1
|
Castro Dopico X, Guryleva M, Mandolesi M, Corcoran M, Coquet JM, Murrell B, Karlsson Hedestam GB. Maintenance of caecal homeostasis by diverse adaptive immune cells in the rhesus macaque. Clin Transl Immunology 2024; 13:e1508. [PMID: 38707998 PMCID: PMC11063928 DOI: 10.1002/cti2.1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/04/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Objectives The caecum bridges the small and large intestine and plays a front-line role in discriminating gastrointestinal antigens. Although dysregulated in acute and chronic conditions, the tissue is often overlooked immunologically. Methods To address this issue, we applied single-cell transcriptomic-V(D)J sequencing to FACS-isolated CD45+ caecal patch/lamina propria leukocytes from a healthy (5-year-old) female rhesus macaque ex vivo and coupled these data to VDJ deep sequencing reads from haematopoietic tissues. Results We found caecal NK cells and ILC3s to co-exist with a spectrum of effector T cells partially derived from SOX4 + recent thymic emigrants. Tolerogenic Vγ8Vδ1-T cells, plastic CD4+ T helper cells and GZMK + EOMES + and TMIGD2 + tissue-resident memory CD8+ T cells were present and differed metabolically. An IL13 + GATA3 + Th2 subset expressing eicosanoid pathway enzymes was accompanied by IL1RL1 + GATA3 + regulatory T cells and a minor proportion of IgE+ plasma cells (PCs), illustrating tightly regulated type 2 immunity devoid of ILC2s. In terms of B lymphocyte lineages, caecal patch antigen-presenting memory B cells sat alongside germinal centre cells undergoing somatic hypermutation and differentiation into IGF1 + PCs. Prototypic gene expression signatures decreased across PC clusters, and notably, expanded IgA clonotypes could be traced in VDJ deep sequencing reads from additional compartments, including the bone marrow, supporting that these cells contribute a steady stream of systemic antibodies. Conclusions The data advance our understanding of caecal immunological function, revealing processes involved in barrier maintenance and molecular networks relevant to disease.
Collapse
Affiliation(s)
- Xaquin Castro Dopico
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Mariia Guryleva
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Marco Mandolesi
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDKDenmark
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | | |
Collapse
|
2
|
Joas S, Parrish EH, Gnanadurai CW, Lump E, Stürzel CM, Parrish NF, Learn GH, Sauermann U, Neumann B, Rensing KM, Fuchs D, Billingsley JM, Bosinger SE, Silvestri G, Apetrei C, Huot N, Garcia-Tellez T, Müller-Trutwin M, Hotter D, Sauter D, Stahl-Hennig C, Hahn BH, Kirchhoff F. Species-specific host factors rather than virus-intrinsic virulence determine primate lentiviral pathogenicity. Nat Commun 2018; 9:1371. [PMID: 29636452 PMCID: PMC5893559 DOI: 10.1038/s41467-018-03762-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/07/2018] [Indexed: 12/23/2022] Open
Abstract
HIV-1 causes chronic inflammation and AIDS in humans, whereas related simian immunodeficiency viruses (SIVs) replicate efficiently in their natural hosts without causing disease. It is currently unknown to what extent virus-specific properties are responsible for these different clinical outcomes. Here, we incorporate two putative HIV-1 virulence determinants, i.e., a Vpu protein that antagonizes tetherin and blocks NF-κB activation and a Nef protein that fails to suppress T cell activation via downmodulation of CD3, into a non-pathogenic SIVagm strain and test their impact on viral replication and pathogenicity in African green monkeys. Despite sustained high-level viremia over more than 4 years, moderately increased immune activation and transcriptional signatures of inflammation, the HIV-1-like SIVagm does not cause immunodeficiency or any other disease. These data indicate that species-specific host factors rather than intrinsic viral virulence factors determine the pathogenicity of primate lentiviruses.
