1
|
Rojasawasthien T, Srithanyarat SS, Bulanawichit W, Osathanon T. Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells. Int Dent J 2025; 75:117-126. [PMID: 39730290 PMCID: PMC11806315 DOI: 10.1016/j.identj.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed. The review highlights the role of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in mediating inflammatory responses, as well as the counteracting effects of anti-inflammatory cytokines like IL-4 and IL-10. Additionally, we underscore the involvement of toll-like receptors (TLRs), particularly TLR4, in transducing mechanical stress signals and modulating cytokine production. This review demonstrates that hPDLSCs respond to different mechanical forces with specific gene expression changes that direct inflammatory and bone remodelling signals, leading to increased osteoblast and osteoclast activity. Moreover, hPDLSCs, together with contiguous hPDL cells, respond to various mechanical forces by regulating the immune function of several immune cells. This complex relationship between the mechanical force stress, inflammation, and the cellular response in hPDLSCs warrants further research to develop therapeutic strategies for periodontal and related diseases.
Collapse
Affiliation(s)
- Thira Rojasawasthien
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand
| | - Supreda Suphanantachat Srithanyarat
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Periodontology and Dental Implants, Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wajathip Bulanawichit
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Burgan J, Rahmati M, Lee M, Saiz AM. Innate immune response to bone fracture healing. Bone 2025; 190:117327. [PMID: 39522707 DOI: 10.1016/j.bone.2024.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The field of osteoimmunology has primarily focused on fracture healing in isolated musculoskeletal injuries. The innate immune system is the initial response to fracture, with inflammatory macrophages, cytokines, and neutrophils arriving first at the fracture hematoma, followed by an anti-inflammatory phase to begin the process of new bone formation. This review aims to first discuss the current literature and knowledge gaps on the immune responses governing single fracture healing by encompassing the individual role of macrophages, neutrophils, cytokines, mesenchymal stem cells, bone cells, and other immune cells. This paper discusses the interactive effects of these cellular responses underscoring the field of osteoimmunology. The critical role of the metabolic environment in guiding the immune system properties will be highlighted along with some effective therapeutics for fracture healing in the context of osteoimmunology. However, compared to isolated fractures, which frequently heal well, long bone fractures in over 30 % of polytrauma patients exhibit impaired healing. Clinical evidence suggests there may be distinct physiologic and inflammatory pathways altered in polytrauma resulting in nonunion. Nonunion is associated with worse patient outcomes and increased societal healthcare costs. The dysregulated immunomodulatory/inflammatory response seen in polytrauma may lead to this increased nonunion rate. This paper will investigate the differences in immune response between isolated and polytrauma fractures. Finally, future directions for fracture studies are explored with consideration of the emerging roles of newly discovered immune cell functions in fracture healing, the existing challenges and conflicting results in the field, the translational potential of these studies in clinic, and the more complex nature of polytrauma fractures that can alter cell functions in different tissues.
Collapse
Affiliation(s)
- Jane Burgan
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maryam Rahmati
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA; Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109, Blindern, NO-0317 Oslo, Norway
| | - Mark Lee
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA
| | - Augustine Mark Saiz
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA 95817, USA.
| |
Collapse
|
3
|
Urbaniak MM, Rudnicka K, Płociński P, Chmiela M. Exploring the Osteoinductive Potential of Bacterial Pyomelanin Derived from Pseudomonas aeruginosa in a Human Osteoblast Model. Int J Mol Sci 2024; 25:13406. [PMID: 39769171 PMCID: PMC11678243 DOI: 10.3390/ijms252413406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaptonuria (AKU) is a genetically determined disease associated with disorders of tyrosine metabolism. In AKU, the deposition of homogentisic acid polymers contributes to the pathological ossification of cartilage tissue. The controlled use of biomimetics similar to deposits observed in cartilage during AKU potentially may serve the development of new bone regeneration therapy based on the activation of osteoblasts. The proposed biomimetic is pyomelanin (PyoM), a polymeric biomacromolecule synthesized by Pseudomonas aeruginosa. This work presents comprehensive data on the osteoinductive, pro-regenerative, and antibacterial properties, as well as the cytocompatibility, of water-soluble (PyoMsol) or water-insoluble (PyoMinsol) PyoM. Both variants of PyoM support osteoinductive processes as well as the maturation of osteoblasts in cell cultures in vitro due to the upregulation of bone-formation markers, osteocalcin (OC), and alkaline phosphatase (ALP). Furthermore, the cytokines involved in these processes were elevated in cell cultures of osteoblasts exposed to PyoM: tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10. The PyoM variants are cytocompatible in a wide concentration range and limit the doxorubicin-induced apoptosis of osteoblasts. This cytoprotective PyoM activity is correlated with an increased migration of osteoblasts. Moreover, PyoMsol and PyoMinsol exhibit antibacterial activity against staphylococci isolated from infected bones. The osteoinductive, pro-regenerative, and antiapoptotic effects achieved through PyoM stimulation prompt the development of new biocomposites modified with this bacterial biopolymer for medical use.
Collapse
Affiliation(s)
- Mateusz M. Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St, 91-403 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St, 90-237 Łódź, Poland; (M.M.U.); (K.R.); (P.P.)
| |
Collapse
|
4
|
Vertuan M, da Silva JF, Dionizio A, de Souza BM, Mosquim V, Martini T, Garlet GP, Niemeyer SH, Esteves-Oliveira M, Magalhães AC. Efficacy and safety of TiF 4 varnish in preventing erosive tooth wear in a rat animal model. Sci Rep 2024; 14:28741. [PMID: 39567633 PMCID: PMC11579421 DOI: 10.1038/s41598-024-80449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
An animal model was applied to develop erosive tooth wear (ETW) and to evaluate the efficacy and safety of titanium tetrafluoride (TiF4) in preventing ETW. Forty-eight male Wistar rats were divided into three groups (n = 16): TiF4 (2.45% F-), NaF (2.45% F-) and placebo varnishes. Eight from each group were subjected to erosive challenges (Sprite Zero) and the other received tap water, both ad libitum. After twenty-eight days, the mandibles were resected for histopathological gingival analysis, clinical and microscopic tooth evaluation by 3D confocal laser microscopy, scanning electron microscopy (SEM-EDX) and micro-Raman spectroscopy (MRS). Organs were evaluated with respect to fluoride content. No significant difference was found in F content in tissues. No histopathological damage was seen in gingiva. ETW was clinically more aggressive in rats from placebo group consuming Sprite compared to water (Q²=12.6, p < 0.01), in accordance with confocal images. TiF4 was superior in reducing cross-section area loss (0.036 ± 0.01µm2) compared to NaF and placebo, respectively (0.044 ± 0.01/0.063 ± 0.01µm2, ANOVA, p < 0.0001). Dentin exposure was detected by SEM in rats belonging to placebo consuming Sprite. Peaks compatible with typical apatite bands were visible. TiF4 reduces the progression of ETW without causing any relevant side-effect and the rats' model was able to simulate ETW in vivo.
Collapse
Affiliation(s)
- Mariele Vertuan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Júlia França da Silva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Beatriz Martines de Souza
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Victor Mosquim
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Tatiana Martini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | | | - Samira Helena Niemeyer
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Bern, Switzerland
| | - Marcella Esteves-Oliveira
- Department of Conservative Dentistry, Periodontology and Endodontolgy, Oral Medicine and Maxillofacial Surgery, (UZMK), University Centre of Dentistry, University of Tübingen, Tübingen, Germany
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil.
| |
Collapse
|
5
|
Grippaudo C, Cafiero C, Grande NM, Dassatti L, Palmirotta R, Castagnola R, Isola G. Genetic Testing as a Source of Information Driving Diagnosis and Therapeutic Plan in a Multidisciplinary Case. Bioengineering (Basel) 2024; 11:1023. [PMID: 39451399 PMCID: PMC11505315 DOI: 10.3390/bioengineering11101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
In many cases, the etiopathogenesis of oral cavity diseases depends on the presence of variants in some genes. Being able to identify these variants defines the possibilities and limits of therapies. This multidisciplinary case describes several pathologies of the oral cavity in a young patient affected by type 1 diabetes. The patient presented with an impacted palatal canine. Further investigation revealed cervical root resorption of the upper right central incisor. Genetic testing was performed for interleukin, VDR receptor genes, and the evaluation of periodontopathogenic bacteria. The mutational analysis carried out for the VDR polymorphisms and the IL1A, IL1B, IL6, and IL10 polymorphisms showed the presence of pathogenetic variants. The results for bacterial load showed the presence of periodontal pathogenes. The first intervention was the intentional replantation of the incisor. The second intervention was the orthodontic recovery of the impacted canine, using light forces and a hybrid anchorage with a miniscrew. At the end of orthodontic treatment, a crack was found in the upper left first premolar, which was extracted. Throughout treatment, non-invasive periodontal interventions were performed periodically to control periodontal inflammation. This case is an example of the integration of genetic analyses into the multidisciplinary diagnostic pathway.
