1
|
Cao H, Li Y, Liu S, Gao H, Zhu C, Li L, Wu Z, Jin T, Wang Y, Gong Y, Qin W, Dong W. The role of S-palmitoylation of C4BPA in regulating murine sperm motility and complement resistance. Int J Biol Macromol 2024; 281:136196. [PMID: 39370067 DOI: 10.1016/j.ijbiomac.2024.136196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The epididymis and epididymosomes are crucial for regulating sperm motility, a key factor in male fertility. Palmitoylation, a lipid modification involving the attachment of palmitic acid to cysteine residues, is essential for protein function and localization. Additionally, this modification plays a vital role in the sorting of proteins into exosomes. This study investigates the role of S-palmitoylation at the Cys15 residue of the C4b binding protein alpha chain (C4BPA) in murine sperm motility. Our findings revealed high expression of C4BPA mRNA in the caput epididymis, with the protein present across all regions of the epididymis. Palmitoylation of C4BPA in epididymal epithelial cells was essential for its enrichment in epididymosomes and on sperm, thereby maintaining sperm motility. Inhibition of palmitoylation significantly reduced sperm motility and the localization of C4BPA on sperm. Additionally, palmitoylated C4BPA in exosomes resisted complement C4 attacks, preserving motility, unlike mutated C4BPA (C15S). These results highlight the critical role of palmitoylated C4BPA in protecting sperm from complement attacks and maintaining motility, suggesting that reversible palmitoylation of epididymal proteins could be explored as a therapeutic strategy for male contraception. Our study underscores the importance of post-translational modifications in sperm function and presents new insights into potential male contraceptive methods.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; The NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China; Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou 510632, China
| | - Huihui Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weibing Qin
- The NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510600, China; Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Chen Q, Tang S, Li Y, Cong Z, Lu D, Yang Q, Zhang X, Wu S. Multifunctional Metal-Organic Framework Exoskeletons Protect Biohybrid Sperm Microrobots for Active Drug Delivery from the Surrounding Threats. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58382-58392. [PMID: 34860489 DOI: 10.1021/acsami.1c18597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Utilizing spermatozoa as the engine unit of robotic systems at a microscale has brought revolutionized inspirations and strategies to the biomedical community. However, the motility of sperms is impaired by the surrounding threats. For example, the antisperm antibody (AsA) can specifically bind with surface antigens on the sperm membrane and adversely affect their propulsion, hindering the operation of sperm-based microrobots in practical environments. In the present work, we report a biohybrid sperm microrobot by encapsulating sperm cells within metal-organic frameworks (MOFs) and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) (ZIFSpermbot), capable of active drug delivery and cytoprotection from the biological threats of AsA. ZIF-8 NPs can be facilely coated on the sperm membrane through complexation with tannic acid. Such cell surface engineering has a negligible impact on sperm motility under optimized conditions. The selective permeability of the resulting porous ZIF-8 wrappings protects ZIFSpermbots from the specific binding of AsA, enabling the preservation of intrinsic propulsion of the sperm engine. Besides, ZIF-8 wrappings sustainably release zinc ions and attenuate the oxidative damage generated in sperm cells, allowing the maintenance of sperm movement. Combining the effective protection of sperm propulsion with the drug-loading capacity of ZIF-8 NPs provides new applicability to ZIFSpermbots in risky surroundings with AsA, exhibiting rapid migration in a microfluidic device for active drug delivery with enhanced therapeutic efficacy due to their retained effective propulsion. Imparting bioengine-based microrobots with multifunctional wrappings holds great promise for designing adaptive cell robots that endure harsh environments toward locally extended and diverse operations, facilitating their use in practical and clinical applications.
Collapse
Affiliation(s)
- Qiwei Chen
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Songsong Tang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Yangyang Li
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Zhaoqing Cong
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Dongdong Lu
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Qingxin Yang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P. R. China
| | - Song Wu
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, P. R. China
| |
Collapse
|
3
|
Seminal antigenicity affects mitochondrial membrane potential and acrosome reaction ability of the spermatozoa during cryopreservation. Theriogenology 2021; 159:132-139. [DOI: 10.1016/j.theriogenology.2020.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
|
4
|
Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics 2016; 10:10. [PMID: 27098205 PMCID: PMC4839075 DOI: 10.1186/s40246-016-0074-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/14/2016] [Indexed: 01/08/2023] Open
Abstract
Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted. The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression, functions, and evolution, and introduce new names for novel family members.
