1
|
Gancheva S, Roden M, Castera L. Diabetes as a risk factor for MASH progression. Diabetes Res Clin Pract 2024; 217:111846. [PMID: 39245423 DOI: 10.1016/j.diabres.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Non-alcoholic (now: metabolic) steatohepatitis (MASH) is the progressive inflammatory form of metabolic dysfunction-associated steatotic liver disease (MASLD), which often coexists and mutually interacts with type 2 diabetes (T2D), resulting in worse hepatic and cardiovascular outcomes. Understanding the intricate mechanisms of diabetes-related MASH progression is crucial for effective therapeutic strategies. This review delineates the multifaceted pathways involved in this interplay and explores potential therapeutic implications. The synergy between adipose tissue, gut microbiota, and hepatic alterations plays a pivotal role in disease progression. Adipose tissue dysfunction, particularly in the visceral depot, coupled with dysbiosis in the gut microbiota, exacerbates hepatic injury and insulin resistance. Hepatic lipid accumulation, oxidative stress, and endoplasmic reticulum stress further potentiate inflammation and fibrosis, contributing to disease severity. Dietary modification with weight reduction and exercise prove crucial in managing T2D-related MASH. Additionally, various well-known but also novel anti-hyperglycemic medications exhibit potential in reducing liver lipid content and, in some cases, improving MASH histology. Therapies targeting incretin receptors show promise in managing T2D-related MASH, while thyroid hormone receptor-β agonism has proven effective as a treatment of MASH and fibrosis.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Laurent Castera
- Department of Hepatology, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France; Université Paris-Cité, INSERM UMR 1149, Centre de Recherche sur l'Inflammation Paris, Montmartre, Paris, France.
| |
Collapse
|
2
|
Wang L, Xu J, You N, Shao L, Zhuang Z, Zhuo L, Liu J, Shi J. Characteristics of intestinal flora in nonobese nonalcoholic fatty liver disease patients and the impact of ursodeoxycholic acid treatment on these features. Lipids 2024; 59:193-207. [PMID: 39246185 DOI: 10.1002/lipd.12410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
The study aimed to investigate the alterations in gut microbiota among nonobese individuals with nonalcoholic fatty liver disease (NAFLD) and their response to treatment with ursodeoxycholic acid (UDCA). A total of 90 patients diagnosed with NAFLD and 36 healthy subjects were recruited to participate in this study. Among them, a subgroup of 14 nonobese nonalcoholic steatohepatitis (NASH) were treated with UDCA. Demographic and serologic data were collected for all participants, while stool samples were obtained for fecal microbiome analysis using 16S sequencing. In nonobese NAFLD patients, the alpha diversity of intestinal flora decreased (Shannon index, p < 0.05), and the composition of intestinal flora changed (beta diversity, p < 0.05). The abundance of 20 genera, including Fusobacterium, Lachnoclostridium, Klebsiella, etc., exhibited significant changes (p < 0.05). Among them, nine species including Fusobacterium, Lachnoclostridium, Klebsiella, etc. were found to be associated with abnormal liver enzymes and glucolipid metabolic disorders. Among the 14 NASH patients treated with UDCA, improvements were observed in terms of liver enzymes, CAP values, and E values (p < 0.05), however, no improve the glucolipid metabolism. While the alpha diversity of intestinal flora did not show significant changes after UDCA treatment, there was a notable alteration in the composition of intestinal flora (beta diversity, p < 0.05). Furthermore, UCDA treatment led to an improvement in the relative abundance of Alistipes, Holdemanella, Gilisia, etc. among nonobese NASH patients (p < 0.05). Nonobese NAFLD patients exhibit dysbiosis of the intestinal microbiota. UDCA can ameliorate hepatic enzyme abnormalities and reduce liver fat content in nonobese NASH patients, potentially through its ability to restore intestinal microbiota balance.
Collapse
Affiliation(s)
- Liyan Wang
- Department of Infectious diseases, The Second Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jiali Xu
- Department of Endocrinology, The Second People's Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Ningning You
- Department of Gastroenterology, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Li Shao
- Institute of Translational Medicine, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Zhenjie Zhuang
- Institute of Translational Medicine, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Lili Zhuo
- Department of Endocrinology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jing Liu
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Junping Shi
- Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Soppert J, Brandt EF, Heussen NM, Barzakova E, Blank LM, Kuepfer L, Hornef MW, Trebicka J, Jankowski J, Berres ML, Noels H. Blood Endotoxin Levels as Biomarker of Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. Clin Gastroenterol Hepatol 2023; 21:2746-2758. [PMID: 36470528 DOI: 10.1016/j.cgh.2022.11.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Growing evidence supports a role of gut-derived metabolites in nonalcoholic fatty liver disease (NAFLD), but the relation of endotoxin levels with gut permeability and NAFLD stage remains unclear. This systematic review with meta-analysis aims to provide further insights. METHODS PubMed, Embase, and Cochrane Library were searched for studies published until January 2022 assessing blood endotoxins in patients with NAFLD. Meta-analyses and univariate/multivariate meta-regression, as well as correlation analyses, were performed for endotoxin values and potential relationships to disease stage, age, sex, parameters of systemic inflammation, and metabolic syndrome, as well as liver function and histology. RESULTS Forty-three studies were included, of which 34 were used for meta-analyses. Blood endotoxin levels were higher in patients with simple steatosis vs liver-healthy controls (standardized mean difference, 0.86; 95% confidence interval, 0.62-1.11) as well as in patients with nonalcoholic steatohepatitis vs patients with nonalcoholic fatty liver/non-nonalcoholic steatohepatitis (standardized mean difference, 0.81; 95% confidence interval, 0.27-1.35; P = .0078). Consistently, higher endotoxin levels were observed in patients with more advanced histopathological gradings of liver steatosis and fibrosis. An increase of blood endotoxin levels was partially attributed to a body mass index rise in patients with NAFLD compared with controls. Nevertheless, significant increases of blood endotoxin levels in NAFLD retained after compensation for differences in body mass index, metabolic condition, or liver enzymes. Increases in blood endotoxin levels were associated with increases in C-reactive protein concentrations, and in most cases, paralleled a rise in markers for intestinal permeability. CONCLUSION Our results support blood endotoxin levels as relevant diagnostic biomarker for NAFLD, both for disease detection as well as staging during disease progression, and might serve as surrogate marker of enhanced intestinal permeability in NAFLD. Registration number in Prospero: CRD42022311166.
Collapse
Affiliation(s)
- Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisa Fabiana Brandt
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany
| | - Nicole Maria Heussen
- Department of Medical Statistics, RWTH Aachen University, Aachen, Germany; Center of Biostatistics and Epidemiology, Medical School, Sigmund Freud University, Vienna, Austria
| | - Emona Barzakova
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Lars Kuepfer
- Institute for Systems Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Marie-Luise Berres
- Department of Internal Medicine III, University Hospital of Aachen, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Site Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
4
|
Luo L, Chang Y, Sheng L. Gut-liver axis in the progression of nonalcoholic fatty liver disease: From the microbial derivatives-centered perspective. Life Sci 2023; 321:121614. [PMID: 36965522 DOI: 10.1016/j.lfs.2023.121614] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the world's most common chronic liver diseases. However, its pathogenesis remains unclear. With the deepening of research, NAFLD is considered a metabolic syndrome associated with the environment, heredity, and metabolic disorders. Recently, the close relationship between the intestinal microbiome and NAFLD has been discovered, and the theory of the "gut-liver axis" has been proposed. In short, the gut bacteria directly reach the liver via the portal vein through the damaged intestinal wall or indirectly participate in the development of NAFLD through signaling pathways mediated by their components and metabolites. This review focuses on the roles of microbiota-derived lipopolysaccharide, DNA, peptidoglycan, bile acids, short-chain fatty acids, endogenous ethanol, choline and its metabolites, indole and its derivatives, and bilirubin and its metabolites in the progression of NAFLD, which may provide significative insights into the pathogenesis, diagnosis, and treatment for this highly prevalent liver disease.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Yongchun Chang
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| | - Li Sheng
- Department of Drug Metabolism, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
5
|
Lee KC, Wu PS, Lin HC. Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin Mol Hepatol 2023; 29:77-98. [PMID: 36226471 PMCID: PMC9845678 DOI: 10.3350/cmh.2022.0237] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/11/2022] [Indexed: 02/02/2023] Open
Abstract
The initial presentation of non-alcoholic steatohepatitis (NASH) is hepatic steatosis. The dysfunction of lipid metabolism within hepatocytes caused by genetic factors, diet, and insulin resistance causes lipid accumulation. Lipotoxicity, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum stress would further contribute to hepatocyte injury and death, leading to inflammation and immune dysfunction in the liver. During the healing process, the accumulation of an excessive amount of fibrosis might occur while healing. During the development of NASH and liver fibrosis, the gut-liver axis, adipose-liver axis, and renin-angiotensin system (RAS) may be dysregulated and impaired. Translocation of bacteria or its end-products entering the liver could activate hepatocytes, Kupffer cells, and hepatic stellate cells, exacerbating hepatic steatosis, inflammation, and fibrosis. Bile acids regulate glucose and lipid metabolism through Farnesoid X receptors in the liver and intestine. Increased adipose tissue-derived non-esterified fatty acids would aggravate hepatic steatosis. Increased leptin also plays a role in hepatic fibrogenesis, and decreased adiponectin may contribute to hepatic insulin resistance. Moreover, dysregulation of peroxisome proliferator-activated receptors in the liver, adipose, and muscle tissues may impair lipid metabolism. In addition, the RAS may contribute to hepatic fatty acid metabolism, inflammation, and fibrosis. The treatment includes lifestyle modification, pharmacological therapy, and non-pharmacological therapy. Currently, weight reduction by lifestyle modification or surgery is the most effective therapy. However, vitamin E, pioglitazone, and obeticholic acid have also been suggested. In this review, we will introduce some new clinical trials and experimental therapies for the treatment of NASH and related fibrosis.
