1
|
Shin HJ, Moon JH, Woo S, Lee CW, Jung GY, Lim HG. Recent Advances in Alginate Lyase Engineering for Efficient Conversion of Alginate to Value-Added Products. Microb Biotechnol 2025; 18:e70150. [PMID: 40293191 PMCID: PMC12035875 DOI: 10.1111/1751-7915.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Alginate lyases depolymerize alginate and generate alginate oligosaccharides (AOS) and eventually 4-deoxy-L-erythro-5-hexoseulose uronate (DEH), a monosaccharide. Recently, alginate lyases have garnered significant attention due to the increasing demand for AOS, which exhibit bioactivities beneficial to human health, livestock productivity, and agricultural efficiency. Additionally, these enzymes play a crucial role in producing DEH, essential in alginate catabolism in bacteria. This review explains the industrial value of AOS and DEH, which contribute broadly to industries ranging from the food industry to biorefinery processes. This review also highlights recent advances in alginate lyase applications and engineering, including domain truncation, chimeric enzyme design, rational mutagenesis, and directed evolution. These approaches have enhanced enzyme performance for efficient AOS and DEH production. We also discuss current challenges and future directions toward industrial-scale bioconversion of alginate-rich biomass.
Collapse
Affiliation(s)
- Hyo Jeong Shin
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Jo Hyun Moon
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Sunghwa Woo
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Chung Won Lee
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical EngineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangGyeongbukRepublic of Korea
| | - Hyun Gyu Lim
- Department of Biological Sciences and BioengineeringInha UniversityIncheonKorea
| |
Collapse
|
2
|
Akoulina EA, Bonartseva GA, Dudun AA, Kochevalina MY, Bonartsev AP, Voinova VV. Current State of Research on the Mechanisms of Biological Activity of Alginates. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S263-S286. [PMID: 40164162 DOI: 10.1134/s0006297924604519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/02/2024] [Accepted: 10/31/2024] [Indexed: 04/02/2025]
Abstract
Alginates are anionic unbranched plant and bacterial polysaccharides composed of mannuronic and guluronic acid residues. Alginates can form hydrogels under mild conditions in the presence of divalent cations (e.g., Ca2+). Because of their capacity to form gels, high biocompatibility, and relatively low cost, these polysaccharides are employed in pharmaceutical industry, medicine, food industry, cosmetology, and agriculture. Alginate oligomers produced by enzymatic cleavage of high-molecular-weight algal alginates are used as medicinal agents and dietary supplements. The global market for alginate-based products exceeds $1 billion. Alginates and their oligomers have attracted a special interest in biomedical sciences due to manifestation of various types of therapeutic activity. Across more than 50-year history of studies of alginates, over 60% scientific articles in this field have been published in the last 5 years. Unfortunately, the works dedicated to the mechanisms of biological activity of alginates and their oligosaccharides are still very scarce. This review analyzes the current state of research on the mechanisms (mainly biochemical) underlying biological and therapeutic activities of alginates (antioxidant, antibacterial, anti-inflammatory, antitumor, neuroprotective, antihypertensive, regenerative, and prebiotic). A comprehensive understanding of these mechanisms will not only improve the efficiency of alginate application in medicine and other traditional fields (cosmetology, food industry), but might also reveal their potential in new areas such as tissue engineering, nanobiotechnology, and bioelectronics.
Collapse
Affiliation(s)
- Elizaveta A Akoulina
- Biological Faculty, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, 518172, China
| | - Garina A Bonartseva
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, 119071, Russia
| | - Andrey A Dudun
- Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Science, Moscow, 119071, Russia
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | | | - Anton P Bonartsev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Vera V Voinova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| |
Collapse
|
3
|
Snyder SS, Rock CA, Millenbaugh NJ. Antifungal peptide-loaded alginate microfiber wound dressing evaluated against Candida albicans in vitro and ex vivo. Eur J Pharm Biopharm 2024:114578. [PMID: 39532211 DOI: 10.1016/j.ejpb.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Invasive fungal infections have high mortality rates, and many current antimycotics are limited by host toxicity and drug resistance. Recent experiments in our laboratory have demonstrated the antifungal activity of dKn2-7, a synthetic peptide, against Candida albicans. The purpose of the current study was to develop a wound dressing capable of dKn2-7 release for extended periods to help combat fungal infection in wounds. dKn2-7 was incorporated into calcium alginate microfibers, an excipient with known wound healing and hemostatic properties. dKn2-7 release rates from the fibers were dependent on drug loading, but all formulations exhibited a burst release with 41-71 % of total release in the first 15 min and 84-96 % release by 24 h. Calcium release at 15 min was similar to that of a commercial hemostatic dressing, indicating dKn2-7 loading would not adversely affect the hemostatic capability of the alginate fibers. In vitro antifungal studies indicated a dose dependent effect with fibers loaded at ≥20 µg/mg causing significant planktonic killing and ≥30 µg/mg causing significant biofilm killing. Viable fungal counts in biofilms grown on ex vivo porcine skin declined by 99 % following 500 µg/mg fiber treatment. Skin histology indicated no significant differences in tissue damage between treatment groups and controls. Results confirm calcium alginate microfibers are capable of binding and subsequently releasing dKn2-7 over a 24-h period when rehydrated. Furthermore, dKn2-7 released from the fibers was able to significantly reduce biofilms in an ex vivo model with minimal toxicity, indicating these dKn2-7 loaded fiber dressings may be effective at controlling C. albicans biofilm infections in vivo.
