1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Reddiar SB, Xie Y, Abdallah M, Han S, Hu L, Feeney OM, Gracia G, Anshabo A, Lu Z, Farooq MA, Styles IK, Phillips ARJ, Windsor JA, Porter CJH, Cao E, Trevaskis NL. Intestinal Lymphatic Biology, Drug Delivery, and Therapeutics: Current Status and Future Directions. Pharmacol Rev 2024; 76:1326-1398. [PMID: 39179383 DOI: 10.1124/pharmrev.123.001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Historically, the intestinal lymphatics were considered passive conduits for fluids, immune cells, dietary lipids, lipid soluble vitamins, and lipophilic drugs. Studies of intestinal lymphatic drug delivery in the late 20th century focused primarily on the drugs' physicochemical properties, especially high lipophilicity, that resulted in intestinal lymphatic transport. More recent discoveries have changed our traditional view by demonstrating that the lymphatics are active, plastic, and tissue-specific players in a range of biological and pathological processes, including within the intestine. These findings have, in turn, inspired exploration of lymph-specific therapies for a range of diseases, as well as the development of more sophisticated strategies to actively deliver drugs or vaccines to the intestinal lymph, including a range of nanotechnologies, lipid prodrugs, and lipid-conjugated materials that "hitchhike" onto lymphatic transport pathways. With the increasing development of novel therapeutics such as biologics, there has been interest in whether these therapeutics are absorbed and transported through intestinal lymph after oral administration. Here we review the current state of understanding of the anatomy and physiology of the gastrointestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. We summarize the current state-of-the-art approaches to deliver drugs and quantify their uptake into the intestinal lymphatic system. Finally, and excitingly, we discuss recent examples of significant pharmacokinetic and therapeutic benefits achieved via intestinal lymphatic drug delivery. We also propose approaches to advance the development and clinical application of intestinal lymphatic delivery strategies in the future. SIGNIFICANCE STATEMENT: This comprehensive review details the understanding of the anatomy and physiology of the intestinal lymphatic system in health and disease, with a focus on aspects relevant to drug delivery. It highlights current state-of-the-art approaches to deliver drugs to the intestinal lymphatics and the shift toward the use of these strategies to achieve pharmacokinetic and therapeutic benefits for patients.
Collapse
Affiliation(s)
- Sanjeevini Babu Reddiar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Yining Xie
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Mohammad Abdallah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Sifei Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Luojuan Hu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Abel Anshabo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Zijun Lu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Muhammad Asim Farooq
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Ian K Styles
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Anthony R J Phillips
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - John A Windsor
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia (S.B.R., Y.X., M.A., S.H., L.H., O.M.F., G.G., A.A., Z.L., M.A.F., I.K.S., C.J.H.P., E.C., N.L.T.); China Pharmaceutical University, Nanjing, China (S.H., L.H.); Applied Surgery and Metabolism Laboratory, School of Biological Sciences (A.R.J.P.) and Surgical and Translational Research Centre, Department of Surgery, Faculty of Medical and Health Sciences (A.R.J.P., J.A.W.), University of Auckland, Auckland, New Zealand; and Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (N.L.T.)
| |
Collapse
|
3
|
Vassilopoulou E, Venter C, Roth-Walter F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J Clin Med 2024; 13:4713. [PMID: 39200855 PMCID: PMC11355500 DOI: 10.3390/jcm13164713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body's innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.
Collapse
Affiliation(s)
- Emilia Vassilopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Clinical Sciences and Community Health, Univertià degli Studi die Milano, 20122 Milan, Italy
| | - Carina Venter
- Pediatrics, Section of Allergy & Immunology, University of Colorado Denver School of Medicine, Children’s Hospital Colorado, Box B518, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Franziska Roth-Walter
- Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, 1210 Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
4
|
Wu Y, Huang JY, Conlon MT, Shenoy MK, Chao JL, Chooi MY, Koch MA, Gerner MY. Distal Immunization and Systemic Cytokines Establish a Transient Immune Alert State in the Intestine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:373-383. [PMID: 38884660 PMCID: PMC11250722 DOI: 10.4049/jimmunol.2400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
Conventionally, immune responses are studied in the context of inflamed tissues and their corresponding draining lymph nodes (LNs). However, little is known about the effects of systemic inflammatory signals generated during local inflammation on distal tissues and nondraining LNs. Using a mouse model of cutaneous immunization, we found that systemic inflammatory stimuli triggered a rapid and selective distal response in the small intestine and the mesenteric LN (mesLN). This consisted of increased permeability of intestinal blood vessels and lymphatic drainage of bloodborne solutes into the mesLN, enhanced activation and migration of intestinal dendritic cells, as well as amplified T cell responses in the mesLNs to systemic but not orally derived Ags. Mechanistically, we found that the small intestine endothelial cells preferentially expressed molecules involved in TNF-α signaling and that TNF-α blockade markedly diminished distal intestinal responses to cutaneous immunization. Together, these findings reveal that the intestinal immune system is rapidly and selectively activated in response to inflammatory cues regardless of their origin, thus identifying an additional layer of defense and enhanced surveillance of a key barrier organ at constant risk of pathogen encounter.