Collapse
Affiliation(s)
- Kuei-Chuan Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| | - Pei-Shan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Endoscopy Center for Diagnosis and Treatment, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Corresponding author : Kuei-Chuan Lee Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, 201, Section 2, Shih-Pai Road, Taipei 11217, Taiwan Tel: +886 2 2871 2121, Fax: +886 2 2873 9318, E-mail:
| |
Collapse
|
6
|
Perng W, Friedman JE, Janssen RC, Glueck DH, Dabelea D. Endotoxin Biomarkers Are Associated With Adiposity and Cardiometabolic Risk Across 6 Years of Follow-up in Youth. J Clin Endocrinol Metab 2022; 107:e3018-e3028. [PMID: 35276001 PMCID: PMC9202713 DOI: 10.1210/clinem/dgac149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Metabolic endotoxemia may be a shared mechanism underlying childhood obesity and early-onset metabolic diseases (eg, type 2 diabetes, nonalcoholic fatty liver disease). OBJECTIVE Examine prospective associations of serum endotoxin biomarkers lipopolysaccharide (LPS) and its binding protein, LPS binding protein (LBP), and anti-endotoxin core immunoglobulin G (EndoCab IgG) with adiposity and cardiometabolic risk in youth. DESIGN/SETTING This prospective study included 393 youth in the Exploring Perinatal Outcomes Among Children cohort in Colorado. Participants were recruited from 2006 to 2009 at age 10 years (baseline) and followed for 6 years (follow-up). We examined associations of endotoxin biomarkers at baseline with adiposity [body mass index (BMI) z-score, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), skinfolds, waist circumference] and cardiometabolic risk (insulin, glucose, adipokines, lipid profile, blood pressure) across both visits using mixed-effects regression, and with hepatic fat fraction (HFF) at follow-up using linear regression. RESULTS Higher LPS and LBP predicted greater adiposity across follow-up. Each 1-unit log-transformed LPS corresponded with 0.23 (95% CI 0.03, 0.43) units BMI z-score, 5.66 (95% CI 1.99, 9.33) mm3 VAT, 30.7 (95% CI 8.0, 53.3) mm3 SAT, and 8.26 (95% CI 4.13, 12.40) mm skinfold sum. EndoCab IgG was associated with VAT only [3.03 (95% CI 0.34, 5.71) mm3]. LPS was associated with higher insulin [1.93 (95% CI 0.08, 3.70) µU/mL] and leptin [2.28 (95% CI 0.66, 3.90) ng/mL] and an adverse lipid profile. No association was observed with HFF. Accounting for pubertal status and lifestyle behaviors did not change findings. However, adjustment for prepregnancy BMI and gestational diabetes attenuated most associations. CONCLUSIONS Serum endotoxin may be a marker of pathophysiological processes underlying development of childhood obesity and cardiometabolic conditions associated with exposure to fetal overnutrition.
Collapse
Affiliation(s)
- Wei Perng
- Correspondence: Wei Perng, University of Colorado Denver, Anschutz Medical Campus, 12474 E. 19th Ave, Room 208, Aurora, CO 80045, USA.
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, School of Medicine, Oklahoma City, OK, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, School of Medicine, Oklahoma City, OK, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora CO, USA
| |
Collapse
|
7
|
Hyun CK. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22179139. [PMID: 34502047 PMCID: PMC8430512 DOI: 10.3390/ijms22179139] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023] Open
Abstract
Despite considerable epidemiological evidence indicating comorbidity between metabolic disorders, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease, and inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, as well as common pathophysiological features shared by these two categories of diseases, the relationship between their pathogenesis at molecular levels are not well described. Intestinal barrier dysfunction is a characteristic pathological feature of IBD, which also plays causal roles in the pathogenesis of chronic inflammatory metabolic disorders. Increased intestinal permeability is associated with a pro-inflammatory response of the intestinal immune system, possibly leading to the development of both diseases. In addition, dysregulated interactions between the gut microbiota and the host immunity have been found to contribute to immune-mediated disorders including the two diseases. In connection with disrupted gut microbial composition, alterations in gut microbiota-derived metabolites have also been shown to be closely related to the pathogeneses of both diseases. Focusing on these prominent pathophysiological features observed in both metabolic disorders and IBD, this review highlights and summarizes the molecular risk factors that may link between the pathogeneses of the two diseases, which is aimed at providing a comprehensive understanding of molecular mechanisms underlying their comorbidity.
Collapse
Affiliation(s)
- Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Korea
| |
Collapse
|
8
|
Jiang L, Schnabl B. Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know? Physiology (Bethesda) 2021; 35:261-274. [PMID: 32490750 DOI: 10.1152/physiol.00005.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
9
|
Vander Wyst KB, Ortega-Santos CP, Toffoli SN, Lahti CE, Whisner CM. Diet, adiposity, and the gut microbiota from infancy to adolescence: A systematic review. Obes Rev 2021; 22:e13175. [PMID: 33590719 PMCID: PMC10762698 DOI: 10.1111/obr.13175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Early life gut microbiota are affected by several factors that make identification of microbial-adiposity relationships challenging. This review evaluates studies that have investigated the gut microbiota composition associated with adiposity in infants, children, and adolescents and provides evidence-based nutrition recommendations that address microbiota-adiposity links. Electronic databases were systematically searched through January 2020. Eligible studies were published in English and analyzed gut microbiota and adiposity among individuals aged birth to 18 years. Abstracts and full-text articles were reviewed by three independent reviewers. Of 45 full-text articles reviewed, 33 were included. No difference in abundance was found for Bacteroidetes (n = 7/15 articles), Firmicutes (n = 10/17), Actinobacteria (n = 8/12), Proteobacteria (n = 8/12), Tenericutes (n = 4/5), and Verrucomicrobia (n = 4/6) with adiposity. Lower abundance of Christensenellaceae (n = 3/5) and Rikenellaceae (n = 6/8) but higher abundance of F. prausnitzii (n = 3/5) and Prevotella (n = 5/7) were associated with adiposity. A lack of consensus exists for gut microbial composition associations with adiposity. A healthy gut microbiota is associated with a diet rich in fruits and vegetables with moderate consumption of animal fat and protein. Future research should use more robust sequencing technologies to identify all bacterial taxa associated with adiposity and evaluate how diet effects these adiposity-associated microbes.
Collapse
Affiliation(s)
- Kiley B Vander Wyst
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
- Center for Health Promotion and Disease Prevention, Arizona State University, Phoenix, Arizona, USA
| | | | - Samantha N Toffoli
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Caroline E Lahti
- College of Liberal Arts and Sciences, Arizona State University, Phoenix, Arizona, USA
| | - Corrie M Whisner
- College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| |
Collapse
|
10
|
Roeb E. Non-alcoholic fatty liver diseases: current challenges and future directions. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:726. [PMID: 33987424 PMCID: PMC8106107 DOI: 10.21037/atm-20-3760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver diseases (NAFLD) is rapidly becoming the most common cause of chronic liver disease in Western Countries, and a similar trend is expected in Eastern Countries within the next years. This review focusses on the definition of NAFLD and NASH, possible screening mechanisms and the question who should be screened. Still there is a need for non-invasive diagnostic tools and biomarkers for NASH that can quickly and easily diagnose the severity of NAFLD, monitor liver changes, and identify high risk patients. In addition, treatment strategies are discussed as well as the clientele, who should be treated. There are currently no drugs approved for NAFLD. Successful clinical studies with e.g., obeticholic acid and new substances (e.g., cenicriviroc with anti-inflammatory activity) have already been published. If weight-reducing diets and a change in lifestyle fail in the case of severe obesity, bariatric surgery (e.g., gastric bypass or stomach reduction) should be considered. In the case of manifest type 2 diabetes, metformin can be used as an oral antidiabetic of first choice, and GLP-1 agonists have shown beneficial effects on NAFLD. However, up to now the prevention of overweight and lack of exercise targets the most important risk factors. This review aims to identify therapy relevant risk factors, management strategies, and open questions concerning NAFLD patients.
Collapse
Affiliation(s)
- Elke Roeb
- Justus-Liebig-University Giessen, University Hospital UKGM, Giessen, Germany
| |
Collapse
|
11
|
Co-Treatment with Cefotaxime and High-Fructose Diet Inducing Nonalcoholic Fatty Liver Disease and Gut Microbial Dysbiosis in Mice. Processes (Basel) 2021. [DOI: 10.3390/pr9030434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
High fructose diet causes metabolic syndrome and induces host gut microbial dysbiosis and related obesity and nonalcoholic fatty liver disease (NAFLD). Several antibiotic treatments could prevent fatty liver. However, there are studies that have demonstrated that a high-fructose diet could influence the gut microbial dysbiosis and induce fatty liver. The purpose of this study was performed to partially modify the gut bacterial composition with a single cefotaxime treatment, which might affect the fructose-induced NAFLD severity. The C57BL/6JNarl male mice were divided into four groups including vehicle/chow diet (VE-CD), vehicle/high-fructose diet (VE-FD), antibiotic (cefotaxime (CF))/CD, and CF/FD. The results showed that body weight gain, moderate hepatic steatosis severity, epididymal white adipose tissue hypertrophy, and insulin resistance occurrence with NAFLD-related symptoms were observed only in the CF-FD group. The raised protein expression of hepatic lipogenesis was observed in the CF-FD group, but lipolysis protein expression was no difference. The diversity and composition of microbiota were significantly reduced in the CF-FD group. The Erysipelatoclostridium, Enterobacteriaceae, Lachnospiraceae, and Escherichia Shigella were in increased abundance in the feces of CF-FD group compared with VE-FD group. The novel model reveals that particular antibiotics such as cefotaxime co-treatment with high-fructose diet may affect the gut microbiota accelerating the NAFLD and obesity.
