1
|
Yang Z, Tai Y, Lan T, Zhao C, Gao JH, Tang CW, Tong H. Inhibition of Cyclooxygenase-2 Upregulates the Nuclear Factor Erythroid 2-related Factor 2 Signaling Pathway to Mitigate Hepatocyte Ferroptosis in Chronic Liver Injury. J Clin Transl Hepatol 2025; 13:409-417. [PMID: 40385941 PMCID: PMC12078174 DOI: 10.14218/jcth.2024.00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/18/2025] [Accepted: 02/18/2025] [Indexed: 05/20/2025] Open
Abstract
Background and Aims Ferroptosis plays an essential role in chronic liver diseases, and cyclooxygenase-2 (COX-2) affects liver fibrosis through multiple mechanisms. However, research on COX-2 regulation of ferroptosis in chronic liver injury remains limited. This study aimed to investigate whether and how COX-2 regulates ferroptosis in chronic liver injury. Methods In vivo, a thioacetamide (TAA)-induced chronic liver injury model, characterized by significant liver lipid peroxidation and oxidative stress, was used. COX-2 +/+ and COX-2 -/- mice were treated with TAA or normal saline. In vitro, primary mouse hepatocytes were isolated and treated with dimethyl sulfoxide (DMSO), erastin+DMSO, etoricoxib+erastin+DMSO, and tBHQ+erastin+DMSO. Mitochondrial morphology, iron metabolism, lipid peroxidation, and oxidative stress were assessed to verify ferroptosis. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was measured to investigate the relationship between COX-2 and ferroptosis. Results TAA-treated COX-2 -/- mice presented milder liver fibrosis, whereas TAA-treated COX-2 -/- mice livers and etoricoxib+erastin+DMSO-treated primary hepatocytes exhibited alleviated mitochondrial damage compared with TAA-treated COX-2 +/+ littermates and erastin+DMSO-treated primary hepatocytes, respectively. The knockout of COX-2 decreased ferrous ion concentration (p < 0.01) and mitigated lipid peroxidation in TAA-treated livers (p < 0.05). Furthermore, both COX-2 knockout and etoricoxib restored reduced glutathione (p < 0.05) and glutathione peroxidase 4 (p < 0.05), while decreasing malondialdehyde levels (p < 0.05). Additionally, COX-2 inhibition upregulated Nrf2, which helped alleviate erastin+DMSO-induced ferroptosis (p < 0.01). Conclusions Ferroptosis contributes to the progression of chronic liver injury. Inhibition of COX-2 upregulates Nrf2, mitigating hepatocyte ferroptosis in chronic liver injury.
Collapse
Affiliation(s)
- Zhu Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Tai
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Lan
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chong Zhao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin-Hang Gao
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng-Wei Tang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Tong
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Marei M, El-Nikhely N, Sheta E, Ragab H, Wahid A, Saeed H, Rostom SAF. Biochemical and Molecular Studies on the Role of Celecoxib and Some Related Bipyrazoles in Mitigating Induced Liver Injury in Experimental Animals. Drug Des Devel Ther 2025; 19:3857-3882. [PMID: 40391176 PMCID: PMC12087607 DOI: 10.2147/dddt.s512058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 05/01/2025] [Indexed: 05/21/2025] Open
Abstract
Introduction Liver fibrosis is a life-threatening disease that greatly impacts the morbidity and mortality of hepatic patients worldwide, resulting mainly as a consequence of hepatitis C, alcoholic and non-alcoholic fatty liver. COX-1 and COX-2 isozymes catalyze the synthesis of prostaglandins (PGs) and thromboxanes (TXs) from arachidonic acid causing inflammation. Owing to the scarcity of approved fibrolytic drugs available for human use, celecoxib (a selective COX-2 inhibitor) has been repurposed as a potential antifibrotic and fibrolytic agent in some chronic liver fibrosis models. Methods The present study aims to discover a non-invasive treatment for liver fibrosis through investigating the possible ability of three celecoxib-related bipyrazole compounds HR1-3 to reverse chemically induced liver fibrosis in rats using CCl4. This fibrolytic effect was verified by histopathological, immunohistochemical, biochemical and biomolecular assays. In addition, in silico computer-aided evaluation of the compounds' binding mode to certain molecular targets was performed, and the in silico physicochemical properties, drug likeness and pharmacokinetic parameters were predicted using web-based applications. Results The analogs HR1-3 could serve as novel therapeutic candidates for the mitigation of liver fibrosis that deserves further derivatizations and investigations. In particular, the fluorinated analog HR3 proved to be the most active member in this study when compared to celecoxib due to its distinguished histopathological and immunohistochemical investigation results, beside its antioxidant potential, as well as its reliable effects against some biomarkers, namely, MMP-9, TGF-β1, TIMP-1, IL-6 and TNF-α. Conclusion Based on the obtained results, the fluorinated analog HR3 could serve as a novel therapeutic candidate for the amelioration of liver fibrosis that deserves further derivatizations and investigations.
Collapse
Affiliation(s)
- Maram Marei
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21521, Egypt
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21521, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Hanan Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21521, Egypt
| | - Sherif A F Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
3
|
Xia Y, Wang Y, Xiong Q, He J, Wang H, Islam M, Zhou X, Kim A, Zhang H, Huang H, Tsung A. Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC. Hepatology 2025; 81:947-961. [PMID: 38266270 PMCID: PMC11881075 DOI: 10.1097/hep.0000000000000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) fibrosis is a reversible stage of liver disease accompanied by inflammatory cell infiltration. Neutrophils extrude a meshwork of chromatin fibers to establish neutrophil extracellular traps (NETs), which play important roles in inflammatory response regulation. Our previous work demonstrated that NETs promote HCC in MASH. However, it is still unknown if NETs play a role in the molecular mechanisms of liver fibrosis. APPROACH AND RESULTS Following 12 weeks of Western diet/carbon tetrachloride, MASH fibrosis was identified in C57BL/6 mice with increased NET formation. However, NET depletion using DNase I treatment or mice knocked out for peptidyl arginine deaminase type IV significantly attenuated the development of MASH fibrosis. NETs were demonstrated to induce HSCs activation, proliferation, and migration through augmented mitochondrial and aerobic glycolysis to provide additional bioenergetic and biosynthetic supplies. Metabolomic analysis revealed markedly an altered metabolic profile upon NET stimulation of HSCs that were dependent on arachidonic acid metabolism. Mechanistically, NET stimulation of toll-like receptor 3 induced cyclooxygenase-2 activation and prostaglandin E2 production with subsequent HSC activation and liver fibrosis. Inhibiting cyclooxygenase-2 with celecoxib reduced fibrosis in our MASH model. CONCLUSIONS Our findings implicate NETs playing a critical role in the development of MASH hepatic fibrosis by inducing metabolic reprogramming of HSCs through the toll-like receptor 3/cyclooxygenase-2/cyclooxygenase-2 pathway. Therefore, NET inhibition may represent an attractive treatment target for MASH liver fibrosis.
Collapse
Affiliation(s)
- Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yu Wang
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiayi He
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mozaffarul Islam
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xinyu Zhou
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Alex Kim
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Rajak S. Dynamics of cellular plasticity in non-alcoholic steatohepatitis (NASH). Biochim Biophys Acta Mol Basis Dis 2024; 1870:167102. [PMID: 38422712 DOI: 10.1016/j.bbadis.2024.167102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is a pathogenic stage of the broader non-alcoholic fatty liver disease (NAFLD). Histological presentation of NASH includes hepatocyte ballooning, macrophage polarization, ductular reaction, and hepatic stellate cell (HSCs) activation. At a cellular level, a heterogenous population of cells such as hepatocytes, macrophages, cholangiocytes, and HSCs undergo dramatic intra-cellular changes in response to extracellular triggers, which are termed "cellular plasticity. This dynamic switch in the cellular structure and function of hepatic parenchymal and non-parenchymal cells and their crosstalk culminates in the perpetuation of inflammation and fibrosis in NASH. This review presents an overview of our current understanding of cellular plasticity in NASH and its molecular mechanisms, along with possible targeting to develop cell-specific NASH therapies.
Collapse
Affiliation(s)
- Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India.
| |
Collapse
|
5
|
Ye Y, Tang S, Tai Y, Zhao C, Tang C, Huang Z, Gao J. The transcriptomic profile shows the protective effects of celecoxib on cirrhotic splenomegaly. Immunopharmacol Immunotoxicol 2024; 46:117-127. [PMID: 38047472 DOI: 10.1080/08923973.2023.2281282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Splenomegaly can exacerbate liver cirrhosis and portal hypertension. We have previously demonstrated that cyclooxygenase-2 (COX-2) inhibitor can attenuate cirrhotic splenomegaly. However, the mechanism of cirrhotic splenomegaly remains unclear, thus becoming the focus of the present study. MATERIALS AND METHODS Thioacetamide (TAA) intraperitoneal injection was used to induce cirrhotic splenomegaly. Rats were randomized into the control, TAA and TAA + celecoxib groups. Histological analysis and high-throughput RNA sequencing of the spleen were conducted. Splenic collagen III, α-SMA, Ki-67, and VEGF were quantified. RESULTS A total of 1461 differentially expressed genes (DEGs) were identified in the spleens of the TAA group compared to the control group. The immune response and immune cell activation might be the major signaling pathways involved in the pathogenesis of cirrhotic splenomegaly. With its immunoregulatory effect, celecoxib presents to ameliorate cirrhotic splenomegaly and liver cirrhosis. Furthermore, 304 coexisting DEGs were obtained between TAA vs. control and TAA + celecoxib vs. TAA. Gene ontology (GO) and KEGG analyses collectively indicated that celecoxib may attenuate cirrhotic splenomegaly through the suppression of splenic immune cell proliferation, inflammation, immune regulation, and fibrogenesis. The impacts on these factors were subsequently validated by the decreased splenic Ki-67-positive cells, macrophages, fibrotic areas, and mRNA levels of collagen III and α-SMA. CONCLUSIONS Celecoxib attenuates cirrhotic splenomegaly by inhibiting splenic immune cell proliferation, inflammation, and fibrogenesis. The current study sheds light on the therapeutic strategy of liver cirrhosis by targeting splenic abnormalities and provides COX-2 inhibitors as a novel medical treatment for cirrhotic splenomegaly.