Collapse
Affiliation(s)
- Yixuan Wu
- Department of Immunology, University of Washington, Seattle, WA
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Jessica Y Huang
- Department of Immunology, University of Washington, Seattle, WA
| | | | - Meera K Shenoy
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jaime L Chao
- Department of Immunology, University of Washington, Seattle, WA
| | - Ming Yao Chooi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Meghan A Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | |
Collapse
|
5
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
6
|
Zeiringer S, Wiltschko L, Glader C, Reiser M, Absenger-Novak M, Fröhlich E, Roblegg E. Development and Characterization of an In Vitro Intestinal Model Including Extracellular Matrix and Macrovascular Endothelium. Mol Pharm 2023; 20:5173-5184. [PMID: 37677739 PMCID: PMC10548470 DOI: 10.1021/acs.molpharmaceut.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
In vitro intestinal models are used to study biological processes, drug and food absorption, or cytotoxicity, minimizing the use of animals in the laboratory. They usually consist of enterocytes and mucus-producing cells cultured for 3 weeks, e.g., on Transwells, to obtain a fully differentiated cell layer simulating the human epithelium. Other important components are the extracellular matrix (ECM) and strong vascularization. The former serves as structural support for cells and promotes cellular processes such as differentiation, migration, and growth. The latter includes endothelial cells, which coordinate vascularization and immune cell migration and facilitate the transport of ingested substances or drugs to the liver. In most cases, animal-derived hydrogels such as Matrigel or collagen are used as ECM in in vitro intestinal models, and endothelial cells are only partially considered, if at all. However, it is well-known that animal-derived products can lead to altered cell behavior and incorrect results. To circumvent these limitations, synthetic and modifiable hydrogels (Peptigel and Vitrogel) were studied here to mimic xenofree ECM, and the data were compared with Matrigel. Careful rheological characterization was performed, and the effect on cell proliferation was investigated. The results showed that Vitrogel exhibited shear-thinning behavior with an internal structure recovery of 78.9 ± 11.2%, providing the best properties among the gels investigated. Therefore, a coculture of Caco-2 and HT29-MTX cells (ratio 7:3) was grown on Vitrogel, while simultaneously endothelial cells were cultured on the basolateral side by inverse cultivation. The model was characterized in terms of cell proliferation, differentiation, and drug permeability. It was found that the cells cultured on Vitrogel induced a 1.7-fold increase in cell proliferation and facilitated the formation of microvilli and tight junctions after 2 weeks of cultivation. At the same time, the coculture showed full differentiation indicated by high alkaline phosphatase release of Caco-2 cells (95.0 ± 15.9%) and a mucus layer produced by HT29-MTX cells. Drug tests led to ex vivo comparable permeability coefficients (Papp) (i.e., Papp; antipyrine = (33.64 ± 5.13) × 10-6 cm/s, Papp; atenolol = (0.59 ± 0.16) × 10-6 cm/s). These results indicate that the newly developed intestinal model can be used for rapid and efficient assessment of drug permeability, excluding unexpected results due to animal-derived materials.
Collapse
Affiliation(s)
- Scarlett Zeiringer
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Laura Wiltschko
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Joanneum
Research-Health, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Christina Glader
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Reiser
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva Roblegg
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
7
|
Štěpánková K, Mareková D, Kubášová K, Sedláček R, Turnovcová K, Vacková I, Kubinová Š, Makovický P, Petrovičová M, Kwok JCF, Jendelová P, Machová Urdzíková L. 4-Methylumbeliferone Treatment at a Dose of 1.2 g/kg/Day Is Safe for Long-Term Usage in Rats. Int J Mol Sci 2023; 24:3799. [PMID: 36835210 PMCID: PMC9959083 DOI: 10.3390/ijms24043799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period.
Collapse
Affiliation(s)
- Kateřina Štěpánková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Kristýna Kubášová
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Radek Sedláček
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Karolína Turnovcová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Irena Vacková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Seyle University, SK-94501 Komarno, Slovakia
| | - Michaela Petrovičová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jessica C. F. Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
8
|
Jin P, Munson JM. Fluids and flows in brain cancer and neurological disorders. WIREs Mech Dis 2023; 15:e1582. [PMID: 36000149 PMCID: PMC9869390 DOI: 10.1002/wsbm.1582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
Interstitial fluid (IF) and cerebrospinal fluid (CSF) are an integral part of the brain, serving to cushion and protect the brain parenchymal cells against damage and aid in their function. The brain IF contains various ions, nutrients, waste products, peptides, hormones, and neurotransmitters. IF moves primarily by pressure-dependent bulk flow through brain parenchyma, draining into the ventricular CSF. The brain ventricles and subarachnoid spaces are filled with CSF which circulates through the perivascular spaces. It also flows into the IF space regulated, in part, by aquaporin channels, removing waste solutes through a process of IF-CSF mixing. During disease development, the composition, flow, and volume of these fluids changes and can lead to brain cell dysfunction. With the improvement of imaging technology and the help of genomic profiling, more information has been and can be obtained from brain fluids; however, the role of CSF and IF in brain cancer and neurobiological disease is still limited. Here we outline recent advances of our knowledge of brain fluid flow in cancer and neurodegenerative disease based on our understanding of its dynamics and composition. This article is categorized under: Cancer > Biomedical Engineering Neurological Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Peng Jin
- Fralin Biomedical Research Institute, Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Roanoke Virginia USA
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Roanoke Virginia USA
| |
Collapse
|
9
|
Anthis AHC, Abundo MP, Neuer AL, Tsolaki E, Rosendorf J, Rduch T, Starsich FHL, Weisse B, Liska V, Schlegel AA, Shapiro MG, Herrmann IK. Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment. Nat Commun 2022; 13:7311. [PMID: 36437258 PMCID: PMC9701692 DOI: 10.1038/s41467-022-34272-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022] Open
Abstract
Millions of patients every year undergo gastrointestinal surgery. While often lifesaving, sutured and stapled reconnections leak in around 10% of cases. Currently, surgeons rely on the monitoring of surrogate markers and clinical symptoms, which often lack sensitivity and specificity, hence only offering late-stage detection of fully developed leaks. Here, we present a holistic solution in the form of a modular, intelligent suture support sealant patch capable of containing and detecting leaks early. The pH and/or enzyme-responsive triggerable sensing elements can be read out by point-of-need ultrasound imaging. We demonstrate reliable detection of the breaching of sutures, in as little as 3 hours in intestinal leak scenarios and 15 minutes in gastric leak conditions. This technology paves the way for next-generation suture support materials that seal and offer disambiguation in cases of anastomotic leaks based on point-of-need monitoring, without reliance on complex electronics or bulky (bio)electronic implantables.
