and bone marrow failure. We identified several alterations that, when combined, correlate to disease kinetics. Early onset disease correlates with anti-RBC antibodies, lower hematocrit, and reduced IL-7 signaling. CD8 regulatory T cells (Tregs) have enhanced apoptosis in early disease. Further, early and late end stage disease, while largely similar, had several differences suggesting distinct mechanisms drive autoimmune disease kinetics. Therefore, IL-2Rα-KO disease pathology rates, driven by T cell signaling, promote effector T cell activation and expansion and Treg dysfunction.
Collapse
Affiliation(s)
- Genevieve N Mullins
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Kristen M Valentine
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Mufadhal Al-Kuhlani
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Dan Davini
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Kirk D C Jensen
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA
| | - Katrina K Hoyer
- Quantitative and Systems Biology Graduate Program, University of California Merced, Merced, CA, 95343, USA.
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, 95343, USA.
- Health Sciences Research Institute, University of California Merced, Merced, CA, 95343, USA.
| |
Collapse
|
47
|
Abstract
It is recognized that a balance of different cytokines (synergistic versus antagonistic cytokines) determines the outcome in regulation of different actions such as inflammation, polarization, and secretion of macrophages, induction and secretion of T helper cells, and angiogenesis. It is also known that cytokine secretion is highly variable between individuals. These facts red flag the practice of only comparing absolute values of 1 or 2 cytokines in various studies. It is recognized that ratios of opposing functions yield better quantification of the equilibrium than just observing single values. It is the purpose of this article to (1) emphasize the need to measure a combination of cytokines selected in a manner so that ratios of these may be derived to yield more information about the homeostasis in body and (2) to offer a list of synergistic and antagonistic cytokines from which future investigators may select for more meaningful results.
Collapse
Affiliation(s)
- Prince Johnson Samuel
- Department of Physiology, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
48
|
Giloteaux L, O'Neal A, Castro-Marrero J, Levine SM, Hanson MR. Cytokine profiling of extracellular vesicles isolated from plasma in myalgic encephalomyelitis/chronic fatigue syndrome: a pilot study. J Transl Med 2020; 18:387. [PMID: 33046133 PMCID: PMC7552484 DOI: 10.1186/s12967-020-02560-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of unknown etiology lasting for a minimum of 6 months but usually for many years, with features including fatigue, cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Dysregulation of cytokine signaling could give rise to many of these symptoms. Cytokines are present in both plasma and extracellular vesicles, but little investigation of EVs in ME/CFS has been reported. Therefore, we aimed to characterize the content of extracellular vesicles (EVs) isolated from plasma (including circulating cytokine/chemokine profiling) from individuals with ME/CFS and healthy controls. METHODS We included 35 ME/CFS patients and 35 controls matched for age, sex and BMI. EVs were enriched from plasma by using a polymer-based precipitation method and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM) and immunoblotting. A 45-plex immunoassay was used to determine cytokine levels in both plasma and isolated EVs from a subset of 19 patients and controls. Linear regression, principal component analysis and inter-cytokine correlations were analyzed. RESULTS ME/CFS individuals had significantly higher levels of EVs that ranged from 30 to 130 nm in size as compared to controls, but the mean size for total extracellular vesicles did not differ between groups. The enrichment of typical EV markers CD63, CD81, TSG101 and HSP70 was confirmed by Western blot analysis and the morphology assessed by TEM showed a homogeneous population of vesicles in both groups. Comparison of cytokine concentrations in plasma and isolated EVs of cases and controls yielded no significant differences. Cytokine-cytokine correlations in plasma revealed a significant higher number of interactions in ME/CFS cases along with 13 inverse correlations that were mainly driven by the Interferon gamma-induced protein 10 (IP-10), whereas in the plasma of controls, no inverse relationships were found across any of the cytokines. Network analysis in EVs from controls showed 2.5 times more significant inter-cytokine interactions than in the ME/CFS group, and both groups presented a unique negative association. CONCLUSIONS Elevated levels of 30-130 nm EVs were found in plasma from ME/CFS patients and inter-cytokine correlations revealed unusual regulatory relationships among cytokines in the ME/CFS group that were different from the control group in both plasma and EVs. These disturbances in cytokine networks are further evidence of immune dysregulation in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Adam O'Neal
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jesús Castro-Marrero
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
- CFS/ME Unit, Division of Rheumatology, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
49
|
Monga S, Weizman A, Gavish M. The Efficacy of the Novel TSPO Ligands 2-Cl-MGV-1 and 2,4-Di-Cl-MGV-1 Compared to the Classical TSPO Ligand PK 11195 to Counteract the Release of Chemokines from LPS-Stimulated BV-2 Microglial Cells. BIOLOGY 2020; 9:E291. [PMID: 32938018 PMCID: PMC7565396 DOI: 10.3390/biology9090291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
The impact of ligands of the 18 kDa translocator protein (TSPO) on the release of chemokines is not vastly investigated. In the present study, we assessed the effect of our novel TSPO ligands 2-Cl-MGV-1 and 2,4-Di-Cl-MGV-1 compared to the classical TSPO ligand PK 11195 on chemokine release in LPS-stimulated BV-2 microglial cells. As per the effect of 2-Cl-MGV-1, CCL2, CCL3, and CCL5 were inhibited by 90%, CCL8 by 97%, and IL-2 by 77% (p < 0.05 for all). 2,4-Di-Cl-MGV-1 inhibited CCL2 release by 92%, CCL3 by 91%, CCL5 by 90%, CCL8 by 89%, and IL-2 by 80% (p < 0.05 for all). PK 11195 exhibited weaker inhibitory effects: CCL2 by 22%, CCL3 by 83%, CCL5 by 34%, CCL8 by 41%, and the cytokine IL-2 by 14% (p < 0.05 for all). Thus, it appears that the novel TSPO ligands are potent suppressors of LPS-stimulated BV-2 microglial cells, and their inhibitory effect is larger than that of PK 11195. Such immunomodulatory effects on microglial cells may be relevant to the treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sheelu Monga
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel;
| | - Abraham Weizman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Research Unit, Geha Mental Health Center and Felsenstein Medical Research Center, Petah Tikva 4910002, Israel
| | - Moshe Gavish
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel;
| |
Collapse
|
50
|
Synbiotic VSL#3 and yacon-based product modulate the intestinal microbiota and prevent the development of pre-neoplastic lesions in a colorectal carcinogenesis model. Appl Microbiol Biotechnol 2020; 104:8837-8857. [DOI: 10.1007/s00253-020-10863-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
|