1
|
Masuyer G, Taverner A, MacKay J, Lima Marques AR, Wang Y, Hunter T, Liu K, Mrsny RJ. Discovery of mono-ADP ribosylating toxins with high structural homology to Pseudomonas exotoxin A. Commun Biol 2025; 8:413. [PMID: 40069285 PMCID: PMC11897225 DOI: 10.1038/s42003-025-07845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
Mono-ADP-ribosyl transferase (mART) proteins are secreted virulence factors produced by several human pathogens, the founding member being diphtheria toxin (DT). Pseudomonas aeruginosa can also secrete a mART toxin, known as exotoxin A (PE), but with an organization of its three functional domains (receptor, translocation, and enzymatic elements) that is opposite to DT. Two additional PE-like toxins (PLTs) have been identified from Vibrio cholerae and Aeromonas hydrophila, suggesting more PLT family members may exist. Database mining discovered six additional putative homologues, considerably extending this group of PLTs across a wide range of bacterial species. Here, we examine sequence and structural information for these new family members with respect to previously identified PLTs. The X-ray crystal structures of four new homologues show the conservation of critical features responsible for structure and function. This study shows the potential of these newly described toxins for the development of novel drug delivery platforms. Additionally, genomic analysis suggests horizontal gene transfer to account for the wide distribution of PLTs across a range of eubacteria species, highlighting the need to monitor emerging pathogens and their virulence factors.
Collapse
Affiliation(s)
- Geoffrey Masuyer
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Department of Life Sciences, University of Bath, Bath, UK.
- Centre for Therapeutic Innovation, University of Bath, Bath, UK.
| | | | - Julia MacKay
- Department of Life Sciences, University of Bath, Bath, UK
| | | | - Yuye Wang
- Department of Life Sciences, University of Bath, Bath, UK
| | - Tom Hunter
- Applied Molecular Transport Inc., South San Francisco, CA, USA
| | - Keyi Liu
- Applied Molecular Transport Inc., South San Francisco, CA, USA
| | - Randall J Mrsny
- Department of Life Sciences, University of Bath, Bath, UK.
- Centre for Therapeutic Innovation, University of Bath, Bath, UK.
| |
Collapse
|
2
|
Liu K, Hunter T, Taverner A, Yin K, MacKay J, Colebrook K, Correia M, Rapp A, Mrsny RJ. GRP75 as a functional element of cholix transcytosis. Tissue Barriers 2023; 11:2039003. [PMID: 35262466 PMCID: PMC9870019 DOI: 10.1080/21688370.2022.2039003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cholix (Chx) is secreted by non-pandemic strains of Vibrio cholerae in the intestinal lumen. For this exotoxin to induce cell death in non-polarized cells in the intestinal lamina propria, it must traverse the epithelium in the fully intact form. We identified host cell elements in polarized enterocytes associated with Chx endocytosis and apical to basal (A→B) vesicular transcytosis. This pathway overcomes endogenous mechanisms of apical vesicle recycling and lysosomal targeting by interacting with several host cell proteins that include the 75 kDa glucose-regulated protein (GRP75). Apical endocytosis of Chx appears to involve the single membrane spanning protein TMEM132A, and interaction with furin before it engages GRP75 in apical vesicular structures. Sorting within these apical vesicles results in Chx being trafficked to the basal region of cells in association with the Lectin, Mannose Binding 1 protein LMAN1. In this location, Chx interacts with the basement membrane-specific heparan sulfate proteoglycan perlecan in recycling endosomes prior to its release from this basal vesicular compartment to enter the underlying lamina propria. While the furin and LMAN1 elements of this Chx transcytosis pathway undergo cellular redistribution that are reflective of the polarity shifts noted for coatamer complexes COPI and COPII, GRP75 and perlecan fail to show these dramatic rearrangements. Together, these data define essential steps in the A→B transcytosis pathway accessed by Chx to reach the intestinal lamina propria where it can engage and intoxicate certain non-polarized cells.
Collapse
Affiliation(s)
- Keyi Liu
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Tom Hunter
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Alistair Taverner
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Kevin Yin
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Julia MacKay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Kate Colebrook
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Morgan Correia
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Amandine Rapp
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Randall J. Mrsny
- Applied Molecular Transport, South San Francisco, CA, USA,Department of Pharmacy and Pharmacology, University of Bath, Bath, UK,CONTACT Randall J. Mrsny Applied Molecular Transport, 450 East Jamie Court, South San Francisco, CA94080USA
| |
Collapse
|
3
|
Mahmoudi R, Dianat-Moghadam H, Poorebrahim M, Siapoush S, Poortahmasebi V, Salahlou R, Rahmati M. Recombinant immunotoxins development for HER2-based targeted cancer therapies. Cancer Cell Int 2021; 21:470. [PMID: 34488747 PMCID: PMC8422749 DOI: 10.1186/s12935-021-02182-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Understanding the molecular mechanisms of cancer biology introduces targeted therapy as a complementary method along with other conventional therapies. Recombinant immunotoxins are tumor specific antibodies that their recognizing fragment is utilized for delivering modified toxins into tumor cells. These molecules have been considered as a targeted strategy in the treatment of human cancers. HER2 tumor biomarker is a transmembrane tyrosine kinase receptor that can be used for targeted therapies in the forms of anti-HER2 monoclonal antibodies, antibody-drug conjugates and immunotoxins. There have been many studies on HER2-based immunotoxins in recent years, however, little progress has been made in the clinical field which demanded more improvements. Here, we summarized the HER2 signaling and it's targeting using immunotherapeutic agents in human cancers. Then, we specifically reviewed anti-HER2 immunotoxins, and their strengths and drawbacks to highlight their promising clinical impact.
Collapse
Affiliation(s)
- Reza Mahmoudi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mansour Poorebrahim
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Samaneh Siapoush
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Le LHM, Ying L, Ferrero RL. Nuclear trafficking of bacterial effector proteins. Cell Microbiol 2021; 23:e13320. [PMID: 33600054 DOI: 10.1111/cmi.13320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens can subvert host responses by producing effector proteins that directly target the nucleus of eukaryotic cells in animals and plants. Nuclear-targeting proteins are categorised as either: "nucleomodulins," which have epigenetic-modulating activities; or "cyclomodulins," which specifically interfere with the host cell cycle. Bacteria can deliver these effector proteins to eukaryotic cells via a range of strategies. Despite an increasing number of reports describing the effects of bacterial effector proteins on nuclear processes in host cells, the intracellular pathways used by these proteins to traffic to the nucleus have yet to be fully elucidated. This review will describe current knowledge about how nucleomodulins and cyclomodulins enter eukaryotic cells, exploit endocytic pathways and translocate to the nucleus. We will also discuss the secretion of nuclear-targeting proteins or their release in bacterial membrane vesicles and the trafficking pathways employed by each of these forms. Besides their importance for bacterial pathogenesis, some nuclear-targeting proteins have been implicated in the development of chronic diseases and even cancer. A greater understanding of nuclear-targeting proteins and their actions will provide new insights into the pathogenesis of infectious diseases, as well as contribute to advances in the development of novel therapies against bacterial infections and possibly cancer.
Collapse
Affiliation(s)
- Lena Hoang My Le
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Lugo MR, Merrill AR. Development of Anti-Virulence Therapeutics against Mono-ADP-Ribosyltransferase Toxins. Toxins (Basel) 2020; 13:toxins13010016. [PMID: 33375750 PMCID: PMC7824265 DOI: 10.3390/toxins13010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Mono-ADP-ribosyltransferase toxins are often key virulence factors produced by pathogenic bacteria as tools to compromise the target host cell. These toxins are enzymes that use host cellular NAD+ as the substrate to modify a critical macromolecule target in the host cell machinery. This post-translational modification of the target macromolecule (usually protein or DNA) acts like a switch to turn the target activity on or off resulting in impairment of a critical process or pathway in the host. One approach to stymie bacterial pathogens is to curtail the toxic action of these factors by designing small molecules that bind tightly to the enzyme active site and prevent catalytic function. The inactivation of these toxins/enzymes is targeted for the site of action within the host cell and small molecule therapeutics can function as anti-virulence agents by disarming the pathogen. This represents an alternative strategy to antibiotic therapy with the potential as a paradigm shift that may circumvent multi-drug resistance in the offending microbe. In this review, work that has been accomplished during the past two decades on this approach to develop anti-virulence compounds against mono-ADP-ribosyltransferase toxins will be discussed.