Collapse
|
5
|
Ma X, Pan Q, Feng Y, Choudhury BP, Ma Q, Gagneux P, Ma F. Sialylation Facilitates the Maturation of Mammalian Sperm and Affects Its Survival in Female Uterus. Biol Reprod 2016; 94:123. [PMID: 27075617 PMCID: PMC4946803 DOI: 10.1095/biolreprod.115.137810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/06/2016] [Indexed: 02/05/2023] Open
Abstract
Establishment of adequate levels of sialylation is crucial for sperm survival and function after insemination; however, the mechanism for the addition of the sperm sialome has not been identified. Here, we report evidence for several different mechanisms that contribute to the establishment of the mature sperm sialome. Directly quantifying the source of the nucleotide sugar CMP-beta-N-acetylneuraminic acid in epididymal fluid indicates that transsialylation occurs in the upper epididymis. Western blots for the low-molecular-mass sialoglycoprotein (around 20–50 kDa) in C57BL/6 mice epididymal fluid reflect that additional sialome could be obtained by glycosylphosphatidylinositol-anchored sialoglycopeptide incorporation during epididymal transit in the caput of the epididymis. Additionally, we found that in Cmah (CMP-N-acetylneuraminic acid hydroxylase)−/− transgenic mice, epididymal sperm obtained sialylated-CD52 from seminal vesicle fluid (SVF). Finally, we used Gfp (green fluorescent protein)+/+ mouse sperm to test the role of sialylation on sperm for protection from female leukocyte attack. There is very low phagocytosis of the epididymal sperm when compared to that of sperm coincubated with SVF. Treating sperm with Arthrobacter ureafaciens sialidase (AUS) increased phagocytosis even further. Our results highlight the different mechanisms of increasing sialylation, which lead to the formation of the mature sperm sialome, as well as reveal the sialome's function in sperm survival within the female genital tract.
Collapse
Affiliation(s)
- Xue Ma
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Pan
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Feng
- Sichuan University - The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Biswa P Choudhury
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qianhong Ma
- West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Pascal Gagneux
- Glycobiology Research and Training Center and Departments of Cellular, University of California, San Diego, La Jolla, California
| | - Fang Ma
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China Glycobiology Research and Training Center and Departments of Cellular, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Hardiyanto L, Hasegawa A, Komori S. The N-linked carbohydrate moiety of male reproductive tract CD52 (mrt-CD52) interferes with the complement system via binding to C1q. J Reprod Immunol 2012; 94:142-50. [PMID: 22386526 DOI: 10.1016/j.jri.2012.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/11/2012] [Accepted: 01/19/2012] [Indexed: 10/28/2022]
Abstract
Antisperm antibody detected in infertile female patients' sera has been shown to correlate with reduced fertility. The antibody showed strong complement-dependent cytotoxicity as determined by the sperm immobilization test (SIT). CD52 is a human glycosylphosphatidylinositol (GPI)-anchored antigen present in lymphocytes and male reproductive tracts (mrt), including mature sperm and seminal plasma. Recently, purified mrt-CD52 from human seminal plasma has been reported to interfere with the classical complement pathway, but not lectin binding or alternative pathways of the complement system. The purpose of this study is to determine which stage of the classical pathway mrt-CD52 regulates. mrt-CD52 was purified from human seminal plasma or intact sperm membrane. Immunoprecipitation assay was performed with the reaction of mrt-CD52, human complement and mAb H6-3C4. Immunoprecipitate was formed by the carbohydrate moiety of mrt-CD52, but not by the GPI-anchor peptide. The C1q molecule (29 kDa) was detected in the immunoprecipitates by Western blotting analysis probed with anti C1q antibody, indicating that the carbohydrate moiety of mrt-CD52 binds to C1q. Also, the complement-dependent SIT revealed that purified CD52 inhibited sperm immobilization activity by antisperm antibody. These results suggest that mrt-CD52 protects sperm function from complement attack if antisperm antibody is generated in the female reproductive tracts.