Collapse
|
12
|
Li F, Ye J, Shao C, Zhong B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis 2021; 20:22. [PMID: 33637088 PMCID: PMC7908766 DOI: 10.1186/s12944-021-01440-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Background Although imbalanced intestinal flora contributes to the pathogenesis of nonalcoholic fatty liver disease (NAFLD), conflicting results have been obtained for patient-derived microbiome composition analyses. A meta-analysis was performed to summarize the characteristics of intestinal microbiota at the species level in NAFLD patients. Methods Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement, a completed search (last update: December 30, 2020) of databases was performed to identify eligible case-control studies detecting gut microbiota in NAFLD patients. The meta-analysis results are presented as the standard mean difference (SMD) and 95% confidence interval (CI). Bias controls were evaluated with the Newcastle-Ottawa Scale (NOS), funnel plot analysis, and Egger’s and Begg’s tests. Results Fifteen studies (NOS score range: 6–8) that detected the gut microbiota in the stools of 1265 individuals (577 NAFLD patients and 688 controls) were included. It was found that Escherichia, Prevotella and Streptococcus (SMD = 1.55 [95% CI: 0.57, 2.54], 1.89 [95% CI: 0.02, 3.76] and 1.33 [95% CI: 0.62, 2.05], respectively) exhibited increased abundance while Coprococcus, Faecalibacterium and Ruminococcus (SMD = − 1.75 [95% CI: − 3.13, − 0.37], − 9.84 [95% CI: − 13.21, − 6.47] and − 1.84 [95% CI, − 2.41, − 1.27], respectively) exhibited decreased abundance in the NAFLD patients compared with healthy controls. No differences in the abundance of Bacteroides, Bifidobacterium, Blautia, Clostridium, Dorea, Lactobacillus, Parabacteroides or Roseburia were confirmed between the NAFLD patients and healthy controls. Conclusions This meta-analysis revealed that changes in the abundance of Escherichia, Prevotella, Streptococcus, Coprococcus, Faecalibacterium and Ruminococcus were the universal intestinal bacterial signature of NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01440-w.
Collapse
Affiliation(s)
- Fuxi Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, NO 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, P. R. China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, NO 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, P. R. China
| | - Congxiang Shao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, NO 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, P. R. China
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, NO 58 Zhongshan II Road, Yuexiu District, Guangzhou, 510080, P. R. China.
| |
Collapse
|
13
|
Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin Mol Hepatol 2020; 27:22-43. [PMID: 33291863 PMCID: PMC7820212 DOI: 10.3350/cmh.2020.0129] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with a prevalence that is increasing in parallel with the global rise in obesity and type 2 diabetes mellitus. The pathogenesis of NAFLD is complex and multifactorial, involving environmental, genetic and metabolic factors. The role of the diet and the gut microbiome is gaining interest as a significant factor in NAFLD pathogenesis. Dietary factors induce alterations in the composition of the gut microbiome (dysbiosis), commonly reflected by a reduction of the beneficial species and an increase in pathogenic microbiota. Due to the close relationship between the gut and liver, altering the gut microbiome can affect liver functions; promoting hepatic steatosis and inflammation. This review summarises the current evidence supporting an association between NAFLD and the gut microbiome and dietary factors. The review also explores potential underlying mechanisms underpinning these associations and whether manipulation of the gut microbiome is a potential therapeutic strategy to prevent or treat NAFLD.
Collapse
Affiliation(s)
- Erica Jennison
- Department of Chemical Pathology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Christopher D Byrne
- Department of Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| |
Collapse
|
14
|
GUIMARÃES VM, SANTOS VN, BORGES PSDA, DE FARIAS JLR, GRILLO P, PARISE ER. PERIPHERAL BLOOD ENDOTOXIN LEVELS ARE NOT ASSOCIATED WITH SMALL INTESTINAL BACTERIAL OVERGROWTH IN NONALCOHOLIC FATTY LIVER DISEASE WITHOUT CIRRHOSIS. ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:471-476. [DOI: 10.1590/s0004-2803.202000000-82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease worldwide. Approximately 20% of individuals with NAFLD develop nonalcoholic steatohepatitis (NASH), which is associated with increased risk of cirrhosis, portal hypertension, and hepatocellular carcinoma. Intestinal microflora, including small intestinal bacterial overgrowth (SIBO), appear to play an important role in the pathogenesis of the disease, as demonstrated in several clinical and experimental studies, by altering intestinal permeability and allowing bacterial endotoxins to enter the circulation. OBJECTIVE: To determine the relationship between SIBO and endotoxin serum levels with clinical, laboratory, and histopathological aspects of NAFLD and the relationship between SIBO and endotoxin serum levels before and after antibiotic therapy. METHODS: Adult patients with a histological diagnosis of NAFLD, without cirrhosis were included. A comprehensive biochemistry panel, lactulose breath test (for diagnosis of SIBO), and serum endotoxin measurement (chromogenic LAL assay) were performed. SIBO was treated with metronidazole 250 mg q8h for 10 days and refractory cases were given ciprofloxacin 500 mg q12h for 10 days. RESULTS: Overall, 42 patients with a histopathological diagnosis of NAFLD were examined. The prevalence of SIBO was 26.2%. Comparison of demographic and biochemical parameters between patients with SIBO and those without SIBO revealed no statistically significant differences, except for use of proton pump inhibitors, which was significantly more frequent in patients with positive breath testing. The presence of SIBO was also associated with greater severity of hepatocellular ballooning on liver biopsy. Although the sample, as a whole, have elevated circulating endotoxin levels, we found no significant differences in this parameter between the groups with and without SIBO. Endotoxin values before and after antibiotic treatment did not differ, even on paired analysis, suggesting absence of any relationship between these factors. Serum endotoxin levels were inversely correlated with HDL levels, and directly correlated with triglyceride levels. CONCLUSION: Serum endotoxin levels did not differ between patients with and without SIBO, nor did these levels change after antibacterial therapy, virtually ruling out the possibility that elevated endotoxinemia in non-cirrhotic patients with NAFLD is associated with SIBO. Presence of SIBO was associated with greater severity of ballooning degeneration on liver biopsy, but not with a significantly higher prevalence of NASH. Additional studies are needed to evaluate the reproducibility and importance of this finding in patients with NAFLD and SIBO.
Collapse
|
15
|
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci 2020; 21:8351. [PMID: 33171747 PMCID: PMC7664383 DOI: 10.3390/ijms21218351] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses pathologies as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcohol liver disease, hepatocellular carcinoma, viral hepatitis, and autoimmune hepatitis. Nowadays, underlying mechanisms associating gut permeability and liver disease development are not well understood, although evidence points to the involvement of intestinal microbiota and their metabolites. Animal studies have shown alterations in Toll-like receptor signaling related to the leaky gut syndrome by the action of bacterial lipopolysaccharide. In humans, modifications of the intestinal microbiota in intestinal permeability have also been related to liver disease. Some of these changes were observed in bacterial species belonging Roseburia, Streptococcus, and Rothia. Currently, numerous strategies to treat liver disease are being assessed. This review summarizes and discusses studies addressed to determine mechanisms associated with the microbiota able to alter the intestinal barrier complementing the progress and advancement of liver disease, as well as the main strategies under development to manage these pathologies. We highlight those approaches that have shown improvement in intestinal microbiota and barrier function, namely lifestyle changes (diet and physical activity) and probiotics intervention. Nevertheless, knowledge about how such modifications are beneficial is still limited and specific mechanisms involved are not clear. Thus, further in-vitro, animal, and human studies are needed.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Patricio Solís-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Miguel Navarro-Oliveros
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain;
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
| |
Collapse
|
16
|
Ni Y, Ni L, Zhuge F, Fu Z. The Gut Microbiota and Its Metabolites, Novel Targets for Treating and Preventing Non-Alcoholic Fatty Liver Disease. Mol Nutr Food Res 2020; 64:e2000375. [PMID: 32738185 DOI: 10.1002/mnfr.202000375] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent metabolic disorders worldwide, along with obesity and type 2 diabetes. NAFLD involves a series of liver abnormalities from simple hepatic steatosis to non-alcoholic steatohepatitis, which can ultimately lead to liver cirrhosis and cancer. The gut-liver axis plays an important role in the development of NAFLD, which depends mainly on regulation of the gut microbiota and its bacterial products. These intestinal bacterial species and their metabolites, including bile acids, tryptophan catabolites, and branched-chain amino acids, regulate adipose tissue and intestinal homeostasis and contribute to the pathogenesis of NAFLD/non-alcoholic steatohepatitis. In this review, the current evidence regarding the key role of the gut microbiota and its metabolites in the pathogenesis and development of NAFLD is highlighted, and the advances in the progression and applied prospects of gut microbiota-targeted dietary and exercise therapies is also discussed.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| |
Collapse
|
17
|
Cassard AM, Houron C, Ciocan D. Microbiote intestinal et stéatopathie métabolique. NUTR CLIN METAB 2020. [DOI: 10.1016/j.nupar.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Kanda T, Goto T, Hirotsu Y, Masuzaki R, Moriyama M, Omata M. Molecular Mechanisms: Connections between Nonalcoholic Fatty Liver Disease, Steatohepatitis and Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:1525. [PMID: 32102237 PMCID: PMC7073210 DOI: 10.3390/ijms21041525] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), including nonalcoholic steatohepatitis (NASH), causes hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The patatin-like phospholipase-3 (PNPLA3) I148M sequence variant is one of the strongest genetic determinants of NAFLD/NASH. PNPLA3 is an independent risk factor for HCC among patients with NASH. The obesity epidemic is closely associated with the rising prevalence and severity of NAFLD/NASH. Furthermore, metabolic syndrome exacerbates the course of NAFLD/NASH. These factors are able to induce apoptosis and activate immune and inflammatory pathways, resulting in the development of hepatic fibrosis and NASH, leading to progression toward HCC. Small intestinal bacterial overgrowth (SIBO), destruction of the intestinal mucosa barrier function and a high-fat diet all seem to exacerbate the development of hepatic fibrosis and NASH, leading to HCC in patients with NAFLD/NASH. Thus, the intestinal microbiota may play a role in the development of NAFLD/NASH. In this review, we describe recent advances in our knowledge of the molecular mechanisms contributing to the development of hepatic fibrosis and HCC in patients with NAFLD/NASH.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, 1-1-1 Fujimi, Kofu, Yamanashi 400-8506, Japan
| | - Yosuke Hirotsu
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
| | - Ryota Masuzaki
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Mitsuhiko Moriyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan; (T.K.); (R.M.); (M.M.)
| | - Masao Omata
- Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; (Y.H.); (M.O.)