Collapse
Affiliation(s)
- Cristina Grippaudo
- UOC di Clinica Odontoiatrica, Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy;
- Dipartimento Universitario Testa Collo ed Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (N.M.G.); (L.D.)
| | | | - Nicola Maria Grande
- Dipartimento Universitario Testa Collo ed Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (N.M.G.); (L.D.)
| | - Leonardo Dassatti
- Dipartimento Universitario Testa Collo ed Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (N.M.G.); (L.D.)
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Raffaella Castagnola
- Dipartimento Universitario Testa Collo ed Organi di Senso, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (N.M.G.); (L.D.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
6
|
Alhobeira HA, Sharma A, Sharma A, Khan M, Lohani M, Khan S, Fahmy EK, Esmaeel SE, Agarwal A. Short-term, nonsurgical periodontal therapy boosts interleukin-12 levels and reduces oral cancer risk. Ir J Med Sci 2024; 193:1949-1955. [PMID: 38698250 DOI: 10.1007/s11845-024-03695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cytokines, including interleukin-12 (IL-12), are proteins that regulate cell survival, proliferation, differentiation, and function. IL-12 is a heterodimeric proinflammatory cytokine. It possesses tumoricidal properties and promotes M1 macrophage polarization and IFN-γ production by T helper (Th1) cells, which in turn stimulates the antitumor cytotoxic cluster of eight positive (CD8+) and natural killer cells, therefore activating an effector immune response against tumor cells. MATERIALS AND METHODS Herein, the IL-2 levels of 60 patients with generalized chronic periodontitis (GCP) were assessed. Plaque index, gingival index, pocket probing depth, bleeding on probing percentage (BOP %), and clinical attachment loss were the clinical indicators reported. RESULTS Patients with GCP in the pretreatment group had substantially lower mean IL-12 levels than those in the post-treatment group. Short-term, nonsurgical treatment (NST) considerably improved periodontal indices and increased IL-12 levels, thereby reducing oral cancer risk. CONCLUSION NST is a cost-effective and accessible cancer prevention procedure for general dentists.
Collapse
Affiliation(s)
- Hazza A Alhobeira
- Department of Restorative Dentistry, College of Dentistry, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Anamika Sharma
- Department of Dentistry, LLRM Medical College, CCS University Meerut, Meerut, 250002, UP, India.
| | - Ananya Sharma
- Department of Dentistry, LLRM Medical College, CCS University Meerut, Meerut, 250002, UP, India
| | - Mahvish Khan
- Department of Biology, College of Science, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Mohtashim Lohani
- Medical Research Centre, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha'il, Ha'il 55473, Saudi Arabia
| | - Eslam K Fahmy
- Physiology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Safya E Esmaeel
- Physiology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Anshoo Agarwal
- Pathology Department, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
7
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
8
|
Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone 2022; 164:116540. [PMID: 36031187 PMCID: PMC10657632 DOI: 10.1016/j.bone.2022.116540] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Cytokines are an important set of proteins regulating bone homeostasis. In inflammation induced bone resorption, cytokines, such as RANKL, TNF-α, M-CSF, are indispensable for the differentiation and activation of resorption-driving osteoclasts, the process we know as osteoclastogenesis. On the other hand, immune system produces a number of regulatory cytokines, including IL-4, IL-10 and IFNs, and limits excessive activation of osteoclastogenesis and bone loss during inflammation. These unique properties make cytokines powerful targets as rheostat to maintain bone homeostasis and for potential immunotherapies of inflammatory bone diseases. In this review, we summarize recent advances in cytokine-mediated regulation of osteoclastogenesis and provide insights of potential translational impact of bench-side research into clinical treatment of bone disease.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China; Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Ting Zheng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
9
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
10
|
Li W, Wang C, Wang Z, Gou L, Zhou Y, Peng G, Zhu M, Zhang J, Li R, Ni H, Wu L, Zhang W, Liu J, Tian Y, Chen Z, Han YP, Tong N, Fu X, Zheng X, Berggren PO. Physically Cross-Linked DNA Hydrogel-Based Sustained Cytokine Delivery for In Situ Diabetic Alveolar Bone Rebuilding. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25173-25182. [PMID: 35638566 DOI: 10.1021/acsami.2c04769] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of a biodegradable and shape-adaptable bioscaffold that can enhance local cytokine retention and bioactivity is essential for the application of immunotherapy in periodontal diseases. Here, we report a biodegradable, anti-inflammatory, and osteogenic ILGel that uses a physically cross-linked DNA hydrogel as a soft bioscaffold for the long-term sustained release of cytokine interleukin-10 (IL-10) to accelerate diabetic alveolar bone rebuilding. Porous microstructures of ILGel favored the encapsulation of IL-10 and maintained IL-10 bioactivity for at least 7 days. ILGel can be gradually degraded or hydrolyzed under physiological conditions, avoiding the potential undesired side effects on dental tissues. Long-term sustained release of bioactive IL-10 from ILGel not only promoted M2 macrophage polarization and attenuated periodontal inflammation but also triggered osteogenesis of mesenchymal stem cells (MSCs), leading to accelerated alveolar bone formation and healing of alveolar bone defects under diabetic conditions in vivo. ILGel treatment significantly accelerated the defect healing rate of diabetic alveolar injury up to 93.42 ± 4.6% on day 21 post treatment compared to that of free IL-10 treatment (63.30 ± 7.39%), with improved trabecular architectures. Our findings imply the potential application of the DNA hydrogel as the bioscaffold for cytokine-based immunotherapy in diabetic alveolar bone injury and other periodontal diseases.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengshi Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruoqing Li
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Hengfan Ni
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wanli Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yali Tian
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhong Chen
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Per-Olof Berggren
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| |
Collapse
|
11
|
Chen X, Wan Z, Yang L, Song S, Fu Z, Tang K, Chen L, Song Y. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA. J Nanobiotechnology 2022; 20:110. [PMID: 35248085 PMCID: PMC8898524 DOI: 10.1186/s12951-022-01314-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Periodontitis is characterized by progressive inflammation and alveolar bone loss resulting in tooth loss finally. Macrophages including pro-inflammatory M1-like macrophages and reparative M2-like macrophages play a vital role in inflammation and tissue homeostasis in periodontitis. Among them, reparative M2-like macrophages have been shown to promote tissue repair and prevent bone loss. However, the mechanism of reparative M2 macrophages-induced osteoprotective effect remains elusive.
Results
Exosomes from reparative M2-like macrophages (M2-Exos) were isolated and identified successfully. M2-Exos could promote bone marrow stromal cells (BMSCs) osteogenic differentiation while suppressing bone marrow derived macrophage (BMDM) osteoclast formation, and prohibit pathological alveolar bone resorption because of the intercellular communication via exosomes. High expression level of IL-10 mRNA was detected not only in reparative M2-like macrophages but also in M2-Exos. Meanwhile, IL-10 expression level in BMSCs or BMDM was also upregulated significantly after co-culturing with M2-Exos in a concentration-dependent manner. In vitro, recombinant IL-10 proteins had the ability to selectively promote osteogenic differentiation of BMSCs and hinder osteoclast differentiation of BMDM. Moreover, after treatment with M2-Exos and IL-10R antibody together, the capacity of promoting osteogenesis and suppressing osteoclastogenesis of M2-Exos was significantly reversed. In vivo experiments further showed that M2-Exos reduced alveolar bone resorption in mice with periodontitis via IL-10/IL-10R pathway.
Conclusion
In conclusion, our results demonstrate that the reparative M2-like macrophages could promote osteogenesis while inhibiting osteoclastogenesis in vitro as well as protect alveolar bone against resorption in vivo significantly. M2-Exos could upregulate the IL-10 cytokines expression of BMSCs and BMDM via delivering exosomal IL-10 mRNA to cells directly, leading to activation of the cellular IL-10/IL-10R pathway to regulate cells differentiation and bone metabolism. These results might partly account for the mechanism of osteoprotective effect of reparative M2-like macrophages and provide a novel perspective and a potential therapeutic approach on improving alveolar resorption by M2-Exos.