Collapse
Affiliation(s)
- Lutfi Hardiyanto
- Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501 Hyogo, Japan
| | | | | |
Collapse
|
7
|
Koyama K, Hasegawa A, Komori S. Functional aspects of CD52 in reproduction. J Reprod Immunol 2009; 83:56-9. [DOI: 10.1016/j.jri.2009.06.263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 04/21/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
|
8
|
Stewart AB, Delves GH, Birch BR, Cooper AJ, Lwaleed BA. Antiprostasome antibodies are not an appropriate prognostic marker for prostate cancer. ACTA ACUST UNITED AC 2009; 43:104-8. [PMID: 18979375 DOI: 10.1080/00365590802502103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Antiprostasome antibodies (APAs) have been identified in serum of patients with prostate cancer and have been proposed as a new marker for metastatic disease. This study reassesses the role of APAs as a prognostic indicator for prostate cancer. MATERIAL AND METHODS Serum samples from healthy controls (n=7) and patients with prostate cancer (n=22) were assayed for APAs using an enzyme-linked immunosorbent assay. RESULTS APAs in varying amounts were present in healthy individuals as well as in men with prostate cancer. Higher levels were inversely and significantly associated with prostate-specific antigen (PSA). No significant relationships were noted between APA levels and other parameters such as age, time since diagnosis, metastatic status, Gleason histological score and hormonal treatment. CONCLUSIONS The presence of serum APA is unlikely to be a strong prognostic indictor for prostate cancer on an individual basis as false positives will occur. However, such immune reactions which may be associated with PSA in cancer patients are in any case of interest in both the biology of prostate cancer and male fertility. The source of prostasomal antigen may be of critical importance to the outcome of the assay. However, immune reactions to prostasomes may be of considerable interest and warrant continued investigation.
Collapse
Affiliation(s)
- Alistair B Stewart
- Department of Urology, Southampton University Hospitals NHS Trust, Southampton, UK
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Fiszer D, Pupecka M, Schmidt K, Rozwadowska N, Kamieniczna M, Grygielska B, Kurpisz M. Specific Fab fragments recovered by phage display technique recognizing human spermatozoa. ACTA ACUST UNITED AC 2008; 32:442-52. [PMID: 18331326 DOI: 10.1111/j.1365-2605.2008.00876.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human hybridoma cell lines are often unstable and loose ability for antibody production. Sometimes, they show low and varying levels of heavy and light chains synthesis. Therefore it is reasonable to preserve generated specificities of light and heavy chains by cloning them to phagemid vector and creating phage display library. The aim of this study was to construct phage display library of Fab fragments recognizing sperm surface antigens. The source of mRNA constituted seven hybridoma cell lines producing antisperm antibodies which was proved by ELISA, and agglutination test as well as by inhibition of sperm to penetrate hamster oocytes. Fragments of cDNA encoding kappa/lambda and gamma chains were cloned into pComb3HSS phagemid vector and amplified in XL-1Blue. The library was panned against whole unfixed sperm cells. Three positive clones selected after fourth round of panning showed heavy chain belonging to VH4 family, two of them (G28, K61) possessed lambda chain from VL2 family and one (H43) kappa chain from VK1 family. As these Fabs revealed similarities to antibodies against some proteins involved in sperm motility and cell fusion it can be suggested that these Fabs may be a cause of infertility. Finally, we proved that it is feasible to preserve specificities produced by human hybridomas using phage display technique and we recovered some Fabs which may be of diagnostic and research value, and may also have some value for contraceptive vaccine.