Collapse
Affiliation(s)
- Sabrina S Snyder
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, 3650 Chambers Pass, Joint Base San Antonio-Fort Sam Houston, TX 78234-6315, USA
| | - Crystal A Rock
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, 3650 Chambers Pass, Joint Base San Antonio-Fort Sam Houston, TX 78234-6315, USA
| | - Nancy J Millenbaugh
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, 3650 Chambers Pass, Joint Base San Antonio-Fort Sam Houston, TX 78234-6315, USA.
| |
Collapse
|
4
|
Zhou Y, Wei Z, Tan J, Sun H, Jiang H, Gao Y, Zhang H, Schroyen M. Alginate oligosaccharide supplementation improves boar semen quality under heat stress. STRESS BIOLOGY 2024; 4:37. [PMID: 39251532 PMCID: PMC11383898 DOI: 10.1007/s44154-024-00177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 09/11/2024]
Abstract
Heat stress is a serious problem that affects animal husbandry by reducing growth and reproductive performance of animals. Adding plant extracts to the diet is an effective way to help overcome this problem. Alginate oligosaccharide (AOS) is a natural non-toxic antioxidant with multiple biological activities. This study analyzed the potential mechanism of AOS in alleviating heat stress and improving semen quality in boars through a combination of multiple omics tools. The results indicated that AOS could significantly increase sperm motility (P < 0.001) and sperm concentration (P < 0.05). At the same time, AOS improved the antioxidant capacity of blood and semen, and increased blood testosterone (P < 0.05) level. AOS could improve the metabolites in sperm, change the composition of gut microbiota, increase the relative abundance of beneficial bacteria such as Pseudomonas (P < 0.01), Escherichia-Shigella (P < 0.05), Bifidobacterium (P < 0.01), reduce the relative abundance of harmful bacteria such as Prevotella_9 (P < 0.05), Prevotellaceae_UCG-001 (P < 0.01), and increase the content of short chain fatty acids. Proteomic results showed that AOS increased proteins related to spermatogenesis, while decreasing heat shock protein 70 (P < 0.05) and heat shock protein 90 (P < 0.01). These results were verified using immunofluorescence staining technology. There was a good correlation among sperm quality, sperm metabolome, sperm proteome, and gut microbiota. In conclusion, AOS can be used as a feed additive to increase the semen quality of boars to enhance reproductive performance under heat stress.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- School of Agriculture and Food Science, University College Dublin, Belfeld, Dublin 4, Ireland
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haidi Jiang
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, 137000, Jilin, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
5
|
Krishna Perumal P, Huang CY, Chen CW, Anisha GS, Singhania RR, Dong CD, Patel AK. Advances in oligosaccharides production from brown seaweeds: extraction, characterization, antimetabolic syndrome, and other potential applications. Bioengineered 2023; 14:2252659. [PMID: 37726874 PMCID: PMC10512857 DOI: 10.1080/21655979.2023.2252659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/27/2023] [Indexed: 09/21/2023] Open
Abstract
Brown seaweeds are a promising source of bioactive substances, particularly oligosaccharides. This group has recently gained considerable attention due to its diverse cell wall composition, structure, and wide-spectrum bioactivities. This review article provides a comprehensive update on advances in oligosaccharides (OSs) production from brown seaweeds and their potential health applications. It focuses on advances in feedstock pretreatment, extraction, characterization, and purification prior to OS use for potential health applications. Brown seaweed oligosaccharides (BSOSs) are extracted using various methods. Among these, enzymatic hydrolysis is the most preferred, with high specificity, mild reaction conditions, and low energy consumption. However, the enzyme selection and hydrolysis conditions need to be optimized for desirable yield and oligosaccharides composition. Characterization of oligosaccharides is essential to determine their structure and properties related to bioactivities and to predict their most suitable application. This is well covered in this review. Analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and nuclear magnetic resonance (NMR) spectroscopy are commonly applied to analyze oligosaccharides. BSOSs exhibit a range of biological properties, mainly antimicrobial, anti-inflammatory, and prebiotic properties among others. Importantly, BSOSs have been linked to possible health advantages, including metabolic syndrome management. Metabolic syndrome is a cluster of conditions, such as obesity, hypertension, and dyslipidemia, which increase the risk of cardiovascular disease and type 2 diabetes. Furthermore, oligosaccharides have potential applications in the food and pharmaceutical industries. Future research should focus on improving industrial-scale oligosaccharide extraction and purification, as well as researching their potential utility in the treatment of various health disorders.[Figure: see text].