Collapse
Affiliation(s)
- Yanting Ye
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yang Tai
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Park HJ, Choi J, Kim H, Yang DY, An TH, Lee EW, Han BS, Lee SC, Kim WK, Bae KH, Oh KJ. Cellular heterogeneity and plasticity during NAFLD progression. Front Mol Biosci 2023; 10:1221669. [PMID: 37635938 PMCID: PMC10450943 DOI: 10.3389/fmolb.2023.1221669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which is characterized by steatosis, lobular inflammation, and hepatocellular ballooning with or without fibrosis. Because of the complex pathophysiological mechanism and the heterogeneity of NAFLD, including its wide spectrum of clinical and histological characteristics, no specific therapeutic drugs have been approved for NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity, which describes the ability of cells to acquire new identities or change their phenotypes in response to environmental stimuli. The liver consists of parenchymal cells including hepatocytes and cholangiocytes and nonparenchymal cells including Kupffer cells, hepatic stellate cells, and endothelial cells, all of which have specialized functions. This heterogeneous cell population has cellular plasticity to adapt to environmental changes. During NAFLD progression, these cells can exert diverse and complex responses at multiple levels following exposure to a variety of stimuli, including fatty acids, inflammation, and oxidative stress. Therefore, this review provides insights into NAFLD heterogeneity by addressing the cellular plasticity and metabolic adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer cells during NAFLD progression.
Collapse
Affiliation(s)
- Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Juyong Choi
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Da-Yeon Yang
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Baek-Soo Han
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
7
|
Ishikane S, Arioka M, Takahashi-Yanaga F. Promising small molecule anti-fibrotic agents: Newly developed or repositioned drugs targeting myofibroblast transdifferentiation. Biochem Pharmacol 2023; 214:115663. [PMID: 37336252 DOI: 10.1016/j.bcp.2023.115663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Fibrosis occurs in all organs and tissues except the brain, and its progression leads to dysfunction of affected organs. Fibrosis-induced organ dysfunction results from the loss of elasticity, strength, and functionality of tissues due to the extracellular matrix secreted by myofibroblasts that express smooth muscle-type actin as a marker. Myofibroblasts, which play a major role in fibrosis, were once thought to originate exclusively from activated fibroblasts; however, it is now clear that myofibroblasts are diverse in origin, from epithelial cells, endothelial cells, adipocytes, macrophages, and other cells. Fibrosis of vital organs, such as the heart, lungs, kidneys, and liver, is a serious chronic disease that ultimately leads to death. Currently, anti-cancer drugs have made remarkable progress, as evidenced by the development of many molecular-targeted drugs, and are making a significant contribution to improving the prognosis of cancer treatment. However, the development of anti-fibrotic agents, which also play an important role in prognosis, has lagged. In this review, the current knowledge regarding myofibroblasts is summarized, with particular attention given to their origin and transdifferentiation signaling pathways (e.g., TGF-β, Wnt/β-catenin, YAP/TAZ and AMPK signaling pathways). The development of new small molecule anti-fibrotic agents and the repositioning of existing drugs targeting myofibroblast transdifferentiation are discussed.
Collapse
Affiliation(s)
- Shin Ishikane
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Masaki Arioka
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, Faculty of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| |
Collapse
|
8
|
Lan T, Tai Y, Zhao C, Xiao Y, Yang Z, Zhang L, Gan C, Dai W, Tong H, Tang C, Huang Z, Gao J. Atypical cholangiocytes derived from hepatocyte-cholangiocyte transdifferentiation mediated by COX-2: a kind of misguided liver regeneration. Inflamm Regen 2023; 43:37. [PMID: 37452426 PMCID: PMC10347763 DOI: 10.1186/s41232-023-00284-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hepatocyte-cholangiocyte transdifferentiation (HCT) is a potential origin of proliferating cholangiocytes in liver regeneration after chronic injury. This study aimed to determine HCT after chronic liver injury, verify the impacts of HCT on liver repair, and avoid harmful regeneration by understanding the mechanism. METHODS A thioacetamide (TAA)-induced liver injury model was established in wild-type (WT-TAA group) and COX-2 panknockout (KO-TAA group) mice. HCT was identified by costaining of hepatocyte and cholangiocyte markers in vivo and in isolated mouse hepatocytes in vitro. The biliary tract was injected with ink and visualized by whole liver optical clearing. Serum and liver bile acid (BA) concentrations were measured. Either a COX-2 selective inhibitor or a β-catenin pathway inhibitor was administered in vitro. RESULTS Intrahepatic ductular reaction was associated with COX-2 upregulation in chronic liver injury. Immunofluorescence and RNA sequencing indicated that atypical cholangiocytes were characterized by an intermediate genetic phenotype between hepatocytes and cholangiocytes and might be derived from hepatocytes. The structure of the biliary system was impaired, and BA metabolism was dysregulated by HCT, which was mediated by the TGF-β/β-catenin signaling pathway. Genetic deletion or pharmaceutical inhibition of COX-2 significantly reduced HCT in vivo. The COX-2 selective inhibitor etoricoxib suppressed HCT through the TGF-β-TGFBR1-β-catenin pathway in vitro. CONCLUSIONS Atypical cholangiocytes can be derived from HCT, which forms a secondary strike by maldevelopment of the bile drainage system and BA homeostasis disequilibrium during chronic liver injury. Inhibition of COX-2 could ameliorate HCT through the COX-2-TGF-β-TGFBR1-β-catenin pathway and improve liver function.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Tai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Xiao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Yang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linhao Zhang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Can Gan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenting Dai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huan Tong
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyin Huang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Mahmoudian RA, Akhlaghipour I, Lotfi M, Shahidsales S, Moghbeli M. Circular RNAs as the pivotal regulators of epithelial-mesenchymal transition in gastrointestinal tumor cells. Pathol Res Pract 2023; 245:154472. [PMID: 37087995 DOI: 10.1016/j.prp.2023.154472] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Gastrointestinal (GI) cancers, as the most common human malignancies are always considered one of the most important health challenges in the world. Late diagnosis in advanced tumor stages is one of the main reasons for the high mortality rate and treatment failure in these patients. Therefore, investigating the molecular pathways involved in GI tumor progression is required to introduce the efficient markers for the early tumor diagnosis. Epithelial-mesenchymal transition (EMT) is one of the main cellular mechanisms involved in the GI tumor metastasis. Non-coding RNAs (ncRNAs) are one of the main regulatory factors in EMT process. Circular RNAs (circRNAs) are a group of covalently closed loop ncRNAs that have higher stability in body fluids compared with other ncRNAs. Considering the importance of circRNAs in regulation of EMT process, in the present review we discussed the role of circRNAs in EMT process during GI tumor invasion. It has been reported that circRNAs mainly affect the EMT process through the regulation of EMT-specific transcription factors and signaling pathways such as WNT, PI3K/AKT, TGF-β, and MAPK. This review can be an effective step in introducing a circRNA/EMT based diagnostic panel marker for the early tumor detection among GI cancer patients.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Colucci R, Fornai M, Antonioli L, Segnani C, Ippolito C, Pellegrini C, Nericcio A, Zizzo MG, Serio R, Blandizzi C, Bernardini N. Role of cyclooxygenase pathways in bowel fibrotic remodelling in a murine model of experimental colitis. J Pharm Pharmacol 2023; 75:264-275. [PMID: 36477570 DOI: 10.1093/jpp/rgac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Gut fibrosis occurs under chronic inflammation. This study examined the effects of different cyclooxygenase (COX) inhibitors on fibrosis in the inflamed colon. METHODS Colitis was induced by 2,4-dinitrobenzenesulfonic acid (DNBS) in albino male Sprague-Dawley rats. After 6, 12 and 18 days, macroscopic and microscopic damage, collagen and elastic fibre content were examined. At day 6, pro-fibrotic factors (collagen I and III, hydroxyproline, fibronectin, matrix metalloproteinase-2 and -9), transforming growth factor-beta (TGF-β) signalling [TGF-β, Ras homolog gene family member A (RhoA), phosphorylated small mother against decapentaplegic (pSMAD)-2 and -6] and peristalsis were assessed, and the effects of indomethacin, SC-560 or celecoxib were tested. KEY FINDINGS Six days after DNBS administration, significant histopathological signs of fibrotic remodelling were observed in rats. At day 6, pro-fibrotic factors were up-regulated and colonic peristalsis was altered. COX inhibitors reversed the histochemical, molecular and functional changes in the fibrotic colon. COX inhibition reduced TGF-β expression, SMAD2 phosphorylation and RhoA, and increased SMAD6 expression. CONCLUSIONS Colonic fibrosis is associated with altered bowel motility and induction of profibrotic factors driven by TGF-β signalling. COX-1 and COX-2 inhibition counteracts this fibrotic remodelling by the modulation of TGF-β/SMAD signalling, mainly via SMAD6 induction and reduction in SMAD2 phosphorylation.