Collapse
Affiliation(s)
- Alexandre H C Anthis
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Maria Paulene Abundo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Anna L Neuer
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Elena Tsolaki
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Jachym Rosendorf
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Thomas Rduch
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
- Department of Gynaecology, Cantonal Hospital St Gallen (KSSG), Rorschacherstrasse 95, CH-9007, St Gallen, Switzerland
| | - Fabian H L Starsich
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Bernhard Weisse
- Laboratory for Mechanical Systems Engineering, Department of Engineering Sciences, Empa - Swiss Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Andrea A Schlegel
- Department of Visceral Surgery and Transplantation, University Hospital Zurich, CH-8091, Zurich, Switzerland
- Swiss HPB and Transplant Center, Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, 20122, Italy
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA, 91125, USA
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092, Zurich, Switzerland.
- Laboratory for Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
| |
Collapse
|
10
|
Bosi A, Banfi D, Bistoletti M, Moretto P, Moro E, Crema F, Maggi F, Karousou E, Viola M, Passi A, Vigetti D, Giaroni C, Baj A. Hyaluronan: A Neuroimmune Modulator in the Microbiota-Gut Axis. Cells 2021; 11:cells11010126. [PMID: 35011688 PMCID: PMC8750446 DOI: 10.3390/cells11010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332-217412; Fax: +39-0332-217111
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| |
Collapse
|
11
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
12
|
Peng X, Xia X, Xu X, Yang X, Yang B, Zhao P, Yuan W, Chiu PWY, Bian L. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations. SCIENCE ADVANCES 2021; 7:7/23/eabe8739. [PMID: 34078598 PMCID: PMC8172133 DOI: 10.1126/sciadv.abe8739] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/15/2021] [Indexed: 05/20/2023]
Abstract
Achieving strong adhesion of bioadhesives on wet tissues remains a challenge and an acute clinical demand because of the interfering interfacial water and limited adhesive-tissue interactions. Here we report a self-gelling and adhesive polyethyleneimine and polyacrylic acid (PEI/PAA) powder, which can absorb interfacial water to form a physically cross-linked hydrogel in situ within 2 seconds due to strong physical interactions between the polymers. Furthermore, the physically cross-linked polymers can diffuse into the substrate polymeric network to enhance wet adhesion. Superficial deposition of PEI/PAA powder can effectively seal damaged porcine stomach and intestine despite excessive mechanical challenges and tissue surface irregularities. We further demonstrate PEI/PAA powder as an effective sealant to enhance the treatment outcomes of gastric perforation in a rat model. The strong wet adhesion, excellent cytocompatibility, adaptability to fit complex sites, and easy synthesis of PEI/PAA powder make it a promising bioadhesive for numerous biomedical applications.
Collapse
Affiliation(s)
- Xin Peng
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xianfeng Xia
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiayi Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xuefeng Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Pengchao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
- Department of Surgery and State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
- China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang 310058, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
13
|
Guo Y, Lu C, Zhang L, Wan H, Jiang E, Chen Y, Dong H. Nutrient-induced hyperosmosis evokes vasorelaxation via TRPV1 channel-mediated, endothelium-dependent, hyperpolarisation in healthy and colitis mice. Br J Pharmacol 2020; 178:689-708. [PMID: 33169358 DOI: 10.1111/bph.15322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/12/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In humans, blood flow in the mesenteric circulation is greatly increased after meals, but the mechanisms underlying postprandial mesenteric vasorelaxation induced by nutrients and whether this process is involved in the pathogenesis of colitis, are not well understood. Here we have studied the direct actions of nutrients on mesenteric arterial tone and the underlying molecular mechanisms in healthy and colitis mice. EXPERIMENTAL APPROACH Colitis in C57BL/6 mice was induced with dextran sodium sulphate. Nutrient-induced vasorelaxation of mesenteric arterioles from humans and mice was studied with wire myograph assays. Ca2+ and Na+ imaging were performed in human vascular endothelial cells and vascular smooth muscle cells, using selective pharmacological agents and shRNA knockdown of TRPV1 channels. KEY RESULTS Glucose, sodium and mannitol concentration-dependently induced endothelium-dependent relaxation of human and mouse mesenteric arterioles via hyperosmotic action,. Hyperosmosis-induced vasorelaxation was almost abolished by selective blockers for TRPV1, IKCa and SKCa channels. Glucose markedly stimulated Ca2+ influx through endothelial TRPV1 channels, an effect attenuated by selective blockers and shRNA knockdown of TRPV1 channels. Capsaicin synergised the glucose-induced vasorelaxation. Nutrient-induced hyperosmosis also activated Na+ /K+ -ATPase and the Na/Ca exchanger (NCX) to decrease [Ca2+ ]i in VSMCs. Glucose-induced vasorelaxation was impaired in mouse colitis. CONCLUSION AND IMPLICATIONS Nutrient-induced hyperosmosis evoked endothelium-dependent mesenteric vasorelaxation via the TRPV1/Ca2+ / endothelium-dependent hyperpolarisation pathway to increase normal mucosal perfusion, which is impaired in our model of colitis. The TRPV1/Ca2+ / endothelium-dependent hyperpolarisation pathway could provide novel drug targets for gastrointestinal diseases with hypoperfusion, such as chronic colitis and mesenteric ischaemia.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luyun Zhang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hanxing Wan
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Enlai Jiang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yao Chen
- Department of Plastic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
14
|
Stewart RH. A Modern View of the Interstitial Space in Health and Disease. Front Vet Sci 2020; 7:609583. [PMID: 33251275 PMCID: PMC7674635 DOI: 10.3389/fvets.2020.609583] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Increases in the volume of the interstitial space are readily recognized clinically as interstitial edema formation in the loose connective tissue of skin, mucosa, and lung. However, the contents and the hydrostatic pressure of this interstitial fluid can be very difficult to determine even in experimental settings. These difficulties have long obscured what we are beginning to appreciate is a dynamic milieu that is subject to both intrinsic and extrinsic regulation. This review examines current concepts regarding regulation of interstitial volume, pressure, and flow and utilizes that background to address three major topics of interest that impact IV fluid administration. The first of these started with the discovery that excess dietary salt can be stored non-osmotically in the interstitial space with minimal impact on vascular volume and pressures. This led to the hypothesis that, along with the kidney, the interstitial space plays an active role in the long-term regulation of blood pressure. Second, it now appears that hypovolemic shock leads to systemic inflammatory response syndrome principally through the entry of digestive enzymes into the intestinal interstitial space and the subsequent progression of enzymes and inflammatory agents through the mesenteric lymphatic system to the general circulation. Lastly, current evidence strongly supports the non-intuitive view that the primary factor leading to inflammatory edema formation is a decrease in interstitial hydrostatic pressure that dramatically increases microvascular filtration.