Collapse
|
6
|
Ogura K, Yahiro K, Moss J. Cell Death Signaling Pathway Induced by Cholix Toxin, a Cytotoxin and eEF2 ADP-Ribosyltransferase Produced by Vibrio cholerae. Toxins (Basel) 2020; 13:toxins13010012. [PMID: 33374361 PMCID: PMC7824611 DOI: 10.3390/toxins13010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic microorganisms produce various virulence factors, e.g., enzymes, cytotoxins, effectors, which trigger development of pathologies in infectious diseases. Cholera toxin (CT) produced by O1 and O139 serotypes of Vibrio cholerae (V. cholerae) is a major cytotoxin causing severe diarrhea. Cholix cytotoxin (Cholix) was identified as a novel eukaryotic elongation factor 2 (eEF2) adenosine-diphosphate (ADP)-ribosyltransferase produced mainly in non-O1/non-O139 V. cholerae. The function and role of Cholix in infectious disease caused by V. cholerae remain unknown. The crystal structure of Cholix is similar to Pseudomonas exotoxin A (PEA) which is composed of an N-terminal receptor-recognition domain and a C-terminal ADP-ribosyltransferase domain. The endocytosed Cholix catalyzes ADP-ribosylation of eEF2 in host cells and inhibits protein synthesis, resulting in cell death. In a mouse model, Cholix caused lethality with severe liver damage. In this review, we describe the mechanism underlying Cholix-induced cytotoxicity. Cholix-induced apoptosis was regulated by mitogen-activated protein kinase (MAPK) and protein kinase C (PKC) signaling pathways, which dramatically enhanced tumor necrosis factor-α (TNF-α) production in human liver, as well as the amount of epithelial-like HepG2 cancer cells. In contrast, Cholix induced apoptosis in hepatocytes through a mitochondrial-dependent pathway, which was not stimulated by TNF-α. These findings suggest that sensitivity to Cholix depends on the target cell. A substantial amount of information on PEA is provided in order to compare/contrast this well-characterized mono-ADP-ribosyltransferase (mART) with Cholix.
Collapse
Affiliation(s)
- Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-0942, Japan
- Correspondence: (K.O.); (K.Y.); Tel.: +81-76-265-2590 (K.O.); +81-43-226-2048 (K.Y.)
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: (K.O.); (K.Y.); Tel.: +81-76-265-2590 (K.O.); +81-43-226-2048 (K.Y.)
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA;
| |
Collapse
|
7
|
Taverner A, MacKay J, Laurent F, Hunter T, Liu K, Mangat K, Song L, Seto E, Postlethwaite S, Alam A, Chandalia A, Seung M, Saberi M, Feng W, Mrsny RJ. Cholix protein domain I functions as a carrier element for efficient apical to basal epithelial transcytosis. Tissue Barriers 2020; 8:1710429. [PMID: 31928299 PMCID: PMC7063863 DOI: 10.1080/21688370.2019.1710429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cholix (Chx) is expressed by the intestinal pathogen Vibrio cholerae as a single chain of 634 amino acids (~70.7 kDa protein) that folds into three distinct domains, with elements of the second and third domains being involved in accessing the cytoplasm of nonpolarized cells and inciting cell death via ADP-ribosylation of elongation factor 2, respectively. In order to reach nonpolarized cells within the intestinal lamina propria, however, Chx must cross the polarized epithelial barrier in an intact form. Here, we provide in vitro and in vivo demonstrations that a nontoxic Chx transports across intestinal epithelium via a vesicular trafficking pathway that rapidly achieves vesicular apical to basal (A→B) transcytosis and avoids routing to lysosomes. Specifically, Chx traffics in apical endocytic Rab7+ vesicles and in basal exocytic Rab11+ vesicles with a transition between these domains occurring in the ER-Golgi intermediate compartment (ERGIC) through interactions with the lectin mannose-binding protein 1 (LMAN1) protein that undergoes an intracellular re-distribution that coincides with the re-organization of COPI+ and COPII+ vesicular structures. Truncation studies demonstrated that domain I of Chx alone was sufficient to efficiently complete A→B transcytosis and capable of ferrying genetically conjoined human growth hormone (hGH). These studies provide evidence for a pathophysiological strategy where native Chx exotoxin secreted in the intestinal lumen by nonpandemic V. cholerae can reach nonpolarized cells within the lamina propria in an intact form by using a nondestructive pathway to cross in the intestinal epithelial that appears useful for oral delivery of biopharmaceuticals.One-Sentence Summary: Elements within the first domain of the Cholix exotoxin protein are essential and sufficient for the apical to basal transcytosis of this Vibrio cholerae-derived virulence factor across polarized intestinal epithelial cells.
Collapse
Affiliation(s)
- Alistair Taverner
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Julia MacKay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Floriane Laurent
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Tom Hunter
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Keyi Liu
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Lisa Song
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Elbert Seto
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Aatif Alam
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Minji Seung
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Mazi Saberi
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Weijun Feng
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England.,Applied Molecular Transport, South San Francisco, CA, USA
| |
Collapse
|
8
|
Kellner A, Taylor M, Banerjee T, Britt CB, Teter K. A binding motif for Hsp90 in the A chains of ADP-ribosylating toxins that move from the endoplasmic reticulum to the cytosol. Cell Microbiol 2019; 21:e13074. [PMID: 31231933 PMCID: PMC6744307 DOI: 10.1111/cmi.13074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Cholera toxin (Ctx) is an AB-type protein toxin that acts as an adenosine diphosphate (ADP)-ribosyltransferase to disrupt intracellular signalling in the target cell. It moves by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. The catalytic CtxA1 subunit then dissociates from the rest of the toxin, unfolds, and activates the ER-associated degradation system for export to the cytosol. Translocation occurs through an unusual ratchet mechanism in which the cytosolic chaperone Hsp90 couples CtxA1 refolding with CtxA1 extraction from the ER. Here, we report that Hsp90 recognises two peptide sequences from CtxA1: an N-terminal RPPDEI sequence (residues 11-16) and an LDIAPA sequence in the C-terminal region (residues 153-158) of the 192 amino acid protein. Peptides containing either sequence effectively blocked Hsp90 binding to full-length CtxA1. Both sequences were necessary for the ER-to-cytosol export of CtxA1. Mutagenesis studies further demonstrated that the RPP residues in the RPPDEI motif are required for CtxA1 translocation to the cytosol. The LDIAPA sequence is unique to CtxA1, but we identified an RPPDEI-like motif at the N- or C-termini of the A chains from four other ER-translocating toxins that act as ADP-ribosyltransferases: pertussis toxin, Escherichia coli heat-labile toxin, Pseudomonas aeruginosa exotoxin A, and Salmonella enterica serovar Typhimurium ADP-ribosylating toxin. Hsp90 plays a functional role in the intoxication process for most, if not all, of these toxins. Our work has established a defined RPPDEI binding motif for Hsp90 that is required for the ER-to-cytosol export of CtxA1 and possibly other toxin A chains as well.
Collapse
Affiliation(s)
- Alisha Kellner
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Michael Taylor
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | | | - Christopher B.T. Britt
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| | - Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826
| |
Collapse
|
9
|
Wu Y, Pons V, Noël R, Kali S, Shtanko O, Davey RA, Popoff MR, Tordo N, Gillet D, Cintrat JC, Barbier J. DABMA: A Derivative of ABMA with Improved Broad-Spectrum Inhibitory Activity of Toxins and Viruses. ACS Med Chem Lett 2019; 10:1140-1147. [PMID: 31413797 DOI: 10.1021/acsmedchemlett.9b00155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
The small molecule ABMA has been previously shown to protect cells against multiple toxins and pathogens including virus, intracellular bacteria, and parasite. Its mechanism of action is directly associated with host endolysosomal pathway rather than targeting toxin or pathogen itself. However, the relationship of its broad-spectrum anti-infection activity and chemical structure is not yet resolved. Here, we synthesized a series of derivatives and compared their activities against diphtheria toxin (DT). Dimethyl-ABMA (DABMA), one of the most potent analogs with about 20-fold improvement in protection efficacy against DT, was identified with a similar mechanism of action to ABMA. Moreover, DABMA exhibited enhanced efficacy against Clostridium difficile toxin B (TcdB), Clostridium sordellii lethal toxin (TcsL), Pseudomonas Exotoxin A (PE) as well as Rabies and Ebola viruses. The results revealed a structure-activity relationship of ABMA, which is a starting point for its clinical development as broad-spectrum drug against existing and emerging infectious diseases.