- The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
19
|
Shalapour S, Karin M. Cruel to Be Kind: Epithelial, Microbial, and Immune Cell Interactions in Gastrointestinal Cancers. Annu Rev Immunol 2020; 38:649-671. [PMID: 32040356 DOI: 10.1146/annurev-immunol-082019-081656] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
20
|
Shepard CR. TLR9 in MAFLD and NASH: At the Intersection of Inflammation and Metabolism. Front Endocrinol (Lausanne) 2020; 11:613639. [PMID: 33584545 PMCID: PMC7880160 DOI: 10.3389/fendo.2020.613639] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Toll-Like Receptor 9 (TLR9) is an ancient receptor integral to the primordial functions of inflammation and metabolism. TLR9 functions to regulate homeostasis in a healthy system under acute stress. The literature supports that overactivation of TLR9 under the chronic stress of obesity is a critical driver of the pathogenesis of NASH and NASH-associated fibrosis. Research has focused on the core contributions of the parenchymal and non-parenchymal cells in the liver, adipose, and gut compartments. TLR9 is activated by endogenous circulating mitochondrial DNA (mtDNA). Chronically elevated circulating levels of mtDNA, caused by the stress of overnutrition, are observed in obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and NASH. Clinical evidence is supportive of TLR9 overactivation as a driver of disease. The role of TLR9 in metabolism and energy regulation may have an underappreciated contribution in the pathogenesis of NASH. Antagonism of TLR9 in NASH and NASH-associated fibrosis could be an effective therapeutic strategy to target both the inflammatory and metabolic components of such a complex disease.
Collapse
|
21
|
Fukui H. Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far? Diseases 2019; 7:diseases7040058. [PMID: 31726747 PMCID: PMC6956030 DOI: 10.3390/diseases7040058] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence supports that gut dysbiosis may relate to various liver diseases. Alcoholics with high intestinal permeability had a decrease in the abundance of Ruminnococcus. Intestinal dysmotility, increased gastric pH, and altered immune responses in addition to environmental and genetic factors are likely to cause alcohol-associated gut microbial changes. Alcohol-induced dysbiosis may be associated with gut barrier dysfunction, as microbiota and their products modulate barrier function by affecting epithelial pro-inflammatory responses and mucosal repair functions. High levels of plasma endotoxin are detected in alcoholics, in moderate fatty liver to advanced cirrhosis. Decreased abundance of Faecalibacterium prausnitzii, an anti-inflammatory commensal, stimulating IL-10 secretion and inhibiting IL-12 and interferon-γ expression. Proteobacteria, Enterobacteriaceae, and Escherichia were reported to be increased in NAFLD (nonalcoholic fatty liver disease) patients. Increased abundance of fecal Escherichia to elevated blood alcohol levels in these patients and gut microbiota enriched in alcohol-producing bacteria produce more alcohol (alcohol hypothesis). Some undetermined pathological sequences related to gut dysbiosis may facilitate energy-producing and proinflammatory conditions for the progression of NAFLD. A shortage of autochthonous non-pathogenic bacteria and an overgrowth of potentially pathogenic bacteria are common findings in cirrhotic patients. The ratio of the amounts of beneficial autochthonous taxa (Lachnospiraceae + Ruminococaceae + Veillonellaceae + Clostridiales Incertae Sedis XIV) to those of potentially pathogenic taxa (Enterobacteriaceae + Bacteroidaceae) was low in those with early death and organ failure. Cirrhotic patients with decreased microbial diversity before liver transplantation were more likely to develop post-transplant infections and cognitive impairment related to residual dysbiosis. Patients with PSC had marked reduction of bacterial diversity. Enterococcus and Lactobacillus were increased in PSC patients (without liver cirrhosis.) Treatment-naive PBC patients were associated with altered composition and function of gut microbiota, as well as a lower level of diversity. As serum anti-gp210 antibody has been considered as an index of disease progression, relatively lower species richness and lower abundance of Faecalibacterium spp. in gp210-positive patients are interesting. The dysbiosis-induced altered bacterial metabolites such as a hepatocarcinogenesis promotor DCA, together with a leaky gut and bacterial translocation. Gut protective Akkermansia and butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early hepatocellular carcinoma (HCC) patients.
Collapse
Affiliation(s)
- Hiroshi Fukui
- Department of Gastroenterology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
22
|
Koopman N, Molinaro A, Nieuwdorp M, Holleboom AG. Review article: can bugs be drugs? The potential of probiotics and prebiotics as treatment for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2019; 50:628-639. [PMID: 31373710 DOI: 10.1111/apt.15416] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/06/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver condition. A major current research effort is ongoing to find potential strategies to treat NAFLD-non-alcoholic steatohepatitis (NASH), with special attention to the gut microbiota. Multiple animal studies and pilot clinical trials are assessing different gut microbiota modulating strategies such as faecal microbiota transplantation, antibiotics, probiotics, prebiotics and synbiotics. AIM To review the role of microbiota in NAFLD-NASH and determine whether pro- and prebiotics have potential as treatment METHODS: Information was obtained from critically reviewing literature on PubMed on targeting the gut microbiota in NAFLD. Search terms included NAFLD, NASH, non-alcoholic fatty liver disease, steatohepatitis; combined with microbiome, microbiota, gut bacteria, probiotics and prebiotics. RESULTS Animal studies and the first emerging studies in humans show promising results for both the common probiotics Lactobacillus, Bifidobacterium and Streptococci as for short chain fatty acid (SCFA) butyrate-producing bacteria. Also, prebiotics have positive effects on different mechanisms underlying NAFLD-NASH. CONCLUSIONS The most promising strategies thus far developed to alter the microbiome in NAFLD-NASH are probiotics and prebiotics. However, pre- and probiotic treatment of NAFLD-NASH is relatively new and still under development. Actual understanding of the involved mechanisms is lacking and changes in the intestinal microbiota composition after treatment are rarely measured. Furthermore, large clinical trials with comparative endpoints are unavailable. Personalised treatment based on metagenomics gut microbiota analysis will probably be part of the future diagnosis and treatment of NAFLD-NASH.
Collapse
Affiliation(s)
- Nienke Koopman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Max Nieuwdorp
- Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol 2019; 20:40-54. [DOI: 10.1038/s41577-019-0198-4] [Citation(s) in RCA: 649] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
|
24
|
Camilleri M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 2019; 68:1516-1526. [PMID: 31076401 PMCID: PMC6790068 DOI: 10.1136/gutjnl-2019-318427] [Citation(s) in RCA: 638] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
The objectives of this review on 'leaky gut' for clinicians are to discuss the components of the intestinal barrier, the diverse measurements of intestinal permeability, their perturbation in non-inflammatory 'stressed states' and the impact of treatment with dietary factors. Information on 'healthy' or 'leaky' gut in the public domain requires confirmation before endorsing dietary exclusions, replacement with non-irritating foods (such as fermented foods) or use of supplements to repair the damage. The intestinal barrier includes surface mucus, epithelial layer and immune defences. Epithelial permeability results from increased paracellular transport, apoptosis or transcellular permeability. Barrier function can be tested in vivo using orally administered probe molecules or in vitro using mucosal biopsies from humans, exposing the colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from human patients. Assessment of intestinal barrier requires measurements beyond the epithelial layer. 'Stress' disorders such as endurance exercise, non-steroidal anti-inflammatory drugs administration, pregnancy and surfactants (such as bile acids and dietary factors such as emulsifiers) increase permeability. Dietary factors can reverse intestinal leakiness and mucosal damage in the 'stress' disorders. Whereas inflammatory or ulcerating intestinal diseases result in leaky gut, no such disease can be cured by simply normalising intestinal barrier function. It is still unproven that restoring barrier function can ameliorate clinical manifestations in GI or systemic diseases. Clinicians should be aware of the potential of barrier dysfunction in GI diseases and of the barrier as a target for future therapy.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
25
|
Hendrikx T, Schnabl B. Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J Intern Med 2019; 286:32-40. [PMID: 30873652 DOI: 10.1111/joim.12892] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alterations in the bacteria that reside in our gastrointestinal tract play a role in the pathogenesis and progression of many disorders including liver and gastrointestinal diseases. Both qualitative (composition) and quantitative (amount) changes in gut microbes are associated with increased susceptibility to liver disease. Importantly, the intestinal microbiota is involved in the regulation of many host signalling pathways via the generation of different metabolites. Hence, dysbiosis influences disease development and progression by directly affecting the host-bacteria metabolic interaction. Microbe-derived harmful metabolites can translocate to distant organs due to increased intestinal permeability as observed during dysbiosis. Contrary, certain bacterial metabolites such as tryptophan metabolites contribute to intestinal and systemic homeostasis. Here, we provide an overview of current evidence describing to what extent microbial metabolites modulate the development of chronic liver diseases such as alcoholic steatohepatitis and nonalcoholic fatty liver disease with a special emphasis on indoles.
Collapse
Affiliation(s)
- T Hendrikx
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - B Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
26
|
Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut 2019; 68:359-370. [PMID: 30171065 DOI: 10.1136/gutjnl-2018-316307] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022]
Abstract
The spectrum of non-alcoholic fatty liver disease (NAFLD) ranges from simple hepatic steatosis, commonly associated with obesity, to non-alcoholic steatohepatitis, which can progress to fibrosis, cirrhosis and hepatocellular carcinoma. NAFLD pathophysiology involves environmental, genetic and metabolic factors, as well as changes in the intestinal microbiota and their products. Dysfunction of the intestinal barrier can contribute to NAFLD development and progression. Although there are technical limitations in assessing intestinal permeability in humans and the number of patients in these studies is rather small, fewer than half of the patients have increased intestinal permeability and translocation of bacterial products. Microbe-derived metabolites and the signalling pathways they affect might play more important roles in development of NAFLD. We review the microbial metabolites that contribute to the development of NAFLD, such as trimethylamine, bile acids, short-chain fatty acids and ethanol. We discuss the mechanisms by which metabolites produced by microbes might affect disease progression and/or serve as therapeutic targets or biomarkers for NAFLD.