Collapse
Affiliation(s)
- Randolph H Stewart
- Department of Veterinary Physiology and Pharmacology, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Henderson AR, Choi H, Lee E. Blood and Lymphatic Vasculatures On-Chip Platforms and Their Applications for Organ-Specific In Vitro Modeling. MICROMACHINES 2020; 11:E147. [PMID: 32013154 PMCID: PMC7074693 DOI: 10.3390/mi11020147] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
The human circulatory system is divided into two complementary and different systems, the cardiovascular and the lymphatic system. The cardiovascular system is mainly concerned with providing nutrients to the body via blood and transporting wastes away from the tissues to be released from the body. The lymphatic system focuses on the transport of fluid, cells, and lipid from interstitial tissue spaces to lymph nodes and, ultimately, to the cardiovascular system, as well as helps coordinate interstitial fluid and lipid homeostasis and immune responses. In addition to having distinct structures from each other, each system also has organ-specific variations throughout the body and both systems play important roles in maintaining homeostasis. Dysfunction of either system leads to devastating and potentially fatal diseases, warranting accurate models of both blood and lymphatic vessels for better studies. As these models also require physiological flow (luminal and interstitial), extracellular matrix conditions, dimensionality, chemotactic biochemical gradient, and stiffness, to better reflect in vivo, three dimensional (3D) microfluidic (on-a-chip) devices are promising platforms to model human physiology and pathology. In this review, we discuss the heterogeneity of both blood and lymphatic vessels, as well as current in vitro models. We, then, explore the organ-specific features of each system with examples in the gut and the brain and the implications of dysfunction of either vasculature in these organs. We close the review with discussions on current in vitro models for specific diseases with an emphasis on on-chip techniques.
Collapse
Affiliation(s)
- Aria R. Henderson
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Hyoann Choi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
16
|
Zhou A, Qu J, Liu M, Tso P. The Role of Interstitial Matrix and the Lymphatic System in Gastrointestinal Lipid and Lipoprotein Metabolism. Front Physiol 2020; 11:4. [PMID: 32038309 PMCID: PMC6987427 DOI: 10.3389/fphys.2020.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
This review emphasizes the events that take place after the chylomicrons are secreted by the enterocytes through exocytosis. First, we will discuss the journey of how chylomicrons cross the basement membrane to enter the lamina propria. Then the chylomicrons have to travel across the lamina propria before they can enter the lacteals. To understand the factors affecting the trafficking of chylomicron particles across the lamina propria, it is important to understand the composition and properties of the lamina propria. With different degree of hydration, the pores of the lamina propria (sponge) changes. The greater the hydration, the greater the pore size and thus the easier the diffusion of the chylomicron particles across the lamina propria to enter the lacteals. The mechanism of the entry of lacteals is discussed in considerable details. We and others have demonstrated that intestinal fat absorption, but not the absorption of protein or carbohydrates, activates the intestinal mucosal mast cells to release many products including mucosal mast cell protease II in the rat. The activation of intestinal mucosal mast cells by fat absorption involves the process of chylomicron formation since the absorption of both medium and short-chain fatty acids do not activate the mast cells. Fat absorption has been associated with increased intestinal permeability. We hypothesize that there is a link between fat absorption, activation of mucosal mast cells, and the leaky gut phenomenon (increased intestinal permeability). Microbiome may also be involved in this chain of events associated with fat absorption. This review is presented in sequence under the following headings: (1) Introduction; (2) Structure and properties of the gut epithelial basement membrane; (3) Composition and physical properties of the interstitial matrix of the lamina propria; (4) The movement of chylomicrons across the interstitial matrix of the lamina propria and importance of the hydration of the interstitial matrix of the lamina propria and the movement of chylomicrons; (5) Entry of the chylomicrons into the intestinal lacteals; (6) Activation of mucosal mast cells by fat absorption and the metabolic consequences; and (7) Link between chylomicron transport, mucosal mast cell activation, leaky gut, and the microbiome.