Collapse
Affiliation(s)
- Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Nericcio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Gad El-Hak HN, Mahmoud HS, Ahmed EA, Elnegris HM, Aldayel TS, Abdelrazek HMA, Soliman MTA, El-Menyawy MAI. Methanolic Phoenix dactylifera L. Extract Ameliorates Cisplatin-Induced Hepatic Injury in Male Rats. Nutrients 2022; 14:1025. [PMID: 35268000 PMCID: PMC8912432 DOI: 10.3390/nu14051025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
This study investigated the ameliorative potential of methanolic date flesh extract (MDFE) against cisplatin-induced hepatic injury. Twenty male rats (weighing 180-200 g) were allocated into four groups: control; date flesh (DF) group (oral 600 mg/kg MDFE for 21 days); Cis group (7.5 mg/kg i.p. at day 16); and date flesh/cisplatin (DF/Cis) group (oral 600 mg/kg MDFE for 21 days and 7.5 mg/kg i.p. at day 16). Hepatic biochemical parameters in sera, and inflammatory and oxidant/antioxidant hepatic biomarkers were estimated. Hepatic histological changes and the immunohistochemistry of cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB), and alpha smooth muscle actin (α-SMA) were assessed. Pretreatment with MDFE decreased Cis-triggered liver biochemical parameters, oxidative stress, inflammatory biomarkers, and histological damage. Moreover, MDFE treatment reduced Cis-induced hepatic NF-κB, COX-2, and α-SMA protein expression. MDFE exerted a hepatoprotective effect when used concomitantly with Cis. Its effect was mediated via its antioxidant and anti-inflammatory ingredients.
Collapse
Affiliation(s)
- Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Sciences, Suez Canal University, Ismailia 41522, Egypt;
| | - Hany Salah Mahmoud
- Center of Scientific Foundation for Experimental Studies and Research, Ismailia 41511, Egypt;
| | - Eman A. Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Heba M. Elnegris
- Department of Histology and Cell Biology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Department of Histology and Cell Biology, Faculty of Medicine, Badr University in Cairo, Cairo 11829, Egypt
| | - Tahany Saleh Aldayel
- Department of Physical Sport Sciences, College of Education, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed T. A. Soliman
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 67614, Saudi Arabia;
| | | |
Collapse
|
12
|
Wang CI, Chu PM, Chen YL, Lin YH, Chen CY. Chemotherapeutic Drug-Regulated Cytokines Might Influence Therapeutic Efficacy in HCC. Int J Mol Sci 2021; 22:ijms222413627. [PMID: 34948424 PMCID: PMC8707970 DOI: 10.3390/ijms222413627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the second leading cause of cancer-related mortality worldwide. Processes involved in HCC progression and development, including cell transformation, proliferation, metastasis, and angiogenesis, are inflammation-associated carcinogenic processes because most cases of HCC develop from chronic liver damage and inflammation. Inflammation has been demonstrated to be a crucial factor inducing tumor development in various cancers, including HCC. Cytokines play critical roles in inflammation to accelerate tumor invasion and metastasis by mediating the migration of immune cells into damaged tissues in response to proinflammatory stimuli. Currently, surgical resection followed by chemotherapy is the most common curative therapeutic regimen for HCC. However, after chemotherapy, drug resistance is clearly observed, and cytokine secretion is dysregulated. Various chemotherapeutic agents, including cisplatin, etoposide, and 5-fluorouracil, demonstrate even lower efficacy in HCC than in other cancers. Tumor resistance to chemotherapeutic drugs is the key limitation of curative treatment and is responsible for treatment failure and recurrence, thus limiting the ability to treat patients with advanced HCC. Therefore, the capability to counteract drug resistance would be a major clinical advancement. In this review, we provide an overview of links between chemotherapeutic agents and inflammatory cytokine secretion in HCC. These links might provide insight into overcoming inflammatory reactions and cytokine secretion, ultimately counteracting chemotherapeutic resistance.
Collapse
Affiliation(s)
- Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: ; Tel./Fax: +886-6-2353535 (ext. 5329)
| |
Collapse
|
13
|
Li T, Liu J, Wang Y, Zhou C, Shi Q, Huang S, Yang C, Chen Y, Bai Y, Xiong B. Liver fibrosis promotes immunity escape but limits the size of liver tumor in a rat orthotopic transplantation model. Sci Rep 2021; 11:22846. [PMID: 34819565 PMCID: PMC8613241 DOI: 10.1038/s41598-021-02155-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Liver fibrosis plays a crucial role in promoting tumor immune escape and tumor aggressiveness for liver cancer. However, an interesting phenomenon is that the tumor size of liver cancer patients with liver fibrosis is smaller than that of patients without liver fibrosis. In this study, 16 SD rats were used to establish orthotopic liver tumor transplantation models with Walker-256 cell lines, respectively on the fibrotic liver (n = 8, LF group) and normal liver (n = 8, control group). MRI (magnetic resonance imaging) was used to monitor the size of the tumors. All rats were executed at the third week after modeling, and the immunohistochemical staining was used to reflect the changes in the tumor microenvironment. The results showed that, compared to the control group, the PD-L1 (programmed cell death protein receptor-L1) expression was higher, and the neutrophil infiltration increased while the effector (CD8+) T cell infiltration decreased in the LF group. Additionally, the expression of MMP-9 (matrix metalloproteinase-9) of tumor tissue in the LF group increased. Three weeks after modeling, the size of tumors in the LF group was significantly smaller than that in the control group (382.47 ± 195.06 mm3 vs. 1736.21 ± 657.25 mm3, P < 0.001). Taken together, we concluded that liver fibrosis facilitated tumor immunity escape but limited the expansion of tumor size.
Collapse
Affiliation(s)
- Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qin Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yang Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
14
|
Kronborg TM, Ytting H, Hobolth L, Møller S, Kimer N. Novel Anti-inflammatory Treatments in Cirrhosis. A Literature-Based Study. Front Med (Lausanne) 2021; 8:718896. [PMID: 34631742 PMCID: PMC8495012 DOI: 10.3389/fmed.2021.718896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Liver cirrhosis is a disease characterised by multiple complications and a poor prognosis. The prevalence is increasing worldwide. Chronic inflammation is ongoing in liver cirrhosis. No cure for the inflammation is available, and the current treatment of liver cirrhosis is only symptomatic. However, several different medical agents have been suggested as potential healing drugs. The majority are tested in rodents, but few human trials are effectuated. This review focuses on medical agents described in the literature with supposed alleviating and curing effects on liver cirrhosis. Twelve anti-inflammatory, five antioxidative, and three drugs with effects on gut microflora and the LPS pathway were found. Two drugs not categorised by the three former categories were found in addition. In total, 42 rodent studies and seven human trials were found. Promising effects of celecoxib, aspirin, curcumin, kahweol, pentoxifylline, diosmin, statins, emricasan, and silymarin were found in cirrhotic rodent models. Few indices of effects of etanercept, glycyrrhizin arginine salt, and mitoquinone were found. Faecal microbiota transplantation is in increasing searchlight with a supposed potential to alleviate cirrhosis. However, human trials are in demand to verify the findings in this review.
Collapse
Affiliation(s)
- Thit Mynster Kronborg
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark
| | - Henriette Ytting
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark
| | - Lise Hobolth
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine 260, Center for Functional and Diagnostic Imaging and Research, Amager-Hvidovre Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, Amager-Hvidovre University Hospital, Hvidovre, Denmark.,Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Feng S, Tong H, Gao JH, Tang SH, Yang WJ, Wang GM, Zhou HY, Wen SL. Anti-inflammation treatment for protection of hepatocytes and amelioration of hepatic fibrosis in rats. Exp Ther Med 2021; 22:1213. [PMID: 34584558 PMCID: PMC8422404 DOI: 10.3892/etm.2021.10647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation is considered as an important pathophysiologic mechanism of hepatic cirrhosis, which induces hepatocyte injury and activates hepatic stellate cells (HSCs), thus resulting in hepatic fibrosis. Previous studies have reported that cyclooxygenase-2 (COX-2) inhibitor can effectively treat liver fibrosis, while somatostatin (SST) analogues inhibit the activation of HSCs. The present study aimed to investigate the effects of a COX-2 inhibitor, celecoxib, combined with a SST analogue, octreotide, for protection of hepatocytes and prevention of fibrosis in a rat model of hepatic fibrosis. Therefore, a hepatic fibrosis rat model was established following peritoneal injection of thioacetamide (TAA), and the rats were then treated with a combination of celecoxib and octreotide (TAA + C). Immunohistochemistry and western blotting assays were used to assess the expression levels of proteins associated with inflammation, epithelial-mesenchymal transition (EMT), proliferation, apoptosis and autophagy. H&E staining, transmission electron microscopy and scanning electron microscopy were used to evaluate the destruction of hepatocytes. Masson's Trichrome and Sirius Red were used to measure the degree of liver fibrosis. The results demonstrated that, compared with those of the control group, the degree of liver fibrosis and the expression of the intrahepatic inflammation factors were aggravated in the TAA group. Furthermore, the apoptosis rate, EMT and autophagy of hepatocytes were also increased in the TAA group. However, treatment with TAA + C restored the aforementioned increased levels compared with the TAA group. In conclusion, treatment of rats with the combination of celecoxib and octreotide could attenuate the progress of hepatic fibrosis via protection of hepatocytes by reducing apoptosis, EMT and autophagy in hepatocytes.