Collapse
Affiliation(s)
- Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, San Diego, California, USA.,Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
27
|
Gut Microbiota-Derived Mediators as Potential Markers in Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8507583. [PMID: 30719448 PMCID: PMC6334327 DOI: 10.1155/2019/8507583] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common, multifactorial, and poorly understood liver disease whose incidence is globally rising. During the past decade, several lines of evidence suggest that dysbiosis of intestinal microbiome represents an important factor contributing to NAFLD occurrence and its progression into NASH. The mechanisms that associate dysbiosis with NAFLD include changes in microbiota-derived mediators, deregulation of the gut endothelial barrier, translocation of mediators of dysbiosis, and hepatic inflammation. Changes in short chain fatty acids, bile acids, bacterial components, choline, and ethanol are the result of altered intestinal microbiota. We perform a narrative review of the previously published evidence and discuss the use of gut microbiota-derived mediators as potential markers in NAFLD.
Collapse
|
28
|
Antimicrobial proteins: intestinal guards to protect against liver disease. J Gastroenterol 2019; 54:209-217. [PMID: 30392013 PMCID: PMC6391196 DOI: 10.1007/s00535-018-1521-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Alterations of gut microbes play a role in the pathogenesis and progression of many disorders including liver and gastrointestinal diseases. Both qualitative and quantitative changes in gut microbiota have been associated with liver disease. Intestinal dysbiosis can disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In order to sustain symbiosis and protect from pathological bacterial translocation, antimicrobial proteins (AMPs) such as a-defensins and C-type lectins are expressed in the gastrointestinal tract. In this review, we provide an overview of the role of AMPs in different chronic liver disease such as alcoholic steatohepatitis, non-alcoholic fatty liver disease, and cirrhosis. In addition, potential approaches to modulate the function of AMPs and prevent bacterial translocation are discussed.
Collapse
|
29
|
Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ, Zhu R, Zhu L. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 2018; 67:1881-1891. [PMID: 28774887 DOI: 10.1136/gutjnl-2017-314307] [Citation(s) in RCA: 496] [Impact Index Per Article: 70.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. DESIGN Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. RESULTS Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na+-taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. CONCLUSIONS The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome.
Collapse
Affiliation(s)
- Na Jiao
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Susan S Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Adrian Chapa-Rodriguez
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Colleen A Nugent
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Maria Tsompana
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Lucy Mastrandrea
- Division of Endocrinology, Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Michael J Buck
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Robert D Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Robert J Genco
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
- Departments of Oral Biology, Microbiology and Immunology, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, The State University of New York at Buffalo, Buffalo, New York, USA
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
30
|
Leung DH, Yimlamai D. The intestinal microbiome and paediatric liver disease. Lancet Gastroenterol Hepatol 2018; 2:446-455. [PMID: 28497760 DOI: 10.1016/s2468-1253(16)30241-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
The intestinal microbiome has been the intense focus of recent study, but how the microbiota affects connected organs, such as the liver, has not been fully elucidated. The microbiome regulates intestinal permeability and helps to metabolise the human diet into small molecules, thus directly affecting liver health. Several studies have linked intestinal dysbiosis to the severity and progression of liver diseases, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, primary sclerosing cholangitis, total parenteral nutrition-associated liver disease, and cystic fibrosis-associated liver disease. However, there is limited information and interpretation with regard to how the microbiome could contribute to liver disease in the paediatric population. Notably, the gut microbiota is distinct at birth and does not establish an adult profile until the third year of life. Clinical research suggests that paediatric liver disease differs in both severity and rate of progression compared with adult forms, suggesting independent mechanisms of pathogenesis. We discuss data linking the intestinal microbiome to liver disease development and therapeutic efforts to modify the microbiome in children.
Collapse
Affiliation(s)
- Daniel H Leung
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Division of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Dean Yimlamai
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
31
|
Endotoxinemia contributes to steatosis, insulin resistance and atherosclerosis in chronic hepatitis C: the role of pro-inflammatory cytokines and oxidative stress. Infection 2018; 46:793-799. [PMID: 30066228 DOI: 10.1007/s15010-018-1185-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Endotoxin is a component of the outer membrane of gram-negative bacteria that live in the intestine. Endotoxinemia is reported in non-alcoholic fatty liver disease and in cirrhotic patients, causing various biological and clinical effects in the host. It is not known whether endotoxinemia occurs in chronic hepatitis C patients (CHC), therefore we evaluated the occurrence of endotoxinemia and its effect on inflammation, liver damage, insulin resistance (IR) and atherosclerosis. METHODS Consecutive CHC patients assessed by liver biopsy were enrolled. Endotoxinemia was evaluated by LAL test. IR was estimated by HOMA-IR. Serum TNF-α, IL-8, adiponectin and MCP-1 were measured with ELISA tests. Oxidative stress was estimated by circulating IgG against malondialdehyde adducts with human serum albumin (MDA-HAS). Carotid atherosclerosis was assessed by ultrasonography. RESULTS Endotoxinemia was found in 60% of the 126 patients enrolled. A serum level-dependent association between endotoxinemia, steatosis (p < 0.001) and HOMA-IR (p < 0.006) was observed. Patients with endotoxinemia showed significant increase in TNF-α and IL8 levels. TNF-α correlated with steatosis (p < 0.001) and HOMA-IR (p < 0.03), whereas IL8 correlated with steatosis (p = <0.001), TNF-α (p < 0.04) and atherosclerosis (p < 0.01). The highest levels of endotoxinemia were associated with oxidative stress and a higher prevalence of carotid atherosclerosis. Multivariate logistic regression analysis showed that the independent factors associated with endotoxinemia were hepatic steatosis, HOMA-IR, IL8 and MDA-HAS. CONCLUSIONS Endotoxinemia occurs with high frequency in CHC patients and contributes to the development of hepatic steatosis, IR and atherosclerosis through increased pro-inflammatory cytokines and oxidative stress. Anti-endotoxin treatment could be of clinical relevance.
Collapse
|
32
|
Feng Q, Liu W, Baker SS, Li H, Chen C, Liu Q, Tang S, Guan L, Tsompana M, Kozielski R, Baker RD, Peng J, Liu P, Zhu R, Hu Y, Zhu L. Multi-targeting therapeutic mechanisms of the Chinese herbal medicine QHD in the treatment of non-alcoholic fatty liver disease. Oncotarget 2018; 8:27820-27838. [PMID: 28416740 PMCID: PMC5438611 DOI: 10.18632/oncotarget.15482] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Beneficial effects of the Chinese herbal medicine Qushi Huayu Decoction (QHD) were observed with non-alcoholic fatty liver disease (NAFLD) patients and animal models. The impact of QHD or its active components (geniposide and chlorogenic acid, GC) on NAFLD liver transcriptome and gut microbiota was examined with NAFLD rats. Increased expression for genes required for glutathione production and decreased expression for genes required for lipid synthesis was observed in NAFLD livers treated with QHD and GC. GC treatment decreased serum LPS, which could be explained by reduced mucosal damage in the colon of GC-treated rats. Further, our data suggest an increased abundance of Treg-inducing bacteria that stimulated the Treg activity in GC treated colon, which in turn down-regulated inflammatory signals, improved gut barrier function and consequently reduced hepatic exposure to microbial products. Our study suggests that QHD simultaneously enhanced the hepatic anti-oxidative mechanism, decreased hepatic lipid synthesis, and promoted the regulatory T cell inducing microbiota in the gut.
Collapse
Affiliation(s)
- Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Wensheng Liu
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Hongshan Li
- Ningbo No.2 Hospital, Ningbo, Zhejiang Province, China
| | - Cheng Chen
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shijie Tang
- Department of Bioinformatics, Tongji University, Shanghai, China
| | - Lingyu Guan
- Department of Bioinformatics, Tongji University, Shanghai, China
| | - Maria Tsompana
- Center of Excellence in Bioinformatics and Life Sciences, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Rafal Kozielski
- Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pathology, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA
| | - Jinghua Peng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, Tongji University, Shanghai, China
| | - Yiyang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, Buffalo, NY, USA.,Department of Pediatrics, The State University of New York at Buffalo, Buffalo, New York, USA.,Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Bluemel S, Wang L, Martino C, Lee S, Wang Y, Williams B, Horvath A, Stadlbauer V, Zengler K, Schnabl B. The Role of Intestinal C-type Regenerating Islet Derived-3 Lectins for Nonalcoholic Steatohepatitis. Hepatol Commun 2018; 2:393-406. [PMID: 29619418 PMCID: PMC5880191 DOI: 10.1002/hep4.1165] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
C-type regenerating islet derived-3 (Reg3) lectins defend against pathogens and keep commensal bacteria at a distance. Deficiency of Reg3g and Reg3b facilitates alcohol-induced bacterial translocation and alcoholic liver disease. Intestinal Reg3g is down-regulated in animal models of diet-induced obesity, but the functional consequences for nonalcoholic steatohepatitis (NASH) are unknown. The aim of this study was to investigate the role of Reg3 lectins in NASH. NASH was induced by a Western-style fast-food diet in mice deficient for Reg3g or Reg3b and in transgenic mice overexpressing Reg3g in intestinal epithelial cells (Reg3gTg). Glucose tolerance was assessed after 18 weeks and insulin resistance after 19 weeks of feeding. After 20 weeks, mice were assessed for features of the metabolic syndrome. Obesity was not different in genetically modified mice compared with their respective wild-type littermates. Glucose intolerance, liver injury, hepatic inflammation, steatosis, fibrosis, and bacterial translocation to mesenteric lymph nodes and to the liver were not different in Reg3g-deficient mice compared with wild-type littermates. Plasma endotoxin levels were higher in Reg3g-deficient mice. Reg3b deficiency protected against glucose intolerance, but liver disease, bacterial translocation, and plasma endotoxin levels were similar to wild-type littermates. Absence of either REG3G or REG3B protein in the ileum was not compensated for by up-regulation of the respective other REG3 protein. Transgenic Reg3g mice also developed liver injury, steatosis, and fibrosis similar to their wild-type littermates. Conclusion: In contrast to alcoholic liver disease, loss of intestinal Reg3 lectins is not sufficient to aggravate diet-induced obesity and NASH. This supports a multi-hit pathogenesis in NASH. Only glucose metabolism is affected by Reg3b deficiency. (Hepatology Communications 2018;2:393-406).