Collapse
Affiliation(s)
- Simone Joas
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Erica H Parrish
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 372327, USA
| | - Clement W Gnanadurai
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
- Department of Veterinary Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Edina Lump
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Nicholas F Parrish
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | | | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter Innsbruck Medical University, Center for Chemistry and Biomedicine, A-6020, Innsbruck, Austria
| | - James M Billingsley
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Steven E Bosinger
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Cristian Apetrei
- WA Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, 75015, France
- Vaccine Research Institute, Hôpital Henri Mondor, Créteil, 94010, France
| | | | | | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | | | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany.
| |
Collapse
|
3
|
Daskalaki M, Neumann B, Klippert A, Mätz-Rensing K, Kaup FJ, Stahl-Hennig C. Long-term efficient control of SIV infection in macaques is associated with an intact intestinal barrier. J Med Primatol 2018; 46:144-148. [PMID: 28748664 DOI: 10.1111/jmp.12294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/24/2022]
Abstract
Hallmarks of SIV infection are early depletion of gut CD4 T cells and diminished intestinal integrity. Comprehensive studies on colon biopsies of SIV-infected macaques efficiently controlling infection revealed that in contrast to viremic and failing controllers, elite controllers show preserved CD4 T cells, and low viral load, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Maria Daskalaki
- Unit of Infection Models, Leibniz Institute for Primate Research, German Primate Center, Goettingen, Germany
| | - Berit Neumann
- Unit of Infection Models, Leibniz Institute for Primate Research, German Primate Center, Goettingen, Germany
| | - Antonina Klippert
- Unit of Infection Models, Leibniz Institute for Primate Research, German Primate Center, Goettingen, Germany
| | - Kerstin Mätz-Rensing
- Unit of Infection Pathology, Leibniz Institute for Primate Research, German Primate Center, Goettingen, Germany
| | - Franz-Josef Kaup
- Unit of Infection Pathology, Leibniz Institute for Primate Research, German Primate Center, Goettingen, Germany
| | - Christiane Stahl-Hennig
- Unit of Infection Models, Leibniz Institute for Primate Research, German Primate Center, Goettingen, Germany
| |
Collapse
|
4
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|
5
|
Marlin R, Nugeyre MT, Tchitchek N, Parenti M, Hocini H, Benjelloun F, Cannou C, Dereuddre-Bosquet N, Levy Y, Barré-Sinoussi F, Scarlatti G, Le Grand R, Menu E. Modified Vaccinia Virus Ankara Vector Induces Specific Cellular and Humoral Responses in the Female Reproductive Tract, the Main HIV Portal of Entry. THE JOURNAL OF IMMUNOLOGY 2017; 199:1923-1932. [PMID: 28760882 DOI: 10.4049/jimmunol.1700320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/03/2017] [Indexed: 11/19/2022]
Abstract
The female reproductive tract (FRT) is one of the major mucosal invasion sites for HIV-1. This site has been neglected in previous HIV-1 vaccine studies. Immune responses in the FRT after systemic vaccination remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized specific immune responses in all compartments of the FRT of nonhuman primates after systemic vaccination. Memory T cells were preferentially found in the lower tract (vagina and cervix), whereas APCs and innate lymphoid cells were mainly located in the upper tract (uterus and fallopian tubes). This compartmentalization of immune cells in the FRT was supported by transcriptomic analyses and a correlation network. Polyfunctional MVA-specific CD8+ T cells were detected in the blood, lymph nodes, vagina, cervix, uterus, and fallopian tubes. Anti-MVA IgG and IgA were detected in cervicovaginal fluid after a second vaccine dose. Thus, systemic vaccination with an MVA vector elicits cellular and Ab responses in the FRT.