Graphical Abstract
Collapse
|
12
|
Qiao D, Chen R, Li L, Zhu F, Zhang Y, Yan F. Accelerated Alveolar Bone Loss in a Mouse Model of Inflammatory Bowel Disease and its Relationship with Intestinal Inflammation. J Periodontol 2022; 93:1566-1577. [PMID: 35092308 DOI: 10.1002/jper.21-0374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Dan Qiao
- Nanjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu People's Republic of China
| | - Rixin Chen
- Nanjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu People's Republic of China
| | - Lingjun Li
- Nanjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu People's Republic of China
| | - Feng Zhu
- Department of General Surgery Jinling Hospital, Medical School of Nanjing University Nanjing Jiangsu People's Republic of China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu People's Republic of China
| | - Fuhua Yan
- Nanjing Stomatological Hospital Medical School of Nanjing University Nanjing Jiangsu People's Republic of China
| |
Collapse
|
13
|
Han Y, Yu C, Yu Y. Astragalus polysaccharide alleviates alveolar bone destruction by regulating local osteoclastogenesis during periodontitis. J Appl Biomed 2021; 19:97-104. [PMID: 34907709 DOI: 10.32725/jab.2021.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/23/2021] [Indexed: 01/14/2023] Open
Abstract
Inflammatory imbalance of bone formation/resorption leads to alveolar bone destruction. Astragalus polysaccharide has been confirmed to have anti-inflammatory effects. We sought to disclose the protective effect and its potential mechanisms of astragalus polysaccharide in the periodontitis model. Experimental periodontitis was induced by cotton ligatures for this study. We measured the alveolar bone damage rate, periodontal osteoclasts, proportion of CD4+Foxp3+, CD4+IL-10+, CD4+TGF-β+ subsets in the gingiva, and RANKL, OPG, TGF-β+, and IL-10+ level in the gingiva. We also cultured osteoclast precursor cells in the presence of RANKL and astragalus polysaccharide. Osteoclasto-like cells were identified by TRAP staining, mRNA of RANK, TRAP, and TRAF6 were evaluated by real time PCR. We found that astragalus polysaccharide caused significant protection of the alveolar bone via reducing local osteoclasts. It also decreased the proportion of CD4+Foxp3+ cells and upregulated the level of CD4+IL-10+ cells, reduced RANKL, and remedied IL-10 levels. In cell culture experiments, astragalus polysaccharide prohibited the RANKL mediated osteoclast differentiation. The findings of this study disclose the functions and possible mechanisms of astragalus polysaccharide engaged in local osteoclastogenesis, and reveal the considerable effect of astragalus polysaccharide in alveolar bone homeostasis and its likely contribution to host immuno-regulation in periodontitis.
Collapse
Affiliation(s)
- Yakun Han
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| | - Chengcheng Yu
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| | - Yan Yu
- Affiliated Hospital of Jilin Medical University, Department of Stomatology, Jilin, China
| |
Collapse
|
14
|
Sarfaraz D, Karimian M, Farmohammadi A, Yaghini J. The -592C>A Variation of IL-10 Gene and Susceptibility to Chronic Periodontitis: A Genetic Association Study and In-Silico Analysis. J Oral Biosci 2021; 63:378-387. [PMID: 34547455 DOI: 10.1016/j.job.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Chronic periodontitis (CP) is a common inflammatory disorder with a considerable impact of genetic variations in the interleukin family on predisposition to this disease. This study aimed to investigate the association between the -592C>A polymorphism of the interleukin 10 (IL-10) gene with CP risk in an Iranian population. This experimental study was followed by a meta-analysis and in silico examination. METHODS In a case-control study, 270 subjects, including 135 patients with CP and 135 healthy controls, were enrolled. The -592C>A genotyping was performed using the PCR-RFLP method. In the meta-analysis, valid databases were systematically searched to identify relevant studies. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were computed to examine the association between -592C>A and CP. In silico analysis was conducted using bioinformatics tools to evaluate the impact of the -592C>A polymorphism on IL-10 gene function. RESULTS Our case-control study revealed a significant association between polymorphism and CP risk. Overall, we found significant associations between -592C>A genetic variation and CP and stratified meta-analysis. In silico analysis revealed that this polymorphism could change the pattern of the transcription binding site upstream of the IL-10 gene. It may also alter the hsa-miR-101-3p miRNA-targeted sequence upstream of IL-10. CONCLUSIONS Based on our results, the -592C>A variation in IL-10 may be a genetic risk factor for susceptibility to chronic periodontitis. However, further studies in different ethnicities and results adjusted for clinical and demographic characteristics are needed to obtain more accurate deductions.
Collapse
Affiliation(s)
- Dorna Sarfaraz
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Amir Farmohammadi
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Yaghini
- Department of Periodontology, Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
15
|
Zhao J, Liu R, Zhu J, Chen S, Xu L. Human gingiva-derived mesenchymal stem cells promote osteogenic differentiation through their immunosuppressive function. J Oral Biosci 2021:S1349-0079(21)00092-X. [PMID: 34284117 DOI: 10.1016/j.job.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Human gingiva-derived mesenchymal stem cells (GMSCs) have emerged as a new MSC population exhibiting robust immune regulatory functions, multipotent differentiation potential, and regenerative ability. However, the effects of GMSCs on T cells remain unexplored. Herein, we aimed to evaluate whether GMSCs promote osteogenic differentiation by regulating immune cells. METHODS The GMSC phenotype was confirmed using the colony-forming assay, immunophenotyping, Oil red O staining, and Alizarin red staining. mRNA expression levels of proinflammatory molecules (interleukin-1β [IL-1β] and tumor necrosis factor-α [TNF-α]) and anti-inflammatory factors (IL-10) were measured by quantitative reverse-transcription PCR (qRT-PCR). Then, MC3T3-E1 cells were treated with the collected co-culture supernatant, followed by alkaline phosphatase (ALP) and immunofluorescence staining to evaluate osteogenic differentiation of MC3T3-E1 cells. qRT-PCR and western blotting were employed to analyze the expression levels of osteogenic differentiation proteins, including collagen type I (COL-1), ALP, osteopontin (OPN), and runt-related transcription factor 2 (RUNX2). RESULTS GMSCs were successfully isolated and identified. We observed that GMSCs suppressed the activated T-cell function by downregulating IL-1β and TNF-α and upregulating IL-10. Simultaneously, the expression levels of osteogenesis-related genes (COL-1, ALP, OPN, and RUNX2) were markedly lower in the co-culture supernatant and Jurkat T cell supernatant groups than those in the normal culture medium group; however, expression levels were significantly increased in the co-culture supernatant group when compared with the Jurkat T cell supernatant group. CONCLUSION Our findings indicate that GMSCs could promote the osteogenic differentiation of MC3T3-E1 cells by inhibiting the biological activity of activated T cells.
Collapse
Affiliation(s)
- Jing Zhao
- School of Stomatology of Qingdao University, Qingdao, China
| | - Rui Liu
- Department of Clinical Medicine of Qingdao University, Qingdao, China
| | - Jing Zhu
- Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Shulan Chen
- School of Stomatology of Qingdao University, Qingdao, China.
| | - Ling Xu
- Department of Prosthodontics, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, China.
| |
Collapse
|
16
|
Milk Kefir therapy reduces inflammation and alveolar bone loss on periodontitis in rats. Biomed Pharmacother 2021; 139:111677. [PMID: 33965727 DOI: 10.1016/j.biopha.2021.111677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the tooth-supporting tissues. This study evaluated the anti-inflammatory and antiresorptive effects of milk kefir (MK) on periodontitis in rats. Micro-Raman spectroscopy was performed on MK at different fermentation times to verify the presence of Lactobacillus kefiri. From these results, Wistar rats were divided into the following groups: C (Control); EP (experimental periodontitis); K1 (animals that received MK with one day of fermentation); K1+EP; K4 (animals without EP using MK with four days of fermentation) and K4+EP. MK was administered 28 days before EP induction and during the disease development period (11 days). On day 28, in the EP groups, periodontitis was induced. The animals were euthanized on day 39. The hemimaxillae were removed and the following parameters were evaluated: micro-Raman analysis of the presence of inflammation; histomorphometric analysis to quantify alveolar bone loss and immunohistochemistry for IL-6, TNF-α, IL-Iβ and IL-10 in the periodontal ligament. Micro-Raman analysis showed that four days fermentation MK has a higher intensity spectrum of L. kefiri. Furthermore, the administration of this probiotic reduced the intensity of the inflammation spectrum when compared to one day fermentation MK. It was observed that the animals from the K4+EP group showed significant reduction of alveolar bone loss, as well as a lower IL-6, TNF-α and IL-Iβ immunoexpression and a higher IL-10 immunoexpression, when compared to EP groups. We conclude that MK has anti-inflammatory and antiresorptive effects on periodontitis in rats and that these effects are fermentation time dependent.
Collapse
|
17
|
Sari RP, Revianti S, Andriani D, Prananingrum W, Rahayu RP, Sudjarwo SA. The Effect of Anadara granosa Shell's-Stichopus hermanni Scaffold on CD44 and IL-10 Expression to Decrease Osteoclasts in Socket Healing. Eur J Dent 2021; 15:228-235. [PMID: 33511601 PMCID: PMC8184269 DOI: 10.1055/s-0040-1719215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives
This article aimed to investigate the effect of
Anadara granosa
(AG) shell’s–
Stichopus hermanni
scaffold on cluster of differentiation (CD)44 and interleukin-10 (IL-10) expression to decrease osteoclasts in socket healing.