Collapse
Affiliation(s)
- Yu Wu
- Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université
Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Valérie Pons
- Service de Chimie Bio-organique et de Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Romain Noël
- Service de Chimie Bio-organique et de Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Sabrina Kali
- Antiviral Strategies Unit, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Olena Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Robert A. Davey
- Department of Microbiology, NEIDL, Boston University, Boston, Massachusetts 02118, United States
| | - Michel R. Popoff
- Bactéries anaérobies et Toxines, Institut Pasteur, 75015 Paris, France
| | - Noël Tordo
- Antiviral Strategies Unit, Virology Department, Institut Pasteur, 75015 Paris, France
| | - Daniel Gillet
- Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université
Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Jean-Christophe Cintrat
- Service de Chimie Bio-organique et de Marquage (SCBM), CEA, Université Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| | - Julien Barbier
- Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA, Université
Paris-Saclay, LabEx LERMIT, 91191 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Yahiro K, Ogura K, Terasaki Y, Satoh M, Miyagi S, Terasaki M, Yamasaki E, Moss J. Cholix toxin, an eukaryotic elongation factor 2 ADP-ribosyltransferase, interacts with Prohibitins and induces apoptosis with mitochondrial dysfunction in human hepatocytes. Cell Microbiol 2019; 21:e13033. [PMID: 31009148 PMCID: PMC9986844 DOI: 10.1111/cmi.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Vibrio cholerae produced-Cholix toxin (Cholix) is a cytotoxin that ADP-ribosylates eukaryotic elongation factor 2, inhibiting protein synthesis, and inducing apoptosis. Here, we identified prohibitin (PHB) 1 and 2 as novel Cholix-interacting membrane proteins in immortalised human hepatocytes and HepG2 cells by Cholix immunoprecipitation assays. The expression level of PHB1 was decreased by Cholix after a 12hr incubation. Cholix-induced poly (ADP-ribose) polymerase (PARP) cleavage was significantly enhanced in PHB (PHB1 or PHB2) knockdown cells. In contrast, transiently overexpressed PHB in hepatocytes attenuated Cholix-induced Bax/Bak conformational changes and PARP cleavage. In addition, Cholix-induced reactive oxygen species production and accumulation of fragmented mitochondria were enhanced in PHB-knockdown cells. Furthermore, Cholix induced activation of Rho-associated coiled coil-containing protein kinase 1 (ROCK1), which was enhanced in PHB-knockdown cells, followed by actin filament depolymerisation and accumulation of tubulin in the blebbing cells. Inhibition of ROCK1 by siRNA or its inhibitor suppressed Cholix-induced PARP cleavage and reactive oxygen species generation. Our findings identify PHB as a new protein that interacts with Cholix and is involved in Cholix-induced mitochondrial dysfunction and cytoskeletal rearrangement by ROCK1 activation during apoptosis.
Collapse
Affiliation(s)
- Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan
| | - Satoru Miyagi
- Department of Life Science, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Eiki Yamasaki
- Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Kannan S, Sathasivam G, Marudhamuthu M. Decrease of growth, biofilm and secreted virulence in opportunistic nosocomial Pseudomonas aeruginosa ATCC 25619 by glycyrrhetinic acid. Microb Pathog 2018; 126:332-342. [PMID: 30458255 DOI: 10.1016/j.micpath.2018.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/27/2022]
Abstract
The present study elucidates the antibiofilm and antivirulent capability of glycyrrhetinic acid (GRA) against Pseudomonas aeruginosa ATCC 25619. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of GRA against P. aeruginosa were found to be 160 μg/mL and 420 μg/mL respectively. In an acclimatization resistance analysis using P. aeruginosa, no resistance towards GRA was observed during the habituation period. Adequate penetration of GRA over the biofilm matrix was proposed with the membrane penetration model assembly constructed with the preformed biofilm exhibited the prospective penetration of GRA above the mature biofilm. Furthermore, GRA resulted in the attenuation of virulence factors such as motility, biofilm formation, pyocyanin secretion, secreted proteases with its sub MIC concentrations. The antibiofilm property of GRA was assessed with the light microscopy and high content screening fluorescent imaging system, which clearly demonstrates, the thickness of P. aeruginosa biofilm was reduced to 11.33 ± 2.08 μm from 39 ± 2.51 μm. Transmission Electron Microscopy (TEM) images depicted the morphological changes in cells such as disaggregation of colonies, cell disruption with loss of intracellular material, cytolytic damage, the process of morphological transformation, bacteriolysis indicating the potential effect of GRA.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Gowtham Sathasivam
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| |
Collapse
|
12
|
Turkina MV, Vikström E. Bacteria-Host Crosstalk: Sensing of the Quorum in the Context of Pseudomonas aeruginosa Infections. J Innate Immun 2018; 11:263-279. [PMID: 30428481 DOI: 10.1159/000494069] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Cell-to-cell signaling via small molecules is an essential process to coordinate behavior in single species within a community, and also across kingdoms. In this review, we discuss the quorum sensing (QS) systems used by the opportunistic pathogen Pseudomonas aeruginosa to sense bacterial population density and fitness, and regulate virulence, biofilm development, metabolite acquisition, and mammalian host defense. We also focus on the role of N-acylhomoserine lactone-dependent QS signaling in the modulation of innate immune responses connected together via calcium signaling, homeostasis, mitochondrial and cytoskeletal dynamics, and governing transcriptional and proteomic responses of host cells. A future perspective emphasizes the need for multidisciplinary efforts to bring current knowledge of QS into a more detailed understanding of the communication between bacteria and host, as well as into strategies to prevent and treat P. aeruginosa infections and reduce the rate of antibiotic resistance.
Collapse
Affiliation(s)
- Maria V Turkina
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Elena Vikström
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden,
| |
Collapse
|
13
|
Pirzer T, Becher KS, Rieker M, Meckel T, Mootz HD, Kolmar H. Generation of Potent Anti-HER1/2 Immunotoxins by Protein Ligation Using Split Inteins. ACS Chem Biol 2018; 13:2058-2066. [PMID: 29920062 DOI: 10.1021/acschembio.8b00222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell targeting protein toxins have gained increasing interest for cancer therapy aimed at increasing the therapeutic window and reducing systemic toxicity. Because recombinant expression of immunotoxins consisting of a receptor-binding and a cell-killing moiety is hampered by their high toxicity in a eukaryotic production host, most applications rely on recombinant production of fusion proteins consisting of an antibody fragment and a protein toxin in bacterial hosts such as Escherichia coli ( E. coli). These fusions often lack beneficial properties of whole antibodies like extended serum half-life or efficient endocytic uptake via receptor clustering. Here, we describe the production of full-length antibody immunotoxins using self-splicing split inteins. To this end, the short (11 amino acids) N-terminal intein part of the artificially designed split intein M86, a derivative of the Ssp DnaB intein, was recombinantly fused to the heavy chain of trastuzumab, a human epidermal growth factor receptor 2 (HER2) receptor targeting antibody and to a nanobody-Fc fusion targeting the HER1 receptor, respectively. Both antibodies were produced in Expi293F cells. The longer C-terminal counterpart of the intein was genetically fused to the protein toxins gelonin or Pseudomonas Exotoxin A, respectively, and expressed in E. coli via fusion to maltose binding protein. Using optimized in vitro splicing conditions, we were able to generate a set of specific and potent immunotoxins with IC50 values in the mid- to subpicomolar range.
Collapse
Affiliation(s)
- Thomas Pirzer
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| | - Kira-Sophie Becher
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Marcel Rieker
- Antibody Drug Conjugates and Targeted NBE Therapeutics , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
- Protein Engineering and Antibody Technologies , Merck KGaA , Frankfurter Straße 250 , D-64293 Darmstadt , Germany
| | - Tobias Meckel
- Macromolecular Chemistry & Paper Chemistry, Department of Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 8 , D-64287 Darmstadt , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Straße 2 , D-48149 Münster , Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry , Technische Universität Darmstadt , Alarich-Weiss-Strasse 4 , D-64287 Darmstadt , Germany
| |
Collapse
|
14
|
Alikhani Z, Salouti M, Ardestani MS. Synthesis and immunological evaluation of a nanovaccine based on PLGA nanoparticles and alginate antigen against infections caused by
Pseudomonas aeruginosa. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aabfac] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Ramasamy K, Balasubramanian S, Manickam K, Pandranki L, Taylor AB, Hart PJ, Baseman JB, Kannan TR. Mycoplasma pneumoniae Community-Acquired Respiratory Distress Syndrome Toxin Uses a Novel KELED Sequence for Retrograde Transport and Subsequent Cytotoxicity. mBio 2018; 9:e01663-17. [PMID: 29362229 PMCID: PMC5784248 DOI: 10.1128/mbio.01663-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Mycoplasma pneumoniae is an atypical bacterium that causes respiratory illnesses in humans, including pharyngitis, tracheobronchitis, and community-acquired pneumonia (CAP). It has also been directly linked to reactive airway disease, asthma, and extrapulmonary pathologies. During its colonization, M. pneumoniae expresses a unique ADP-ribosylating and vacuolating cytotoxin designated community-acquired respiratory distress syndrome (CARDS) toxin. CARDS toxin persists and localizes in the airway in CAP patients, asthmatics, and trauma patients with ventilator-associated pneumonia. Although CARDS toxin binds to specific cellular receptors, is internalized, and induces hyperinflammation, histopathology, mucus hyperplasia, and other airway injury, the intracellular trafficking of CARDS toxin remains unclear. Here, we show that CARDS toxin translocates through early and late endosomes and the Golgi complex and concentrates at the perinuclear region to reach the endoplasmic reticulum (ER). Using ER-targeted SNAP-tag, we confirmed the association of CARDS toxin with the ER and determined that CARDS toxin follows the retrograde pathway. In addition, we identified a novel CARDS toxin amino acid fingerprint, KELED, that is required for toxin transport to the ER and subsequent toxin-mediated cytotoxicity.IMPORTANCEMycoplasma pneumoniae, a leading cause of bacterial community-acquired pneumonia (CAP) among children and adults in the United States, synthesizes a 591-amino-acid ADP-ribosylating and vacuolating protein, designated community-acquired respiratory distress syndrome (CARDS) toxin. CARDS toxin alone is sufficient to induce and mimic major inflammatory and histopathological phenotypes associated with M. pneumoniae infection in rodents and primates. In order to elicit its ADP-ribosylating and vacuolating activities, CARDS toxin must bind to host cell receptors, be internalized via clathrin-mediated pathways, and subsequently be transported to specific intracellular organelles. Here, we demonstrate how CARDS toxin utilizes its unique KELED sequence to exploit the retrograde pathway machinery to reach the endoplasmic reticulum (ER) and fulfill its cytopathic potential. The knowledge generated from these studies may provide important clues to understand the mode of action of CARDS toxin and develop interventions that reduce or eliminate M. pneumoniae-associated airway and extrapulmonary pathologies.