Collapse
Affiliation(s)
- Shi Feng
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Huan Tong
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Hang Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen-Juan Yang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Gui-Ming Wang
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Ying Zhou
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Lei Wen
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
16
|
Alvarez MDL, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol 2021; 192:114732. [PMID: 34411565 DOI: 10.1016/j.bcp.2021.114732] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Eicosanoids are lipid signaling molecules derived from the oxidation of ω-6 fatty acids, usually arachidonic acid. There are three major pathways, including the cyclooxygenase (COX), lipoxygenase (LOX), and P450 cytochrome epoxygenase (CYP) pathway. Prostanoids, which include prostaglandins (PG) and thromboxanes (Tx), are formed via the COX pathway, leukotrienes (LT) and lipoxins (LX) by the action of 5-LOX, and hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by CYP. Although eicosanoids are usually associated with pro-inflammatory responses, non-classic eicosanoids, as LX, have anti-inflammatory and pro-resolving properties. Eicosanoids like PGE2, LTB4 and EETs have been involved in promoting liver regeneration after partial hepatectomy. PGE2 and LTB4 have also been reported to participate in the regenerative phase after ischemia and reperfusion (I/R), while cysteinyl leukotrienes (Cys-LT) contribute to the inflammatory process associated with I/R and are also involved in liver fibrosis and cirrhosis. However, LX, another product of 5-LOX, have the opposite effect, acting as pro-resolving mediators in these pathologies. In liver cancer, most studies show that eicosanoids, with the exception of LX, promote the proliferation of hepatocellular carcinoma cells and favor metastasis. This review summarizes the synthesis of different eicosanoids in the liver and discusses key findings from basic research linking eicosanoids to liver repair, regeneration and cancer and the impact of targeting eicosanoid cascade. In addition, studies in patients are presented that explore the potential use of eicosanoids as biomarkers and show correlations between eicosanoid production and the course and prognosis of liver disease.
Collapse
Affiliation(s)
- María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
17
|
Zhang L, Tai Y, Zhao C, Ma X, Tang S, Tong H, Tang C, Gao J. Inhibition of cyclooxygenase-2 enhanced intestinal epithelial homeostasis via suppressing β-catenin signalling pathway in experimental liver fibrosis. J Cell Mol Med 2021; 25:7993-8005. [PMID: 34145945 PMCID: PMC8358882 DOI: 10.1111/jcmm.16730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
The intestinal barrier dysfunction is crucial for the development of liver fibrosis but can be disturbed by intestinal chronic inflammation characterized with cyclooxygenase‐2 (COX‐2) expression. This study focused on the unknown mechanism by which COX‐2 regulates intestinal epithelial homeostasis in liver fibrosis. The animal models of liver fibrosis induced with TAA were established in rats and in intestinal epithelial–specific COX‐2 knockout mice. The impacts of COX‐2 on intestinal epithelial homeostasis via suppressing β‐catenin signalling pathway were verified pharmacologically and genetically in vivo. A similar assumption was tested in Ls174T cells with goblet cell phenotype in vitro. Firstly, disruption of intestinal epithelial homeostasis in cirrhotic rats was ameliorated by celecoxib, a selective COX‐2 inhibitor. Then, β‐catenin signalling pathway in cirrhotic rats was associated with the activation of COX‐2. Furthermore, intestinal epithelial–specific COX‐2 knockout could suppress β‐catenin signalling pathway and restore the disruption of ileal epithelial homeostasis in cirrhotic mice. Moreover, the effect of COX‐2/PGE2 was dependent on the β‐catenin signalling pathway in Ls174T cells. Therefore, inhibition of COX‐2 may enhance intestinal epithelial homeostasis via suppression of the β‐catenin signalling pathway in liver fibrosis.
Collapse
Affiliation(s)
- Linhao Zhang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tai
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ma
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shihang Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Karatzas E, Kakouri AC, Kolios G, Delis A, Spyrou GM. Fibrotic expression profile analysis reveals repurposed drugs with potential anti-fibrotic mode of action. PLoS One 2021; 16:e0249687. [PMID: 33826640 PMCID: PMC8026018 DOI: 10.1371/journal.pone.0249687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrotic diseases cover a spectrum of systemic and organ-specific maladies that affect a large portion of the population, currently without cure. The shared characteristic these diseases feature is their uncontrollable fibrogenesis deemed responsible for the accumulated damage in the susceptible tissues. Idiopathic Pulmonary Fibrosis, an interstitial lung disease, is one of the most common and studied fibrotic diseases and still remains an active research target. In this study we highlight unique and common (i) genes, (ii) biological pathways and (iii) candidate repurposed drugs among 9 fibrotic diseases. We identify 7 biological pathways involved in all 9 fibrotic diseases as well as pathways unique to some of these diseases. Based on our Drug Repurposing results, we suggest captopril and ibuprofen that both appear to slow the progression of fibrotic diseases according to existing bibliography. We also recommend nafcillin and memantine, which haven't been studied against fibrosis yet, for further wet-lab experimentation. We also observe a group of cardiomyopathy-related pathways that are exclusively highlighted for Oral Submucous Fibrosis. We suggest digoxin to be tested against Oral Submucous Fibrosis, since we observe cardiomyopathy-related pathways implicated in Oral Submucous Fibrosis and there is bibliographic evidence that digoxin may potentially clear myocardial fibrosis. Finally, we establish that Idiopathic Pulmonary Fibrosis shares several involved genes, biological pathways and candidate inhibiting-drugs with Dupuytren's Disease, IgG4-related Disease, Systemic Sclerosis and Cystic Fibrosis. We propose that treatments for these fibrotic diseases should be jointly pursued.
Collapse
Affiliation(s)
- Evangelos Karatzas
- Department of Informatics and Telecommunications, University of Athens, Athens, Greece
| | - Andrea C. Kakouri
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - George Kolios
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Delis
- Department of Informatics and Telecommunications, University of Athens, Athens, Greece
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
19
|
Tang S, Huang Z, Jiang J, Gao J, Zhao C, Tai Y, Ma X, Zhang L, Ye Y, Gan C, Su W, Jia X, Liu R, Wu H, Tang C. Celecoxib ameliorates liver cirrhosis via reducing inflammation and oxidative stress along spleen-liver axis in rats. Life Sci 2021; 272:119203. [PMID: 33577848 DOI: 10.1016/j.lfs.2021.119203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Splenomegaly is usually taken as a consequence of liver cirrhosis. However, as a risk factor for cirrhosis, the impacts of spleen-liver axis on the development of cirrhosis are largely unknown. This study focused on the impacts of splenomegaly on the development of cirrhosis and assessment of the effects of celecoxib, a selective COX-2 inhibitor, on the splenomegaly and cirrhotic liver. MATERIALS AND METHODS Liver cirrhosis was induced by thioacetamide (TAA). Sixty rats were randomly divided into control, TAA-16w, TAA + celecoxib groups and normal, TAA + sham, TAA + splenectomy groups. Hepatic stellate cells (HSCs) or hepatocytes were co-cultured with splenocytes from those groups. RESULTS Splenocytes of cirrhotic rats stimulated the HSCs activation and induced hepatocyte apoptosis via enhancing oxidative stress. The hepatic levels of NOX-4 and the in situ O2- were profoundly reduced in TAA + splenectomy group by 50.6% and 18.5% respectively, p < 0.05. Celecoxib significantly decreased the hepatic fibrotic septa induced with TAA by 50.8%, p < 0.05. Splenic lymphoid tissue proliferation and proinflammatory cytokines of the cirrhotic rats were also obviously suppressed by celecoxib, p < 0.05. Compared with the HSC or hepatocyte cell line co-cultured with the cirrhotic splenocytes, the expression of alpha-SMA, NOX-4, in situ O2- or the levels of cleaved caspase3 and NOX-4 were significantly decreased in those cell lines co-cultured with cirrhotic splenocytes treated by celecoxib, p < 0.05. CONCLUSION Splenomegaly contributed to the development of liver cirrhosis through enhancing oxidative stress in liver. Celecoxib could effectively ameliorate liver cirrhosis via reducing inflammatory cytokines and immune cells derived from spleen and suppressing oxidative stress.
Collapse
Affiliation(s)
- Shihang Tang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyin Huang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jingsun Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tai
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ma
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Linhao Zhang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanting Ye
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Can Gan
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Su
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xintong Jia
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Liu
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Chengwei Tang
- Lab. of gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
20
|
Baghaki S, Yalcin CE, Baghaki HS, Aydin SY, Daghan B, Yavuz E. COX2 inhibition in the treatment of COVID-19: Review of literature to propose repositioning of celecoxib for randomized controlled studies. Int J Infect Dis 2020; 101:29-32. [PMID: 33007455 PMCID: PMC7525269 DOI: 10.1016/j.ijid.2020.09.1466] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus-triggered pulmonary and systemic disease, i.e. systemic inflammatory response to virally triggered lung injury, named COVID-19, and ongoing discussions on refining immunomodulation in COVID-19 without COX2 inhibition prompted us to search the related literature to show a potential target (COX2) and a weapon (celecoxib). The concept of selectively targeting COX2 and closely related cascades might be worth trying in the treatment of COVID-19 given the substantial amount of data showing that COX2, p38 MAPK, IL-1b, IL-6 and TGF-β play pivotal roles in coronavirus-related cell death, cytokine storm and pulmonary interstitial fibrosis. Considering the lack of definitive treatment and importance of immunomodulation in COVID-19, COX2 inhibition might be a valuable adjunct to still-evolving treatment strategies. Celecoxib has properties that should be evaluated in randomized controlled studies and is also available for off-label use.
Collapse
Affiliation(s)
- Semih Baghaki
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey.
| | - Can Ege Yalcin
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Hayriye Sema Baghaki
- Bakirkoy Sadi Konuk Research and Training Hospital, Department of Obstetrics and Gynecology, Istanbul, Turkey
| | - Servet Yekta Aydin
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Basak Daghan
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| | - Ersin Yavuz
- Istanbul University Cerrahpasa - Cerrahpasa Medical Faculty, Department of Plastic, Reconstructive and Aesthetic Surgery, Istanbul, Turkey
| |
Collapse
|
21
|
Su W, Tai Y, Tang SH, Ye YT, Zhao C, Gao JH, Tuo BG, Tang CW. Celecoxib attenuates hepatocyte apoptosis by inhibiting endoplasmic reticulum stress in thioacetamide-induced cirrhotic rats. World J Gastroenterol 2020; 26:4094-4107. [PMID: 32821072 PMCID: PMC7403803 DOI: 10.3748/wjg.v26.i28.4094] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress is an important mechanism in the progression of chronic and acute liver diseases, especially in the progression and recovery of liver fibrosis. Excessive and long-term ER stress induces apoptosis. ER stress-induced apoptosis is considered to be an important pathway in the development of liver fibrosis. Cyclooxygenase-2 (COX-2) induction is also closely related to ER stress. In our previous studies, we showed that celecoxib, a COX-2 inhibitor, improves liver fibrosis and portal hypertension. However, the role and mechanism of celecoxib in alleviating liver fibrosis remain unclear.