Materials and Methods
Thirty male Wistar rats were divided into five groups. The lower left incisor was extracted, then given a placebo for group control (K), the treatment group was administered with scaffold from AG shells, and a treatment group with scaffold from blood cockle shell–
S. hermanni
with the concentration of 0.4, 0.8, and 1.6% (AGSH0.4; AGSH0.8; AGSH1.6). We made a bone graft from a combination of AGSH extract using the freeze-dried method. The socket was sutured by silk braid immediately. Third and Seventh days postextraction, animals are killed. CD44 and IL-10 expression were examined with immunohistochemistry, as well as osteoclast was examined with hematoxylin-eosin.
Statistical Analysis
The data were analyzed using a one-way analysis of variance (for CD44 and osteoclast) and Kruskal–Wallis’ test (for IL-10) followed by a post hoc test in which the result of
p
< 0.05.
Results
Scaffold from a combination of AGSH increased CD44 expression significantly, which enhanced IL-10 expression thereby decreased the number of osteoclasts in socket healing on days 3 and 7.
Conclusion
Scaffold of AG shell–
S. hermanni
with a concentration of 0.8% was effective to enhance CD44 and IL-10 expression to decrease osteoclast in socket healing after tooth extraction.
Collapse
Affiliation(s)
- Rima Parwati Sari
- Department of Oral Biology, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | - Syamsulina Revianti
- Department of Oral Biology, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | - Dwi Andriani
- Department of Oral Biology, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | - Widyasri Prananingrum
- Department of Biomaterial, Faculty of Dentistry, Universitas Hang Tuah, Surabaya, Indonesia
| | - Retno Pudji Rahayu
- Department of Oral Pathology and Maxilofacial, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Agus Sudjarwo
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
18
|
Rios-Arce ND, Dagenais A, Feenstra D, Coughlin B, Kang HJ, Mohr S, McCabe LR, Parameswaran N. Loss of interleukin-10 exacerbates early Type-1 diabetes-induced bone loss. J Cell Physiol 2020; 235:2350-2365. [PMID: 31538345 PMCID: PMC6899206 DOI: 10.1002/jcp.29141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/23/2019] [Indexed: 01/08/2023]
Abstract
Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.
Collapse
Affiliation(s)
- Naiomy Deliz Rios-Arce
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
| | - Andrew Dagenais
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Derrick Feenstra
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Brandon Coughlin
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Ho Jun Kang
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Susanne Mohr
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Radiology, Michigan State University, East Lansing, Michigan
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, Michigan
- These authors contributed equally to this work are co-senior and co-corresponding authors
| |
Collapse
|
19
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
20
|
Neppelenbroek KH, Honório HM, Garlet GP. To P or not to P, is that the question? Rethinking experimental design and data analysis to improve biological significance beyond the statistical significance. J Appl Oral Sci 2019; 27:e2019ed001. [PMID: 31596371 PMCID: PMC7700743 DOI: 10.1590/1678-7757-2019-ed001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Wang Z, Li Y, Zhou Y, Qiao Y. Association between the IL-10 rs1800872 polymorphisms and periodontitis susceptibility: A meta-analysis. Medicine (Baltimore) 2019; 98:e17113. [PMID: 31577700 PMCID: PMC6783189 DOI: 10.1097/md.0000000000017113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Periodontitis is a common disease with an unclear pathological mechanism. No precise consensus has been reached to evaluate the association between the IL-10 rs1800872 (- 592, -590, -597 C>A) polymorphism and periodontal disease. Thus, we performed this meta-analysis to collect more evidence-based information. METHODS Four online databases, PubMed, Embase, Web of Science, and China Biology Medicine disc (CBM), were searched in August 2018. An odds ratio (OR) with a 95% confidence interval (CI) was applied to evaluate the association of the rs1800872 with periodontitis susceptibility. RESULTS Twenty three case-control studies with 2714 patients and 2373 healthy controls were evaluated. The overall analyses verified that the IL-10 rs1800872 polymorphism was significantly associated with an increased risk of periodontitis in the allelic model, homozygote model, dominant model, and recessive model (A vs C: OR = 1.28, 95%CI = 1.11-1.49, P = .00, I = 56.87%; AA vs CC: OR = 2.06, 95%CI = 1.32-3.23, P = .00, I = 73.3%; AA + AC vs CC: OR = 1.42, 95%CI = 1.03-1.96, P = .03, I = 76.2%; AA vs AC + CC: OR = 1.78, 95%CI = 1.26-2.56, P = .00, I = 76.7%). Moreover, the subgroup analysis based on ethnicity, periodontitis type, and smoking status showed significant differences. CONCLUSIONS The results of our meta-analysis demonstrate that rs1800872 is associated with periodontitis susceptibility in Caucasians and Asians. Moreover, A allele, AA genotype, CC genotype may be closely associated with chronic periodontitis (CP), while A allele, AA genotype may be closely associated with aggressive periodontitis (AgP).
Collapse
|
22
|
de Almeida JM, Marques BM, Novaes VCN, de Oliveira FLP, Matheus HR, Fiorin LG, Ervolino E. Influence of adjuvant therapy with green tea extract in the treatment of experimental periodontitis. Arch Oral Biol 2019; 102:65-73. [PMID: 30974379 DOI: 10.1016/j.archoralbio.2019.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/29/2022]
Abstract
AIM This study evaluated the effects of topical green tea extract solution (GTE) as adjuvant therapy to mechanical debridement for the treatment of experimental periodontitis (EP). MATERIAL AND METHODS We used 120 male rats (Rattus norvegicus albinus - Wistar), divided into the following four groups: NEP (sham) (n = 30): no experimental periodontitis (NEP), only simulation of EP by installation and removal of a ligature; EP (n = 30): EP induction by ligature; SRP (n = 30): EP, scaling and root planing (SRP), and irrigation with physiological saline solution; SRP/GT (n = 30): EP, SRP, and irrigation with GTE. Histologic analysis and immunohistochemistry were performed for detection of interleukin (IL)1ß, tumor necrosis factor-alpha (TNF-α), IL-10, and anti-tartrate resistant acid phosphatase (TRAP) in the furcation area. The percentage of bone in the furcation (PBF) was considered the primary variable and evaluated at 14, 22, and 37 days. The data from the histological analysis and the IL- 1B, TNF- A, and IL-10 were submitted to a Kruskal-Wallis variance test and Dunn's posttest (p ≤ 0.05). The histometric data and TRAP were submitted to analysis of variance (ANOVA) and Tukey's posttest (p ≤ 0.05). RESULTS The SRP/GT group showed lower inflammatory process, lower immunolabeling pattern of IL-1ß and TNF-α, and greater immunolabeling pattern of IL-10 compared with the EP and SRP groups at 22 days. Fewer TRAP-positive multinucleated osteoclasts were observed in all periods in the SRP/GT group (5.22 ± 0.65; 7.33 ± 0.80; 8.55 ± 1.15) compared with the SRP group (30.67 ± 8.55; 13.22 ± 0.77; 13.87 ± 0.77). Higher PBF was observed in all periods in the SRP/GT group (74.65 ± 7.14; 76.61 ± 5.36; 79.24 ± 3.75) compared with the SRP group (61.60 ± 9.48; 54.84 ± 9.06; 53.25 ± 9.66). CONCLUSION GTE adjuvant to SRP reduced inflammation, osteoclastic activity, and alveolar bone loss in EP.
Collapse
Affiliation(s)
- Juliano Milanezi de Almeida
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil.
| | - Bianca Mayara Marques
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Vivian Cristina Noronha Novaes
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Fred Lucas Pinto de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Henrique Rinaldi Matheus
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Luiz Guilherme Fiorin
- São Paulo State University (UNESP), School of Dentistry, Department of Surgery and Integrated Clinic - Periodontics Division, Araçatuba, SP, Brazil
| | - Edilson Ervolino
- São Paulo State University (UNESP), School of Dentistry, Department of Basic Science - Histology Division, Araçatuba, SP, Brazil
| |
Collapse
|
23
|
Boulanger Piette A, Hamoudi D, Marcadet L, Morin F, Argaw A, Ward L, Frenette J. Targeting the Muscle-Bone Unit: Filling Two Needs with One Deed in the Treatment of Duchenne Muscular Dystrophy. Curr Osteoporos Rep 2018; 16:541-553. [PMID: 30225627 DOI: 10.1007/s11914-018-0468-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual cohesion and common signaling pathways between bone and skeletal muscle in DMD. RECENT FINDINGS The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In particular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteoprotegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD. This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determining the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating muscle and bone disorders regardless of the underlying genetic mutations in DMD.
Collapse
Affiliation(s)
- Antoine Boulanger Piette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Dounia Hamoudi
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Laetitia Marcadet
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Françoise Morin
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Anteneh Argaw
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Leanne Ward
- Division of Endocrinology and Metabolism, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Jérôme Frenette
- Centre Hospitalier Universitaire de Québec, Centre de Recherche du Centre Hospitalier de l'Université Laval (CHUQ-CHUL), Axe Neurosciences, Université Laval, Quebec City, QC, G1V 4G2, Canada.