Collapse
Affiliation(s)
- Kumaraguruparan Ramasamy
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sowmya Balasubramanian
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Krishnan Manickam
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lavanya Pandranki
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Alexander B Taylor
- X-Ray Crystallography Core Laboratory, Institutional Research Cores and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - P John Hart
- X-Ray Crystallography Core Laboratory, Institutional Research Cores and Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Joel B Baseman
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - T R Kannan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Michalska M, Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 2015; 6:963. [PMID: 26441897 PMCID: PMC4584936 DOI: 10.3389/fmicb.2015.00963] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas Exotoxin A (PE) is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.
Collapse
Affiliation(s)
- Marta Michalska
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| | - Philipp Wolf
- Department of Urology, Medical Center, University of Freiburg Freiburg, Germany
| |
Collapse
|
18
|
A Review of Intra- and Extracellular Antigen Delivery Systems for Virus Vaccines of Finfish. J Immunol Res 2015; 2015:960859. [PMID: 26065009 PMCID: PMC4433699 DOI: 10.1155/2015/960859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
Vaccine efficacy in aquaculture has for a long time depended on evaluating relative percent survival and antibody responses after vaccination. However, current advances in vaccine immunology show that the route in which antigens are delivered into cells is deterministic of the type of adaptive immune response evoked by vaccination. Antigens delivered by the intracellular route induce MHC-I restricted CD8+ responses while antigens presented through the extracellular route activate MHC-II restricted CD4+ responses implying that the route of antigen delivery is a conduit to induction of B- or T-cell immune responses. In finfish, different antigen delivery systems have been explored that include live, DNA, inactivated whole virus, fusion protein, virus-like particles, and subunit vaccines although mechanisms linking these delivery systems to protective immunity have not been studied in detail. Hence, in this review we provide a synopsis of different strategies used to administer viral antigens via the intra- or extracellular compartments. Further, we highlight the differences in immune responses induced by antigens processed by the endogenous route compared to exogenously processed antigens. Overall, we anticipate that the synopsis put together in this review will shed insights into limitations and successes of the current vaccination strategies used in finfish vaccinology.
Collapse
|
19
|
Aigal S, Claudinon J, Römer W. Plasma membrane reorganization: A glycolipid gateway for microbes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:858-71. [PMID: 25450969 DOI: 10.1016/j.bbamcr.2014.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/27/2014] [Accepted: 11/11/2014] [Indexed: 02/08/2023]
Abstract
Ligand-receptor interactions, which represent the core for cell signaling and internalization processes are largely affected by the spatial configuration of host cell receptors. There is a growing piece of evidence that receptors are not homogeneously distributed within the plasma membrane, but are rather pre-clustered in nanodomains, or clusters are formed upon ligand binding. Pathogens have evolved many strategies to evade the host immune system and to ensure their survival by hijacking plasma membrane receptors that are most often associated with lipid rafts. In this review, we discuss the early stage molecular and physiological events that occur following ligand binding to host cell glycolipids. The ability of various biological ligands (e.g. toxins, lectins, viruses or bacteria) that bind to glycolipids to induce their own uptake into mammalian cells by creating negative membrane curvature and membrane invaginations is explored. We highlight recent trends in understanding nanoscale plasma membrane (re-)organization and present the benefits of using synthetic membrane systems. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Sahaja Aigal
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.
| | - Julie Claudinon
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraβe 18, 79104 Freiburg, Germany.
| |
Collapse
|
20
|
Staudinger M, Glorius P, Burger R, Kellner C, Klausz K, Günther A, Repp R, Klapper W, Gramatzki M, Peipp M. The novel immunotoxin HM1.24-ETA' induces apoptosis in multiple myeloma cells. Blood Cancer J 2014; 4:e219. [PMID: 24927408 PMCID: PMC4080209 DOI: 10.1038/bcj.2014.38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 04/17/2014] [Accepted: 04/30/2014] [Indexed: 11/09/2022] Open
Abstract
Despite new treatment modalities, the clinical outcome in a substantial number of patients with multiple myeloma (MM) has yet to be improved. Antibody-based targeted therapies for myeloma patients could make use of the HM1.24 antigen (CD317), a surface molecule overexpressed on malignant plasma cells and efficiently internalized. Here, a novel immunotoxin, HM1.24-ETA', is described. HM1.24-ETA' was generated by genetic fusion of a CD317-specific single-chain Fv (scFv) antibody and a truncated variant of Pseudomonas aeruginosa exotoxin A (ETA'). HM1.24-ETA' inhibited growth of interleukin 6 (IL-6)-dependent and -independent myeloma cell lines. Half-maximal growth inhibition was observed at concentrations as low as 0.3 nM. Target cell killing occurred via induction of apoptosis and was unaffected in co-culture experiments with bone marrow stromal cells. HM1.24-ETA' efficiently triggered apoptosis of freshly isolated/cryopreserved cells of patients with plasma cell leukemia and MM and was active in a preclinical severe combined immunodeficiency (SCID) mouse xenograft model. Importantly, HM1.24-ETA' was not cytotoxic against CD317-positive cells from healthy tissue (monocytes, human umbilical vein endothelial cells). These results indicate that CD317 may represent a promising target structure for specific and efficient immunotoxin therapy for patients with plasma cell tumors.
Collapse
Affiliation(s)
- M Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - P Glorius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - R Burger
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - C Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - K Klausz
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - A Günther
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - R Repp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - W Klapper
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - M Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - M Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
21
|
Lu L, Hong W. From endosomes to the trans-Golgi network. Semin Cell Dev Biol 2014; 31:30-9. [PMID: 24769370 DOI: 10.1016/j.semcdb.2014.04.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022]
Abstract
The retrograde trafficking from endosomes to the trans-Golgi network (TGN) is one of the major endocytic pathways to divert proteins and lipids away from lysosomal degradation. Retrograde transported cargos enter the TGN via two itineraries from either the early endosome/recycling endosome or the late endosome and involve various machinery components such as retromer, sorting nexins, clathrin, small GTPases, tethering factors and SNAREs. Recently, the pathway has been recognized for its role in signal transduction, physiology and pathogenesis of human diseases.
Collapse
Affiliation(s)
- Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
22
|
Munang'andu HM, Mutoloki S, Evensen Ø. Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:184-196. [PMID: 23962742 DOI: 10.1016/j.dci.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Acquired immunity plays an important role in the protection of salmonids vaccinated against infectious pancreatic necrosis virus (IPNV) infections. In recent years, vaccine research has taken a functional approach to find the correlates of protective immunity against IPNV infections. Accumulating evidence suggests that the humoral response, specifically IgM is a correlate of vaccine protection against IPNV infections. The role of IgT on the other hand, especially at the sites of virus entry into the host is yet to be established. The kinetics of CD4+ and CD8+ T-cell gene expression have also been shown to correlate with protection in salmonids, suggesting that other arms of the adaptive immune response e.g. cytotoxic T cell responses and Th1 may also be important. Overall, the mechanisms of vaccine protection observed in salmonids are comparable to those seen in other vertebrates suggesting that the immunological basis of vaccine protection has been conserved across vertebrate taxa.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Stephen Mutoloki
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
23
|
Schäuble N, Cavalié A, Zimmermann R, Jung M. Interaction of Pseudomonas aeruginosa Exotoxin A with the human Sec61 complex suppresses passive calcium efflux from the endoplasmic reticulum. Channels (Austin) 2013; 8:76-83. [PMID: 24088629 PMCID: PMC4048345 DOI: 10.4161/chan.26526] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca(2+)-calmodulin. In single channel measurements, the open Sec61 complex is Ca(2+) permeable. It can be closed not only by interaction with BiP or Ca(2+)-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca(2+) leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A.