Collapse
Affiliation(s)
- Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Sustainable Environment Research Center, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| | - Cheng-Di Dong
- Sustainable Environment Research Center, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Zhang A, Cao Z, Zhao L, Zhang Q, Fu L, Li J, Liu T. Characterization of bifunctional alginate lyase Aly644 and antimicrobial activity of enzymatic hydrolysates. Appl Microbiol Biotechnol 2023; 107:6845-6857. [PMID: 37698609 DOI: 10.1007/s00253-023-12745-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
An alginate lyase gene aly644 encoding a member of polysaccharide lyase family 6 was obtained from a metagenome of Antarctic macroalgae-associated microbes. The gene was expressed heterologously in Escherichia coli, and the recombinant protein was purified using a Ni-NTA His Tag Kit. With sodium alginate as the substrate, recombinant Aly644 exhibited an optimum reaction temperature of 50°C and an optimum reaction pH of 7.0. The Vmax and Km values of Aly644 toward sodium alginate were 112.36 mg/mL·min and 16.75 mg/mL, respectively. Substrate specificity analysis showed that Aly644 was a bifunctional alginate lyase that hydrolyzed both polyguluronic acid and polymannuronic acid. The hydrolysis products of Aly644 with sodium alginate as the substrate were detected by thin-layer chromatography, and were mainly di- and trisaccharides. The oligosaccharides produced by degradation of sodium alginate by Aly644 inhibited the mycelial growth of the plant pathogens Phytophthora capsici and Fulvia fulva; the 50% maximal effective concentration (EC50) values were 297.45 and 452.89 mg/L, and the 90% maximal effective concentration (EC90) values were 1341.45 and 2693.83 mg/L, respectively. This highlights that Aly644 is a potential candidate enzyme for the industrial production of alginate oligosaccharides with low degree of polymerization. Enzyme-hydrolyzed alginate oligosaccharides could support the development of green agriculture as natural antimicrobial agents. KEY POINTS: • An alginate lyase was obtained from a metagenome of Antarctic macroalgae-associated microbes. • Aly644 is a bifunctional alginate lyase with excellent thermostability and pH stability. • The enzymatic hydrolysates of Aly644 directly inhibited Phytophthora capsici and Fulvia fulva.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhe Cao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Luying Zhao
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Zhang
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Liping Fu
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Jiang Li
- Key Lab of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Tao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
7
|
Aitouguinane M, El Alaoui-Talibi Z, Rchid H, Fendri I, Abdelkafi S, El-Hadj MDO, Boual Z, Le Cerf D, Rihouey C, Gardarin C, Dubessay P, Michaud P, Pierre G, Delattre C, El Modafar C. Elicitor Activity of Low-Molecular-Weight Alginates Obtained by Oxidative Degradation of Alginates Extracted from Sargassum muticum and Cystoseira myriophylloides. Mar Drugs 2023; 21:301. [PMID: 37233495 PMCID: PMC10222107 DOI: 10.3390/md21050301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Alginates extracted from two Moroccan brown seaweeds and their derivatives were investigated for their ability to induce phenolic metabolism in the roots and leaves of tomato seedlings. Sodium alginates (ALSM and ALCM) were extracted from the brown seaweeds Sargassum muticum and Cystoseira myriophylloides, respectively. Low-molecular-weight alginates (OASM and OACM) were obtained after radical hydrolysis of the native alginates. Elicitation was carried out by foliar spraying 20 mL of aqueous solutions (1 g/L) on 45-day-old tomato seedlings. Elicitor capacities were evaluated by monitoring phenylalanine ammonia-lyase (PAL) activity, polyphenols, and lignin production in the roots and leaves after 0, 12, 24, 48, and 72 h of treatment. The molecular weights (Mw) of the different fractions were 202 kDa for ALSM, 76 kDa for ALCM, 19 kDa for OACM, and 3 kDa for OASM. FTIR analysis revealed that the structures of OACM and OASM did not change after oxidative degradation of the native alginates. These molecules showed their differential capacity to induce natural defenses in tomato seedlings by increasing PAL activity and through the accumulation of polyphenol and lignin content in the leaves and roots. The oxidative alginates (OASM and OACM) exhibited an effective induction of the key enzyme of phenolic metabolism (PAL) compared to the alginate polymers (ALSM and ALCM). These results suggest that low-molecular-weight alginates may be good candidates for stimulating the natural defenses of plants.