- Département de Réadaptation, Faculté de Médecine, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
24
|
Özdoğan AI, İlarslan YD, Kösemehmetoğlu K, Akca G, Kutlu HB, Comerdov E, Iskit AB, Şenel S. In vivo evaluation of chitosan based local delivery systems for atorvastatin in treatment of periodontitis. Int J Pharm 2018; 550:470-476. [PMID: 30194012 DOI: 10.1016/j.ijpharm.2018.08.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022]
Abstract
Periodontitis is a local inflammatory disease initiated by bacteria accumulation and results in cytokine mediated alveolar bone resorption and tissue destruction. In this study, the effect of locally delivered atorvastatin (2% w/v) containing chitosan formulations in the treatment of periodontitis was evaluated in rats with ligature induced periodontitis. The levels of interleukin-1beta (IL-1β), IL-6, IL-8, IL-10, transforming growth factor-β1 (TGF-β1), TGF-β2 and TGF-β3 were measured after treatment with formulations. Histomorphometric analysis included the measurements of the area of alveolar bone and the distance between cemento-enamel junction (CEJ) and connective tissue attachment to tooth. Inflammatory and osteoclastic activity scores were given semiquantitatively. Following the administration of atorvastatin, release of pro-inflammatory (IL-1β, IL-6 and IL-8) and anti-inflammatory (TGF-β1 and TGF-β2) cytokines was found to decrease, with a significant alveolar bone healing, when compared to that of control. The anti-inflammatory effect was observed to enhance in presence of chitosan. These findings suggest that chitosan based delivery system for a statin group drug, atorvastatin is a promising for the treatment of periodontal disease.
Collapse
Affiliation(s)
- A Işılay Özdoğan
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara 06100, Turkey
| | - Yağmur D İlarslan
- Hacettepe University, Faculty of Dentistry, Department of Periodontology, Ankara 06100, Turkey
| | - Kemal Kösemehmetoğlu
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara 06100, Turkey
| | - Gülçin Akca
- Gazi University, Faculty of Dentistry, Department of Medical Microbiology, Ankara 06510, Turkey
| | - H Burak Kutlu
- Hacettepe University, Faculty of Dentistry, Department of Periodontology, Ankara 06100, Turkey
| | - Elnur Comerdov
- Hacettepe University, Faculty of Dentistry, Department of Periodontology, Ankara 06100, Turkey
| | - Alper B Iskit
- Hacettepe University, Faculty of Medicine, Department of Medical Pharmacology, Ankara 06100, Turkey
| | - Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara 06100, Turkey.
| |
Collapse
|
25
|
Interleukin-10 polymorphisms affect the key periodontal pathogens in Chinese periodontitis patients. Sci Rep 2018; 8:9068. [PMID: 29899423 PMCID: PMC5997982 DOI: 10.1038/s41598-018-26236-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Interleukin-10 (IL-10) polymorphisms have been shown to affect IL-10 production. This study investigated the influences of IL-10 polymorphisms on the susceptibility to chronic periodontitis (CP) and aggressive periodontitis (AP), and their possible role in the quantity of subgingival bacteria Aggregatibacter Actinomycetemcomitans and Porphyromonas gingivalis. 92 CP patients, 83 AP patients and 91 periodontal healthy controls were recruited. Serum IL-10 concentration was analyzed by enzyme-linked immunosorbent assay (ELISA). Gene polymorphisms were determined by multiplex SNaPshot technique. Bacteria were quantified by real-time polymerase chain reaction with TaqMan MGB probes. Taking into account age, gender and periodontal status, IL-10-592 AA, -819 TT and ATA/ATA genotype occurred more frequently in patients with CP than in healthy controls. In CP cases, higher quantity of subgingival A. actinomycetemcomitans and lower serum IL-10 levels could be detected in homozygous ATA/ATA carriers. These findings indicate that variants in IL-10 promoter gene were not only associated with predisposition to chronic periodontitis but also affected the subgingival number of A. Actinomycetemcomitans in a Chinese Han population.
Collapse
|
26
|
Chen E, Liu G, Zhou X, Zhang W, Wang C, Hu D, Xue D, Pan Z. Concentration-dependent, dual roles of IL-10 in the osteogenesis of human BMSCs via P38/MAPK and NF-κB signaling pathways. FASEB J 2018; 32:4917-4929. [PMID: 29630408 DOI: 10.1096/fj.201701256rrr] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironmental conditions can influence the differentiation and functional roles of mesenchymal stem cells (MSCs). Recent studies have suggested that an inflammatory microenvironment can significantly affect the osteogenic differentiation of MSCs. Here, we show, for the first time, that IL-10 has concentration-dependent, dual roles in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs). Low physiologic concentrations of IL-10 (0.01-1.0 ng/ml) activate the p38/MAPK signaling pathway to promote the osteogenesis of hBMSCs, but higher pathologic doses of IL-10 (10-100 ng/ml) inhibit p38/MAPK signaling by activating NF-κB, inhibiting osteogenesis. These results demonstrate that p38/MAPK and NF-κB signaling mediates the double-edged sword effect of IL-10 on hBMSCs. The osteogenic impairment was reversed at higher doses of IL-10 when cells were supplemented with the NF-κB inhibitor BAY11-7082. These data provide important insights into the regulatory effects of IL-10 on the biologic behavior of hBMSCs.-Chen, E., Liu, G., Zhou, X., Zhang, W., Wang, C., Hu, D., Xue, D., Pan, Z. Concentration-dependent, dual roles of IL-10 in the osteogenesis of human BMSCs via P38/MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Guanyi Liu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Xiaopeng Zhou
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Cong Wang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and
| | - Dongcai Hu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and
| | - Deting Xue
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| | - Zhijun Pan
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; and.,Orthopedics Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Walters G, Pountos I, Giannoudis PV. The cytokines and micro-environment of fracture haematoma: Current evidence. J Tissue Eng Regen Med 2017; 12:e1662-e1677. [PMID: 29047220 DOI: 10.1002/term.2593] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/31/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Fracture haematoma formation is the first and foremost important stage of fracture healing. It orchestrates the inflammatory and cellular processes leading to the formation of callus and the restoration of the continuity of the bone. Evidence suggests that blocking this initial stage could lead to an impairment of the overall bone healing process. This review aims to analyse the existing evidence of molecular contributions to bone healing within fracture haematoma and to determine the potential to modify the molecular response to fracture in the haematoma with the aim of improving union times. A comprehensive search of literature documenting fracture haematoma cytokine content was performed. Suitable papers according to prespecified criteria were identified and analysed according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. A total of 89 manuscripts formed the basis of this analysis. Low oxygen tension, high acidity, and high calcium characterised initially the fracture haematoma micro-environment. In addition, a number of cytokines have been measured with concentrations significantly higher than those found in peripheral circulation. Growth factors have also been isolated, with an observed increase in bone morphogenetic proteins, platelet-derived growth factor, and transforming growth factor. Although molecular modification of fracture haematoma has been attempted, more research is required to determine a suitable biological response modifier leading to therapeutic effects. The cytokine content of fracture haematoma gives insight into processes occurring in the initial stages of fracture healing. Manipulation of signalling molecules represents a promising pathway to target future therapies aiming to upregulate the osteogenesis.
Collapse
Affiliation(s)
- Gavin Walters
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Ippokratis Pountos
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
| | - Peter V Giannoudis
- Academic Department of Trauma and Orthopaedics, School of Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Unit, Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
28
|
Li Y, Ma S, Guo J, Jiang J, Luo K, Yan F, Xiao Y. Effect of local hIL-10 gene therapy on experimental periodontitis in ovariectomized rats. Acta Odontol Scand 2017; 75:268-279. [PMID: 28358289 DOI: 10.1080/00016357.2017.1292427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effect of local hIL-10 gene therapy on experimental periodontitis in rats and to elucidate the mechanism underlying this effect. MATERIAL AND METHODS Experimental periodontitis was induced in ovariectomized (OVX) rats using a silk ligature. We then injected 5 μg of hIL-10 plasmid with 5 μl of liposomes or 5 μg of vector plasmid with 5 μl of liposomes into the palatal side of the gingival mucosa of the upper left second molar once every two days. The rats were killed 48 hours after the seventh injection. The body weight; bone mineral density of the whole body, pelvis and spine; resorption of the alveolar bone; and number of cytokine-positive cells were measured to determine the effects of hIL-10 on the periodontal tissue. RESULTS hIL-10 was expressed in periodontal tissues after local gene delivery. The expressed hIL-10 protein inhibited alveolar bone resorption and downregulated IL-1β, IL-6, TNF-α, RANKL and MMP-8 in the periodontal ligament in the root furcation region. CONCLUSIONS Local hIL-10 gene transfer suppressed alveolar bone resorption in OVX rats, and this effect was probably associated with the decline in the expression of pro-inflammatory cytokines in the periodontal tissues.