AIM To investigate whether celecoxib alleviates liver fibrosis by inhibiting hepatocyte apoptosis via the ER stress response.
METHODS Cirrhosis was induced by intraperitoneal injections of thioacetamide (TAA) for 16 wk (injection dose is 200 mg/kg per 3 d for the first 8 wk and 100 mg /kg per 3 d after 8 wk). Thirty-six male Sprague-Dawley rats were randomly divided into three groups, namely, control group, TAA group, and TAA + celecoxib group. In the last 8 wk, TAA-induced cirrhotic rats received celecoxib (20 mg/kg/day) or the vehicle by gastric gavage. After 16 wk, the rats were sacrificed, and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and albumin (ALB) were detected. The hepatic fibrosis areas were evaluated by Sirius red staining and the degree of fibrosis was assessed by measuring the level of hydroxyproline. ER stress levels were evaluated by detecting the marker proteins glucose-regulated protein 78 (GRP78), CCAAT/enhancer binding protein homologous protein (CHOP), PKR-like ER protein kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1 alpha (IRE1α). Apoptosis levels were evaluated by detecting caspase-12 and caspase-3.
RESULTS The serum ALT and AST levels in the liver were significantly reduced by celecoxib; however, the serum ALB had no significant changes. Celecoxib significantly reduced the degree of liver fibrosis and the levels of hydroxyproline (-38% and -25.7%, respectively, P < 0.01). Celecoxib ameliorated ER stress by reducing the level of GRP78 compared to the TAA group (P < 0.05). Consistently, after celecoxib administration, the upregulation of TAA-induced hepatic apoptosis markers (caspase-12 and caspase-3) and CHOP were significantly inhibited. In addition, after celecoxib treatment, the expression of key molecules associated with ER stress (PERK, ATF6, and IRE1) was decreased (P < 0.05).
CONCLUSION Therapeutic administration of celecoxib effectively reduces hepatic apoptosis in TAA-induced cirrhotic rats. The mechanism of action may be attributed to the suppression of CHOP expression, which subsequently inhibits ER stress.
Collapse
Affiliation(s)
- Wei Su
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Yang Tai
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Shi-Hang Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan-Ting Ye
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jin-Hang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bi-Guang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
22
|
Tai Y, Zhang LH, Gao JH, Zhao C, Tong H, Ye C, Huang ZY, Liu R, Tang CW. Suppressing growth and invasion of human hepatocellular carcinoma cells by celecoxib through inhibition of cyclooxygenase-2. Cancer Manag Res 2019; 11:2831-2848. [PMID: 31114336 PMCID: PMC6497485 DOI: 10.2147/cmar.s183376] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/23/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose: Biomarkers are lacking in hepatocellular carcinoma (HCC). Cyclooxygenase-2 (COX-2) and its metabolites play crucial roles in the process of inflammation-tumor transformation. This study was aimed to detect COX-2 expression in HCC tissues and evaluate the effects of a COX-2 inhibitor, celecoxib, on biological behaviors of HCC cell lines in vitro. Methods: COX-2 expression was detected by immunohistochemistry on a human HCC tissue microarray. The correlations of COX-2 expression with tumor clinicopathological variables and overall survival were analyzed. The proliferation, apoptosis, cell cycle distribution, invasion capacity, and related signaling molecules of HCC cells after incubated with COX-2 inhibitor celecoxib were evaluated in vitro. Results: Expression levels of COX-2 in HCC tissues were significantly higher than those in paracancerous tissues. The TNM stage III-IV, tumor size >5 cm, lymphovascular invasion and distant metastasis was higher in high COX-2 expression group compared with that in low COX-2 expression group. Patients with low COX-2 expression achieved better 5-year overall survival than those with high COX-2 expression. Treatment with celecoxib was sufficient to inhibit cell proliferation, promote apoptosis, and induce G0/G1 cell cycle arrest in HCC cells with concentration- and time-dependent manners. Celecoxib up-regulated E-cadherin protein through inhibiting COX-2-prostaglandin E2 (PGE2)-PGE2 receptor 2 (EP2)-p-Akt/p-ERK signaling pathway to suppress HCC cells migration and invasion. Conclusion: High COX-2 expression was associated with advanced TNM stage, larger tumor size, increased lymphovascular invasion and short survival. Targeting inhibition of COX-2 by celecoxib exhibited anti-tumor activities by suppressing proliferation, promoting apoptosis, and inhibiting the aggressive properties of HCC cells.
Collapse
Affiliation(s)
- Yang Tai
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Lin-Hao Zhang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Jin-Hang Gao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Chong Zhao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Huan Tong
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Cheng Ye
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Zhi-Yin Huang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Rui Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Cheng-Wei Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
23
|
Xia H, He Q, Wang H, Wang Y, Yang Y, Li Y, Zhang J, Chen Z, Yang J. Treatment with either COX-2 inhibitor or 5-LOX inhibitor causes no compensation between COX-2 pathway and 5-LOX pathway in chronic aluminum overload-induced liver injury in rats. Fundam Clin Pharmacol 2019; 33:535-543. [PMID: 30903708 DOI: 10.1111/fcp.12465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
This study was designed to observe the compensation between cyclooxygenase-2 pathway and 5-lipoxygenase pathway in chronic aluminum overload-induced liver injury rats. A rat hepatic injury model of chronic aluminum injury was established by the intragastric administration of aluminum gluconate (Al3 + 200 mg/kg per day, 5 days a week for 20 weeks). The COX-2 inhibitor [meloxicam (1 mg/kg)] and 5-LOX inhibitor [caffeic acid (30 mg/kg)] were intragastrically administered 1 h after aluminum administration. The histopathology was detected by hematoxylin-eosin staining. A series of biochemical indicators were measured with biochemistry assay or ELISAs. The expressions of COX-2 and 5-LOX were measured by immunohistochemistry. Our experimental results showed that aluminum overload caused a significant damage to the liver and also significantly increased the expressions of COX-2, 5-LOX and the levels of inflammation and oxidative stress. The administration of meloxicam and caffeic acid significantly protected livers against histopathological injury, significantly decreased plasma ALT, AST, and ALP levels, significantly decreased TNF-α, IL-6, IL-1β levels, and oxidative stress. However, the administration of caffeic acid did not significantly increase the expression of COX-2 compared with the model group. On the other hand, the administration of meloxicam also did not significantly increase the expression of 5-LOX compared with the model group. Our results indicate that there is no compensation between COX-2 pathway and 5-LOX pathway by inhibiting either COX-2 or 5-LOX in chronic aluminum overload-induced liver injury rat.
Collapse
Affiliation(s)
- Hui Xia
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qin He
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yongming Wang
- Department of Neonatalogy, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yang Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
24
|
Zhang Y, Kirane A, Huang H, Sorrelle NB, Burrows FJ, Dellinger MT, Brekken RA. Cyclooxygenase-2 Inhibition Potentiates the Efficacy of Vascular Endothelial Growth Factor Blockade and Promotes an Immune Stimulatory Microenvironment in Preclinical Models of Pancreatic Cancer. Mol Cancer Res 2019; 17:348-355. [PMID: 30333153 PMCID: PMC6359969 DOI: 10.1158/1541-7786.mcr-18-0427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/02/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Resistance to standard therapy remains a major challenge in the treatment of pancreatic ductal adenocarcinoma (PDA). Although anti-VEGF therapy delays PDA progression, therapy-induced hypoxia results in a less differentiated mesenchymal-like tumor cell phenotype, which reinforces the need for effective companion therapies. COX-2 inhibition has been shown to promote tumor cell differentiation and improve standard therapy response in PDA. Here, we evaluate the efficacy of COX-2 inhibition and VEGF blockade in preclinical models of PDA. In vivo, the combination therapy was more effective in limiting tumor growth and metastasis than single-agent therapy. Combination therapy also reversed anti-VEGF-induced epithelial-mesenchymal transition and collagen deposition and altered the immune landscape by increasing tumor-associated CD8+ T cells while reducing FoxP3+ T cells and FasL expression on the tumor endothelium. IMPLICATIONS: Together, these findings demonstrate that COX-2 inhibition enhances the efficacy of anti-VEGF therapy by reducing hypoxia-induced epithelial plasticity and promoting an immune landscape that might facilitate immune activation.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/2/348/F1.large.jpg.
Collapse
Affiliation(s)
- Yuqing Zhang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amanda Kirane
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Surgical Oncology, Department of Surgery, UC Davis Medical Center, Sacramento, California
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Noah B Sorrelle
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Michael T Dellinger
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Hamon Center for Therapeutic Oncology Research, Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas.