Collapse
Affiliation(s)
- Meriem Aitouguinane
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Zainab El Alaoui-Talibi
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| | - Halima Rchid
- Laboratoire de Biotechnologies et Valorisation des Ressources Végétales, Faculté des Sciences, Université Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3000, Tunisia;
| | - Mohamed Didi Ould El-Hadj
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Zakaria Boual
- Laboratoire de Protection des Ecosystèmes en Zones Arides et Semi-Arides, Faculté des Sciences de la Nature et de la vie BP 511, Université Kasdi Merbah de Ouargla, Ouargla 30000, Algeria; (M.D.O.E.-H.); (Z.B.)
| | - Didier Le Cerf
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christophe Rihouey
- Polymères Biopolymères Surfaces, Normandie Université, UNIROUEN, INSA Rouen, CNRS, UMR6270, F-76821 Mont Saint-Aignan, France; (D.L.C.); (C.R.)
| | - Christine Gardarin
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Pascal Dubessay
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Philippe Michaud
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Guillaume Pierre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (C.G.); (P.D.); (P.M.)
- Institut Universitaire de France (IUF), 1 Rue Descartes, F-75005 Paris, France
| | - Cherkaoui El Modafar
- Centre d’Agrobiotechnologie et Bioingénierie, Unité de Recherche Labellisée CNRST (Centre AgroBiotech, URL-CNRST 05), Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech 40000, Morocco; (M.A.); (C.E.M.)
| |
Collapse
|
8
|
Cheng J, Xiao M, Ren X, Secundo F, Yu Y, Nan S, Chen W, Zhu C, Kong Q, Huang Y, Fu X, Mou H. Response of Salmonella enterica serovar Typhimurium to alginate oligosaccharides fermented with fecal inoculum: integrated transcriptomic and metabolomic analyses. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:242-256. [PMID: 37275545 PMCID: PMC10232696 DOI: 10.1007/s42995-023-00176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Alginate oligosaccharides (AOS), extracted from marine brown algae, are a common functional feed additive; however, it remains unclear whether they modulate the gut microbiota and microbial metabolites. The response of Salmonella enterica serovar Typhimurium, a common poultry pathogen, to AOS fermented with chicken fecal inocula was investigated using metabolomic and transcriptomic analyses. Single-strain cultivation tests showed that AOS did not directly inhibit the growth of S. Typhimurium. However, when AOS were fermented by chicken fecal microbiota, the supernatant of fermented AOS (F-AOS) exhibited remarkable antibacterial activity against S. Typhimurium, decreasing the abundance ratio of S. Typhimurium in the fecal microbiota from 18.94 to 2.94%. Transcriptomic analyses showed that the 855 differentially expressed genes induced by F-AOS were mainly enriched in porphyrin and chlorophyll metabolism, oxidative phosphorylation, and Salmonella infection-related pathways. RT-qPCR confirmed that F-AOS downregulated key genes involved in flagellar assembly and the type III secretory system of S. Typhimurium, indicating metabolites in F-AOS can influence the growth and metabolism of S. Typhimurium. Metabolomic analyses showed that 205 microbial metabolites were significantly altered in F-AOS. Among them, the increase in indolelactic acid and 3-indolepropionic acid levels were further confirmed using HPLC. This study provides a new perspective for the application of AOS as a feed additive against pathogenic intestinal bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00176-z.
Collapse
Affiliation(s)
- Jiaying Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xinmiao Ren
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| | - Ying Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Shihao Nan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047 China
| | - Weimiao Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Youtao Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, 330047 China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
9
|
Mechanisms and technology of marine oligosaccharides to control postharvest disease of fruits. Food Chem 2023; 404:134664. [DOI: 10.1016/j.foodchem.2022.134664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
10
|
Dong P, Shi Q, Peng R, Yuan Y, Xie X. N,N-dimethyl chitosan oligosaccharide (DMCOS) promotes antifungal activity by causing mitochondrial damage. Carbohydr Polym 2023; 303:120459. [PMID: 36657838 DOI: 10.1016/j.carbpol.2022.120459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
By modifying chitosan oligosaccharide (COS) with the Eschweiler-Clarke reaction, the chitosan oligosaccharide derivative DMCOS was synthesized. FT-IR, 1D and 2D NMR spectra, MALDI-ToF MS, and elemental analysis were applied to analyze the structure of DMCOS, which revealed that the primary amines were converted into tertiary amines after methylation. DMCOS displayed less thermal stability than COS. In comparison to COS, it was discovered that DMCOS possessed more potent antimicrobial activity against four bacterial strains (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) and three yeast strains (Candida albicans, Candida tropicalis, and Candida parapsilosis). The antioxidant studies indicated that DMCOS had less antioxidant activity than COS. Consequently, ROS level elevated in C. albicans cells following treatment with DMCOS, which decreased mitochondrial membrane potential. It was recalled that DMCOS may kill C. albicans by causing mitochondrial damage. In addition, DMCOS was demonstrated to be non-cytotoxic.