Collapse
Affiliation(s)
- Yanfen Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Souzhi Ma
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jianbin Guo
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Jiang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Kai Luo
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
29
|
Reis AL, Oliveira RR, Tavares WLF, Saldanha TDS, Farias LDM, Vieira LQ, Ribeiro AP. Murine Experimental Root Canal Infection: Cytokine Expression in Response to F. nucleatum and E. faecalis. Braz Dent J 2017; 27:578-583. [PMID: 27982237 DOI: 10.1590/0103-6440201600926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to evaluate the gene expression of proinflammatory (RANKL, TNF-a and IFN-g) and regulatory (TGF-b and IL-10) cytokines as reaction to experimental infection by mono or bi-association of Fusobacterium nucleatum (ATCC 10953) and Enterococcus faecalis (ATCC 19433). F. nucleatum and E. faecalis, either in mono- or bi-association were inoculated into the root canal system (RCS) of Balb/c mice. Animals were sacrificed at 10 and 20 days after infection and periapical tissues surrounding the root were collected. The mRNA expression of the cytokines RANKL, TNF-a, IFN- g, TGF-b and IL-10 was assessed using real-time PCR. The Kruskal-Wallis test was used for statistical analysis. F. nucleatum mono-infection induced high expression of RANKL and TNF-a, while its modulation was due to IL-10. High expression of IFN-g at day 20 was up-regulated by E. faecalis and RANKL; TNF-a was up-regulated by an independent mechanism via IL-10 and TGF-b. Bi-association (F. nucleatum and E. faecalis) stimulated high expression of RANKL, TNF-a and IFN-g, which seemed to be modulated by TGF-b 20 days later. The gene expression of proinflammatory cytokines was more prominent in the earlier periods of the experimental periapical infection, which concomitantly decreased in the later period. This expression may be regulated by IL-10 and TGF-b in an infection-specific condition.
Collapse
Affiliation(s)
- Andressa Lamari Reis
- School of Dentistry, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Reis Oliveira
- School of Dentistry, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Luiz de Macêdo Farias
- Institute of Biological Sciences, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leda Quércia Vieira
- Institute of Biological Sciences, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Paulino Ribeiro
- School of Dentistry, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
30
|
Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, Hernández M, Gamonal J. Host response mechanisms in periodontal diseases. J Appl Oral Sci 2015. [PMID: 26221929 PMCID: PMC4510669 DOI: 10.1590/1678-775720140259] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors.
Collapse
Affiliation(s)
- Nora Silva
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Loreto Abusleme
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Denisse Bravo
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolás Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jocelyn Garcia-Sesnich
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Hernández
- Department of Pathology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Jorge Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
31
|
Tang XL, Wang CN, Zhu XY, Ni X. Rosiglitazone inhibition of calvaria-derived osteoblast differentiation is through both of PPARγ and GPR40 and GSK3β-dependent pathway. Mol Cell Endocrinol 2015; 413:78-89. [PMID: 26116229 DOI: 10.1016/j.mce.2015.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/20/2015] [Accepted: 06/10/2015] [Indexed: 01/17/2023]
Abstract
Rosiglitazone (RSG) can cause bone loss, however the mechanisms remain largely unknown. This study aims to investigate the effects of RSG on differentiation and mineralization of osteoblasts using primary cultured mouse fetal calvaria-derived osteoblasts as a model, and elucidate the receptor and signaling pathways responsible for these effects. We found that RSG suppressed the differentiation and mineralization of calvaria-derived osteoblasts. Peroxisome proliferators-activated receptor γ (PPARγ) siRNA significantly reversed the inhibitory effect of RSG on osteogenic differentiation. The expression of G protein-coupled receptor (GPR) 40 was suppressed during differentiation, but was increased by RSG treatment. GPR40 siRNA significantly reversed the inhibitory effect of RSG on osteogenesis. RSG activated glycogen synthase kinase (GSK)-3β, which in turn decreased β-catenin expression. RSG-induced GSK3β activation was mediated through both PPARγ and GPR40. These results suggest that both PPARγ and GRP40 are required for RSG-induced inhibition of mouse calvaria osteoblast differentiation, which is mediated through GSK3β-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Lu Tang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Chang-Nan Wang
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Yan Zhu
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| | - Xin Ni
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
32
|
Gennaro G, Claudino M, Cestari TM, Ceolin D, Germino P, Garlet GP, de Assis GF. Green Tea Modulates Cytokine Expression in the Periodontium and Attenuates Alveolar Bone Resorption in Type 1 Diabetic Rats. PLoS One 2015; 10:e0134784. [PMID: 26270535 PMCID: PMC4535908 DOI: 10.1371/journal.pone.0134784] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Diabetes mellitus comprises a heterogeneous group of disorders with the main feature of hyperglycemia. Chronic hyperglycemia increases the severity of periodontal disease via an exacerbated inflammatory response, activated by advanced glycation end products and their receptor, RAGE. Therefore, anti-inflammatory agents represent potential inhibitors of this pathological interaction. In particular, green tea has been shown to possess anti-inflammatory properties mediated by its polyphenol content. OBJECTIVES This study investigated the mechanisms by which green tea attenuates the spontaneous onset of diabetes-induced periodontitis. METHODS Diabetes was induced in rats via a single intraperitoneal injection of streptozotocin (STZ). Diabetic and control animals were divided into water-treated and green tea-treated subgroups and were analyzed at 15, 30, 60 and 90 days after diabetes induction. Immunohistochemistry was performed to quantitatively evaluate tumor necrosis factor-α (TNF-α), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), interleukin-10 (IL-10) and runt-related transcription factor 2 (RUNX-2) expression in serial sections of each hemimaxilla. Morphometric measurements of the distance from the cementum-enamel junction (CEJ) of the superior distal root of the first molar to the alveolar bone crest (ABC) were performed to assess bone loss. RESULTS Diabetes resulted in significant bone loss and alterations in the number of cells that stained positive for inflammatory mediators. In the diabetic rats treated with green tea, we observed a decreased number of cells expressing RANKL and TNF-α compared with that observed in the diabetic rats treated with water. Additionally, green tea increased the numbers of cells that stained positive for OPG, RUNX-2 and IL-10 in the diabetic rats. CONCLUSION Green tea intake reduces expression of the pro-inflammatory cytokine TNF-α and the osteoclastogenic mediator RANKL to normal levels while increasing expression of the anti-inflammatory cytokine IL-10, the osteogenesis-related factor RUNX-2 and the anti-osteoclastogenic factor OPG. Therefore, green tea represents a potential therapeutic agent for the treatment of diabetes-related periodontal disease.
Collapse
Affiliation(s)
- Gabriela Gennaro
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
- * E-mail:
| | - Marcela Claudino
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| | - Tania Mary Cestari
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| | - Daniele Ceolin
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| | - Patrícia Germino
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| | - Gerson Francisco de Assis
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, São Paulo, Brazil
| |
Collapse
|
33
|
Vieira AE, Repeke CE, Ferreira Junior SDB, Colavite PM, Biguetti CC, Oliveira RC, Assis GF, Taga R, Trombone APF, Garlet GP. Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization. PLoS One 2015; 10:e0128021. [PMID: 26023920 PMCID: PMC4449187 DOI: 10.1371/journal.pone.0128021] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/21/2015] [Indexed: 01/12/2023] Open
Abstract
Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray) characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0h), the development of a provisional immature granulation tissue is evident (7d), characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFβ1,VEGFa), cytokines (TNFα, IL-10), chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4), matrix (Col1a1-2, ITGA4, VTN, MMP1a) and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146) markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14d), characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9), bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST) markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2). No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21d) when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the histomorphometric events and the potential participation of MCSs and immune cells in the healing process, supporting the forthcoming application of the model for the better understanding of the bone healing process.
Collapse
Affiliation(s)
- Andreia Espindola Vieira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Carlos Eduardo Repeke
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Priscila Maria Colavite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Claudia Cristina Biguetti
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Gerson Francisco Assis
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Rumio Taga
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- * E-mail:
| |
Collapse
|
34
|
Fujioka K, Kishida T, Ejima A, Yamamoto K, Fujii W, Murakami K, Seno T, Yamamoto A, Kohno M, Oda R, Yamamoto T, Fujiwara H, Kawahito Y, Mazda O. Inhibition of osteoclastogenesis by osteoblast-like cells genetically engineered to produce interleukin-10. Biochem Biophys Res Commun 2014; 456:785-91. [PMID: 25514036 DOI: 10.1016/j.bbrc.2014.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 11/28/2022]
Abstract
Bone destruction at inflamed joints is an important complication associated with rheumatoid arthritis (RA). Interleukin-10 (IL-10) may suppress not only inflammation but also induction of osteoclasts that play key roles in the bone destruction. If IL-10-producing osteoblast-like cells are induced from patient somatic cells and transplanted back into the destructive bone lesion, such therapy may promote bone remodeling by the cooperative effects of IL-10 and osteoblasts. We transduced mouse fibroblasts with genes for IL-10 and Runx2 that is a crucial transcription factor for osteoblast differentiation. The IL-10-producing induced osteoblast-like cells (IL-10-iOBs) strongly expressed osteoblast-specific genes and massively produced bone matrix that were mineralized by calcium phosphate in vitro and in vivo. Culture supernatant of IL-10-iOBs significantly suppressed induction of osteoclast from RANKL-stimulated Raw264.7 cells as well as LPS-induced production of inflammatory cytokine by macrophages. The IL-10-iOBs may be applicable to novel cell-based therapy against bone destruction associated with RA.