Collapse
Affiliation(s)
- Anna Zhou
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati Reading Campus, Cincinnati, OH, United States
| |
Collapse
|
17
|
Shen W, Li Y, Zou Y, Cao L, Cai X, Gong J, Xu Y, Zhu W. Mesenteric Adipose Tissue Alterations in Crohn's Disease Are Associated With the Lymphatic System. Inflamm Bowel Dis 2019; 25:283-293. [PMID: 30295909 DOI: 10.1093/ibd/izy306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenteric fat wrapping and thickening are typical characteristics of Crohn's disease (CD). The purpose of this study was to explore the cause of mesenteric adipose hypertrophy and analyze the role of lymphatic vessels in mesenteric adipose tissue in CD. METHODS Twenty-three CD patients who underwent ileocolonic resection were included. In CD patients, specimens were obtained from hypertrophic mesenteric adipose tissue (htMAT) next to the diseased ileum. The mesenteric lymphatic vessels in mesenteric adipose tissue were separated under stereoscope microscope. Transmission electron microscopy and immunofluorescence were used to observe the structure of mesenteric lymphatic vessels. The NF-κB signaling pathway in mesenteric adipose tissue was detected in CD specimens using Western blotting. RESULTS Electron microscopy showed that the structure of mesenteric lymphatic vessel was discontinuous, and the microstructure of lymphatic endothelial cells appeared ruptured and incomplete. Through an immunofluorescence technique, we found that the surface of lymphatic endothelial cells lacked tight junction protein staining in CD. Also, the expression of claudin-1, occludin, and ZO-1 in the mesenteric lymphatic vessel of htMAT was significantly lower than that of control. These results indicated that the structure of the mesenteric lymphatic vessel in htMAT was mispatterned and ruptured, which could lead to lymph leakage. Leaky lymph factors could stimulate adipose tissue to proliferate. Antigens that leaked into the mesenteric adipose tissue could effectively elicit an immune response. The levels of cytokines (TNF-a, IL-1β, IL-6) was increased in the htMAT of CD patients by activated NF-κB signaling pathway. CONCLUSIONS Our findings demonstrated that the hypertrophy of mesenteric adipose tissue may result from mispatterned and ruptured lymphatic vessels. Alteration of mesenteric adipose tissue was associated with activated NF-κB signaling pathway. This study enhances support for elucidating the importance of mesenteric lymphatic vessels and adipose tissue in CD.
Collapse
Affiliation(s)
- Weisong Shen
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yujie Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingchen Cai
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Calatayud M, Dezutter O, Hernandez-Sanabria E, Hidalgo-Martinez S, Meysman FJR, Van de Wiele T. Development of a host-microbiome model of the small intestine. FASEB J 2018; 33:3985-3996. [PMID: 30521380 DOI: 10.1096/fj.201801414r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium plays an essential role in the balance between tolerant and protective immune responses to infectious agents. In vitro models do not typically consider the innate immune response and gut microbiome in detail, so these models do not fully mimic the physiologic aspects of the small intestine. We developed and characterized a long-term in vitro model containing enterocyte, goblet, and immune-like cells exposed to a synthetic microbial community representative of commensal inhabitants of the small intestine. This model showed differential responses toward a synthetic microbial community of commensal bacterial inhabitants of the small intestine in the absence or presence of LPS from Escherichia coli O111:B4. Simultaneous exposure to LPS and microbiota induced impaired epithelial barrier function; increased production of IL-8, IL-6, TNF-α, and C-X-C motif chemokine ligand 16; and augmented differentiation and adhesion of macrophage-like cells and the overexpression of dual oxidase 2 and TLR-2 and -4 mRNA. In addition, the model demonstrated the ability to assess the adhesion of specific bacterial strains from the synthetic microbial community-more specifically, Veillonella parvula-to the simulated epithelium. This novel in vitro model may assist in overcoming sampling and retrieval difficulties when studying host-microbiome interactions in the small intestine.-Calatayud, M., Dezutter, O., Hernandez-Sanabria, E., Hidalgo-Martinez, S., Meysman, F. J. R., Van de Wiele, T. Development of a host-microbiome model of the small intestine.
Collapse
Affiliation(s)
- Marta Calatayud
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Olivier Dezutter
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | | | - Silvia Hidalgo-Martinez
- Department of Biology, Ecosystem Management Research Group (ECOBE), University of Antwerp, Wilrijk, Belgium; and
| | - Filip J R Meysman
- Department of Biology, Ecosystem Management Research Group (ECOBE), University of Antwerp, Wilrijk, Belgium; and.,Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Li Y, Ge Y, Gong J, Zhu W, Cao L, Guo Z, Gu L, Li J. Mesenteric Lymphatic Vessel Density Is Associated with Disease Behavior and Postoperative Recurrence in Crohn's Disease. J Gastrointest Surg 2018; 22:2125-2132. [PMID: 30043133 DOI: 10.1007/s11605-018-3884-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 07/11/2018] [Indexed: 01/31/2023]
Abstract
PURPOSE The aims of the present study were to examine the density of lymphatic vessels in the mesentery and to assess the predictive value of the mesenteric lymphatic vessel density for postoperative clinical recurrence. METHODS Ileocolonic resection specimens were obtained from 53 patients with Crohn's disease and 10 non-inflammatory bowel disease control subjects. Mesentery adipose tissues adjacent to the bowel wall were used for the histological quantification of lymphatic vessels using immunohistochemistry with the D2-40 antibody. The relationships between lymphatic vessel density and disease behavior, the presence of granulomas, the presence of creeping fat, and postoperative clinical recurrence were assessed. RESULTS Median lymphatic vessel density in the mesentery adjacent to inflamed or non-inflamed intestine was lower in control subjects than in Crohn's disease patients (2.13‰; interquartile range [IQR], 1.83-2.61; 8.34‰; IQR, 6.39-10.22; 4.43‰; IQR, 3.32-5.78; P ˂ 0.001). Increased mesenteric lymphatic vessel density was significantly associated with stricturing behavior, the presence of intestinal granulomas, the presence of creeping fat, and bowel thickness. Interestingly, patients with disease recurrence had an increased mesenteric lymphatic vessel density of the proximal mesenteric margin at the time of resection compared with those who did not have disease recurrence (6.23‰; IQR, 5.43-6.75 vs. 3.28‰; IQR, 2.93-4.29; P ˂ 0.001). CONCLUSIONS In addition to its correlation with disease behavior, bowel thickness, and the presence of intestinal granulomas and creeping fat, increased mesenteric lymphatic vessel density in the proximal margin is predictive of early clinical recurrence after surgery in patients with Crohn's disease.