Collapse
Affiliation(s)
- Sena Bluemel
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Lirui Wang
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of MedicineVA San Diego Healthcare SystemSan DiegoCA
| | - Cameron Martino
- Department of PediatricsDivision of Host‐Microbe Systems and TherapeuticsSan DiegoCA
| | - Suhan Lee
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Yanhan Wang
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of MedicineVA San Diego Healthcare SystemSan DiegoCA
| | - Brandon Williams
- Department of MedicineUniversity of California San DiegoLa JollaCA
| | - Angela Horvath
- Department of Internal Medicine, Division of Gastroenterology and HepatologyMedical University of GrazGrazAustria
- Center of Biomarker Research in MedicineGrazAustria
| | - Vanessa Stadlbauer
- Department of Internal Medicine, Division of Gastroenterology and HepatologyMedical University of GrazGrazAustria
| | - Karsten Zengler
- Department of PediatricsDivision of Host‐Microbe Systems and TherapeuticsSan DiegoCA
- Center for Microbiome InnovationUniversity of California San DiegoLa JollaCA
| | - Bernd Schnabl
- Department of MedicineUniversity of California San DiegoLa JollaCA
- Department of MedicineVA San Diego Healthcare SystemSan DiegoCA
| |
Collapse
|
34
|
Abstract
Nonalcoholic fatty liver disease is the most common cause of chronic liver disease in North America and is growing as a cause of chronic liver disease in many other parts of the world as well. It has 2 principal clinical-pathologic phenotypes: (1) nonalcoholic fatty liver and (2) nonalcoholic steatohepatitis. The development of both phenotypes is tightly linked to excess body weight and insulin resistance. This review discusses the emerging tools for the analysis of the microbiome, their limitations, and the existing literature with respect to the intestinal microbiome and their role in nonalcoholic fatty liver.
Collapse
|
35
|
Jiao N, Baker SS, Nugent CA, Tsompana M, Cai L, Wang Y, Buck MJ, Genco RJ, Baker RD, Zhu R, Zhu L. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genomics 2018; 50:244-254. [PMID: 29373083 DOI: 10.1152/physiolgenomics.00114.2017] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A number of studies have associated obesity with altered gut microbiota, although results are discordant regarding compositional changes in the gut microbiota of obese animals. Herein we used a meta-analysis to obtain an unbiased evaluation of structural and functional changes of the gut microbiota in diet-induced obese rodents. The raw sequencing data of nine studies generated from high-fat diet (HFD)-induced obese rodent models were processed with QIIME to obtain gut microbiota compositions. Biological functions were predicted and annotated with KEGG pathways with PICRUSt. No significant difference was observed for alpha diversity and Bacteroidetes-to-Firmicutes ratio between obese and lean rodents. Bacteroidia, Clostridia, Bacilli, and Erysipelotrichi were dominant classes, but gut microbiota compositions varied among studies. Meta-analysis of the nine microbiome data sets identified 15 differential taxa and 57 differential pathways between obese and lean rodents. In obese rodents, increased abundance was observed for Dorea, Oscillospira, and Ruminococcus, known for fermenting polysaccharide into short chain fatty acids (SCFAs). Decreased Turicibacter and increased Lactococcus are consistent with elevated inflammation in the obese status. Differential functional pathways of the gut microbiome in obese rodents included enriched pyruvate metabolism, butanoate metabolism, propanoate metabolism, pentose phosphate pathway, fatty acid biosynthesis, and glycerolipid metabolism pathways. These pathways converge in the function of carbohydrate metabolism, SCFA metabolism, and biosynthesis of lipid. HFD-induced obesity results in structural and functional dysbiosis of gut microbiota. The altered gut microbiome may contribute to obesity development by promoting insulin resistance and systemic inflammation.
Collapse
Affiliation(s)
- Na Jiao
- Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , People's Republic of China
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo , Buffalo, New York.,Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo , Buffalo, New York
| | - Colleen A Nugent
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo , Buffalo, New York
| | - Maria Tsompana
- Center of Excellence in Bioinformatics and Life Sciences, the State University of New York at Buffalo , Buffalo, New York
| | - Liting Cai
- Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , People's Republic of China
| | - Yong Wang
- Basic Medical College, Beijing University of Chinese Medicine , Beijing , People's Republic of China
| | - Michael J Buck
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo , Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, the State University of New York at Buffalo , Buffalo, New York
| | - Robert J Genco
- Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo , Buffalo, New York.,Departments of Oral Biology, Microbiology, and Immunology, The State University of New York at Buffalo , Buffalo, New York
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo , Buffalo, New York
| | - Ruixin Zhu
- Department of Gastroenterology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University , Shanghai , People's Republic of China
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, The State University of New York at Buffalo , Buffalo, New York.,Genome, Environment and Microbiome Community of Excellence, The State University of New York at Buffalo , Buffalo, New York
| |
Collapse
|
36
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. BUGS AS DRUGS 2018:187-212. [DOI: 10.1128/9781555819705.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouyen-Josas France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère; Clamart France
| |
Collapse
|
37
|
Song M, Li X, Zhang X, Shi H, Vos MB, Wei X, Wang Y, Gao H, Rouchka EC, Yin X, Zhou Z, Prough RA, Cave MC, McClain CJ. Dietary copper-fructose interactions alter gut microbial activity in male rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G119-G130. [PMID: 29025734 PMCID: PMC5866377 DOI: 10.1152/ajpgi.00378.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023]
Abstract
Dietary copper-fructose interactions contribute to the development of nonalcoholic fatty liver disease (NAFLD). Gut microbiota play critical roles in the pathogenesis of NAFLD. The aim of this study was to determine the effect of different dietary doses of copper and their interactions with high fructose on gut microbiome. Male weanling Sprague-Dawley rats were fed diets with adequate copper (6 ppm CuA), marginal copper (1.5 ppm CuM) (low copper), or supplemented copper (20 ppm CuS) (high copper) for 4 wk. Deionized water or deionized water containing 30% fructose (wt/vol) was given ad libitum. Copper status, liver enzymes, gut barrier function, and gut microbiome were evaluated. Both low- and high-copper diets led to liver injury in high-fructose-fed rats, and this was associated with gut barrier dysfunction, as shown by the markedly decreased tight junction proteins and increased gut permeability. 16S rDNA sequencing analysis revealed distinct alterations of the gut microbiome associated with dietary low- and high-copper/high-fructose feeding. The common features of the alterations of the gut microbiome were the increased abundance of Firmicutes and the depletion of Akkermansia. However, they differed mainly within the phylum Firmicutes. Our data demonstrated that a complex interplay among host, microbes, and dietary copper-fructose interaction regulates gut microbial metabolic activity, which may contribute to the development of liver injury and hepatic steatosis. The distinct alterations of gut microbial activity, which were associated with the different dietary doses of copper and fructose, imply that separate mechanism(s) may be involved. NEW & NOTEWORTHY First, dietary low- and high-copper/high-fructose-induced liver injury are associated with distinct alterations of gut microbiome. Second, dietary copper level plays a critical role in maintaining the gut barrier integrity, likely by acting on the intestinal tight junction proteins and the protective commensal bacteria Akkermansia. Third, the alterations of gut microbiome induced by dietary low and high copper with or without fructose differ mainly within the phylum Firmicutes.