Collapse
Affiliation(s)
- Nico Schäuble
- Medical Biochemistry and Molecular Biology; Saarland University; Homburg, Germany
| | - Adolfo Cavalié
- Experimental and Clinical Pharmacology and Toxicology; Saarland University; Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology; Saarland University; Homburg, Germany
| | - Martin Jung
- Medical Biochemistry and Molecular Biology; Saarland University; Homburg, Germany
| |
Collapse
|
24
|
Bastin G, Heximer SP. Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013; 288:21836-49. [PMID: 23733193 DOI: 10.1074/jbc.m113.466888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
25
|
Mohammed AF, Abdul-Wahid A, Huang EHB, Bolewska-Pedyczak E, Cydzik M, Broad AE, Gariépy J. The Pseudomonas aeruginosa exotoxin A translocation domain facilitates the routing of CPP-protein cargos to the cytosol of eukaryotic cells. J Control Release 2012; 164:58-64. [PMID: 23075769 DOI: 10.1016/j.jconrel.2012.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 01/09/2023]
Abstract
The use of cell-penetrating peptides (CPPs), such as polyarginine, has been shown to facilitate the import of drugs and other cargos into cells. However, a major obstacle limiting their use as delivery agents is their entrapment following internalization into endocytic vesicles, leading to either their recycling out of cells or their degradation in lysosomes. To address this challenge, we fused a CPP sequence to the translocation domain of Pseudomonas aeruginosa exotoxin A (ETA) to facilitate the endosomal escape of imported CPP-containing protein constructs. Specifically, a fusion protein incorporating ten arginines linked to residues 253 to 412 of ETA (ETA(253-412)) was tested for its ability to effectively route a protein cargo (enhanced green fluorescent protein, eGFP) to the cytosol of cells. Using flow cytometry and fluorescence live-cell imaging, we observed a 5-fold improvement of cellular uptake as well as a 40-fold increase in cytosolic delivery of the CPP-ETA(253-412)-eGFP construct in relation to CPP-eGFP. Furthermore, analysis of intracellular routing events indicated that the incorporation of ETA(253-412) within the CPP-containing protein fusion construct avoided lysosomal degradation by re-directing the construct from early endosomes to the ER lumen and finally to the cytosol. Studies using inhibitors of vesicular transport confirmed that the ER lumen is a key compartment reached by the CPP-ETA(253-412)-eGFP construct before accessing the cytosol. Together, these findings suggest that incorporating a CPP motif and the ETA translocation domain into protein constructs can facilitate their cytosolic delivery.
Collapse
Affiliation(s)
- Arshiya F Mohammed
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Tortorella LL, Pipalia NH, Mukherjee S, Pastan I, Fitzgerald D, Maxfield FR. Efficiency of immunotoxin cytotoxicity is modulated by the intracellular itinerary. PLoS One 2012; 7:e47320. [PMID: 23056628 PMCID: PMC3467225 DOI: 10.1371/journal.pone.0047320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 09/14/2012] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas exotoxin-based immunotoxins, including LMB-2 (antiTac(F(v))-PE38), are proposed to traffic to the trans-Golgi network (TGN) and move by a retrograde pathway to the endoplasmic reticulum, where they undergo translocation to the cytoplasm, a step that is essential for cytotoxicity. The retrograde transport pathways used by LMB-2 are not completely understood, so it is unclear if transit through specific organelles is critical for maximal cytotoxic activity. In this study, we used Chinese hamster ovary (CHO) cell lines that express chimeric constructs of CD25, the Tac antigen, attached to the cytoplasmic domain of the TGN-targeted transmembrane proteins, TGN38 and furin. These chimeras are both targeted to the TGN, but the itineraries they follow are quite different. LMB-2 was incubated with the two cell lines, and the efficiency of cell killing was determined using cell viability and cytotoxicity assays. LMB-2 that is targeted through the endocytic recycling compartment to the TGN via Tac-TGN38 kills the cells more efficiently than immunotoxins delivered through the late endosomes by Tac-furin. Although the processing to the 37 kDa active fragment was more efficient in Tac-furin cells than in Tac-TGN38 cells, this was not associated with enhanced cytotoxicity - presumably because the toxin was also degraded more rapidly in these cells. These data indicate that trafficking through specific organelles is an important factor modulating toxicity by LMB-2.
Collapse
Affiliation(s)
- Lori L. Tortorella
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Nina H. Pipalia
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Sushmita Mukherjee
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David Fitzgerald
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Frederick R. Maxfield
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Weldon JE, Pastan I. A guide to taming a toxin--recombinant immunotoxins constructed from Pseudomonas exotoxin A for the treatment of cancer. FEBS J 2011; 278:4683-700. [PMID: 21585657 PMCID: PMC3179548 DOI: 10.1111/j.1742-4658.2011.08182.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas exotoxin A (PE) is a highly toxic protein secreted by the opportunistic pathogen Pseudomonas aeruginosa. The modular structure and corresponding mechanism of action of PE make it amenable to extensive modifications that can redirect its potent cytotoxicity from disease to a therapeutic function. In combination with a variety of artificial targeting elements, such as receptor ligands and antibody fragments, PE becomes a selective agent for the elimination of specific cell populations. This review summarizes our current understanding of PE, its intoxication pathway, and the ongoing efforts to convert this toxin into a treatment for cancer.
Collapse
Affiliation(s)
- John E Weldon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
29
|
Méré J, Chopard C, Bonhoure A, Morlon-Guyot J, Beaumelle B. Increasing stability and toxicity of Pseudomonas exotoxin by attaching an antiproteasic Peptide. Biochemistry 2011; 50:10052-60. [PMID: 22014283 DOI: 10.1021/bi2010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Trypsin-like activities are present within the endocytic pathway and allow cells to inactivate a fraction of incoming toxins, such as Pseudomonas exotoxin (PE), that require endocytic uptake before reaching the cytosol to inactivate protein synthesis. PE is a favorite toxin for building immunotoxins. The latter are promising molecules to fight cancer or transplant rejection, and producing more active toxins is a key challenge. More broadly, increasing protein stability is a potentially useful approach to improve the efficiency of therapeutic proteins. We report here that fusing an antiproteasic peptide (bovine pancreatic trypsin inhibitor, BPTI) to PE increases its toxicity to human cancer cell lines by 20-40-fold. Confocal microscopic examination of toxin endocytosis, digestion, and immunoprecipitation experiments showed that the fused antiproteasic peptide specifically protects PE from trypsin-like activities. Hence, the attached BPTI acts as a bodyguard for the toxin within the endocytic pathway. Moreover, it increased the PE elimination half-time in mice by 70%, indicating that the fused BPTI stabilizes the toxin in vivo. This BPTI-fusion approach may be useful for protecting other circulating or internalized proteins of therapeutic interest from premature degradation.
Collapse
Affiliation(s)
- Jocelyn Méré
- CPBS, UMR 5236 CNRS, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | | | |
Collapse
|
30
|
Johnson C, Kannan TR, Baseman JB. Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments. PLoS One 2011; 6:e22877. [PMID: 21829543 PMCID: PMC3146493 DOI: 10.1371/journal.pone.0022877] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/06/2011] [Indexed: 11/24/2022] Open
Abstract
Recently, we identified an ADP-ribosylating and vacuolating cytotoxin in Mycoplasma pneumoniae designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we show that vacuoles induced by recombinant CARDS (rCARDS) toxin are acidic and derive from the endocytic pathway as determined by the uptake of neutral red and the fluid-phase marker, Lucifer yellow, respectively. Also, we demonstrate that the formation of rCARDS toxin-associated cytoplasmic vacuoles is inhibited by the vacuolar ATPase inhibitor, bafilomycin A1, and the ionophore, monensin. To examine the ontogeny of these vacuoles, we analyzed the distribution of endosomal and lysosomal membrane markers during vacuole formation and observed the enrichment of the late endosomal GTPase, Rab9, around rCARDS toxin-induced vacuoles. Immunogold-labeled Rab9 and overexpression of green fluorescent-tagged Rab9 further confirmed vacuolar association. The late endosomal- and lysosomal-associated membrane proteins, LAMP1 and LAMP2, also localized to the vacuolar membranes, while the late endosomal protein, Rab7, and early endosomal markers, Rab5 and EEA1, were excluded. HeLa cells expressing dominant-negative (DN) Rab9 exhibited markedly reduced vacuole formation in the presence of rCARDS toxin, in contrast to cells expressing DN-Rab7, highlighting the importance of Rab9 function in rCARDS toxin-induced vacuolation. Our findings reveal the unique Rab9-association with rCARDS toxin-induced vacuoles and its possible relationship to the characteristic histopathology that accompanies M. pneumoniae infection.