Collapse
Affiliation(s)
- Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Yuanyuan Ge
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China.
| | - Lei Cao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Lili Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Jieshou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| |
Collapse
|
20
|
Affiliation(s)
- Donald M McDonald
- Department of Anatomy, University of California, San Francisco, CA 94143-0452, USA.
| |
Collapse
|
21
|
Kämpfer AAM, Urbán P, Gioria S, Kanase N, Stone V, Kinsner-Ovaskainen A. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol In Vitro 2017; 45:31-43. [PMID: 28807632 PMCID: PMC5744654 DOI: 10.1016/j.tiv.2017.08.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022]
Abstract
The intestine forms the largest interface between the environment and the human organism. Its integrity and functioning are crucial for the uptake of nutrients while preventing access of harmful antigens. Inflammatory conditions can significantly change the normal functioning of the intestine. In vitro models that adequately reproduce both healthy and inflamed intestinal tissue could provide a useful tool for studying the mechanisms of intestinal inflammation and investigating new therapeutic drugs. We established a co-culture of Caco-2 and PMA-differentiated THP-1 cells that mimics the intestine in healthy and controlled inflamed states. In homoeostatic conditions without stimulation, Caco-2 and THP-1 cells were co-cultured for 48 h without affecting the barrier integrity and with no increase in the release of cytokines, nitric oxide or lactate dehydrogenase. To simulate the inflamed intestine, the Caco-2 barrier was primed with IFN-γ and THP-1 cells were pre-stimulated with LPS and IFN-γ. In these conditions a significant but temporary reduction in barrier integrity was measured, and large concentrations of pro-inflammatory cytokines and cytotoxicity markers detected. With its ability to feature numerous hallmarks of intestinal inflammation the presented co-culture model of epithelial cells and macrophages offers a unique possibility to study exposure effects in relation to the health status of the intestine. A novel, tunable co-culture model of Caco-2 and THP-1 cells was established. The THP-1 differentiation protocol is crucial for a stable co-culture with Caco-2. Synergistic effects of TNF-α and IFN-γ were key to induce inflammation in vitro. The inflamed co-culture shows barrier disruption, cytokine release and cytotoxicity. Downregulation of inflammation is prevented by pretreatment of cells with cytokines.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy; Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Patricia Urbán
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Sabrina Gioria
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy
| | - Nilesh Kanase
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Vicki Stone
- Nano-Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Agnieszka Kinsner-Ovaskainen
- European Commission Joint Research Centre, Directorate F - Health, Consumers and Reference Materials, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| |
Collapse
|
22
|
|
23
|
López-Posadas R, Neurath MF, Atreya I. Molecular pathways driving disease-specific alterations of intestinal epithelial cells. Cell Mol Life Sci 2017; 74:803-826. [PMID: 27624395 PMCID: PMC11107577 DOI: 10.1007/s00018-016-2363-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
Abstract
Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany
| | - Imke Atreya
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
24
|
Li Y, Zhu W, Zuo L, Shen B. The Role of the Mesentery in Crohn's Disease: The Contributions of Nerves, Vessels, Lymphatics, and Fat to the Pathogenesis and Disease Course. Inflamm Bowel Dis 2016; 22:1483-95. [PMID: 27167572 DOI: 10.1097/mib.0000000000000791] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a complex gastrointestinal disorder involving multiple levels of cross talk between the immunological, neural, vascular, and endocrine systems. The current dominant theory in CD is based on the unidirectional axis of dysbiosis-innate immunity-adaptive immunity-mesentery-body system. Emerging clinical evidence strongly suggests that the axis be bidirectional. The morphologic and/or functional abnormalities in the mesenteric structures likely contribute to the disease progression of CD, to a less extent the disease initiation. In addition to adipocytes, mesentery contains nerves, blood vessels, lymphatics, stromal cells, and fibroblasts. By the secretion of adipokines that have endocrine functions, the mesenteric fat tissue exerts its activity in immunomodulation mainly through response to afferent signals, neuropeptides, and functional cytokines. Mesenteric nerves are involved in the pathogenesis and prognosis of CD mainly through neuropeptides. In addition to angiogenesis observed in CD, lymphatic obstruction, remodeling, and impaired contraction maybe a cause and consequence of CD. Lymphangiogenesis and angiogenesis play a concomitant role in the progress of chronic intestinal inflammation. Finally, the interaction between neuropeptides, adipokines, and vascular and lymphatic endothelia leads to adipose tissue remodeling, which makes the mesentery an active participator, not a bystander, in the disease initiation and precipitation CD. The identification of the role of mesentery, including the structure and function of mesenteric nerves, vessels, lymphatics, and fat, in the intestinal inflammation in CD has important implications in understanding its pathogenesis and clinical management.