Collapse
Affiliation(s)
- Peng Dong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Qingshan Shi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Ruqun Peng
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Yingzi Yuan
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China
| | - Xiaobao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong 510070, People's Republic of China.
| |
Collapse
|
11
|
Liu X, Li X, Bai Y, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J, Xie Z. Natural antimicrobial oligosaccharides in the food industry. Int J Food Microbiol 2023; 386:110021. [PMID: 36462348 DOI: 10.1016/j.ijfoodmicro.2022.110021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
An increase in the number of antibiotic resistance genes burdens the environment and affects human health. Additionally, people have developed a cautious attitude toward chemical preservatives. This attitude has promoted the search for new natural antimicrobial substances. Oligosaccharides from various sources have been studied for their antimicrobial and prebiotic effects. Antimicrobial oligosaccharides have several advantages such as being produced from renewable resources and showing antimicrobial properties similar to those of chemical preservatives. Their excellent broad-spectrum antibacterial properties are primarily because of various synergistic effects, including destruction of pathogen cell wall. Additionally, the adhesion of harmful microorganisms and the role of harmful factors may be reduced by oligosaccharides. Some natural oligosaccharides were also shown to stimulate the growth probiotic organisms. Therefore, antimicrobial oligosaccharides have the potential to meet food processing industry requirements in the future. The latest progress in research on the antimicrobial activity of different oligosaccharides is demonstrated in this review. The possible mechanism of action of these antimicrobial oligosaccharides is summarized with respect to their direct and indirect effects. Finally, the extended applications of oligosaccharides from the food source industry to food processing are discussed.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuxiang Bai
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Powell LC, Adams JYM, Quoraishi S, Py C, Oger A, Gazze SA, Francis LW, von Ruhland C, Owens D, Rye PD, Hill KE, Pritchard MF, Thomas DW. Alginate oligosaccharides enhance the antifungal activity of nystatin against candidal biofilms. Front Cell Infect Microbiol 2023; 13:1122340. [PMID: 36798083 PMCID: PMC9927220 DOI: 10.3389/fcimb.2023.1122340] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Background The increasing prevalence of invasive fungal infections in immuno-compromised patients is a considerable cause of morbidity and mortality. With the rapid emergence of antifungal resistance and an inadequate pipeline of new therapies, novel treatment strategies are now urgently required. Methods The antifungal activity of the alginate oligosaccharide OligoG in conjunction with nystatin was tested against a range of Candida spp. (C. albicans, C. glabrata, C. parapsilosis, C. auris, C. tropicalis and C. dubliniensis), in both planktonic and biofilm assays, to determine its potential clinical utility to enhance the treatment of candidal infections. The effect of OligoG (0-6%) ± nystatin on Candida spp. was examined in minimum inhibitory concentration (MIC) and growth curve assays. Antifungal effects of OligoG and nystatin treatment on biofilm formation and disruption were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and ATP cellular viability assays. Effects on the cell membrane were determined using permeability assays and transmission electron microscopy (TEM). Results MIC and growth curve assays demonstrated the synergistic effects of OligoG (0-6%) with nystatin, resulting in an up to 32-fold reduction in MIC, and a significant reduction in the growth of C. parapsilosis and C. auris (minimum significant difference = 0.2 and 0.12 respectively). CLSM and SEM imaging demonstrated that the combination treatment of OligoG (4%) with nystatin (1 µg/ml) resulted in significant inhibition of candidal biofilm formation on glass and clinical grade silicone surfaces (p < 0.001), with increased cell death (p < 0.0001). The ATP biofilm disruption assay demonstrated a significant reduction in cell viability with OligoG (4%) alone and the combined OligoG/nystatin (MIC value) treatment (p < 0.04) for all Candida strains tested. TEM studies revealed the combined OligoG/nystatin treatment induced structural reorganization of the Candida cell membrane, with increased permeability when compared to the untreated control (p < 0.001). Conclusions Antimicrobial synergy between OligoG and nystatin against Candida spp. highlights the potential utility of this combination therapy in the prevention and topical treatment of candidal biofilm infections, to overcome the inherent tolerance of biofilm structures to antifungal agents.