Collapse
Affiliation(s)
- Coreen Johnson
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - T. R. Kannan
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Joel B. Baseman
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Aletrari MO, McKibbin C, Williams H, Pawar V, Pietroni P, Lord JM, Flitsch SL, Whitehead R, Swanton E, High S, Spooner RA. Eeyarestatin 1 interferes with both retrograde and anterograde intracellular trafficking pathways. PLoS One 2011; 6:e22713. [PMID: 21799938 PMCID: PMC3143184 DOI: 10.1371/journal.pone.0022713] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The small molecule Eeyarestatin I (ESI) inhibits the endoplasmic reticulum (ER)-cytosol dislocation and subsequent degradation of ERAD (ER associated protein degradation) substrates. Toxins such as ricin and Shiga/Shiga-like toxins (SLTx) are endocytosed and trafficked to the ER. Their catalytic subunits are thought to utilise ERAD-like mechanisms to dislocate from the ER into the cytosol, where a proportion uncouples from the ERAD process, recovers a catalytic conformation and destroys their cellular targets. We therefore investigated ESI as a potential inhibitor of toxin dislocation. METHODOLOGY AND PRINCIPAL FINDINGS Using cytotoxicity measurements, we found no role for ES(I) as an inhibitor of toxin dislocation from the ER, but instead found that for SLTx, ESI treatment of cells was protective by reducing the rate of toxin delivery to the ER. Microscopy of the trafficking of labelled SLTx and its B chain (lacking the toxic A chain) showed a delay in its accumulation at a peri-nuclear location, confirmed to be the Golgi by examination of SLTx B chain metabolically labelled in the trans-Golgi cisternae. The drug also reduced the rate of endosomal trafficking of diphtheria toxin, which enters the cytosol from acidified endosomes, and delayed the Golgi-specific glycan modifications and eventual plasma membrane appearance of tsO45 VSV-G protein, a classical marker for anterograde trafficking. CONCLUSIONS AND SIGNIFICANCE ESI acts on one or more components that function during vesicular transport, whilst at least one retrograde trafficking pathway, that of ricin, remains unperturbed.
Collapse
Affiliation(s)
- Mina-Olga Aletrari
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Craig McKibbin
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Helen Williams
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Vidya Pawar
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Paola Pietroni
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - J. Michael Lord
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Sabine L. Flitsch
- School of Chemistry, University of Manchester, Manchester, United Kingdom
- Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, United Kingdom
| | - Roger Whitehead
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Eileithyia Swanton
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (RAS); (SH)
| | - Robert A. Spooner
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail: (RAS); (SH)
| |
Collapse
|
32
|
Chen S, Barbieri JT. Association of botulinum neurotoxin serotype A light chain with plasma membrane-bound SNAP-25. J Biol Chem 2011; 286:15067-72. [PMID: 21378164 DOI: 10.1074/jbc.m111.224493] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Clostridium botulinum neurotoxins (BoNTs) cleave SNARE proteins, which inhibit binding and thus fusion of neurotransmitter vesicles to the plasma membrane of peripheral neurons. BoNTs comprise an N-terminal light chain (LC) and C-terminal heavy chain, which are linked by a disulfide bond. There are seven serotypes (A-G) of BoNTs based upon immunological neutralization. Although the binding and entry of BoNT/A into neurons has been subjected to considerable investigation, the intracellular events that allow BoNT/A to efficiently cleave SNAP-25 within neurons is less well understood. Earlier studies showed that intracellular LC/A bound to the plasma membrane of neurons. In this study, intracellular LC/A is shown to directly bind SNAP-25 on the plasma membrane. Solid phase binding showed that the N-terminal residues of LC/A bound residues 80-110 of SNAP-25, which was also observed in cultured neurons. Association of the N-terminal 8 amino acids of LC/A and residues 80-110 of SNAP-25 also enhanced substrate cleavage. These findings explain how LC/A associates with SNAP-25 on the plasma membrane and provide a basis for LC/A cleavage of SNAP-25 within the SNARE complex.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong
| | | |
Collapse
|
33
|
Toxin-based therapeutic approaches. Toxins (Basel) 2010; 2:2519-83. [PMID: 22069564 PMCID: PMC3153180 DOI: 10.3390/toxins2112519] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 01/08/2023] Open
Abstract
Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.
Collapse
|
34
|
El Hage T, Lorin S, Decottignies P, Djavaheri-Mergny M, Authier F. Proteolysis of Pseudomonas exotoxin A within hepatic endosomes by cathepsins B and D produces fragments displaying in vitro ADP-ribosylating and apoptotic effects. FEBS J 2010; 277:3735-49. [PMID: 20718861 DOI: 10.1111/j.1742-4658.2010.07775.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To assess Pseudomonas exotoxin A (ETA) compartmentalization, processing and cytotoxicity in vivo, we have studied the fate of internalized ETA with the use of the in vivo rodent liver model following toxin administration, cell-free hepatic endosomes, and pure in vitro protease assays. ETA taken up into rat liver in vivo was rapidly associated with plasma membranes (5-30 min), internalized within endosomes (15-60 min), and later translocated into the cytosolic compartment (30-90 min). Coincident with endocytosis of intact ETA, in vivo association of the catalytic ETA-A subunit and low molecular mass ETA-A fragments was observed in the endosomal apparatus. After an in vitro proteolytic assay with an endosomal lysate and pure proteases, the ETA-degrading activity was attributed to the luminal species of endosomal acidic cathepsins B and D, with the major cleavages generated in vitro occurring mainly within domain III of ETA-A. Cell-free endosomes preloaded in vivo with ETA intraluminally processed and extraluminally released intact ETA and ETA-A in vitro in a pH-dependent and ATP-dependent manner. Rat hepatic cells underwent in vivo intrinsic apoptosis at a late stage of ETA infection, as assessed by the mitochondrial release of cytochrome c, caspase-9 and caspase-3 activation, and DNA fragmentation. In an in vitro assay, intact ETA induced ADP-ribosylation of EF-2 and mitochondrial release of cytochrome c, with the former effect being efficiently increased by a cathepsin B/cathepsin D pretreatment. The data show a novel processing pathway for internalized ETA, involving cathepsins B and D, resulting in the production of ETA fragments that may participate in cytotoxicity and mitochondrial dysfunction.
Collapse
|
35
|
Traini R, Ben-Josef G, Pastrana DV, Moskatel E, Sharma AK, Antignani A, Fitzgerald DJ. ABT-737 overcomes resistance to immunotoxin-mediated apoptosis and enhances the delivery of pseudomonas exotoxin-based proteins to the cell cytosol. Mol Cancer Ther 2010; 9:2007-15. [PMID: 20587662 DOI: 10.1158/1535-7163.mct-10-0257] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pseudomonas exotoxin (PE)-based immunotoxins (antibody-toxin fusion proteins) have achieved frequent complete remissions in patients with hairy cell leukemia but far fewer objective responses in other cancers. To address possible mechanisms of resistance, we investigated immunotoxin activity in a model system using the colon cancer cell line, DLD1. Despite causing complete inhibition of protein synthesis, there was no evidence that an immunotoxin targeted to the transferrin receptor caused apoptosis in these cells. To address a possible protective role of prosurvival Bcl-2 proteins, the BH3-only mimetic, ABT-737, was tested alone or in combination with immunotoxins. Neither the immunotoxin nor ABT-737 alone activated caspase 3, whereas the combination exhibited substantial activation. In other epithelial cell lines, ABT-737 enhanced the cytotoxicity of PE-related immunotoxins by as much as 20-fold, but did not enhance diphtheria toxin or cycloheximide. Because PE translocates to the cytosol via the endoplasmic reticulum (ER) and the other toxins do not, ABT-737-mediated effects on the ER were investigated. ABT-737 treatment stimulated increased levels of ER stress response factor, ATF4. Because of its activity in the ER, ABT-737 might be particularly well suited for enhancing the activity of immunotoxins that translocate from the ER to the cell cytosol.
Collapse
Affiliation(s)
- Roberta Traini
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
It has long been assumed that the individual cisternal stacks that comprise the plant Golgi apparatus multiply by some kind of fission process. However, more recently, it has been demonstrated that the Golgi apparatus can be experimentally disassembled and the reformation process from the ER (endoplasmic reticulum) monitored sequentially using confocal fluorescence and electron microscopy. Some other evidence suggests that Golgi stacks may arise de novo in cells. In the present paper, we review some of the more recent findings on plant Golgi stack biogenesis and propose a new model for their growth de novo from ER exit sites.