Collapse
Affiliation(s)
- Yi Li
- *Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; and †Center for Inflammatory Bowel Disease, Digestive Disease Institute, The Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | | |
Collapse
|
25
|
Choe K, Jang JY, Park I, Kim Y, Ahn S, Park DY, Hong YK, Alitalo K, Koh GY, Kim P. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility. J Clin Invest 2015; 125:4042-52. [PMID: 26436648 DOI: 10.1172/jci76509] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/27/2015] [Indexed: 01/26/2023] Open
Abstract
Lacteals are lymphatic vessels located at the center of each intestinal villus and provide essential transport routes for lipids and other lipophilic molecules. However, it is unclear how absorbed molecules are transported through the lacteal. Here, we used reporter mice that express GFP under the control of the lymphatic-specific promoter Prox1 and a custom-built confocal microscope and performed intravital real-time visualization of the absorption and transport dynamics of fluorescence-tagged fatty acids (FAs) and various exogenous molecules in the intestinal villi in vivo. These analyses clearly revealed transepithelial absorption of these molecules via enterocytes, diffusive distribution over the lamina propria, and subsequent transport through lacteals. Moreover, we observed active contraction of lacteals, which seemed to be directly involved in dietary lipid drainage. Our analysis revealed that the smooth muscles that surround each lacteal are responsible for contractile dynamics and that lacteal contraction is ultimately controlled by the autonomic nervous system. These results indicate that the lacteal is a unique organ-specific lymphatic system and does not merely serve as a passive conduit but as an active pump that transports lipids. Collectively, using this efficient imaging method, we uncovered drainage of absorbed molecules in small intestinal villus lacteals and the involvement of lacteal contractibility.
Collapse
|
26
|
Kornuta JA, Nepiyushchikh Z, Gasheva OY, Mukherjee A, Zawieja DC, Dixon JB. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1122-34. [PMID: 26333787 DOI: 10.1152/ajpregu.00342.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/25/2015] [Indexed: 01/13/2023]
Abstract
Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.
Collapse
Affiliation(s)
- Jeffrey A Kornuta
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Zhanna Nepiyushchikh
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Olga Y Gasheva
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Anish Mukherjee
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - J Brandon Dixon
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia;
| |
Collapse
|
27
|
The role of hyaluronan in innate defense responses of the intestine. Int J Cell Biol 2015; 2015:481301. [PMID: 25922605 PMCID: PMC4397497 DOI: 10.1155/2015/481301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/31/2015] [Indexed: 01/06/2023] Open
Abstract
Hyaluronan is an abundant extracellular matrix component prevalent in the vertebrate intestinal tract. Here we discuss what is known about hyaluronan distribution during homeostasis and inflammatory diseases of the gut and discuss ways in which this glycosaminoglycan can participate in regulating innate host defense mechanisms. These natural responses include mechanisms promoting rapid leukocyte recruitment after bacterial challenge/colon tissue damage as well as promoting epithelial defense mechanisms in the intestine.
Collapse
|
28
|
Ex vivo lymphatic perfusion system for independently controlling pressure gradient and transmural pressure in isolated vessels. Ann Biomed Eng 2014; 42:1691-704. [PMID: 24809724 DOI: 10.1007/s10439-014-1024-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/30/2014] [Indexed: 12/19/2022]
Abstract
In addition to external forces, collecting lymphatic vessels intrinsically contract to transport lymph from the extremities to the venous circulation. As a result, the lymphatic endothelium is routinely exposed to a wide range of dynamic mechanical forces, primarily fluid shear stress and circumferential stress, which have both been shown to affect lymphatic pumping activity. Although various ex vivo perfusion systems exist to study this innate pumping activity in response to mechanical stimuli, none are capable of independently controlling the two primary mechanical forces affecting lymphatic contractility: transaxial pressure gradient, [Formula: see text], which governs fluid shear stress; and average transmural pressure, [Formula: see text], which governs circumferential stress. Hence, the authors describe a novel ex vivo lymphatic perfusion system (ELPS) capable of independently controlling these two outputs using a linear, explicit model predictive control (MPC) algorithm. The ELPS is capable of reproducing arbitrary waveforms within the frequency range observed in the lymphatics in vivo, including a time-varying [Formula: see text] with a constant [Formula: see text], time-varying [Formula: see text] and [Formula: see text], and a constant [Formula: see text] with a time-varying [Formula: see text]. In addition, due to its implementation of syringes to actuate the working fluid, a post-hoc method of estimating both the flow rate through the vessel and fluid wall shear stress over multiple, long (5 s) time windows is also described.
Collapse
|
29
|
Reed AL, Rowson SA, Dixon JB. Demonstration of ATP-dependent, transcellular transport of lipid across the lymphatic endothelium using an in vitro model of the lacteal. Pharm Res 2013; 30:3271-80. [PMID: 24254195 DOI: 10.1007/s11095-013-1218-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE The lymphatic system plays crucial roles in tissue fluid balance, trafficking of immune cells, and the uptake of dietary lipid from the intestine. Given these roles there has been an interest in targeting lymphatics through oral lipid-based formulations or intradermal delivery of drug carrier systems. However the mechanisms regulating lipid uptake by lymphatics remain unknown. Thus we sought to modify a previously developed in vitro model to investigate the role of ATP in lipid uptake into the lymphatics. METHODS Lymphatic endothelial cells were cultured on a transwell membrane and the effective permeability to free fatty acid and Caco-2 cell-secreted lipid was calculated in the presence or absence of the ATP inhibitor sodium azide. RESULTS ATP inhibition reduced Caco-2 cell-secreted lipid transport, but not dextran transport. FFA transport was ATP-dependent primarily during early periods of ATP inhibition, while Caco-2 cell-secreted lipid transport was lowered at all time points studied. Furthermore, the transcellular component of transport was highly ATP-dependent, a mechanism not observed in fibroblasts, suggesting these mechanisms are unique to lymphatics. Total transport of Caco-2 cell-secreted lipid was dose-dependently reduced by ATP inhibition, and transcellular lipoprotein transport was completely attenuated. CONCLUSION The transport of lipid across the lymphatic endothelium as demonstrated with this in vitro model occurs in part by an ATP-dependent, transcellular route independent of passive permeability. It remains to be determined the extent that this mechanism exists in vivo and future work should be directed in this area.