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
25
|
Krzysiek‐Maczka G, Targosz A, Szczyrk U, Strzałka M, Sliwowski Z, Brzozowski T, Czyz J, Ptak‐Belowska A. Role of Helicobacter pylori infection in cancer-associated fibroblast-induced epithelial-mesenchymal transition in vitro. Helicobacter 2018; 23:e12538. [PMID: 30246423 PMCID: PMC6282800 DOI: 10.1111/hel.12538] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Major human gastrointestinal pathogen Helicobacter pylori (H. pylori) colonizes the gastric mucosa causing inflammation and severe complications including cancer, but the involvement of fibroblasts in the pathogenesis of these disorders in H. pylori-infected stomach has been little studied. Normal stroma contains few fibroblasts, especially myofibroblasts. Their number rapidly increases in the reactive stroma surrounding inflammatory region and neoplastic tissue; however, the interaction between H. pylori and fibroblasts remains unknown. We determined the effect of coincubation of normal rat gastric fibroblasts with alive H. pylori (cagA+vacA+) and H. pylori (cagA-vacA-) strains on the differentiation of these fibroblasts into cells possessing characteristics of cancer-associated fibroblasts (CAFs) able to induce epithelial-mesenchymal transition (EMT) of normal rat gastric epithelial cells (RGM-1). MATERIALS AND METHODS The panel of CAFs markers mRNA was analyzed in H. pylori (cagA+vacA+)-infected fibroblasts by RT-PCR. After insert coculture of differentiated fibroblasts with RGM-1 cells from 24 up to 48, 72, and 96 hours, the mRNA expression for EMT-associated genes was analyzed by RT-PCR. RESULTS The mRNA expression for CAFs markers was significantly increased after 72 hours of infection with H. pylori (cagA+vacA+) but not H. pylori (cagA-vacA-) strain. Following coculture with CAFs, RGM-1 cells showed significant decrease in E-cadherin mRNA, and the parallel increase in the expression of Twist and Snail transcription factors mRNA was observed along with the overexpression of mRNAs for TGFβR, HGFR, FGFR, N-cadherin, vimentin, α-SMA, VEGF, and integrin-β1. CONCLUSION Helicobacter pylori (cagA+vacA+) strain induces differentiation of normal fibroblasts into CAFs, likely to initiate the EMT process in RGM-1 epithelial cell line.
Collapse
Affiliation(s)
- Gracjana Krzysiek‐Maczka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Aneta Targosz
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Urszula Szczyrk
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Malgorzata Strzałka
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Zbigniew Sliwowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Tomasz Brzozowski
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| | - Jarosław Czyz
- Department of Cell BiologyThe Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Agata Ptak‐Belowska
- Department of PhysiologyThe Faculty of MedicineJagiellonian University Medical CollegeCracowPoland
| |
Collapse
|
26
|
Harris TR, Kodani S, Rand AA, Yang J, Imai DM, Hwang SH, Hammock BD. Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 2018; 94:834-841. [PMID: 29844231 PMCID: PMC6022802 DOI: 10.1124/mol.118.111831] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) selective inhibitor celecoxib is widely used in the treatment of pain and inflammation. Celecoxib has been explored as a possible treatment of liver fibrosis with contradictory results, depending on the model. The present study reports the effect of celecoxib in a 5-week carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. Celecoxib alone and in combination with inhibitors of the enzyme-soluble epoxide hydrolase (sEH), as well as a dual inhibitor that targets both COX-2 and sEH, were administered via osmotic minipump to mice receiving intraperitoneal injections of CCl4 Collagen deposition was elevated in the mice treated with both celecoxib and CCl4 compared with the control or CCl4-only groups, as assessed by trichrome staining. Histopathology revealed more extensive fibrosis and cell death in the animals treated with both celecoxib and CCl4 compared with all other experimental groups. Although some markers of fibrosis, such as matrix metalloprotease, were unchanged or lowered in the animals treated with both celecoxib and CCl4, overall, hepatic fibrosis was more severe in this group. Cotreatment with celecoxib and an inhibitor of sEH or treatment with a dual inhibitor of COX-2 and sEH decreased the elevated levels of fibrotic markers observed in the group that received both celecoxib and CCl4 Oxylipid analysis revealed that celecoxib reduced the level of prostaglandin E2 relative to the CCl4 only group. Overall, celecoxib treatment did not decrease liver fibrosis in CCl4-treated mice.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Sean Kodani
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Amy A Rand
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Jun Yang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Denise M Imai
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| |
Collapse
|
27
|
Lu YY, Gao JH, Zhao C, Wen SL, Tang CW, Wang YF. Cyclooxygenase-2 up-regulates hepatic somatostatin receptor 2 expression. Sci Rep 2018; 8:11033. [PMID: 30038293 PMCID: PMC6056476 DOI: 10.1038/s41598-018-29349-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
Somatostatin and its analogues, which function by binding to somatostatin receptors (SSTRs) 1-5, play a protective role in liver cirrhosis. Hepatic SSTR-2 expression is up-regulated in subjects with liver cirrhosis. However, little is known about the mechanisms underlying this process. In the present study, we observed the up-regulation of hepatic SSTR-2 expression in thioacetamide (TAA)-induced cirrhotic rats and further showed that cyclooxygenase-2 (COX-2) might play a role in this process via the protein kinase C (PKC)-cAMP response element binding protein (CREB) signaling pathway. In vivo, the up-regulated SSTR-2 in liver cirrhosis was inhibited by the addition of a selective COX-2 inhibitor, such as celecoxib. In vitro, the up-regulation of COX-2 by either transfection with COX-2 plasmids or treatment with TAA increased levels of SSTR-2 and phosphorylated CREB (p-CREB) in the human hepatocyte cell line L02. Furthermore, the increase in SSTR-2 expression was inhibited by the addition of celecoxib and a PKC inhibitor. Moreover, for comparable DNA methylation levels in the region upstream of the hepatic SSTR-2 gene in normal and cirrhotic livers, DNA methylation may not contribute to the up-regulation of SSTR-2 expression in cirrhotic livers. In conclusion, the up-regulation of hepatic SSTR-2 might be induced by COX-2 via the PKC-CREB signaling pathway but is probably not induced by DNA methylation.
Collapse
Affiliation(s)
- Yao-Yao Lu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.,Division of Digestive Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Division of Digestive Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Lei Wen
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, China
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China. .,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China. .,Division of Digestive Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu-Fang Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
28
|
Ye Y, Xu Y, Lai Y, He W, Li Y, Wang R, Luo X, Chen R, Chen T. Long non-coding RNA cox-2 prevents immune evasion and metastasis of hepatocellular carcinoma by altering M1/M2 macrophage polarization. J Cell Biochem 2018; 119:2951-2963. [PMID: 29131381 DOI: 10.1002/jcb.26509] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
Macrophages have been shown to demonstrate a high level of plasticity, with the ability to undergo dynamic transition between M1 and M2 polarized phenotypes. We investigate long non-coding RNA (lncRNA) cox-2 in macrophage polarization and the regulatory mechanism functions in hepatocellular carcinoma (HCC). Lipopolysaccharide (LPS) was used to induce RAW264.7 macrophages into M1 type, and IL-4 was to induce RAW264.7 macrophages into M2 type. We selected mouse hepatic cell line Hepal-6 and hepatoma cell line HepG2 for co-incubation with M1 or M2 macrophages. Quantitative real-time PCR was used to detect the expressions of lncRNA cox-2 and mRNAs. ELISA was conducted for testing IL-12 and IL-10 expressions; Western blotting for epithelial mesenchymal transition related factors (E-cadherin and Vimentin). An MTT, colony formation assay, flow cytometry, transwell assay, and stretch test were conducted to test cell abilities. The M1 macrophages had higher lncRNA cox-2 expression than that in the non-polarized macrophages and M2 macrophages. The lncRNA cox-2 siRNA decreased the expression levels of IL-12, iNOS, and TNF-α in M1 macrophages, increased the expression levels of IL-10, Arg-1, and Fizz-1 in M2 macrophages (all P < 0.05). The lncRNA cox-2 siRNA reduces the ability of M1 macrophages to inhibit HCC cell proliferation, invasion, migration, EMT, angiogenesis and facilitate apoptosis while strengthening the ability of M2 macrophages to promote proliferation HCC cell growth and inhibit apoptosis. These findings indicate that lncRNA cox-2 inhibits HCC immune evasion and tumor growth by inhibiting the polarization of M2 macrophages.
Collapse
Affiliation(s)
- Yibiao Ye
- Department of Hepatobilliary Surgery, Sun Yat-sen Memorial Hospitall, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunxiuxiu Xu
- Department of Hepatobilliary Surgery, Sun Yat-sen Memorial Hospitall, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Lai
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenguang He
- Department of General Surgery, Zengcheng District People's Hospital of Guangzhou, Guangzhou, China
| | - Yanshan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruomei Wang
- Department of Hepatobilliary Surgery, Sun Yat-sen Memorial Hospitall, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinxi Luo
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rufu Chen
- Department of Hepatobilliary Surgery, Sun Yat-sen Memorial Hospitall, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Abstract
Fibrosis of the liver is an inherent wound healing response to chronic liver injury. Regeneration of liver epithelium and restoration of normal liver structure were generally involved in this process. Although the liver has a striking capacity to adapt to damage through tissue repair, excessive accumulation of extracellular matrix during this process often leads to scar tissue formation and subsequent fibrosis. Epithelial to mesenchymal transition (EMT) enables a polarized epithelial cell to undergo multiple changes biochemically and to bear a mesenchymal cell phenotype. EMT plays a critical role in tissue and organ development and embryogenesis. In the liver, it is proposed that epithelial cells can acquire fibroblastic phonotype via EMT and contribute to fibrogenesis. This made EMT a potential target for antifibrotic strategies. Following an original passion, many investigators devote themselves to exploring this mechanism in liver fibrosis. However, as research continues, this hypothesis became highly controversial. The exact contribution of EMT to fibrogenesis was challenged due to the contradictory results from related studies. In this review, we summarized the recent advances regarding EMT in hepatic fibrosis and discussed the potentially involved liver cell types and pathways in order to reach rational and helpful conclusions.