Collapse
Affiliation(s)
- Romain Marlin
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France.,Mucosal Innate Immunity and Sexually Transmitted Infections Control Group, Department of Virology, Institut Pasteur, 75015 Paris, France.,Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France
| | - Marie-Thérèse Nugeyre
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France.,Mucosal Innate Immunity and Sexually Transmitted Infections Control Group, Department of Virology, Institut Pasteur, 75015 Paris, France.,Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France
| | - Nicolas Tchitchek
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France
| | - Matteo Parenti
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France
| | - Hakim Hocini
- Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France.,Faculté de Médecine, Université Paris-Est, INSERM U955, 94010 Créteil, France
| | - Fahd Benjelloun
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France.,Mucosal Innate Immunity and Sexually Transmitted Infections Control Group, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Claude Cannou
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France.,Mucosal Innate Immunity and Sexually Transmitted Infections Control Group, Department of Virology, Institut Pasteur, 75015 Paris, France
| | - Nathalie Dereuddre-Bosquet
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France
| | - Yves Levy
- Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France.,Faculté de Médecine, Université Paris-Est, INSERM U955, 94010 Créteil, France.,Service d'Immunologie Clinique, Groupe Henri-Mondor Albert-Chenevier, Assistance Publique-Hôpitaux de Paris, 94010 Créteil, France
| | - Françoise Barré-Sinoussi
- Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France.,Division Internationale, Institut Pasteur, 75015 Paris, France; and
| | - Gabriella Scarlatti
- Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France.,Viral Evolution and Transmission Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roger Le Grand
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France.,Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France
| | - Elisabeth Menu
- Immunologie des Infections Virales et des Maladies Auto-immunes (ImVA)/Infrastructure Nationale pour la Modélisation des Maladies Infectieuses Humaines et les Thérapies Innovantes (IDMIT)/Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut des Maladies Emergentes et des Traitements Innovants (IMETI), Université Paris-Sud, INSERM U1184, 92265 Fontenay-Aux-Roses, France; .,Mucosal Innate Immunity and Sexually Transmitted Infections Control Group, Department of Virology, Institut Pasteur, 75015 Paris, France.,Vaccine Research Institute, Henri Mondor Hospital, 94010 Créteil, France
| |
Collapse
|
6
|
Cecchinato V, Bernasconi E, Speck RF, Proietti M, Sauermann U, D'Agostino G, Danelon G, Rezzonico Jost T, Grassi F, Raeli L, Schöni-Affolter F, Stahl-Hennig C, Uguccioni M. Impairment of CCR6+ and CXCR3+ Th Cell Migration in HIV-1 Infection Is Rescued by Modulating Actin Polymerization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:184-195. [PMID: 27895171 PMCID: PMC5164881 DOI: 10.4049/jimmunol.1600568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
CD4+ T cell repopulation of the gut is rarely achieved in HIV-1-infected individuals who are receiving clinically effective antiretroviral therapy. Alterations in the integrity of the mucosal barrier have been indicated as a cause for chronic immune activation and disease progression. In this study, we present evidence that persistent immune activation causes impairment of lymphocytes to respond to chemotactic stimuli, thus preventing their trafficking from the blood stream to peripheral organs. CCR6+ and CXCR3+ Th cells accumulate in the blood of aviremic HIV-1-infected patients on long-term antiretroviral therapy, and their frequency in the circulation positively correlates to levels of soluble CD14 in plasma, a marker of chronic immune activation. Th cells show an impaired response to chemotactic stimuli both in humans and in the pathogenic model of SIV infection, and this defect is due to hyperactivation of cofilin and inefficient actin polymerization. Taking advantage of a murine model of chronic immune activation, we demonstrate that cytoskeleton remodeling, induced by okadaic acid, restores lymphocyte migration in response to chemokines, both in vitro and in vivo. This study calls for novel pharmacological approaches in those pathological conditions characterized by persistent immune activation and loss of trafficking of T cell subsets to niches that sustain their maturation and activities.