Collapse
Affiliation(s)
- Dorota Fiszer
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
11
|
Fukushima T, Hamada Y, Komiyama M, Matsuno Y, Mori C, Horii I. Early changes in sperm motility, acrosome reaction, and gene expression of reproductive organs in rats treated with sulfasalazine. Reprod Toxicol 2006; 23:153-7. [PMID: 17166698 DOI: 10.1016/j.reprotox.2006.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 10/02/2006] [Accepted: 10/20/2006] [Indexed: 12/13/2022]
Abstract
Previously, we reported that decreased epididymal expression of CD59 and decay accelerating factor (DAF) genes may affect sperm motility and the acrosome reaction in rats treated long-term (28 days) with sulfasalazine. To investigate the early effects of sulfasalazine on the male reproductive tract, we presently examined sperm motility, the acrosome reaction, and gene expression in the testes and epididymides of rats treated with sulfasalazine for 1, 7 or 14 days. Reduced sperm motility and acrosome reactions were noted on day 7, however, there were no remarkable changes in testicular gene expression. On the other hand, attenuated epididymal gene expression of CD59 and DAF was observed as early as day 1. As CD59 and DAF are secreted from the epididymis and play a role in sperm maturation, we hypothesize that sulfasalazine affects sperm maturation as an early effect and that CD59 and DAF genes are related to the negative effect.
Collapse
Affiliation(s)
- Tamio Fukushima
- Drug Safety Research and Development, Nagoya Laboratories, Pfizer Japan Inc., 5-2 Taketoyo, Aichi 470-2393, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Qin X, Dobarro M, Bedford SJ, Ferris S, Miranda PV, Song W, Bronson RT, Visconti PE, Halperin JA. Further characterization of reproductive abnormalities in mCd59b knockout mice: a potential new function of mCd59 in male reproduction. THE JOURNAL OF IMMUNOLOGY 2006; 175:6294-302. [PMID: 16272280 DOI: 10.4049/jimmunol.175.10.6294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD59 is a GPI-linked membrane protein that inhibits formation of the membrane attack complex of complement. We reported recently that mice have two CD59 genes (termed mCd59a and mCd59b), and that the targeted deletion of mCd59b (mCd59b-/-) results in spontaneous hemolytic anemia and progressive loss of male fertility. Further studies of the reproductive abnormalities in mCd59b-/- mice reported in this study revealed the presence of abnormal multinucleated cells and increased apoptotic cells within the walls of the seminiferous tubules, and a decrease in the number, motility, and viability of sperm associated with a significant increase in abnormal sperm morphologies. Both the capacitation-associated tyrosine phosphorylation and the ionophore-induced acrosome reaction as well as luteinizing hormone, follicle-stimulating hormone, and testosterone serum levels were similar in mCd59b-/- and mCd59b+/+. Surprisingly, the functional deficiency of the complement protein C3 did not rescue the abnormal reproductive phenotype of mCd59b-/-, although it was efficient in rescuing their hemolytic anemia. These results indicate that the male reproductive abnormalities in mCd59b-/- are complement-independent, and that mCd59 may have a novel function in spermatogenesis that is most likely unrelated to its function as an inhibitor of membrane attack complex formation.
Collapse
Affiliation(s)
- Xuebin Qin
- Department of Medicine, Division of Hematology and Oncology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liszewski MK, Kemper C, Price JD, Atkinson JP. Emerging roles and new functions of CD46. ACTA ACUST UNITED AC 2005; 27:345-58. [PMID: 16200405 DOI: 10.1007/s00281-005-0002-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
In the past 20 years, our understanding of the workings of complement regulatory protein, CD46 (membrane cofactor protein), has grown as has the impressive list of pathogens interacting with this membrane-bound complement inhibitor. Referred to as a "pathogen magnet," CD46 serves as a receptor for seven human pathogens. Initially discovered as a widely expressed C3b- and C4b-binding protein, it was subsequently shown to be a cofactor for the serine protease factor I to inactivate by limited proteolysis these two opsonins and components of the convertases. The involvement of CD46 in reproductive processes continues to be an emerging story. It is a protector of placental tissue, but it may also play a more direct role in reproduction through its expression on the inner acrosomal membrane of spermatozoa. Cross-linking CD46 with antibodies or natural or pathogenic ligands induces rapid turnover and signaling events. In this regard, much attention is currently focused on generating human T lymphocyte regulatory cells by cross-linking CD46. Finally, highlighting its importance in protecting cells against excessive complement activation is the discovery that even a heterozygous deficiency of CD46 predisposes to hemolytic uremic syndrome.