Collapse
Affiliation(s)
- Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine , Louisville, Kentucky
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine , Louisville, Kentucky
| | - Xiaohong Li
- Bioinformatics Core. University of Louisville School of Medicine , Louisville, Kentucky
| | - Xiang Zhang
- Department of Chemistry, University of Louisville School of Medicine , Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine , Louisville, Kentucky
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine , Louisville, Kentucky
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine , Louisville, Kentucky
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville School of Medicine , Louisville, Kentucky
| | - Hongxue Shi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine , Louisville, Kentucky
| | - Miriam B Vos
- Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Xiaoli Wei
- Department of Chemistry, University of Louisville School of Medicine , Louisville, Kentucky
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville School of Medicine , Louisville, Kentucky
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University , Changchun , China
| | - Hong Gao
- Genomics Facility, University of Louisville School of Medicine , Louisville, Kentucky
| | - Eric C Rouchka
- Bioinformatics Core. University of Louisville School of Medicine , Louisville, Kentucky
| | - Xinmin Yin
- Department of Chemistry, University of Louisville School of Medicine , Louisville, Kentucky
- Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville School of Medicine , Louisville, Kentucky
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina
- Department of Nutrition, University of North Carolina at Greensboro, Kannapolis, North Carolina
| | - Russell A Prough
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine , Louisville, Kentucky
| | - Matthew C Cave
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine , Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine , Louisville, Kentucky
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine , Louisville, Kentucky
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine , Louisville, Kentucky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine , Louisville, Kentucky
- Robley Rex Louisville Veterans Afairs Medical Center , Louisville, Kentucky
| | - Craig J McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine , Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine , Louisville, Kentucky
- Hepatobiology and Toxicology Center, University of Louisville School of Medicine , Louisville, Kentucky
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine , Louisville, Kentucky
- Robley Rex Louisville Veterans Afairs Medical Center , Louisville, Kentucky
| |
Collapse
|
38
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0007-2016. [PMID: 28840806 PMCID: PMC11687517 DOI: 10.1128/microbiolspec.bad-0007-2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 02/08/2023] Open
Abstract
Being overweight and obesity are the leading causes of liver disease in Western countries. Liver damage induced by being overweight can range from steatosis, harmless in its simple form, to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Alcohol consumption is an additional major cause of liver disease. Not all individuals who are overweight or excessively consume alcohol develop nonalcoholic fatty liver diseases (NAFLD) or alcoholic liver disease (ALD) and advanced liver disease. The role of the intestinal microbiota (IM) in the susceptibility to liver disease in this context has been the subject of recent studies. ALD and NAFLD appear to be influenced by the composition of the IM, and dysbiosis is associated with ALD and NAFLD in rodent models and human patient cohorts. Several microbial metabolites, such as short-chain fatty acids and bile acids, are specifically associated with dysbiosis. Recent studies have highlighted the causal role of the IM in the development of liver diseases, and the use of probiotics or prebiotics improves some parameters associated with liver disease. Several studies have made progress in deciphering the mechanisms associated with the modulation of the IM. These data have demonstrated the intimate relationship between the IM and metabolic liver disease, suggesting that targeting the gut microbiota could be a new preventive or therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
39
|
Zhu A, Chen J, Wu P, Luo M, Zeng Y, Liu Y, Zheng H, Zhang L, Chen Z, Sun Q, Li W, Duan Y, Su D, Xiao Z, Duan Z, Zheng S, Bai L, Zhang X, Ju Z, Li Y, Hu R, Pandol SJ, Han YP. Cationic Polystyrene Resolves Nonalcoholic Steatohepatitis, Obesity, and Metabolic Disorders by Promoting Eubiosis of Gut Microbiota and Decreasing Endotoxemia. Diabetes 2017; 66:2137-2143. [PMID: 28446519 PMCID: PMC5521855 DOI: 10.2337/db17-0070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/15/2017] [Indexed: 12/16/2022]
Abstract
A pandemic of metabolic diseases, consisting of type 2 diabetes, nonalcoholic fatty liver disease, and obesity, has imposed critical challenges for societies worldwide, prompting investigation of underlying mechanisms and exploration of low-cost and effective treatment. In this report, we demonstrate that metabolic disorders in mice generated by feeding with a high-fat diet without dietary vitamin D can be prevented by oral administration of polycationic amine resin. Oral administration of cholestyramine, but not the control uncharged polystyrene, was able to sequester negatively charged bacterial endotoxin in the gut, leading to 1) reduced plasma endotoxin levels, 2) resolved systemic inflammation and hepatic steatohepatitis, and 3) improved insulin sensitivity. Gut dysbiosis, characterized as an increase of the phylum Firmicutes and a decrease of Bacteroidetes and Akkermansia muciniphila, was fully corrected by cholestyramine, indicating that the negatively charged components in the gut are critical for the dysbiosis. Furthermore, fecal bacteria transplant, derived from cholestyramine-treated animals, was sufficient to antagonize the metabolic disorders of the recipient mice. These results indicate that the negatively charged components produced by dysbiosis are critical for biogenesis of metabolic disorders and also show a potential application of cationic polystyrene to treat metabolic disorders through promoting gut eubiosis.
Collapse
Affiliation(s)
- Airu Zhu
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jingjing Chen
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Pengfei Wu
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mei Luo
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yilan Zeng
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Yong Liu
- Public Health Clinical Center of Chengdu, Chengdu, China
| | - Han Zheng
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Zhang
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zishou Chen
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qun Sun
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenwen Li
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yixiang Duan
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Danmei Su
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhixiong Xiao
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhongping Duan
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Li Bai
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Zhang
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zhongyuan Ju
- Chengdu Tongde Pharmaceutical Co. Ltd., Chengdu, China
| | - Yan Li
- Chengdu Tongde Pharmaceutical Co. Ltd., Chengdu, China
| | - Richard Hu
- Olive View-UCLA Medical Center, Los Angeles, CA
| | | | - Yuan-Ping Han
- Center for Growth, Metabolism and Aging, Analytical and Testing Center, Key Laboratory of Bio-resource and Eco-environment, College of Life Sciences, Sichuan University, Chengdu, China
- Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
40
|
Kitabatake H, Tanaka N, Fujimori N, Komatsu M, Okubo A, Kakegawa K, Kimura T, Sugiura A, Yamazaki T, Shibata S, Ichikawa Y, Joshita S, Umemura T, Matsumoto A, Koinuma M, Sano K, Aoyama T, Tanaka E. Association between endotoxemia and histological features of nonalcoholic fatty liver disease. World J Gastroenterol 2017; 23:712-722. [PMID: 28216979 PMCID: PMC5292346 DOI: 10.3748/wjg.v23.i4.712] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/14/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess whether surrogate biomarkers of endotoxemia were correlated with the histological features of nonalcoholic fatty liver disease (NAFLD). METHODS One hundred twenty-six NAFLD patients who had undergone percutaneous liver biopsy were enrolled. Serum lipopolysaccharide (LPS)-binding protein (LBP) and anti-endotoxin core immunoglobulin G (EndoCab IgG) antibody concentrations at the time of liver biopsy were measured using the enzyme-linked immunosorbent assays to examine for relationships between biomarker levels and histological scores. RESULTS Serum LBP concentration was significantly increased in nonalcoholic steatohepatitis (NASH) patients as compared with nonalcoholic fatty liver (NAFL) subjects and was correlated with steatosis (r = 0.38, P < 0.0001) and ballooning scores (r = 0.23, P = 0.01), but not with the severity of lobular inflammation or fibrosis. Multivariate linear regression analysis revealed that LBP was associated with steatosis score and circulating C-reactive protein, aspartate aminotransferase, and fibrinogen levels. Serum EndoCab IgG concentration was comparable between NASH and NAFL patients. No meaningful correlations were detected between EndoCab IgG and histological findings. CONCLUSION LBP/EndoCab IgG were not correlated with lobular inflammation or fibrosis. More accurate LPS biomarkers are required to stringently assess the contribution of endotoxemia to conventional NASH.
Collapse
|
41
|
du Plessis J, Korf H, van Pelt J, Windmolders P, Vander Elst I, Verrijken A, Hubens G, Van Gaal L, Cassiman D, Nevens F, Francque S, van der Merwe S. Pro-Inflammatory Cytokines but Not Endotoxin-Related Parameters Associate with Disease Severity in Patients with NAFLD. PLoS One 2016; 11:e0166048. [PMID: 27992443 PMCID: PMC5167229 DOI: 10.1371/journal.pone.0166048] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/22/2016] [Indexed: 12/30/2022] Open
Abstract
Intestinal dysbiosis and elevated lipopolysaccharides (LPS) levels have been implicated in the development of obesity, insulin resistance and non-alcoholic steatohepatitis (NASH). In order to determine if LPS levels are elevated in patients with NASH compared to patients with non-alcoholic fatty liver (NAFL) and, if elevated LPS levels correlated with histological severity of non-alcoholic fatty liver disease (NAFLD) we compared LPS, markers of LPS bioactivity and pro-inflammatory cytokines/chemokines in patients undergoing bariatric surgery. At the time of surgery a liver biopsy was taken allowing the stratification into well-delineated subgroups including: No NAFL/NAFL; NASH; NASH with fibrosis and NASH cirrhotics, using the NAFLD Activity Score (NAS). Anthropometric data and plasma were collected for assessment of LPS, lipopolysaccharide binding protein (LBP), soluble CD14 (sCD14), intestinal-type fatty acid binding protein (iFABP), Toll-like receptors 2 and 4 (TLR2, 4) and a panel of cytokines/chemokines. Similar analysis was performed on plasma from a cohort of healthy controls. Our data indicate elevated levels of LPS, LBP, sCD14, iFABP and TLR2,4 in obese patients compared to healthy controls, however, these parameters remained unaltered within patients with limited liver disease (NAFL) compared to NASH/NASH with fibrosis subgroups. Hierarchic cluster analysis using endotoxin-related parameters failed to discriminate between lean controls, NAFLD. While similar cluster analysis implementing inflammation-related parameters clearly distinguished lean controls, NALFD subgroups and NASH cirrhotics. In addition, LPS levels was not associated with disease severity while TNFα, IL8, and CCL3 featured a clear correlation with transaminase levels and the histological severity of NALFD. In conclusion our data indicate a stronger correlation for circulating inflammatory- rather than endotoxin-related parameters in progression of NAFLD and highlights the need for additional larger studies in unravelling further mechanistic insights.