Collapse
Affiliation(s)
- Valentina Cecchinato
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland;
| | - Enos Bernasconi
- Division of Infectious Diseases, Regional Hospital, 6903 Lugano, Switzerland
| | - Roberto F Speck
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Michele Proietti
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, 37077 Göttingen, Germany
| | - Gianluca D'Agostino
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Gabriela Danelon
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Tanja Rezzonico Jost
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | - Fabio Grassi
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Lorenzo Raeli
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland
| | | | | | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, University of Italian Switzerland, 6500 Bellinzona, Switzerland;
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| |
Collapse
|
7
|
Klippert A, Bleyer M, Sauermann U, Neumann B, Kaul A, Daskalaki M, Stolte-Leeb N, Kirchhoff F, Stahl-Hennig C. Lymphocryptovirus-dependent occurrence of lymphoma in SIV-infected rhesus macaques with particular consideration to two uncommon cases of non-Hodgkin's lymphoma. Primate Biol 2016. [DOI: 10.5194/pb-3-65-2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract. Despite combination antiretroviral therapy, high-grade malignant non-Hodgkin's lymphoma (NHL) is still one of the most frequently acquired immunodeficiency syndrome (AIDS)-defining disorders in the end stage of infection with human immunodeficiency virus (HIV). NHL can also be observed in rhesus macaques infected with the simian immunodeficiency virus (SIV). Thus, they represent a useful model to study morphological characteristics and oncogenetic mechanisms of NHL in humans.When reviewing the occurrence of lymphoma at the German Primate Center over the past 25 years within the context of pathogenic SIV infection we noticed a strikingly high incidence (four out of seven animals) of these tumors in rhesus macaques infected with ex vivo derived SIVmac251/32H/spleen in AIDS-defining end-stage disease. Polymerase chain reaction analysis of this virus stock revealed the co-presence of rhesus lymphocryptovirus (rhLCV), which represents the monkey homologue to human Epstein–Barr virus (EBV), suggesting an association between co-application of SIV and rhLCV and increased tumorigenesis.In addition, we present two cases of NHL in rhesus macaques infected with a SIVmac239 nef-mutant variant because one exhibited an unusual immunophenotype and the other an uncommon organ manifestation. Histological and immunohistochemical examinations of tumors of the first animal revealed metastatic diffuse large B-cell lymphomas (DLBCL) affecting the stomach and the pancreaticoduodenal lymph nodes, of which the one in the stomach presented the rare dual expression of CD20 and CD3. Necropsy of the second animal revealed an obstructive DLBCL around the urinary bladder neck that led to urine backflow and eventually death due to acute uremia without any further AIDS-like manifestations. In the tumors of both animals, abundant Epstein–Barr nuclear antigen-2 expression was demonstrated, thus verifying concurrent rhLCV infection. Flow cytometric analyses revealed a high percentage of activation as well as proliferation in B cells from peripheral lymph nodes in both animals. Moreover, CD4+ T cells were depleted in blood, colon and lymphoid tissue. Concomitantly, CD8+ T cells showed an exhausted phenotype. The two case reports and the increased incidence of NHL following co-application of SIV and rhLCV underline the role of rhLCV in lymphomagenesis.
Collapse
|
8
|
Tuero I, Venzon D, Robert-Guroff M. Mucosal and Systemic γδ+ T Cells Associated with Control of Simian Immunodeficiency Virus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:4686-4695. [PMID: 27815422 DOI: 10.4049/jimmunol.1600579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
Abstract
γδ T cells act as a first line of defense against invading pathogens. However, despite their abundance in mucosal tissue, little information is available about their functionality in this compartment in the context of HIV/SIV infection. In this study, we evaluated the frequency, phenotype, and functionality of Vδ1 and Vδ2 T cells from blood, rectum, and the female reproductive tract (FRT) of rhesus macaques to determine whether these cells contribute to control of SIV infection. No alteration in the peripheral Vδ1/Vδ2 ratio in SIV-infected macaques was observed. However, CD8+ and CD4+CD8+ Vδ1 T cells were expanded along with upregulation of NKG2D, CD107, and granzyme B, suggesting cytotoxic function. In contrast, Vδ2 T cells showed a reduced ability to produce the inflammatory cytokine IFN-γ. In the FRT of SIV+ macaques, Vδ1 and Vδ2 showed comparable levels across vaginal, ectocervical, and endocervical tissues; however, endocervical Vδ2 T cells showed higher inflammatory profiles than the two other regions. No sex difference was seen in the rectal Vδ1/Vδ2 ratio. Several peripheral Vδ1 and/or Vδ2 T cell subpopulations expressing IFN-γ and/or NKG2D were positively correlated with decreased plasma viremia. Notably, Vδ2 CD8+ T cells of the endocervix were negatively correlated with chronic viremia. Overall, our results suggest that a robust Vδ1 and Vδ2 T cell response in blood and the FRT of SIV-infected macaques contribute to control of viremia.