Collapse
Affiliation(s)
- Chris Hawes
- School of Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | | | | | | |
Collapse
|
37
|
Pfeffer SR. Multiple routes of protein transport from endosomes to the trans Golgi network. FEBS Lett 2009; 583:3811-6. [PMID: 19879268 DOI: 10.1016/j.febslet.2009.10.075] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 10/20/2022]
Abstract
Proteins use multiple routes for transport from endosomes to the Golgi complex. Shiga and cholera toxins and TGN38/46 are routed from early and recycling endosomes, while mannose 6-phosphate receptors are routed from late endosomes. The identification of distinct molecular requirements for each of these pathways makes it clear that mammalian cells have evolved more complex targeting mechanisms and routes than previously anticipated.
Collapse
Affiliation(s)
- Suzanne R Pfeffer
- Department of Biochemistry, 279 Campus Drive B400, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
38
|
Zielinski R, Lyakhov I, Jacobs A, Chertov O, Kramer-Marek G, Francella N, Stephen A, Fisher R, Blumenthal R, Capala J. Affitoxin--a novel recombinant, HER2-specific, anticancer agent for targeted therapy of HER2-positive tumors. J Immunother 2009; 32:817-25. [PMID: 19752752 PMCID: PMC3402039 DOI: 10.1097/cji.0b013e3181ad4d5d] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Expression of the human epidermal growth factor receptor 2 (HER2) is amplified in 25% to 30% of breast cancers and has been associated with an unfavorable prognosis. Here we report the construction, purification, and characterization of Affitoxin-a novel class of HER2-specific cytotoxic molecules combining HER2-specific Affibody molecule as a targeting moiety and PE38KDEL, which is a truncated version of Pseudomonas exotoxin A, as a cell killing agent. It is highly soluble and does not require additional refolding, oxidation, or reduction steps during its purification. Using surface plasmon resonance technology and competitive binding assays, we have shown that Affitoxin binds specifically to HER2 with nanomolar affinity. We have also observed a high correlation between HER2 expression and retention of Affitoxin bound to the cell surface. Affitoxin binding and internalization is followed by Pseudomonas exotoxin A activity domain-mediated ADP-ribosylation of translation elongation factor 2 and, consequently, inhibition of protein synthesis as shown by protein expression analysis of HER2-positive cells treated with Affitoxin. Measured IC50 value for HER2-negative cells MDA-MB468 (65+/-2.63 pM) was more than 20 times higher than the value for low HER2 level-expressing MCF7 cells (2.56+/-0.1 pM), and almost 3 orders of magnitude higher for its HER2-overexpressing derivative MCF7/HER2 (62.7+/-5.9 fM). These studies suggest that Affitoxin is an attractive PE38-based candidate for treatment of HER2-positive tumors.
Collapse
Affiliation(s)
- Rafal Zielinski
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ilya Lyakhov
- SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Amy Jacobs
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Oleg Chertov
- SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD
| | - Gabriela Kramer-Marek
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nicholas Francella
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | - Robert Blumenthal
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jacek Capala
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
39
|
Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health 2009; 2:101-11. [PMID: 20701869 DOI: 10.1016/j.jiph.2009.08.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are a serious health problem affecting millions of people each year. Infections of the urinary tract are the second most common type of infection in the body. Catheterization of the urinary tract is the most common factor, which predisposes the host to these infections. Catheter-associated UTI (CAUTI) is responsible for 40% of nosocomial infections, making it the most common cause of nosocomial infection. CAUTI accounts for more than 1 million cases in hospitals and nursing homes annually and often involve uropathogens other than Escherichia coli. While the epidemiology and pathogenic mechanisms of uropathogenic Escherichia coli have been extensively studied, little is known about the pathogenesis of UTIs caused by other organisms like Pseudomonas aeruginosa. Scanty available information regarding pathogenesis of UTIs caused by P. aeruginosa is an important bottleneck in developing effective preventive approaches. The aim of this review is to summarize some of the advances made in the field of P. aeruginosa induced UTIs and draws attention of the workers that more basic research at the level of pathogenesis is needed so that novel strategies can be designed.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | | | |
Collapse
|
40
|
Morlon-Guyot J, Méré J, Bonhoure A, Beaumelle B. Processing of Pseudomonas aeruginosa exotoxin A is dispensable for cell intoxication. Infect Immun 2009; 77:3090-9. [PMID: 19380469 PMCID: PMC2708563 DOI: 10.1128/iai.01390-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/07/2009] [Accepted: 04/13/2009] [Indexed: 01/09/2023] Open
Abstract
Exotoxin A is a major virulence factor of Pseudomonas aeruginosa. This toxin binds to a specific receptor on animal cells, allowing endocytosis of the toxin. Once in endosomes, the exotoxin can be processed by furin to generate a C-terminal toxin fragment that lacks the receptor binding domain and is retrogradely transported to the endoplasmic reticulum for retrotranslocation to the cytosol through the Sec61 channel. The toxin then blocks protein synthesis by ADP ribosylation of elongation factor 2, thereby triggering cell death. A shorter intracellular route has also been described for this toxin. It involves direct translocation of the entire toxin from endosomes to the cytosol and therefore does not rely on furin-mediated cleavage. To examine the implications of endosomal translocation in the intoxication process, we investigated whether the toxin required furin-mediated processing in order to kill cells. We used three different approaches. We first fused to the N terminus of the toxin proteins with different unfolding abilities so that they inhibited or did not inhibit endosomal translocation of the chimera. We then assayed the amount of toxin fragments delivered to the cytosol during cell intoxication. Finally we used furin inhibitors and examined the fate and intracellular localization of the toxin and its receptor. The results showed that exotoxin cytotoxicity results largely from endosomal translocation of the entire toxin. We found that the C-terminal fragment was unstable in the cytosol.
Collapse
|
41
|
Bethani I, Werner A, Kadian C, Geumann U, Jahn R, Rizzoli SO. Endosomal fusion upon SNARE knockdown is maintained by residual SNARE activity and enhanced docking. Traffic 2009; 10:1543-59. [PMID: 19624487 DOI: 10.1111/j.1600-0854.2009.00959.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SNARE proteins mediate membrane fusion in the secretory pathway of eukaryotic cells. Genetic deletion and siRNA-based knockdown have been instrumental in assigning given SNAREs to defined intracellular transport steps. However, SNARE depletion occasionally results in barely detectable phenotypes. To understand how cells cope with SNARE loss, we have knocked down several SNAREs functioning in early endosome fusion. Surprisingly, knockdown of syntaxin 13, syntaxin 6 and vti1a, alone or in combinations, did not result in measurable changes of endosomal trafficking or fusion. We found that the residual SNARE levels (typically approximately 10%) were sufficient for a substantial amount of SNARE-SNARE interactions. Conversely, in wild-type cells, most SNARE molecules were concentrated in clusters, constituting a spare pool not readily available for interactions. Additionally, the knockdown organelles exhibited enhanced docking. We conclude that SNAREs are expressed at much higher levels than needed for maintenance of organelle fusion, and that loss of SNAREs is compensated for by the co-regulation of the docking machinery.
Collapse
Affiliation(s)
- Ioanna Bethani
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Kreitman RJ. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 2009; 23:1-13. [PMID: 19344187 DOI: 10.2165/00063030-200923010-00001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Immunotoxins are molecules that contain a protein toxin and a ligand that is either an antibody or a growth factor. The ligand binds to a target cell antigen, and the target cell internalizes the immunotoxin, allowing the toxin to migrate to the cytoplasm where it can kill the cell. In the case of recombinant immunotoxins, the ligand and toxin are encoded in DNA that is then expressed in bacteria, and the purified immunotoxin contains the ligand and toxin fused together. Among the most active recombinant immunotoxins clinically tested are those that are targeted to hematologic malignancies. One agent, containing human interleukin-2 and truncated diphtheria toxin (denileukin diftitox), has been approved for use in cutaneous T-cell lymphoma, and has shown activity in other hematologic malignancies, including leukemias and lymphomas. Diphtheria toxin has also been targeted by other ligands, including granulocyte-macrophage colony-stimulating factor and interleukin-3, to target myelogenous leukemia cells. Single-chain antibodies containing variable heavy and light antibody domains have been fused to truncated Pseudomonas exotoxin to target lymphomas and lymphocytic leukemias. Recombinant immunotoxins anti-Tac(Fv)-PE38 (LMB-2), targeting CD25, and RFB4(dsFv)-PE38 (BL22, CAT-3888), targeting CD22, have each been tested in patients. Major responses have been observed after failure of standard chemotherapy. The most successful application of recombinant immunotoxins today is in hairy cell leukemia, where BL22 has induced complete remissions in most patients who were previously treated with optimal chemotherapy.