Collapse
Affiliation(s)
- Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qian Li
- Department of General Surgery, Qingdao Municipal Hospital, Qingdao, People's Republic of China
| | - Guangfeng Shi
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ning Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China,Address for correspondence: Dr. Ning Li, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai – 200040, People's Republic of China. E-mail:
| |
Collapse
|
30
|
Tong H, Wei B, Chen S, Xie YM, Zhang MG, Zhang LH, Huang ZY, Tang CW. Adjuvant celecoxib and lanreotide following transarterial chemoembolisation for unresectable hepatocellular carcinoma: a randomized pilot study. Oncotarget 2017; 8:48303-48312. [PMID: 28430638 PMCID: PMC5564648 DOI: 10.18632/oncotarget.15684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
Recurrence of hepatocellular carcinoma (HCC) after transarterial chemoembolisation (TACE) is common due to neoangiogenesis. Cyclooxygenase-2 inhibitors and somatostatin analogues were reported to inhibit tumour angiogenesis. The pilot randomized controlled trial was aimed to prospectively evaluate the protocol of TACE combined with celecoxib and lanreotide (TACE+C+L) in patients with unresectable and advanced HCC. A total of 71 patients with HCC were enrolled and randomly assigned to either TACE (n=35) or TACE+C+L (n=36) group. Overall survival, disease control rate (DCR), and adverse events were assessed during a 3-year follow-up period. The median overall survival of the TACE+C+L group (15.0 months) was doubled compared to that of TACE group (7.5 months), p = 0.012. DCR of the TACE+C+L group was significantly higher than that of the TACE group either at 6 months (72.2% vs 42.9%, p = 0.012) or at 12 months (61.1% vs 28.6%, p = 0.006). The median overall survivals (13 months vs 4.5 months, p = 0.013) and DCR at 12 months (50% vs 13.6%, p = 0.008) of patients with advanced HCC in TACE+C+L groups were significantly higher than those in TACE group. No significant difference of adverse events was observed between the two groups. The occurrence of post-embolisation syndrome in TACE+C+L group was significantly lower than that in TACE group (16.7% vs 60.0%, p = 0.001). In conclusion, the regimen of TACE+C+L prolonged overall survival, enhanced tumour response, reduced post-embolisation syndrome and was well-tolerable in the patients with unresectable HCC. It may be more beneficial for advanced HCC.
Collapse
Affiliation(s)
- Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Wei
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Chen
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Mei Xie
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ming-Guang Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Lin-Hao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Abstract
Objective Hepatopulmonary syndrome (HPS) is characterized by hypoxia in patients with chronic liver disease. The mechanism of HPS includes pulmonary vasodilatation, inflammation, and angiogenesis. Prostaglandins synthesized by cyclooxygenases (COX) participate in vascular responsiveness, inflammation and angiogenesis, which can be modulated by COX inhibitors. We therefore evaluated the impact of COX inhibition in rats with common bile duct ligation (CBDL)-induced liver cirrhosis and HPS. Methods Cirrhotic rats were randomly allocated to receive non-selective COX inhibitor (indomethacin), selective COX-1 inhibitor (SC-560), or COX-2 inhibitor (celecoxib) for 14 days. After that, hemodynamic parameters, severity of hypoxia and intrapulmonary shunts, liver and renal biochemistry parameters, histological finding and protein expressions were evaluated. Results Non-selective COX inhibition by indomethacin improved hepatic fibrosis and pulmonary inflammation in cirrhotic rats with HPS. It also decreased mean arterial blood pressure, portal pressure, and alleviated hypoxia and intrapulmonary shunts. However, indomethacin increased mortality rate. In contrast, selective COX inhibitors neither affected hemodynamics nor increased mortality rate. Hypoxia was improved by SC-560 and celecoxib. In addition, SC-560 decreased intrapulmonary shunts, attenuated pulmonary inflammation and angiogenesis through down-regulating COX-, NFκB- and VEGF-mediated pathways. Conclusion Selective COX-1 inhibitor ameliorated HPS by mitigating hypoxia and intrapulmonary shunts, which are related to anti-inflammation and anti-angiogenesis.
Collapse
|
32
|
Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, Xiao H, Zhang D, Jiang J. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 2017; 389:23-32. [PMID: 28043910 DOI: 10.1016/j.canlet.2016.12.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022]
Abstract
Castration is the standard therapeutic treatment for advanced prostate cancer but with limited benefit due to the profound relapse and metastasis. Activation of inflammatory signaling pathway and initiation of epithelial-mesenchymal transition (EMT) are closely related to drug resistance, tumor relapseas well as metastasis. In this study, we demonstrated that metformin is capable of inhibiting prostate cancer cell migration and invasion by repressing EMT evidenced by downregulating the mesenchymal markers N-cadherin, Vimentin, and Twist and upregulating the epithelium E-cadherin. These effects have also been observed in our animal model as well as prostate cancer patients. In addition, we showed the effects of metformin on the expression of genes involved in EMT through repressing the levels of COX2, PGE2 and phosphorylated STAT3. Furthermore, inactivating COX2 abolishes metformin's regulatory effects and exogenously administered PGE2 is capable of enhancing STAT3 phosphorylation and expression of EMT biomarker. We propose that metformin represses prostate cancer EMT and metastasis through targeting the COX2/PGE2/STAT3 axis. These findings suggest that metformin by itself or in combination with other anticancer drugs could be used as an anti-metastasis therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jing Xu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Yao Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Hualiang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China.
| |
Collapse
|
33
|
Liu J, Yang XF. Role of cyclooxygenase-2 in immune response in liver fibrosis and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2017; 25:702-708. [DOI: 10.11569/wcjd.v25.i8.702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2), an inducible enzyme, is almost not expressed in normal human and rat liver tissues, but is highly expressed in liver tissues of patients with chronic hepatitis and cirrhosis. Inhibition or interference of COX-2 expression can significantly inhibit the formation of hepatic fibrosis in rats, suggesting that COX-2 is involved in the occurrence and development of hepatic fibrosis; however, the underlying mechanism is unclear. Recent studies have shown that the role of COX-2 in the development of hepatic fibrosis may be related to immune response. In this paper, we review the role of COX-2 and its metabolites in the immune response in liver fibrosis, with an aim to provide a theoretical basis for clinical prevention and treatment of hepatic fibrosis.
Collapse
|
34
|
JianPi JieDu Recipe Inhibits Epithelial-to-Mesenchymal Transition in Colorectal Cancer through TGF- β/Smad Mediated Snail/E-Cadherin Expression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2613198. [PMID: 28299321 PMCID: PMC5337333 DOI: 10.1155/2017/2613198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/28/2016] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
JPJD was an ideal alternative traditional Chinese medicine compound in the prevention and treatment of CRC, but its underlying mechanisms has not been fully elucidated. In this study, we demonstrated in vitro that TGF-β-induced EMT promoted the invasion and metastasis of CRC cells, reduced the expression of E-cadherin, and elevated the expression of Vimentin. However, JPJD could inhibit the invasive and migratory ability of TGF-β-stimulated CRC cells in a concentration-dependent manner through increasing the expression of E-cadherin and repressing the expression of Vimentin, as well as the inhibition of TGF-β/Smad signaling pathway. Meanwhile, JPJD reduced the transcriptional activities of EMT-associated factors Snail and E-cadherin during the initiation of TGF-β-induced EMT. In vivo, the results demonstrated that JPJD can significantly inhibit the liver and lung metastasis of orthotopic CRC tumor in nude mice, as well as significantly prolonging the survival time of tumor-bearing in a dose-dependent manner. Additionally, JPJD can upregulate the expression of E-cadherin and Smad2/3 in the cytoplasm and downregulate the expression of Vimentin, p-Smad2/3, and Snail in the orthotopic CRC tumor tissues. In conclusions, our new findings provided evidence that JPJD could inhibit TGF-β-induced EMT in CRC through TGF-β/Smad mediated Snail/E-cadherin expression.
Collapse
|
35
|
Tang SH, Gao JH, Wen SL, Tong H, Yan ZP, Liu R, Tang CW. Expression of cyclooxygenase-2 is correlated with lncRNA-COX-2 in cirrhotic mice induced by carbon tetrachloride. Mol Med Rep 2017; 15:1507-1512. [PMID: 28259935 PMCID: PMC5364955 DOI: 10.3892/mmr.2017.6161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
Multiple long non-coding RNAs (lncRNAs) have been demonstrated to be involved in liver disease. Increased cyclooxygenase-2 (COX‑2) levels have also been reported to be involved in the progression of liver cirrhosis. In the present study, the correlations between lncRNA‑COX‑2 RNA expression levels, COX‑2 mRNA expression levels and liver fibrosis were examined. Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4) in mice for 2 months (CCl4‑2M) or 3 months (CCl4‑3M). Liver histopathological evaluation was conducted using hematoxylin and eosin and Masson trichrome staining. Hepatic expression of COX‑2 and lncRNA‑COX‑2 was evaluated by reverse transcription‑quantitative polymerase chain reaction and immunohistochemical staining. Compared with the control group, fibrotic areas were increased four and nine times in the CCl4‑2M group and the CCl4‑3M group, respectively. LncRNA-COX-2 and COX‑2 upregulation were observed in the cirrhotic liver. COX‑2 mRNA expression levels and lncRNA-COX-2 RNA expression levels were significantly positively correlated with the fibrotic area. In addition, COX‑2 mRNA expression was significantly positively correlated with lncRNA‑COX‑2 expression. These results suggest that expression of COX‑2 and lncRNA‑COX‑2 increased with the progression of liver fibrosis. LncRNA-COX-2 may potentially be considered as a novel therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Hang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Lei Wen
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhao-Ping Yan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
36
|
Wen SL, Feng S, Tang SH, Gao JH, Zhang LH, Tong H, Yan ZP, Fang DZ. Collapsed Reticular Network and its Possible Mechanism during the Initiation and/or Progression of Hepatic Fibrosis. Sci Rep 2016; 6:35426. [PMID: 27739503 PMCID: PMC5064391 DOI: 10.1038/srep35426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/29/2016] [Indexed: 02/05/2023] Open
Abstract
Among the researches on hepatic fibrosis, great attention was paid to both hepatocytes and extracellular matrix (ECM). However, little focus was drawn on reticular fibrous network, which is important for demarcation and support of hepatocytes. The aim of this study was to investigate the change pattern of reticular fibers in hepatic fibrosis/cirrhosis and its underlying mechanism. In this study, thioacetamide (TAA) and bile duct ligation (BDL) were utilized to induce rat hepatic fibrosis respectively, and Human liver cirrhotic microassay was analyzed with IHC to confirm the results in animal experiment and to detect the metalloproteinases (MMPs) expressions. As a result, the reticular fibers decreased markedly after 1 week in TAA and 1 day in BDL treated rats. Multiple representative regulators of MMPs and MMPs increased significantly in their expressions and activities. Further more, in human liver cirrhotic microassay, MMPs expressions also showed similar patterns as that of animal experiment. In Conclusions: Degradation or collapse of reticular fibers in hepatic sinusoid can be considered as a pathological feature during the initiation and/or progression of hepatic fibrosis. Moreover, such degradation is associated with and probably caused by the over/dysregulated expression of MMPs.