Collapse
Affiliation(s)
- Iskra Tuero
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
9
|
Comparative phenotypical analysis of B cells in fresh and cryopreserved mononuclear cells from blood and tissue of rhesus macaques. J Immunol Methods 2016; 433:59-68. [PMID: 26970138 DOI: 10.1016/j.jim.2016.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Cryopreservation of peripheral blood mononuclear cells (PBMCs) is common for large clinical trials for which phenotypical characterization of lymphocytes is retrospectively performed in specialized core laboratories. It is therefore essential to assess the comparability between fresh and frozen samples. No side-by-side comparison of B and plasma cells of rhesus macaques (RM), which serve as useful models for several human diseases has been conducted until now. Hence, we performed an extensive comparative analysis between fresh and thawed mononuclear cells (MNCs) from blood and various tissues of healthy RM to analyze for the possible effects of cryopreservation on phenotype and functionality. Our data demonstrate that -80°C cryopreservation induces profound changes compared to fresh ex vivo-derived material. Percentages of B cells were stable in PBMCs, but were increased in all organs analyzed. The expression of CD27, a marker for differentiation between naïve and memory B cells, was massively reduced in PBMCs and MNC from organs with the most severe changes observed in cells from bone marrow (BM). Additionally, similar low percentages of CD27(+) memory B cells were detected in PBMCs and BM samples stored in liquid nitrogen. Therefore, cryopreservation is not suitable for the phenotypical and functional characterization of B cells. Further optimization of cryoconservation protocols monitoring the surface expression of CD27, which was identified as a marker for the quality of cryopreserved material of RM, will be essential.
Collapse
|
10
|
Grunwald T, Tenbusch M, Schulte R, Raue K, Wolf H, Hannaman D, de Swart RL, Überla K, Stahl-Hennig C. Novel vaccine regimen elicits strong airway immune responses and control of respiratory syncytial virus in nonhuman primates. J Virol 2014; 88:3997-4007. [PMID: 24453366 PMCID: PMC3993754 DOI: 10.1128/jvi.02736-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/11/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Induction of long-lasting immunity against viral respiratory tract infections remains an elusive goal. Using a nonhuman primate model of human respiratory syncytial virus (hRSV) infection, we compared mucosal and systemic immune responses induced by different DNA delivery approaches to a novel parenteral DNA prime-tonsillar adenoviral vector booster immunization regimen. Intramuscular (i.m.) electroporation (EP) of a DNA vaccine encoding the fusion protein of hRSV induced stronger systemic immune responses than intradermal EP, tattoo immunization, and conventional i.m. DNA injection. A single EP i.m., followed by two atraumatic tonsillar immunizations with the adenoviral vector, elicited strong systemic immune responses, an unique persistent CD4(+) and CD8(+) T cell response in the lower respiratory tract and protection from intranasal hRSV challenge. Thus, parenteral DNA priming followed by booster immunization targeted to a mucosal inductive site constitutes an effective vaccine regimen for eliciting protective immune responses at mucosal effector sites. IMPORTANCE The human respiratory syncytial virus (hRSV) is the most common cause of severe respiratory tract disease in infancy and leads to substantial morbidity and morality in the elderly. In this study, we compared the immunogenicity and efficacy of several gene-based immunization protocols in rhesus macaques. Thereby, we found that the combination of an initially parenterally delivered DNA vaccine with a subsequent atraumatic tonsillar adenoviral vector immunization results in a strong systemic immune response accompanied by an exceptional high T-cell response in the mucosa. Strikingly, these animals were protected against a RSV challenge infection controlling the viral replication indicated by a 1,000-fold-lower viral load in the lower respiratory tract. Since mucosal cellular responses of this strength had not been described in earlier RSV vaccine studies, this heterologous DNA prime-tonsillar boost vaccine strategy is very promising and should be pursued for further preclinical and clinical testing.