Collapse
Affiliation(s)
- Robert J Kreitman
- Clinical Immunotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Wolf P, Elsässer-Beile U. Pseudomonas exotoxin A: from virulence factor to anti-cancer agent. Int J Med Microbiol 2009; 299:161-76. [PMID: 18948059 DOI: 10.1016/j.ijmm.2008.08.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 07/07/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa has the ability to cause severe acute and chronic infections in humans. Pseudomonas exotoxin A (PE) is the most toxic virulence factor of this bacterium. It has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. The cytotoxic pathways of PE have been elucidated, and it could be shown that PE uses several molecular strategies developed under evolutionary pressure for effective killing. Interestingly, a medical benefit from this molecule has also been ascertained in recent years and several PE-based immunotoxins have been constructed and tested in preclinical and clinical trials against different cancers. In these molecules, the enzymatic active domain of PE is specifically targeted to tumor-related antigens. This review describes the current knowledge about the cytotoxic pathways of PE. Additionally, it summarizes preclinical and clinical trials of PE-based immunotoxins and furthermore discusses current problems and answers with these agents.
Collapse
Affiliation(s)
- Philipp Wolf
- Department of Urology, University of Freiburg, Germany.
| | | |
Collapse
|
44
|
Mrsny RJ. Lessons from nature: "Pathogen-Mimetic" systems for mucosal nano-medicines. Adv Drug Deliv Rev 2009; 61:172-92. [PMID: 19146895 DOI: 10.1016/j.addr.2008.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 09/22/2008] [Indexed: 12/13/2022]
Abstract
Mucosal surfaces establish an interface with external environments that provide a protective barrier with the capacity to selectively absorb and secrete materials important for homeostasis of the organism. In man, mucosal surfaces such as those in the gastrointestinal tract, respiratory tree and genitourinary system also represent significant barrier to the successful administration of certain pharmaceutical agents and the delivery of newly designed nano-scale therapeutic systems. This review examines morphological, physiological and biochemical aspects of these mucosal barriers and presents currently understood mechanisms used by a variety of virulence factors used by pathogenic bacteria to overcome various aspects of these mucosal barriers. Such information emphasizes the impediments that biologically active materials must overcome for absorption across these mucosal surfaces and provides a template for strategies to overcome these barriers for the successful delivery of nano-scale bioactive materials, also known as nano-medicines.
Collapse
|
45
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
46
|
Ganley IG, Espinosa E, Pfeffer SR. A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. ACTA ACUST UNITED AC 2008; 180:159-72. [PMID: 18195106 PMCID: PMC2213607 DOI: 10.1083/jcb.200707136] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the Golgi after delivering lysosomal enzymes to the endocytic pathway. This process requires Rab9 guanosine triphosphatase (GTPase) and the putative tether GCC185. We show in human cells that a soluble NSF attachment protein receptor (SNARE) complex comprised of syntaxin 10 (STX10), STX16, Vti1a, and VAMP3 is required for this MPR transport but not for the STX6-dependent transport of TGN46 or cholera toxin from early endosomes to the Golgi. Depletion of STX10 leads to MPR missorting and hypersecretion of hexosaminidase. Mouse and rat cells lack STX10 and, thus, must use a different target membrane SNARE for this process. GCC185 binds directly to STX16 and is competed by Rab6. These data support a model in which the GCC185 tether helps Rab9-bearing transport vesicles deliver their cargo to the trans-Golgi and suggest that Rab GTPases can regulate SNARE–tether interactions. Importantly, our data provide a clear molecular distinction between the transport of MPRs and TGN46 to the trans-Golgi.
Collapse
Affiliation(s)
- Ian G Ganley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
47
|
Abstract
Bacterial pathogens utilize toxins to modify or kill host cells. The bacterial ADP-ribosyltransferases are a family of protein toxins that covalently transfer the ADP-ribose portion of NAD to host proteins. Each bacterial ADP-ribosyltransferase toxin modifies a specific host protein(s) that yields a unique pathology. These toxins possess the capacity to enter a host cell or to use a bacterial Type III apparatus for delivery into the host cell. Advances in our understanding of bacterial toxin action parallel the development of biophysical and structural biology as well as our understanding of the mammalian cell. Bacterial toxins have been utilized as vaccines, as tools to dissect host cell physiology, and more recently for the development of novel therapies to treat human disease.
Collapse
Affiliation(s)
- Qing Deng
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | |
Collapse
|
48
|
Spilsberg B, Llorente A, Sandvig K. Polyunsaturated fatty acids regulate Shiga toxin transport. Biochem Biophys Res Commun 2007; 364:283-8. [PMID: 17942073 DOI: 10.1016/j.bbrc.2007.09.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
Abstract
Shiga toxin (Stx) is internalized by receptor-mediated endocytosis and transported retrogradely to the endoplasmic reticulum from where the enzymatically active part of the toxin is translocated to the cytosol. In this study, we have investigated the effect of polyunsaturated fatty acids (PUFA) on intoxication and retrograde transport of Stx. In HEp-2 cells, PUFA treatment inhibited Stx intoxication by a factor of 10. Moreover, both Stx internalization and endosome-to-Golgi transport were reduced by PUFA and these reductions can together explain the reduced toxicity. Also cholera toxin internalization was reduced by PUFA treatment. Finally, ricin and Pseudomonas exotoxin 1 cytotoxicity were not reduced by PUFA, demonstrating that PUFA do not cause a general block in retrograde transport to the endoplasmic reticulum. In conclusion, these results clearly demonstrate the importance of PUFA for Stx and cholera toxin trafficking.
Collapse
Affiliation(s)
- Bjørn Spilsberg
- Department of Biochemistry, Centre for Cancer Biomedicine, Institute for Cancer Research, Faculty Division The Norwegian Radium Hospital, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | | | |
Collapse
|
49
|
Tsuda N, Chang DZ, Mine T, Efferson C, García-Sastre A, Wang X, Ferrone S, Ioannides CG. Taxol Increases the Amount and T Cell–Activating Ability of Self-Immune Stimulatory Multimolecular Complexes Found in Ovarian Cancer Cells. Cancer Res 2007; 67:8378-87. [PMID: 17804754 DOI: 10.1158/0008-5472.can-07-0327] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been proposed that chemotherapy enhances tumor antigen (TA)-specific immunity. The molecular form of TA from ovarian tumor that activates cellular immunity is unknown. We report here identification of a novel molecular form of immunogenic TA for CD8(+) cells named self-immune stimulatory multimolecular complexes (ISMMC). ISMMC consist of a molecular complex of polyosome/ribosome-bound ubiquitinated nascent HER-2 polypeptides. This complex is chaperoned by heat shock protein Gp96, which mediates ISMMC uptake by antigen-presenting cells through the scavenger receptor CD91. RNAs in ISMMC stimulate immature dendritic cells to secrete interleukin 12 and induce IFN-gamma in peripheral blood mononuclear cells. ISMMC dissociate, retrotranslocate from the lysosome to cytoplasm, and are processed to peptides by the proteasome. At subpharmacologic doses, Taxol increased the amount of ISMMC by three to four times and modified their composition by inducing the attachment of cochaperones of HSP70, such as the mitotic-phase phosphoprotein 11J. On a total protein basis, Taxol induced ISMMC, expanded more CD8(+) cells, activated more CD56(+) NKG2D(+) cells to produce IFN-gamma, and were more potent inducers of high T-cell receptor density Perforin(+) cells than native ISMMC and peptide E75. Elucidation of the composition of ISMMC and identification of adducts formed by Taxol should be important for developing molecular cancer vaccines.
Collapse
Affiliation(s)
- Naotake Tsuda
- Department of Gynecologic Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lackman RL, Jamieson AM, Griffith JM, Geuze H, Cresswell P. Innate immune recognition triggers secretion of lysosomal enzymes by macrophages. Traffic 2007; 8:1179-89. [PMID: 17555533 DOI: 10.1111/j.1600-0854.2007.00600.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gamma interferon-induced lysosomal thiolreductase (GILT) is expressed constitutively in antigen-presenting cells, where it reduces disulfide bonds to facilitate antigen presentation. GILT is synthesized as an enzymatically active precursor protein and is processed in early endosomes to yield the mature enzyme. The exposure of the promonocytic cell line THP-1 to Escherichia coli causes a differentiation-dependent induction of GILT expression in which the majority of precursor GILT is secreted as active enzyme. We confirm this result in cultured primary monocytes and macrophages, and demonstrate, as an in vivo correlate of the phenomenon, upregulation of precursor GILT levels in the serum of mice injected with lipopolysaccharide. We show that macrophage differentiation is accompanied by a transcriptional downregulation of mannose-6-phosphorylation, which likely prevents the recognition and proper sorting of soluble lysosomal enzymes by the mannose-6-phosphate receptors. We provide evidence for a mechanism of generalized soluble lysosomal enzyme secretion through the constitutive secretory pathway.
Collapse
Affiliation(s)
- Rebecca L Lackman
- Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | | | | | | | | |
Collapse
|