Collapse
Affiliation(s)
- Johannie du Plessis
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jos van Pelt
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Ingrid Vander Elst
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - An Verrijken
- Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Guy Hubens
- Department of Abdominal Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Luc Van Gaal
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - David Cassiman
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Department of Internal Medicine, Division of Liver and biliopancreatic disorders, KU Leuven, Leuven, Belgium
| | - Frederik Nevens
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Department of Internal Medicine, Division of Liver and biliopancreatic disorders, KU Leuven, Leuven, Belgium
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Schalk van der Merwe
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
- Department of Internal Medicine, Division of Liver and biliopancreatic disorders, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
42
|
Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1018-G1036. [PMID: 27686615 PMCID: PMC5206291 DOI: 10.1152/ajpgi.00245.2016] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) represent a major health burden in industrialized countries. Although alcohol abuse and nutrition play a central role in disease pathogenesis, preclinical models support a contribution of the gut microbiota to ALD and NAFLD. This review describes changes in the intestinal microbiota compositions related to ALD and NAFLD. Findings from in vitro, animal, and human studies are used to explain how intestinal pathology contributes to disease progression. This review summarizes the effects of untargeted microbiome modifications using antibiotics and probiotics on liver disease in animals and humans. While both affect humoral inflammation, regression of advanced liver disease or mortality has not been demonstrated. This review further describes products secreted by Lactobacillus- and microbiota-derived metabolites, such as fatty acids and antioxidants, that could be used for precision medicine in the treatment of liver disease. A better understanding of host-microbial interactions is allowing discovery of novel therapeutic targets in the gut microbiota, enabling new treatment options that restore the intestinal ecosystem precisely and influence liver disease. The modulation options of the gut microbiota and precision medicine employing the gut microbiota presented in this review have excellent prospects to improve treatment of liver disease.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Brandon Williams
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, California; and
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California;
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
43
|
Kang Y, Zhang X, Cai Y, Su J, Kong X. Gut microbiota and metabolic disease: from pathogenesis to new therapeutic strategies. REVIEWS IN MEDICAL MICROBIOLOGY 2016; 27:141-152. [DOI: 10.1097/mrm.0000000000000085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut microbiota is well known to regulate and maintain host metabolic and immune function. Change in stability and diversification of gut microbiota can affect progression of many metabolic diseases such as obesity, diabetes, liver disease, and so on. Studies on the association of the gut microbiota and host diseases are therefore significant, shedding light on the understanding of the role of gut microbiota in the development of such disease. In particular, human and animal model studies have explained how qualitative and quantitative alterations in the composition of gut microbiota are able to have an influence on the intestinal barrier, immune regulation, substance metabolism, nutrient absorption, energy distribution, toxin education, and so on. At the same time, these data suggest that species of intestinal commensal bacteria may play either a pathogenic or protective role in the development of metabolic diseases. The oral probiotic/prebiotic represents a possible therapeutic for improving metabolic diseases. However, the available data in this field remain limited, and the relevant scientific work has only just begun; especially, at present, new technologies have allowed the attempt at a systematic intestinal bacterial flora study, giving more realistic information about its composition and its pathological variance.In this review, we summarize the aggravation or improvement of metabolic diseases by the role of gut microbiota, and probiotic/prebiotic treatment with the help of available literature.
Collapse
Affiliation(s)
- Yongbo Kang
- Medical Faculty
- Genetics and Pharmacogenomics Laboratory
| | | | - Yue Cai
- Medical Faculty
- Pathogen Biology Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junhong Su
- Medical Faculty
- Genetics and Pharmacogenomics Laboratory
| | | |
Collapse
|
44
|
Abstract
NAFLD is now the most common cause of liver disease in Western countries. This Review explores the links between NAFLD, the metabolic syndrome, dysbiosis, poor diet and gut health. Animal studies in which the gut microbiota are manipulated, and observational studies in patients with NAFLD, have provided considerable evidence that dysbiosis contributes to the pathogenesis of NAFLD. Dysbiosis increases gut permeability to bacterial products and increases hepatic exposure to injurious substances that increase hepatic inflammation and fibrosis. Dysbiosis, combined with poor diet, also changes luminal metabolism of food substrates, such as increased production of certain short-chain fatty acids and alcohol, and depletion of choline. Changes to the microbiome can also cause dysmotility, gut inflammation and other immunological changes in the gut that might contribute to liver injury. Evidence also suggests that certain food components and lifestyle factors, which are known to influence the severity of NAFLD, do so at least in part by changing the gut microbiota. Improved methods of analysis of the gut microbiome, and greater understanding of interactions between dysbiosis, diet, environmental factors and their effects on the gut-liver axis should improve the treatment of this common liver disease and its associated disorders.
Collapse
Affiliation(s)
- Christopher Leung
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Melbourne, VIC 3084, Australia.,Department of Gastroenterology and Hepatology, Austin Health, Austin Hospital, Heidelberg, Melbourne, VIC 3084, Australia
| | - Leni Rivera
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC 3216, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - John B Furness
- Department of Anatomy and Neuroscience, University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Peter W Angus
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Melbourne, VIC 3084, Australia.,Department of Gastroenterology and Hepatology, Austin Health, Austin Hospital, Heidelberg, Melbourne, VIC 3084, Australia
| |
Collapse
|
45
|
A Guide to Non-Alcoholic Fatty Liver Disease in Childhood and Adolescence. Int J Mol Sci 2016; 17:ijms17060947. [PMID: 27314342 PMCID: PMC4926480 DOI: 10.3390/ijms17060947] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 02/07/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is now the most prevalent form of chronic liver disease, affecting 10%–20% of the general paediatric population. Within the next 10 years it is expected to become the leading cause of liver pathology, liver failure and indication for liver transplantation in childhood and adolescence in the Western world. While our understanding of the pathophysiological mechanisms underlying this disease remains limited, it is thought to be the hepatic manifestation of more widespread metabolic dysfunction and is strongly associated with a number of metabolic risk factors, including insulin resistance, dyslipidaemia, cardiovascular disease and, most significantly, obesity. Despite this, ”paediatric” NAFLD remains under-studied, under-recognised and, potentially, undermanaged. This article will explore and evaluate our current understanding of NAFLD in childhood and adolescence and how it differs from adult NAFLD, in terms of its epidemiology, pathophysiology, natural history, diagnosis and clinical management. Given the current absence of definitive radiological and histopathological diagnostic tests, maintenance of a high clinical suspicion by all members of the multidisciplinary team in primary and specialist care settings remains the most potent of diagnostic tools, enabling early diagnosis and appropriate therapeutic intervention.
Collapse
|
46
|
Yu J, Marsh S, Hu J, Feng W, Wu C. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol Res Pract 2016; 2016:2862173. [PMID: 27247565 PMCID: PMC4876215 DOI: 10.1155/2016/2862173] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met) in PNPLA3 and rs58542926 (Glu167Lys) in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression.
Collapse
Affiliation(s)
- Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sharon Marsh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Junbo Hu
- Department of General Surgery, Tongji Hospital, Huazhong Science & Technology University, Wuhan, Hubei 430030, China
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40208, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, Houston, TX 77843, USA
| |
Collapse
|
47
|
Abdou RM, Zhu L, Baker RD, Baker SS. Gut Microbiota of Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61:1268-81. [PMID: 26898658 DOI: 10.1007/s10620-016-4045-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/16/2016] [Indexed: 02/08/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease has been rapidly increasing worldwide. It has become a leading cause of liver transplantation. Accumulating evidence suggests a significant role for gut microbiota in its development and progression. Here we review the effect of gut microbiota on developing hepatic fatty infiltration and its progression. Current literature supports a possible role for gut microbiota in the development of liver steatosis, inflammation and fibrosis. We also review the literature on possible interventions for NAFLD that target the gut microbiota.
Collapse
Affiliation(s)
- Reham M Abdou
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.,, 3435 Main Street, 413 Biomedical Research Building, Buffalo, NY, 14214, USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| |
Collapse
|
48
|
Abstract
Recent progress has allowed a more comprehensive study of the gut microbiota. Gut microbiota helps in health maintenance and gut dysbiosis associates with chronic metabolic diseases. Modulation of short-chain fatty acids and choline bioavailability, lipoprotein lipase induction, alteration of bile acid profile, endogenous alcohol production, or liver inflammation secondary to endotoxemia result from gut dysbiosis. Modulation of the gut microbiota by pre/probiotics gives promising results in animal, but needs to be evaluated in human before use in clinical practice. Gut microbiota adds complexity to the pathophysiology of nonalcoholic fatty liver disease but represents an opportunity to discover new therapeutic targets.
Collapse
Affiliation(s)
- Jerome Boursier
- Hepato-Gastroenterology Department, University Hospital, 4 Larrey street, 49933 Angers Cedex 09, France; HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France.
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 595 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710, USA
| |
Collapse
|
49
|
Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016; 73:1969-87. [PMID: 26894897 PMCID: PMC11108381 DOI: 10.1007/s00018-016-2161-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease and a risk factor for cirrhosis and hepatocellular carcinoma. The pathological features of NASH include steatosis, hepatocyte injury, inflammation, and various degrees of fibrosis. Steatosis reflects disordered lipid metabolism. Insulin resistance and excessive fatty acid influx to the liver are two important contributing factors. Steatosis is also likely associated with lipotoxicity and cellular stresses such as oxidative stress and endoplasmic reticulum stress, which result in hepatocyte injury. Inflammation and fibrosis are frequently triggered by various signals such as proinflammatory cytokines and chemokines, released by injuried hepatocytes and activated Kupffer cells. Although much progress has been made, the pathogenesis of NASH is not fully elucidated. The purpose of this review is to discuss the current understanding of NASH pathogenesis, mainly focusing on factors contributing to steatosis, hepatocyte injury, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| | - Robert D Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Tavleen Bhatia
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA
| | - Susan S Baker
- Department of Pediatrics, Digestive Diseases and Nutrition Center, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo (SUNY Buffalo), 3435 Main Street, 422 BRB, Buffalo, NY, 14214, USA.
| |
Collapse
|
50
|
Zhu R, Baker SS, Moylan CA, Abdelmalek MF, Guy CD, Zamboni F, Wu D, Lin W, Liu W, Baker RD, Govindarajan S, Cao Z, Farci P, Diehl AM, Zhu L. Systematic transcriptome analysis reveals elevated expression of alcohol-metabolizing genes in NAFLD livers. J Pathol 2016; 238:531-542. [DOI: 10.1002/path.4650] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ruixin Zhu
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| | - Cynthia A Moylan
- Division of Gastroenterology and Hepatology, Department of Medicine; Duke University; Durham North Carolina USA
- Division of Gastroenterology and Hepatology, Department of Medicine; Durham Veterans Affairs Medical Center; Durham North Carolina USA
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Department of Medicine; Duke University; Durham North Carolina USA
| | - Cynthia D Guy
- Department of Pathology; Duke University; Durham North Carolina USA
| | - Fausto Zamboni
- Liver Transplantation Center; Brotzu Hospital; 09134 Cagliari Italy
| | - Dingfeng Wu
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Weili Lin
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Wensheng Liu
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| | - Sugantha Govindarajan
- Department of Pathology; University of Southern California; Los Angeles California USA
| | - Zhiwei Cao
- Department of Bioinformatics; Tongji University; Shanghai China
| | - Patrizia Farci
- Laboratory of Infectious Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda Maryland USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Hepatology, Department of Medicine; Duke University; Durham North Carolina USA
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics; The State University of New York at Buffalo; Buffalo New York USA
| |
Collapse
|