Collapse
Affiliation(s)
- Lydia C. Powell
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
- Microbiology and Infectious Disease group, Swansea University Medical School, Swansea, United Kingdom
- *Correspondence: Lydia C. Powell,
| | - Jennifer Y. M. Adams
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| | - Sadik Quoraishi
- Otolaryngology Department, New Cross Hospital, Wolverhampton, United Kingdom
| | - Charlène Py
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
- School of Engineering, University of Angers, Angers, France
| | - Anaϊs Oger
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
- School of Engineering, University of Angers, Angers, France
| | - Salvatore A. Gazze
- Centre for Nanohealth, Swansea University Medical School, Swansea, United Kingdom
| | - Lewis W. Francis
- Centre for Nanohealth, Swansea University Medical School, Swansea, United Kingdom
| | - Christopher von Ruhland
- Central Biotechnology Services, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David Owens
- Head and Neck Directorate, University Hospital of Wales, Cardiff, United Kingdom
| | | | - Katja E. Hill
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| | - Manon F. Pritchard
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| | - David W. Thomas
- Advanced Therapies Group, Cardiff University School of Dentistry, Cardiff, United Kingdom
| |
Collapse
|
13
|
Yan F, Zhong J, Chen J, Liu W, Chen X. Application of alginate oligosaccharide produced by enzymatic hydrolysis in the preservation of prawns. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
15
|
Evaluating the alginate oligosaccharide (OligoG) as a therapy for Burkholderia cepacia complex cystic fibrosis lung infection. J Cyst Fibros 2022; 21:821-829. [DOI: 10.1016/j.jcf.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 11/15/2022]
|
16
|
Li Y, Zheng Y, Zhang Y, Yang Y, Wang P, Imre B, Wong ACY, Hsieh YSY, Wang D. Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Mar Drugs 2021; 19:620. [PMID: 34822491 PMCID: PMC8623139 DOI: 10.3390/md19110620] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Current studies have shown that brown algae are rich sources of bioactive compounds with excellent nutritional value, and are considered functional foods with health benefits. Polysaccharides are the main constituents of brown algae; their diverse structures allow many unique physical and chemical properties that help to moderate a wide range of biological activities, including immunomodulation, antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant activities. In this review, we focus on the major polysaccharide components in brown algae: the alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest developments in applied research on brown algae polysaccharides.
Collapse
Affiliation(s)
- Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| | - Balázs Imre
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Ann C. Y. Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
| | - Yves S. Y. Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan; (B.I.); (A.C.Y.W.)
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; (Y.L.); (Y.Z.); (Y.Z.); (Y.Y.); (P.W.)
| |
Collapse
|
17
|
Zhang C, Li M, Rauf A, Khalil AA, Shan Z, Chen C, Rengasamy KRR, Wan C. Process and applications of alginate oligosaccharides with emphasis on health beneficial perspectives. Crit Rev Food Sci Nutr 2021; 63:303-329. [PMID: 34254536 DOI: 10.1080/10408398.2021.1946008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.
Collapse
Affiliation(s)
- Chunhua Zhang
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Mingxi Li
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa (KP), Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Zhiguo Shan
- College of Agriculture and Forestry, Pu'er University, Pu'er, Yunnan, China
| | - Chuying Chen
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Research Center of Tea and Tea Culture, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Wang M, Chen L, Zhang Z. Potential applications of alginate oligosaccharides for biomedicine - A mini review. Carbohydr Polym 2021; 271:118408. [PMID: 34364551 DOI: 10.1016/j.carbpol.2021.118408] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023]
Abstract
Extensive research on marine algae, especially on their health-promoting properties, has been conducted. Various ingredients with potential biomedical applications have been discovered and extracted from marine algae. Alginate oligosaccharides are low molecular weight alginate polysaccharides present in cell walls of brown algae. They exhibit various health benefits such as anti-inflammatory, anti-microbial, anti-oxidant, anti-tumor and immunomodulation. Their low-toxicity, non-immunogenicity, and biodegradability make them an excellent material in biomedicine. Alginate oligosaccharides can be chemically or biochemically modified to enhance their biological activity and potential in pharmaceutical applications. This paper provides a brief overview on alginate oligosaccharides characteristics, modification patterns and highlights their vital health promoting properties.
Collapse
Affiliation(s)
- Mingpeng Wang
- College of Life Science, Qufu Normal University, Qufu 273100, China
| | - Lei Chen
- College of Life Science, Qufu Normal University, Qufu 273100, China.
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
19
|
Wunnoo S, Paosen S, Lethongkam S, Sukkurd R, Waen-Ngoen T, Nuidate T, Phengmak M, Voravuthikunchai SP. Biologically rapid synthesized silver nanoparticles from aqueous Eucalyptus camaldulensis leaf extract: Effects on hyphal growth, hydrolytic enzymes, and biofilm formation in Candida albicans. Biotechnol Bioeng 2021; 118:1597-1611. [PMID: 33421102 DOI: 10.1002/bit.27675] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/07/2022]
Abstract
Bionanotechnology has increasingly gained attention in biomedical fields as antifungal and antibiofilm agents. In this study, biosynthesized silver nanoparticles (bio-AgNPs) using aqueous Eucalyptus camaldulensis leaf extract were successfully performed by a one-step green approach. Spherical-shaped nanoparticles, approximately 8.65 nm, exhibited noncytotoxicity to erythrocytes, HeLa, and HaCaT cells. The synthesized nanoparticles showed strong fungicidal activity ranging from 0.5 to 1 µg/ml. The nanoparticles affected Candida adhesion and invasion into host cells by reduced germ tube formation and hydrolytic enzyme secretion. Inhibitory effects of bio-AgNPs on Candida biofilms were evaluated by the prevention of yeast-to-hyphal transition. A decrease in cell viability within mature biofilm demonstrated the ability of bio-AgNPs to penetrate into the extracellular matrix and destroy yeast cell morphology, leading to cell death. Molecular biology study on biofilms confirmed downregulation in the expression of genes ALS3, HWP1, ECE1, EFG1, TEC1, ZAP1, encoding hyphal growth and biofilm development and PLB2, LIP9, SAP4, involved in hydrolytic enzymes. In addition to candida treatment, the bio-AgNPs could be applied as an antioxidant to protect against oxidative stress-related human diseases. The findings concluded that bio-AgNPs could be used as an antifungal agent for candida treatment, as well as be incorporated in medical devices to prevent biofilm formation.