Collapse
Affiliation(s)
- M Kathryn Liszewski
- Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8045, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
14
|
Hasegawa A, Koyama K. Antigenic epitope for sperm-immobilizing antibody detected in infertile women. J Reprod Immunol 2005; 67:77-86. [PMID: 16107278 DOI: 10.1016/j.jri.2005.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CD52 is a glycosylphosphatidylinositol (GPI) anchor protein occurring in lymphocytes, the epididymis, seminal plasma and on ejaculated sperm surface. The molecular structure of male reproductive tract CD52 (mrtCD52) is quite different from that of lymphocyte CD52 except for a peptide sequence comprising 12 amino acids. The carbohydrate molecule may thus provide antigenic epitopes to females. The repeated N-acetyllactosamine units of the N-linked carbohydrate present in the mrtCD52 were identified as a pathogenic antigen for infertility using a monoclonal antibody (MAb H6-3C4) generated from an infertile patient's peripheral blood lymphocyte. We suggested also the possible presence of O-linked carbohydrate in human mrtCD52, although it is not known whether this carbohydrate is immunogenic or not. This article gives an overview of the structure and function of mrtCD52 as well as the fertilization-blocking mechanism of the antibody against this molecule.
Collapse
Affiliation(s)
- A Hasegawa
- Laboratory of Developmental Biology and Reproduction, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | |
Collapse
|
15
|
Riley-Vargas RC, Lanzendorf S, Atkinson JP. Targeted and restricted complement activation on acrosome-reacted spermatozoa. J Clin Invest 2005; 115:1241-9. [PMID: 15849610 PMCID: PMC1077172 DOI: 10.1172/jci23213] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 03/01/2005] [Indexed: 12/16/2022] Open
Abstract
A specific hypoglycosylated isoform of the complement regulator membrane cofactor protein (MCP; CD46) is expressed on the inner acrosomal membrane (IAM) of spermatozoa. This membrane is exposed after the acrosome reaction, an exocytosis event that occurs upon contact with the zona pellucida. We initiated this investigation to assess MCP's regulatory function in situ on spermatozoa. Upon exposure of human spermatozoa to autologous serum or follicular fluid, we unexpectedly observed that acrosome-reacted spermatozoa activated the complement cascade efficiently through C3 but not beyond. Using FACS to simultaneously evaluate viability, acrosomal status, and complement deposition, we found that complement activation was initiated by C-reactive protein (CRP) and was C1q, C2, and factor B dependent. This pattern is consistent with engagement of the classical pathway followed by amplification through the alternative pathway. C3b deposition was targeted to the IAM, where it was cleaved to C3bi. Factor H, and not MCP, was the cofactor responsible for C3b cleavage. We propose that this localized deposition of complement fragments aids in the fusion process between the spermatozoa and egg, in a role akin to that of complement in immune adherence. In addition, we speculate that this "targeted and restricted" form of complement activation on host cells is a common strategy to handle modified self.
Collapse
Affiliation(s)
- Rebecca C Riley-Vargas
- Department of Medicine, Rheumatology Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
16
|
Fukushima T, Kato M, Adachi T, Hamada Y, Horimoto M, Komiyama M, Mori C, Horii I. Effects of Sulfasalazine on Sperm Acrosome Reaction and Gene Expression in the Male Reproductive Organs of Rats. Toxicol Sci 2004; 85:675-82. [PMID: 15625186 DOI: 10.1093/toxsci/kfi071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sulfasalazine (SASP) has been reported to depress the fertility in men and experimental male animals, but the fundamental mechanisms of infertility caused by SASP are still unknown. This study was designed to investigate the mechanisms of infertility in rats treated with SASP at a dose of 600 mg/kg for 28 days, including monitoring of sperm motility using computer associated sperm analysis system and acrosome reaction by FITC-concanavalin A lectin staining. The sperm motility and acrosome reaction, which are important for fertilization, were significantly reduced by SASP. Furthermore, to investigate the molecular mechanisms of infertility induced by SASP, mRNA expression analysis in the testes was performed using cDNA microarray as a first screening. It was revealed that CD59, which is located on the acrosomal membrane and is known to be important for the reproductive function of sperm, was affected in the testes; this was also confirmed by real-time PCR analysis, but the spermatogenesis-related genes examined in this study were not affected. Therefore, we focused on CD59 and two other acrosome membrane related-genes: MCP and DAF. CD59, MCP, and DAF in the epididymides of SASP-treated rats were significantly decreased as assessed by real-time RT-PCR analysis and additionally, the expression of CD59 protein was found to be decreased by Western blotting. These results allowed us to hypothesize that the suppression of epididymal acrosomal membrane proteins synthesis with their consequent reduced incorporation to the sperm membrane leads to a depressed sperm motility and acrosome reaction, and thereby leads to infertility in SASP treated male rats.