Collapse
Affiliation(s)
- Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Reiner Schulte
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Katharina Raue
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Hans Wolf
- Institute for Medical Microbiology and Hygiene, Regensburg, Germany
| | - Drew Hannaman
- Ichor Medical Systems, Inc., San Diego, California, USA
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | | |
Collapse
|
11
|
Thomas MA, Demberg T, Vargas-Inchaustegui DA, Xiao P, Tuero I, Venzon D, Weiss D, Treece J, Robert-Guroff M. Rhesus macaque rectal and duodenal tissues exhibit B-cell sub-populations distinct from peripheral blood that continuously secrete antigen-specific IgA in short-term explant cultures. Vaccine 2013; 32:872-80. [PMID: 24374153 DOI: 10.1016/j.vaccine.2013.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly obvious that evaluation of a vaccine aimed at preventing HIV infection should include assessment of induced immunity at mucosal sites of viral entry. Among the most salient immune responses are viral-specific antibodies. A recent report on IgA-secreting plasma cells in human duodenal explants prompted us to examine similar duodenal and rectal biopsies of rhesus macaques, a key animal model for pre-clinical HIV/SIV vaccine studies, and characterize the local resident B-cells. Here we report that non-human primate rectal explants possess similar levels of B-cells as duodenal explants. We characterize the antibody isotype expression on mucosal memory B-cells and show for the first time that the B-cell memory subsets of the duodenum and rectum are distinct from those of PBMC, not only by essentially lacking CD27(+) cells, as previously reported for uninfected macaques (Titanji et al., 2010), but also in being mostly IgD(-). SIV- and SHIV-infected macaques had fewer total IgA-secreting cells in rectal tissue compared to naïve macaques. As expected, the fractions of B-cells with surface expression of IgA were dominant in the rectal and duodenal explants whereas in PBMC IgG surface expression was dominant among IgD(-) B-cells. Mucosal antibody secreting cells were found to be predominantly plasma cells/plasma blasts based on their lack of response to stimulation. Importantly, short-term culture of rectal explants of SIV- and SHIV-positive animals led to secretion of Env-specific IgA into the culture supernatant which could be easily measured by ELISA. Collection of such culture supernatant over several days allows for accumulation of mucosal antibody in amounts that should enable antibody purification, characterization, and use in functional assays. Rectal explants can be readily obtained and unequivocally identify the mucosal tissue as the source of antibody. Overall they facilitate evaluation of mucosal vaccines.
Collapse
Affiliation(s)
- Michael A Thomas
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diego A Vargas-Inchaustegui
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Xiao
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iskra Tuero
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Deborah Weiss
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - James Treece
- Advanced BioScience Laboratories, Inc., Rockville, MD, USA
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Giraldo PC, de Carvalho JBJ, do Amaral RLG, da Silveira Gonçalves AK, Eleutério J, Guimarães F. Identification of immune cells by flow cytometry in vaginal lavages from women with vulvovaginitis and normal microflora. Am J Reprod Immunol 2011; 67:198-205. [PMID: 22151521 DOI: 10.1111/j.1600-0897.2011.01093.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PROBLEM The extent of the vaginal immune response is not fully determined. The purpose of this study was to evaluate the vaginal immune cells from women with vulvovaginitis (VV). METHOD OF STUDY A total of 142 volunteers diagnosed with bacterial vaginosis (BV), vulvovaginal candidiasis (VC), and BV associated with VC or normal microflora were sampled to evaluate the immune cells by flow cytometry. The immune cells were obtained by vaginal lavage and labeled with fluorochrome-conjugated monoclonal antibodies to identify neutrophil granulocytes, macrophages, CD4(+) and CD8(+) T lymphocytes, B lymphocytes, and NK lymphocytes. RESULTS Neutrophil granulocytes were present in 84.6% of samples among the leukocyte populations. Considering samples in which neutrophils were present, the mean percentage of neutrophil granulocytes was significantly higher in women with VC than BV and normal microflora and was significantly lower in women with BV than normal microflora. Macrophages and lymphocytes were present in a lower percentage of samples. The mean percentage of CD4(+) T lymphocytes in vaginal lavages was significantly higher in VC and BV compared with women with normal microflora. CONCLUSIONS Neutrophils were the predominant leukocytes and were associated with VC and inversely with BV. CD4(+) T lymphocytes were associated with both VC and BV.