Collapse
Affiliation(s)
- Suttiwan Wunnoo
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supakit Paosen
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sakkarin Lethongkam
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rattanavadee Sukkurd
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Tassanai Waen-Ngoen
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Taiyeebah Nuidate
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Manthana Phengmak
- Clinical Microbiology Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Supayang P Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.,Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
20
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
21
|
YAN F, WANG M, CHEN X, LI X, WU Y, FU C. Effects of alginate oligosaccharides treatment on preservation and fresh-keeping mechanism of shrimp during frozen storage. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.27019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | | | - Caili FU
- Fuzhou University, China; National University of Singapore, China
| |
Collapse
|
22
|
van Koningsbruggen-Rietschel S, Davies JC, Pressler T, Fischer R, MacGregor G, Donaldson SH, Smerud K, Meland N, Mortensen J, Fosbøl MØ, Downey DG, Myrset AH, Flaten H, Rye PD. Inhaled dry powder alginate oligosaccharide in cystic fibrosis: a randomised, double-blind, placebo-controlled, crossover phase 2b study. ERJ Open Res 2020; 6:00132-2020. [PMID: 33123558 PMCID: PMC7569163 DOI: 10.1183/23120541.00132-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/25/2020] [Indexed: 11/21/2022] Open
Abstract
Background OligoG is a low molecular-weight alginate oligosaccharide that improves the viscoelastic properties of cystic fibrosis (CF) mucus and disrupts biofilms, thereby potentiating the activity of antimicrobial agents. The efficacy of inhaled OligoG was evaluated in adult patients with CF. Methods A randomised, double-blind, placebo-controlled multicentre crossover study was used to demonstrate safety and efficacy of inhaled dry powder OligoG. Subjects were randomly allocated to receive OligoG 1050 mg per day (10 capsules three times daily) or matching placebo for 28 days, with 28-day washout periods following each treatment period. The primary end-point was absolute change in percentage predicted forced expiratory volume in 1 s (FEV1) at the end of 28-day treatment. The intention-to-treat (ITT) population (n=65) was defined as randomised to treatment with at least one administration of study medication and post-dosing evaluation. Results In this study, 90 adult subjects were screened and 65 were randomised. Statistically significant improvement in FEV1 was not observed in the ITT population. Adverse events included nasopharyngitis, cough and pulmonary exacerbation. The number and proportions of patients with adverse events and serious adverse events were similar between OligoG and placebo group. Conclusions Inhalation of OligoG-dry powder over 28 days was safe in adult CF subjects. Statistically significant improvement of FEV1 was not reached. The planned analyses did not indicate a significant treatment benefit with OligoG compared to placebo. Post hoc exploratory analyses showed subgroup results that indicate that further studies of OligoG in this patient population are justified. Inhalation of OligoG-DPI over 28 days was shown to be safe in adult CF subjects. Statistically significant improvement of FEV1 was not reached. Post hoc subgroup analyses support mechanism of action for OligoG and warrant further prospective studies.https://bit.ly/2PHq6Z0
Collapse
Affiliation(s)
| | - Jane C Davies
- Dept of Paediatric Respiratory Medicine, National Heart and Lung Institute, Imperial College London, and Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | | | - Gordon MacGregor
- Dept of Respiratory Medicine, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Knut Smerud
- SMERUD Medical Research International AS, Oslo, Norway
| | - Nils Meland
- SMERUD Medical Research International AS, Oslo, Norway
| | - Jann Mortensen
- Copenhagen CF Centre, Rigshospitalet, Copenhagen, Denmark
| | - Marie Ø Fosbøl
- Copenhagen CF Centre, Rigshospitalet, Copenhagen, Denmark
| | - Damian G Downey
- Centre for Experimental Medicine, Queen's University, Belfast, UK
| | | | | | | |
Collapse
|
23
|
Xing M, Cao Q, Wang Y, Xiao H, Zhao J, Zhang Q, Ji A, Song S. Advances in Research on the Bioactivity of Alginate Oligosaccharides. Mar Drugs 2020; 18:E144. [PMID: 32121067 PMCID: PMC7142810 DOI: 10.3390/md18030144] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Alginate is a natural polysaccharide present in various marine brown seaweeds. Alginate oligosaccharide (AOS) is a degradation product of alginate, which has received increasing attention due to its low molecular weight and promising biological activity. The wide-ranging biological activity of AOS is closely related to the diversity of their structures. AOS with a specific structure and distinct applications can be obtained by different methods of alginate degradation. This review focuses on recent advances in the biological activity of alginate and its derivatives, including their anti-tumor, anti-oxidative, immunoregulatory, anti-inflammatory, neuroprotective, antibacterial, hypolipidemic, antihypertensive, and hypoglycemic properties, as well as the ability to suppress obesity and promote cell proliferation and regulate plant growth. We hope that this review will provide theoretical basis and inspiration for the high-value research developments and utilization of AOS-related products.