Collapse
Affiliation(s)
- Tamio Fukushima
- Worldwide Safety Sciences, Nagoya Laboratories, Pfizer Japan Inc., 5-2, Taketoyo, Aichi 470-2393, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Stewart AB, Anderson W, Delves G, Lwaleed BA, Birch B, Cooper A. Prostasomes: a role in prostatic disease? BJU Int 2004; 94:985-9. [PMID: 15541114 DOI: 10.1111/j.1464-410x.2004.05091.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Alistair B Stewart
- Department of Urology, Southampton University Hospitals NHS Trust, Southampton, UK.
| | | | | | | | | | | |
Collapse
|
18
|
Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP. CD46: expanding beyond complement regulation. Trends Immunol 2004; 25:496-503. [PMID: 15324743 DOI: 10.1016/j.it.2004.07.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the 1980s CD46 was discovered in a search for C3b binding proteins of human peripheral blood cells. Its role as an inactivator of C3b and C4b deposited on self-tissue is highlighted by the observation that partial deficiency of CD46 is a predisposing factor to hemolytic uremic syndrome. This discovery has an impact on the treatment options for these patients. Other new findings have expanded the role of CD46 in immunity and disease. For example, signaling through CD46 on human T lymphocytes drives them to become regulatory cells, indicating a novel link between the complement system and cellular immunity. Also, CD46 interacts with at least seven human pathogens and participates in reproduction/fertilization, further suggesting that dissecting its multi-faceted activities will have important clinical implications.
Collapse
Affiliation(s)
- Rebecca C Riley-Vargas
- Washington University School of Medicine, Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
19
|
Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL, Diekman AB, Westbrook VA, Farris EM, Hao Z, Coonrod SA, Flickinger CJ, Herr JC. SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem 2003; 278:30506-15. [PMID: 12788941 DOI: 10.1074/jbc.m301713200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a new member of the Ly-6/urokinase-type plasminogen activator receptor (uPAR) superfamily of receptors, SAMP14, which is retained on the inner acrosomal membrane of the human spermatozoan following the acrosome reaction and may play a role in fertilization. The SAMP14 sequence predicted a glycosylphosphatidylinositol (GPI)-anchored protein with a signal peptide, a transmembrane domain near the carboxyl terminus, and a putative transamidase cleavage site in the proprotein. Attachment of SAMP14 to the membrane by a lipid anchor was confirmed by its sensitivity to phosphatidylinositol phospholipase C. SAMP14 has a single functional domain similar to the Ly-6 and urokinase plasminogen activator receptor superfamily of proteins, and the gene mapped to 19q13.33, near the PLAUR locus for uPAR at 19q13.2. Northern and dot blotting showed that SAMP14 expression was testis-specific. Indirect immunofluorescence and immunoelectron microscopy with antisera to purified recombinant SAMP14 localized the protein to outer and inner acrosomal membranes as well as the acrosomal matrix of ejaculated human sperm. Acrosome-reacted sperm demonstrated SAMP14 immunofluorescence, indicating its retention on the inner acrosomal membrane following the acrosome reaction. However, SAMP14 localized to the entire sperm when unwashed swim-up sperm from the ejaculate were stained, indicating that some SAMP14 is loosely associated with the plasma membrane. Antibodies against recombinant SAMP14 inhibited both the binding and the fusion of human sperm to zona free hamster eggs, suggesting that SAMP14 may have a role in sperm-egg interaction. SAMP14 represents a GPI-anchored putative receptor in the Ly-6/uPAR family that is exposed on the inner acrosomal membrane after the acrosome reaction.