Collapse
Affiliation(s)
- Kazuki Fujioka
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akika Ejima
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Fujii
- Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Murakami
- Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Seno
- Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Rheumatic Diseases and Joint Function, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aihiro Yamamoto
- Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masataka Kohno
- Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Oda
- Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyoshi Fujiwara
- Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
35
|
Inflammatory bone loss in experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in interleukin-1 receptor antagonist knockout mice. Infect Immun 2014; 82:1904-13. [PMID: 24566623 DOI: 10.1128/iai.01618-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The interleukin-1 receptor antagonist (IL-1Ra) binds to IL-1 receptors and inhibits IL-1 activity. However, it is not clear whether IL-1Ra plays a protective role in periodontal disease. This study was undertaken to compare experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in IL-1Ra knockout (KO) mice and wild-type (WT) mice. Computed tomography (CT) analysis and hematoxylin-and-eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining were performed. In addition, osteoblasts were isolated; the mRNA expression of relevant genes was assessed by real-time quantitative PCR (qPCR); and calcification was detected by Alizarin Red staining. Infected IL-1Ra KO mice exhibited elevated (P, <0.05) levels of antibody against A. actinomycetemcomitans, bone loss in furcation areas, and alveolar fenestrations. Moreover, protein for tumor necrosis factor alpha (TNF-α) and IL-6, mRNA for macrophage colony-stimulating factor (M-CSF), and receptor activator of NF-κB ligand (RANKL) in IL-1Ra KO mouse osteoblasts stimulated with A. actinomycetemcomitans were increased (P, <0.05) compared to in WT mice. Alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN)/bone gla protein (BGP), and runt-related gene 2 (Runx2) mRNA levels were decreased (P, <0.05). IL-1α mRNA expression was increased, and calcification was not observed, in IL-1 Ra KO mouse osteoblasts. In brief, IL-1Ra deficiency promoted the expression of inflammatory cytokines beyond IL-1 and altered the expression of genes involved in bone resorption in A. actinomycetemcomitans-infected osteoblasts. Alterations consistent with rapid bone loss in infected IL-Ra KO mice were also observed for genes expressed in bone formation and calcification. In short, these data suggest that IL-1Ra may serve as a potential therapeutic drug for periodontal disease.
Collapse
|
36
|
Interleukin-10 inhibits bone resorption: a potential therapeutic strategy in periodontitis and other bone loss diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:284836. [PMID: 24696846 PMCID: PMC3947664 DOI: 10.1155/2014/284836] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 01/07/2023]
Abstract
Periodontitis and other bone loss diseases, decreasing bone volume and strength, have a significant impact on millions of people with the risk of tooth loss and bone fracture. The integrity and strength of bone are maintained through the balance between bone resorption and bone formation by osteoclasts and osteoblasts, respectively, so the loss of bone results from the disruption of such balance due to increased resorption or/and decreased formation of bone. The goal of therapies for diseases of bone loss is to reduce bone loss, improve bone formation, and then keep healthy bone density. Current therapies have mostly relied on long-term medication, exercise, anti-inflammatory therapies, and changing of the life style. However there are some limitations for some patients in the effective treatments for bone loss diseases because of the complexity of bone loss. Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, and recent studies have indicated that IL-10 can contribute to the maintenance of bone mass through inhibition of osteoclastic bone resorption and regulation of osteoblastic bone formation. This paper will provide a brief overview of the role of IL-10 in bone loss diseases and discuss the possibility of IL-10 adoption in therapy of bone loss diseases therapy.
Collapse
|
37
|
Association between postmenopausal osteoporosis and experimental periodontitis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:316134. [PMID: 24683547 PMCID: PMC3934589 DOI: 10.1155/2014/316134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022]
Abstract
To investigate the correlation between postmenopausal osteoporosis (PMO) and the pathogenesis of periodontitis, ovariectomized rats were generated and the experimental periodontitis was induced using a silk ligature. The inflammatory factors and bone metabolic markers were measured in the serum and periodontal tissues of ovariectomized rats using an automatic chemistry analyzer, enzyme-linked immunosorbent assays, and immunohistochemistry. The bone mineral density of whole body, pelvis, and spine was analyzed using dual-energy X-ray absorptiometry and image analysis. All data were analyzed using SPSS 13.0 statistical software. It was found that ovariectomy could upregulate the expression of interleukin- (IL-)6, the receptor activator of nuclear factor-κB ligand (RANKL), and osteoprotegerin (OPG) and downregulate IL-10 expression in periodontal tissues, which resulted in progressive alveolar bone loss in experimental periodontitis. This study indicates that changes of cytokines and bone turnover markers in the periodontal tissues of ovariectomized rats contribute to the damage of periodontal tissues.
Collapse
|
38
|
Preventive and therapeutic anti-TNF-α therapy with pentoxifylline decreases arthritis and the associated periodontal co-morbidity in mice. Life Sci 2013; 93:423-8. [PMID: 23911669 DOI: 10.1016/j.lfs.2013.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/02/2013] [Accepted: 07/19/2013] [Indexed: 01/29/2023]
Abstract
AIMS The association between rheumatoid arthritis (RA) and periodontal disease (PD) has long been studied and some reports suggest that treating RA may improve the associated PD, and vice versa. This study aimed to evaluate the effects of an anti-tumor necrosis factor (TNF)-α therapy with pentoxifylline (PTX) in an experimental model of RA-associated PD. MAIN METHODS Male C57BL/6 mice were subjected to chronic antigen-induced arthritis (AIA) and daily treated with PTX (50mg/kg, i.p.) using preventive (Pre-PTX) or therapeutic (The-PTX) strategies. Fourteen days after the antigen challenge, mice were euthanized and knee joints, maxillae and serum were collected for microscopic and/or immunoenzymatic analysis. KEY FINDINGS AIA triggered significant leukocyte recruitment to the synovial cavity, tissue damage and proteoglycan loss in the knee joint. Pre-PTX and The-PTX regimens decreased these signs of joint inflammation. The increased levels of TNF-α and IL-17 in periarticular tissues of AIA mice were also reduced by both PTX treatments. Serum levels of C-reactive protein, which were augmented after AIA, were reduced by the PTX regimens. Concomitantly to AIA, mice presented alveolar bone loss, and recruitment of osteoclasts and neutrophils to periodontal tissues. Pre-PTX and The-PTX prevented and treated these signs of PD. PTX treatment also decreased TNF-α and increased IL-10 expression in the maxillae of AIA mice, although it did not affect the expression of IFN-γ and IL-17. SIGNIFICANCE The current study shows the anti-inflammatory and bone protective effects of preventive and therapeutic PTX treatments, which decreased the joint damage triggered by AIA and the associated periodontal co-morbidity.
Collapse
|
39
|
The effect of laminin-1-doped nanoroughened implant surfaces: gene expression and morphological evaluation. Int J Biomater 2012; 2012:305638. [PMID: 23304151 PMCID: PMC3530800 DOI: 10.1155/2012/305638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/13/2012] [Indexed: 11/17/2022] Open
Abstract
Aim. This study aimed to observe the morphological and molecular effect of laminin-1 doping to nanostructured implant surfaces in a rabbit model. Materials and Methods. Nanostructured implants were coated with laminin-1 (test; dilution, 100 μg/mL) and inserted into the rabbit tibiae. Noncoated implants were used as controls. After 2 weeks of healing, the implants were removed and subjected to morphological analysis using scanning electron microscopy (SEM) and gene expression analysis using the real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Results. SEM revealed bony tissue attachment for both control and test implants. Real-time RT-PCR analysis showed that the expression of osteoblast markers RUNX-2, osteocalcin, alkaline phosphatase, and collagen I was higher (1.62-fold, 1.53-fold, 1.97-fold, and 1.04-fold, resp.) for the implants modified by laminin-1 relative to the control. All osteoclast markers investigated in the study presented higher expression on the test implants than controls as follows: tartrate-resistant acid phosphatase (1.67-fold), calcitonin receptor (1.35-fold), and ATPase (1.25-fold). The test implants demonstrated higher expression of inflammatory markers interleukin-10 (1.53-fold) and tumour necrosis factor-α (1.61-fold) relative to controls. Conclusion. The protein-doped surface showed higher gene expression of typical genes involved in the osseointegration cascade than the control surface.