Collapse
|
13
|
Brinckmann S, da Costa K, van Gils MJ, Hallengärd D, Klein K, Madeira L, Mainetti L, Palma P, Raue K, Reinhart D, Reudelsterz M, Ruffin N, Seifried J, Schäfer K, Sheik-Khalil E, Sköld A, Uchtenhagen H, Vabret N, Ziglio S, Scarlatti G, Shattock R, Wahren B, Gotch F. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010. J Transl Med 2011; 9:40. [PMID: 21486446 PMCID: PMC3086860 DOI: 10.1186/1479-5876-9-40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/12/2011] [Indexed: 11/21/2022] Open
Abstract
Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda), and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.
Collapse
Affiliation(s)
- Sarah Brinckmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg, Stockholm, 171 77, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schultheiss T, Schulte R, Sauermann U, Ibing W, Stahl-Hennig C. Strong mucosal immune responses in SIV infected macaques contribute to viral control and preserved CD4+ T-cell levels in blood and mucosal tissues. Retrovirology 2011; 8:24. [PMID: 21481223 PMCID: PMC3096904 DOI: 10.1186/1742-4690-8-24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since there is still no protective HIV vaccine available, better insights into immune mechanism of persons effectively controlling HIV replication in the absence of any therapy should contribute to improve further vaccine designs. However, little is known about the mucosal immune response of this small unique group of patients. Using the SIV-macaque-model for AIDS, we had the rare opportunity to analyze 14 SIV-infected rhesus macaques durably controlling viral replication (controllers). We investigated the virological and immunological profile of blood and three different mucosal tissues and compared their data to those of uninfected and animals progressing to AIDS-like disease (progressors). RESULTS Lymphocytes from blood, bronchoalveolar lavage (BAL), and duodenal and colonic biopsies were phenotypically characterized by polychromatic flow cytometry. In controllers, we observed higher levels of CD4+, CD4+CCR5+ and Gag-specific CD8+ T-cells as well as lower immune activation in blood and all mucosal sites compared to progressors. However, we could also demonstrate that immunological changes are distinct between these three mucosal sites.Intracellular cytokine staining demonstrated a significantly higher systemic and mucosal CD8+ Gag-specific cellular immune response in controllers than in progressors. Most remarkable was the polyfunctional cytokine profile of CD8+ lymphocytes in BAL of controllers, which significantly dominated over their blood response. The overall suppression of viral replication in the controllers was confirmed by almost no detectable viral RNA in blood and all mucosal tissues investigated. CONCLUSION A strong and complex virus-specific CD8+ T-cell response in blood and especially in mucosal tissue of SIV-infected macaques was associated with low immune activation and an efficient suppression of viral replication. This likely afforded a repopulation of CD4+ T-cells in different mucosal compartments to almost normal levels. We conclude, that a robust SIV-specific mucosal immune response seems to be essential for establishing and maintaining the controller status and consequently for long-term survival.
Collapse
Affiliation(s)
- Tina Schultheiss
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Goettingen, Germany.
| | | | | | | | | |
Collapse
|