Collapse
Affiliation(s)
- Jagathpala Shetty
- Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Riley RC, Kemper C, Leung M, Atkinson JP. Characterization of human membrane cofactor protein (MCP; CD46) on spermatozoa. Mol Reprod Dev 2002; 62:534-46. [PMID: 12112588 DOI: 10.1002/mrd.10144] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Membrane cofactor protein (MCP; CD46) is a complement regulator widely expressed as four isoforms that arise via alternative splicing. On human spermatozoa, MCP is expressed on the inner acrosomal membrane and alterations of spermatozoa MCP may be associated with infertility. In rodents, expression of MCP is largely restricted to the testes. MCP on human spermatozoa has a unique M(r) pattern that we have investigated. We also characterized MCP expression in mice transgenic (tg) for human MCP. Human MCP expression in the tg mice mimics the human pattern in that it is located on the inner acrosomal membrane and has a faster M(r) than MCP expressed elsewhere. Sequencing of RT-PCR products from the testis indicates that there is not a unique male reproductive tissue specific cytoplasmic tail. Instead, human spermatozoa express MCP bearing cytoplasmic tail two, which is also utilized in most other tissues and contains several signaling motifs. Further, using N-glycosidases, we demonstrate that the unique lower molecular weight of MCP on spermatozoa is secondary to a modification in the N-linked sugars. Specifically, as the spermatozoa mature, but before they reach the epididymis, the three N-linked sugars of MCP are trimmed to less complex structures. While the purpose of this deglycosylation is unknown, we propose that it is a common feature of proteins expressed on the plasma and inner acrosomal membranes of spermatozoa and hypothesize that it is a spermatozoa specific event critical for facilitating sperm-egg interactions.
Collapse
Affiliation(s)
- Rebecca C Riley
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
21
|
Gulati S, Sastry K, Jensenius JC, Rice PA, Ram S. Regulation of the mannan-binding lectin pathway of complement on Neisseria gonorrhoeae by C1-inhibitor and alpha 2-macroglobulin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4078-86. [PMID: 11937567 DOI: 10.4049/jimmunol.168.8.4078] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We examined complement activation by Neisseria gonorrhoeae via the mannan-binding lectin (MBL) pathway in normal human serum. Maximal binding of MBL complexed with MBL-associated serine proteases (MASPs) to N. gonorrhoeae was achieved at a concentration of 0.3 microg/ml. Preopsonization with MBL-MASP at concentrations as low as 0.03 microg/ml resulted in approximately 60% killing of otherwise fully serum-resistant gonococci. However, MBL-depleted serum (MBLdS) reconstituted with MBL-MASP before incubation with organisms (postopsonization) failed to kill at a 100-fold higher concentration. Preopsonized organisms showed a 1.5-fold increase in C4, a 2.5-fold increase in C3b, and an approximately 25-fold increase in factor Bb binding; enhanced C3b and factor Bb binding was classical pathway dependent. Preopsonization of bacteria with a mixture of pure C1-inhibitor and/or alpha(2)-macroglobulin added together with MBL-MASP, all at physiologic concentrations before adding MBLdS, totally reversed killing in 10% reconstituted serum. Reconstitution of MBLdS with supraphysiologic (24 microg/ml) concentrations of MBL-MASP partially overcame the effects of inhibitors (57% killing in 10% reconstituted serum). We also examined the effect of sialylation of gonococcal lipooligosaccharide (LOS) on MBL function. Partial sialylation of LOS did not decrease MBL or C4 binding but did decrease C3b binding by 50% and resulted in 80% survival in 10% serum (lacking bacteria-specific Abs) even when sialylated organisms were preopsonized with MBL. Full sialylation of LOS abolished MBL, C4, and C3b binding, resulting in 100% survival. Our studies indicate that MBL does not participate in complement activation on N. gonorrhoeae in the presence of "complete" serum that contains C1-inhibitor and alpha(2)-macroglobulin.