Collapse
|
40
|
Pimentel SP, Barrella GE, Casarin RCV, Cirano FR, Casati MZ, Foglio MA, Figueira GM, Ribeiro FV. Protective effect of topical Cordia verbenacea in a rat periodontitis model: immune-inflammatory, antibacterial and morphometric assays. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:224. [PMID: 23171319 PMCID: PMC3522563 DOI: 10.1186/1472-6882-12-224] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND This study evaluated the effects of C. verbenacea essential oil topically administered in a rat periodontitis model. METHODS Periodontitis was induced on rats in one of the mandibular first molars assigned to receive a ligature. Animals were randomly divided into two groups: a) non-treatment group (NT) (n = 18): animals received 1mL of vehicle; b) C. verbenacea group (C.v.) (n = 18): animals received 5mg/Kg of essential oils isolated from C. verbenacea. The therapies were administered topically 3 times daily for 11 days. Then, the specimens were processed for morphometric analysis of bone loss. The ligatures were used for microbiological assessment of the presence of Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Porphyromonas gingivalis using PCR. The gingival tissue was collected to Elisa assay of interleukin (IL)-1α and IL-10 levels. RESULTS Bone loss was inhibited by C. verbenacea when compared to the NT group (p < 0.05). A decrease in the levels of IL-1α and increase in the IL-10 amounts was observed in the C.v. group as compared to NT group (p < 0.05). A lower frequency of P. gingivalis was found in C.v. group (p < 0.05). CONCLUSION C. verbenacea essential oil topically administered diminished alveolar bone resorption, promoting a positive local imbalance in the pro/anti-inflammatory system and reducing the frequency of detection of P. gingivalis.
Collapse
|
41
|
Moutsatsou P, Kassi E, Papavassiliou AG. Glucocorticoid receptor signaling in bone cells. Trends Mol Med 2012; 18:348-59. [PMID: 22578718 DOI: 10.1016/j.molmed.2012.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 12/26/2022]
Abstract
Glucocorticoids are used for treating a wide range of diseases including inflammation and autoimmune disorders. However, there are drawbacks, primarily due to adverse effects on bone cells resulting in osteoporosis. Evidence indicates that the ratio of benefits to adverse effects depends greatly on glucocorticoid receptor (GR)-mediated mechanisms. Delineating GR-mediated signaling in bone cells will allow development of selective GR ligands/agonists (SEGRAs), which would dissociate the positive therapeutic (anti-inflammatory) effects from the negative effects on the skeleton. The present review provides an in-depth account of the current knowledge of GR-mediated transcriptional regulation of specific genes and proteins engaged in the proliferation, differentiation, and apoptosis of bone cells (osteoblasts, osteocytes, osteoclasts). We hope this knowledge will advance research in the development of SEGRAs with improved benefit/risk ratios.
Collapse
Affiliation(s)
- Paraskevi Moutsatsou
- Department of Biological Chemistry, University of Athens Medical School, 75, Mikras Asias Street, 11527 Athens, Greece
| | | | | |
Collapse
|
42
|
Salla JT, Taddei SRDA, Queiroz-Junior CM, Andrade Junior I, Teixeira MM, Silva TA. The effect of IL-1 receptor antagonist on orthodontic tooth movement in mice. Arch Oral Biol 2012; 57:519-24. [DOI: 10.1016/j.archoralbio.2011.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/19/2011] [Accepted: 09/30/2011] [Indexed: 12/30/2022]
|
43
|
Yeh KD, Popowics T. Molecular and structural assessment of alveolar bone during tooth eruption and function in the miniature pig, sus scrofa. Anat Histol Embryol 2011; 40:283-91. [PMID: 21434979 DOI: 10.1111/j.1439-0264.2011.01067.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The development of alveolar bone adjacent to the tooth root during tooth eruption is not well understood. This study tested the hypothesis that predominantly woven bone forms adjacent to tooth roots during tooth eruption, but that this immature structure transitions to lamellar bone when the tooth comes into function. Additionally, bone resorption was predicted to play a key role in transitioning immature bone to more mature, load-bearing tissue. Miniature pigs were compared at two occlusal stages, 13 weeks (n = 3), corresponding with the mucosal penetration stage of M(1) tooth eruption, and 23 weeks (n = 3), corresponding with early occlusion of M(1) /M(1) . Bone samples for RNA extraction and qRT-PCR analysis were harvested from the diastema and adjacent to M(1) roots on one side. Following euthanasia, bone samples for haematoxylin and eosin and TRAP staining were harvested from these regions on the other side. In contrast to expectations, both erupting and functioning molars had reticular fibrolamellar structure in alveolar bone adjacent to M(1) . However, the woven bone matrix in older pigs was thicker and had denser primary osteons. Gene expression data and osteoclast cell counts showed a tendency for more bone resorptive activity near the molars than at distant sites, but no differences between eruptive stages. Thus, although resorption does occur, it is not a primary mechanism in the transition in alveolar bone from eruption to function. Incremental growth of existing woven bone and filling in of primary osteons within the mineralized scaffold generated the fortification necessary to support an erupted and functioning tooth.
Collapse
Affiliation(s)
- Kuang-Dah Yeh
- Hualien Armed Forces General Hospital, Hualien, Taiwan
| | | |
Collapse
|
44
|
Kasahara T, Imai S, Kojima H, Katagi M, Kimura H, Chan L, Matsusue Y. Malfunction of bone marrow-derived osteoclasts and the delay of bone fracture healing in diabetic mice. Bone 2010; 47:617-25. [PMID: 20601287 PMCID: PMC2926189 DOI: 10.1016/j.bone.2010.06.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/08/2010] [Accepted: 06/11/2010] [Indexed: 12/20/2022]
Abstract
It is well known that bone fracture healing is delayed in diabetes mellitus, but the mechanism remains to be elucidated. Since several studies have demonstrated that diabetes causes abnormalities in bone marrow-derived cells, we used the streptozotocin (STZ)-induced diabetic mouse model after bone marrow transfer from green fluorescent protein (GFP) transgenic mice, and examined fracture healing. Compared with nondiabetic mice, diabetic mice at 3 weeks after fracture showed a decrease in mineralized callus, with the remainder consisting of cartilage. Bone formation parameters and mineralization rate were not altered in the STZ mice, but bone resorption parameters were significantly decreased. Therefore, the delayed bone formation in the STZ mice may have resulted from an impairment of cartilage resorption. Interestingly, we found that 80% of the osteoclasts in the callus were derived from bone marrow and the sizes of the osteoclasts as well as the resorption pits formed were significantly smaller in the diabetic mice. Moreover, transcript analysis using RNA isolated by laser capture microdissection (LCM) showed that the expression of DC-STAMP, a putative pivotal gene for osteoclast fusion, was decreased in osteoclasts from diabetic mice. Since the sustainability of osteoclast function depends on the controlled renewal of multinuclear osteoclasts, impaired osteoclast function in diabetes may contribute to decreased cartilage resorption and delayed endochondral ossification.
Collapse
Affiliation(s)
- Toshiyuki Kasahara
- Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu Shiga 520-2192, JAPAN
- Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu Shiga 520-2192, JAPAN
| | - Sinji Imai
- Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu Shiga 520-2192, JAPAN
| | - Hideto Kojima
- Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu Shiga 520-2192, JAPAN
| | - Miwako Katagi
- Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu Shiga 520-2192, JAPAN
| | - Hiroshi Kimura
- Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Otsu Shiga 520-2192, JAPAN
| | - Lawrence Chan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yoshitaka Matsusue
- Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu Shiga 520-2192, JAPAN
| |
Collapse
|
45
|
Garlet GP. Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res 2010; 89:1349-63. [PMID: 20739705 DOI: 10.1177/0022034510376402] [Citation(s) in RCA: 493] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Periodontal diseases (PD) are chronic infectious inflammatory diseases characterized by the destruction of tooth-supporting structures, being the presence of periodontopathogens required, but not sufficient, for disease development. As a general rule, host inflammatory mediators have been associated with tissue destruction, while anti-inflammatory mediators counteract and attenuate disease progression. With the discovery of several T-cell subsets bearing distinct immunoregulatory properties, this pro- vs. anti-inflammatory scenario became more complex, and a series of studies has hypothesized protective or destructive roles for Th1, Th2, Th17, and Treg subpopulations of polarized lymphocytes. Interestingly, the "protective vs. destructive" archetype is usually considered in a framework related to tissue destruction and disease progression. However, it is important to remember that periodontal diseases are infectious inflammatory conditions, and recent studies have demonstrated that cytokines (TNF-α and IFN-γ) considered harmful in the context of tissue destruction play important roles in the control of periodontal infection. Therefore, in this review, the state-of-the-art knowledge concerning the protective and destructive roles of host inflammatory immune response will be critically evaluated and discussed from the tissue destruction and control-of-infection viewpoints.
Collapse
Affiliation(s)
- G P Garlet
- OSTEOimmunology Laboratory, Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, FOB/USP, Al. Octávio Pinheiro Brisola, 9-75 CEP 17012-901, Bauru, SP, Brazil.
| |
Collapse
|