Collapse
Affiliation(s)
- Alana L Reed
- Woodruff School of Mechanical Engineering, Atlanta, Georgia, USA
| | | | | |
Collapse
|
30
|
Günther C, Neumann H, Neurath MF, Becker C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 2013; 62:1062-71. [PMID: 22689519 DOI: 10.1136/gutjnl-2011-301364] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intestinal epithelial cells (IEC) are organised as a single cell layer which covers the intestine. Their primary task is to absorb nutrients present in the intestinal lumen. However, IEC also play an important role in the immune defence of our body by building a barrier that separates the bowel wall from potentially hazardous bacteria present in the gut lumen. The life cycle of IEC is determined by the time span in which cells migrate from their place of origin at the crypt base to the villus tip, from where they are shed into the lumen. Cell death in the intestinal epithelium has to be tightly regulated and irregularities might cause pathologies. Excessive cell death has been associated with chronic inflammation as seen in patients with Crohn's disease and ulcerative colitis. While until recently apoptosis was discussed as being essential for epithelial turnover and tissue homeostasis in the intestinal epithelium, recent data using gene deficient mice have challenged this concept. Moreover, an apoptosis-independent mode of programmed cell death, termed necroptosis, has been identified and described in the intestinal epithelium. The following article reviews previous studies on cell death regulation in IEC and a potential role of necroptosis for gut homeostasis.
Collapse
Affiliation(s)
- Claudia Günther
- Department of Medicine, University of Erlangen-Nuremberg, Hartmannstrasse 14, 91 054 Erlangen, Germany
| | | | | | | |
Collapse
|
31
|
Zhang W, Shibamoto T, Kuda Y, Kurata Y, Shinomiya S, Kida M, Tsuchida H. Vascular perfusion limits mesenteric lymph flow during anaphylactic hypotension in rats. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1191-6. [DOI: 10.1152/ajpregu.00695.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To determine fluid extravasation in the splanchnic vascular bed during anaphylactic hypotension, the mesenteric lymph flow (Qlym) was measured in anesthetized rats sensitized with ovalbumin, along with the systemic arterial pressure (Psa) and portal venous pressure (Ppv). When the antigen was injected into the sensitized rats ( n = 10), Psa decreased from 125 ± 4 to 37 ± 2 mmHg at 10 min with a gradual recovery, whereas Ppv increased by 16 mmHg at 2 min and returned to the baseline at 10 min. Qlym increased 3.3-fold from the baseline of 0.023 ± 0.002 g/min to the peak levels of 0.075 ± 0.009 g/min at 2 min and returned to the baseline within 12 min. The lymph protein concentrations increased after antigen, a finding indicating increased vascular permeability. To determine the role of the Ppv increase in the antigen-induced increase in Qlym, Ppv of the nonsensitized rats ( n = 10) was mechanically elevated in a manner similar to that of the sensitized rats by compressing the portal vein near the hepatic hilus. Unexpectedly, Ppv elevation alone produced a similar increase in Qlym, with the peak comparable to that of the sensitized rats. This finding aroused a question why the antigen-induced increase in Qlym was limited despite the presence of increased vascular permeability. Thus the changes in splanchnic vascular surface area were assessed by measuring the mesenteric arterial flow. The mesenteric arterial flow was decreased much more in the sensitized rats (75%; n = 5) than the nonsensitized Ppv elevated rats (50%; n = 5). In conclusion, mesenteric lymph flow increases transiently after antigen presumably due to increased capillary pressure of the splanchnic vascular bed via downstream Ppv elevation and perfusion and increased vascular permeability in anesthetized rats. However, this increased extravasation is subsequently limited by decreases in vascular surface area and filtration pressure.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Physiology II,
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | | | | | | | | | - Masahiro Kida
- Anesthesiology, Kanazawa Medical University, Uchinada, Japan; and
| | - Hideaki Tsuchida
- Anesthesiology, Kanazawa Medical University, Uchinada, Japan; and
| |
Collapse
|
32
|
Aller MA, Arias N, Prieto I, Santamaria L, Miguel MPD, Arias JL, Arias J. Portal hypertension-related inflammatory phenotypes: From a vitelline and amniotic point of view. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/abb.2012.37110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Voinot F, Fischer C, Bœuf A, Schmidt C, Delval-Dubois V, Reichardt F, Liewig N, Chaumande B, Ehret-Sabatier L, Lignot JH, Angel F. Effects of controlled ingestion of kaolinite (5%) on food intake, gut morphology and in vitro motility in rats. Fundam Clin Pharmacol 2011; 26:565-76. [DOI: 10.1111/j.1472-8206.2011.00978.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Abstract
The recent advances in our understanding of lymphatic physiology and the role of the lymphatics in actively regulating fluid balance, lipid transport, and immune cell trafficking has been furthered in part through innovations in imaging, tissue engineering, quantitative biology, biomechanics, and computational modeling. Interdisciplinary and bioengineering approaches will continue to be crucial to the progression of the field, given that lymphatic biology and function are intimately woven with the local microenvironment and mechanical loads experienced by the vessel. This is particularly the case in lymphatic diseases such as lymphedema where the microenvironment can be drastically altered by tissue fibrosis and adipocyte accumulation. In this review we will highlight contributions engineering and mechanics have made to lymphatic physiology and will discuss areas that will be important for future research.
Collapse
|