Collapse
Affiliation(s)
- Sunita Gulati
- Section of Infectious Diseases and Hematology-Oncology, Evans Biomedical Research Center, Boston University Medical Center, Boston, MA 02118, USA.
| | | | | | | | | |
Collapse
|
22
|
Matsunami K, Miyagawa S, Yamada M, Yoshitatsu M, Shirakura R. A surface-bound form of human C1 esterase inhibitor improves xenograft rejection. Transplantation 2000; 69:749-55. [PMID: 10755521 DOI: 10.1097/00007890-200003150-00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The purpose of the present study was to investigate the effect of the C1 esterase inhibitor (C1-INH) molecule against human complement attack on a swine endothelial cell (SEC) membrane. Human C1-INH functions as an inhibitor for complement reaction in the first step of the classical pathway in the fluid phase. METHODS A surface-bound form of human C1-INH (C1-INH-PI) consisting of a full-length coding sequence of C1-INH and a glycosylphosphatidylinositol (GPI) anchor of the decay-accelerating factor (CD55) was constructed, and stable Chinese hamster ovarian tumor (CHO) cell lines and SEC lines expressing C1-INH-PI were then prepared by transfection of the constructed cDNA. The basic function of the transfected molecules on the xenosurface was investigated using CHO transfectants for the sake of convenience. The efficacy of C1-INH-mediated protection of SEC from human complement was then assessed as an in vitro hyperacute rejection model of a swine-to-human discordant xenograft. RESULTS Flowcytometric profiles of the stable CHO and SEC transfectants with C1-INH-PI showed a medium level of expression of these molecules. The C1-INH levels were significantly reduced as a result of phosphatidylinositol-specific phospholipase C (PI-PLC) treatment, suggesting that the molecules were present as the PI-anchor form. Approximately 51.3 x 10(4) and 13.3 x 10(4) molecules of C1-INH-PI blocked human complement-mediated cell lysis by approximately 75% on the CHO cell and by 60-65% on the SEC cell, respectively. In addition, the complement-inhibiting activity of human C1-INH molecules is not homologously restricted. CONCLUSIONS The results suggest that the surface-bound form of C1-INH represents a good candidate as a safeguard against hyperacute rejection of xenografts.
Collapse
Affiliation(s)
- K Matsunami
- Division of Organ Transplantation, Biomedical Research Center, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | |
Collapse
|
23
|
Mandal A, Naaby-Hansen S, Wolkowicz MJ, Klotz K, Shetty J, Retief JD, Coonrod SA, Kinter M, Sherman N, Cesar F, Flickinger CJ, Herr JC. FSP95, a testis-specific 95-kilodalton fibrous sheath antigen that undergoes tyrosine phosphorylation in capacitated human spermatozoa. Biol Reprod 1999; 61:1184-97. [PMID: 10529264 DOI: 10.1095/biolreprod61.5.1184] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Protein tyrosine phosphorylation has been associated with both capacitation and motility of mammalian sperm. During capacitation, human spermatozoa undergo tyrosine phosphorylation of a characteristic set of proteins, only one of which has thus far been cloned and localized. We report here the sequence of a fibrous sheath protein of 95 kDa (FSP95) that undergoes tyrosine phosphorylation during capacitation of human spermatozoa and has similarity to sperm A-kinase anchor proteins (AKAPs). FSP95 is both auto- and iso-antigenic in humans as it is recognized by sera containing antisperm antibodies from infertile men and women. The 853-residue protein has a calculated molecular weight of 94.6 kDa and an isoelectric point (pI) of 6.0, and it contains multiple potential phosphorylation sites for protein kinase C and casein kinase II as well as one potential tyrosine kinase phosphorylation site at amino acid 435. The sequence has amino acid homology to mouse sperm fibrous sheath AKAP82 (pro-mAKAP82, 34% identity) and to human sperm fibrous sheath AKAP82 (pro-hAKAP82, 32% identity). The gene encoding FSP95 has 5 exons separated by 4 introns and is located on chromosome 12 at locus p13.3. Northern analysis detected a single transcript of approximately 3.0 kilobases, and Northern dot blot analysis of 50 human tissues revealed FSP95 mRNA expression only in testis. By employing sperm immobilization, indirect immunofluorescence, and immunoelectron microscopy with antisera to purified recombinant FSP95, the protein was localized to the ribs of the fibrous sheath in the principal piece of the sperm tail. FSP95 is the second fibrous sheath protein to be cloned, sequenced and localized in human spermatozoa.
Collapse
Affiliation(s)
- A Mandal
- Center for Recombinant Gamete Contraceptive Vaccinogens, Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|