Collapse
Affiliation(s)
- Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Yu Wang
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Qing Zhang
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (M.X.); (Q.C.); (Y.W.); (H.X.); (J.Z.); (Q.Z.); (A.J.)
| |
Collapse
|
24
|
Liu J, Yang S, Li X, Yan Q, Reaney MJT, Jiang Z. Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Compr Rev Food Sci Food Saf 2019; 18:1859-1881. [DOI: 10.1111/1541-4337.12494] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/09/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business Univ. Beijing 100048 China
| | - Qiaojuan Yan
- Bioresource Utilization LaboratoryCollege of EngineeringChina Agricultural Univ. Beijing 100083 China
| | - Martin J. T. Reaney
- Dept. of Plant SciencesUniv. of Saskatchewan Saskatoon SK S7N 5A8 Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory (GUSTO)Dept. of Food Science and EngineeringJinan Univ. Guangzhou 510632 China
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural Univ. Beijing 100083 China
| |
Collapse
|
25
|
Jack AA, Nordli HR, Powell LC, Farnell DJJ, Pukstad B, Rye PD, Thomas DW, Chinga-Carrasco G, Hill KE. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development. Biomacromolecules 2019; 20:2953-2961. [PMID: 31251598 DOI: 10.1021/acs.biomac.9b00522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose nanofibrils (CNFs) from wood pulp are a renewable material possessing advantages for biomedical applications because of their customizable porosity, mechanical strength, translucency, and environmental biodegradability. Here, we investigated the growth of multispecies wound biofilms on CNF formulated as aerogels and films incorporating the low-molecular-weight alginate oligosaccharide OligoG CF-5/20 to evaluate their structural and antimicrobial properties. Overnight microbial cultures were adjusted to 2.8 × 109 colony-forming units (cfu) mL-1 in Mueller Hinton broth and growth rates of Pseudomonas aeruginosa PAO1 and Staphylococcus aureus 1061A monitored for 24 h in CNF dispersions sterilized by γ-irradiation. Two CNF formulations were prepared (20 g m-2) with CNF as air-dried films or freeze-dried aerogels, with or without incorporation of an antimicrobial alginate oligosaccharide (OligoG CF-5/20) as a surface coating or bionanocomposite, respectively. The materials were structurally characterized by scanning electron microscopy (SEM) and laser profilometry (LP). The antimicrobial properties of the formulations were assessed using single- and mixed-species biofilms grown on the materials and analyzed using LIVE/DEAD staining with confocal laser scanning microscopy (CLSM) and COMSTAT software. OligoG-CNF suspensions significantly decreased the growth of both bacterial strains at OligoG concentrations >2.58% (P < 0.05). SEM showed that aerogel-OligoG bionanocomposite formulations had a more open three-dimensional structure, whereas LP showed that film formulations coated with OligoG were significantly smoother than untreated films or films incorporating PEG400 as a plasticizer (P < 0.05). CLSM of biofilms grown on films incorporating OligoG demonstrated altered biofilm architecture, with reduced biomass and decreased cell viability. The OligoG-CNF formulations as aerogels or films both inhibited pyocyanin production (P < 0.05). These novel CNF formulations or bionanocomposites were able to modify bacterial growth, biofilm development, and virulence factor production in vitro. These data support the potential of OligoG and CNF bionanocomposites for use in biomedical applications where prevention of infection or biofilm growth is required.
Collapse
Affiliation(s)
- Alison A Jack
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | - Henriette R Nordli
- Department of Cancer Research and Molecular Medicine , NTNU , NO-7491 Trondheim , Norway
| | - Lydia C Powell
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | - Damian J J Farnell
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | - Brita Pukstad
- Department of Cancer Research and Molecular Medicine , NTNU , NO-7491 Trondheim , Norway.,Department of Dermatology, St. Olavs Hospital , Trondheim University Hospital , 7030 Trondheim , Norway
| | | | - David W Thomas
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| | | | - Katja E Hill
- Advanced Therapies Group, Oral and Biomedical Sciences , Cardiff University School of Dentistry , Cardiff CF14 4XY , U.K
| |
Collapse
|
26
|
Belik AA, Silchenko AS, Kusaykin MI, Zvyagintseva TN, Ermakova SP. Alginate Lyases: Substrates, Structure, Properties, and Prospects of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|