Collapse
Affiliation(s)
- Shi-Lei Wen
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shi Feng
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Jin-Hang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
- Department of Peptides Related to Human Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Lin-hao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
- West China School of Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Zhao-Ping Yan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, PR China
| |
Collapse
|
37
|
Gao JH, Wen SL, Feng S, Yang WJ, Lu YY, Tong H, Liu R, Tang SH, Huang ZY, Tang YM, Yang JH, Xie HQ, Tang CW. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats. Angiogenesis 2016; 19:501-11. [PMID: 27380212 PMCID: PMC5026725 DOI: 10.1007/s10456-016-9522-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)–hypoxia-inducible factor-1α (HIF-1α)–vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK–HIF-1α–VEGF signaling pathway.
Collapse
Affiliation(s)
- Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shi-Lei Wen
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Shi Feng
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, People's Republic of China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yao-Yao Lu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China. .,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
38
|
Gao JH, Wen SL, Tong H, Wang CH, Yang WJ, Tang SH, Yan ZP, Tai Y, Ye C, Liu R, Huang ZY, Tang YM, Yang JH, Tang CW. Inhibition of cyclooxygenase-2 alleviates liver cirrhosis via improvement of the dysfunctional gut-liver axis in rats. Am J Physiol Gastrointest Liver Physiol 2016; 310:G962-72. [PMID: 27056726 DOI: 10.1152/ajpgi.00428.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/04/2016] [Indexed: 02/07/2023]
Abstract
Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis.
Collapse
Affiliation(s)
- Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Shi-Lei Wen
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, China; and
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Chun-Hui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Zhao-Ping Yan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Yang Tai
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Cheng Ye
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| | - Ying-Mei Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; and
| |
Collapse
|
39
|
Antifibrotic effect of meloxicam in rat liver: role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:971-83. [PMID: 27245167 DOI: 10.1007/s00210-016-1263-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
This study was aimed at investigating the antifibrotic effect of meloxicam in CCl4-induced liver fibrosis and elucidating its underlying mechanism. Forty male rats were equally randomized for 8-week treatment with corn oil (negative control), CCl4 (to induce liver fibrosis), and/or meloxicam. Meloxicam effectively ameliorated the CCl4-induced alterations in liver histology, liver weight to body weight ratio, liver functions, and serum markers for liver fibrosis (hyaluronic acid, laminin, and PCIII). Meloxicam significantly abrogated CCl4-induced elevation of messenger RNA (mRNA) expressions for collagen I and alpha smooth muscle actin (α-SMA) and hepatic contents of hydroxyproline, transforming growth factor beta (TGF-β), and tissue inhibitor of matrix metalloproteases (TIMP-1). Meloxicam mitigated CCl4-induced elevation in hepatic levels of nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), total nitric oxide (NO), interleukin-l beta (IL 1β), and prostaglandin E2 (PGE2). Meloxicam modulated CCl4-induced disturbance of liver cytochrome P450 subfamily 2E1 (CYP2E1) and glutathione-S-transferase (GST). The attenuation of meloxicam to liver fibrosis was associated with suppression of oxidative stress via reduction of lipid peroxides along with induction of reduced glutathione content and enhancement of superoxide dismutase, glutathione peroxidase, and catalase activities. This study provides an evidence for antifibrotic effect of meloxicam against CCl4-induced liver fibrosis in rat. The antifibrotic mechanism of meloxicam could be through decreasing NF-κB level and subsequent proinflammatory cytokine production (TNF-α, NO, IL-1 beta, and PGE2) and, hence, collagen deposition through inhibition of TIMP-1 and TGF-β. Abrogation of oxidative stress and modulation of liver-metabolizing enzymes (CYP2E1 and GST) were also involved.
Collapse
|
40
|
Wu T, Chen JM, Xiao TG, Shu XB, Xu HC, Yang LL, Xing LJ, Zheng PY, Ji G. Qinggan Huoxue Recipe suppresses epithelial-to-mesenchymal transition in alcoholic liver fibrosis through TGF-β1/Smad signaling pathway. World J Gastroenterol 2016; 22:4695-4706. [PMID: 27217701 PMCID: PMC4870076 DOI: 10.3748/wjg.v22.i19.4695] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/03/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanism by which Qinggan Huoxue Recipe (QGHXR) inhibits epithelial-to-mesenchymal transition (EMT) in rats with alcoholic liver fibrosis (ALF). METHODS A total of 75 male SD rats were used to induce ALF. Serum biochemical indicators, including alanine aminotransferase, aspartate aminotransferase, laminin and hyaluronidase, were measured. Liver histopathological changes were evaluated using hematoxylin-eosin and Sirius red staining. EMT was examined by analyzing the expression of the epithelial marker E-cadherin and the mesenchymal markers vimentin and fibronectin using RT-PCR and Western blot. The inhibitory effect of QGHXR on EMT markers, as well as its effect on molecules associated with the transforming growth factor (TGF)-β1/Smad signaling pathway, including TGF-β1, Smad3, snail, occludin, ZO-1 and claudin, was also examined. RESULTS Compared with normal control rats, ALF rats exhibited a decrease in E-cadherin levels (mRNA: ALF 0.16 ± 0.05 vs control 1.00 ± 0.08; protein: ALF 0.09 ± 0.05 vs control 0.70 ± 0.17, P < 0.01) and an increase in vimentin and fibronectin levels (mRNA: 11.43 ± 0.39 vs 1.00 ± 0.19 and 9.91 ± 0.34 vs 1.00 ± 0.44, respectively, P < 0.01; protein: 1.13 ± 0.42 vs 0.09 ± 0.03 and 1.16 ± 0.43 vs 0.09 ± 0.00, respectively, P < 0.01). This indicates that EMT occurred in ALF rats. In addition, the TGF-β1/Smad signaling pathway was activated in ALF rats, as evidenced by the increase in TGF-β1 and snail levels (mRNA: 1.76 ± 0.12 vs 1.00 ± 0.05 and 6.98 ± 0.41 vs 1.00 ± 0.10, respectively, P < 0.01; protein: 1.43 ± 0.05 vs 0.12 ± 0.03 and 1.07 ± 0.29 vs 0.07 ± 0.02, respectively, P < 0.01) and the decrease in Smad3 levels (mRNA: 0.05 ± 0.01 vs 1.00 ± 0.12, P < 0.01; protein: 0.06 ± 0.05 vs 0.89 ± 0.12, P < 0.01). Furthermore, levels of the tight junction markers occludin, ZO-1 and claudin decreased in ALF rats compared with healthy control rats (mRNA: 0.60 ± 0.09 vs 1.00 ± 0.12, 0.11 ± 0.00 vs 1.00 ± 0.12 and 0.60 ± 0.01 vs 1.00 ± 0.08, respectively, P < 0.01; protein: 0.05 ± 0.01 vs 0.87 ± 0.40, 0.09 ± 0.05 vs 0.89 ± 0.18 and 0.04 ± 0.03 vs 0.95 ± 0.21, respectively, P < 0.01). In ALF rats treated with QGHXR, E-cadherin levels increased (mRNA: QGHXR 0.67 ± 0.04 vs ALF model 0.16 ± 0.05, P < 0.01; protein: QGHXR 0.66 ± 0.21 vs ALF model 0.09 ± 0.05, P < 0.01), and vimentin and fibronectin levels decreased (mRNA: 6.57 ± 1.05 vs 11.43 ± 0.39 and 1.45 ± 1.51 vs 9.91 ± 0.34, respectively, P < 0.01; protein: 0.09 ± 0.03 vs 1.13 ± 0.42 and 0.10 ± 0.01 vs 1.16 ± 0.43, respectively, P < 0.01). In addition, QGHXR inhibited the expression of TGF-β1 and increased the expression of Smad3 (mRNA: 1.03 ± 0.11 vs 1.76 ± 0.12, 0.70 ± 0.10 vs 0.05 ± 0.01, respectively, P < 0.05 and P < 0.01; protein: 0.12 ± 0.03 vs 1.43 ± 0.05 and 0.88 ± 0.20 vs 0.06 ± 0.05, respectively, P < 0.01). QGHXR treatment also reduced the levels of the EMT-inducing transcription factor snail (mRNA: 2.28 ± 0.33 vs 6.98 ± 0.41, P < 0.01; protein: 0.08 ± 0.02 vs 1.07 ± 0.29, P < 0.01) and increased the occludin, ZO-1 and claudin levels (mRNA: 0.73 ± 0.05 vs 0.60 ± 0.09, 0.57 ± 0.04 vs 0.11 ± 0.00 and 0.68 ± 0.03 vs 0.60 ± 0.01, respectively, P < 0.01, P < 0.01 and P < 0.05; protein: 0.92 ± 0.50 vs 0.05 ± 0.01, 0.94 ± 0.22 vs 0.09 ± 0.05 and 0.94 ± 0.29 vs 0.04 ± 0.03, respectively, P < 0.01). The effects of QGR and HXR on the TGF-β1/Smad signaling pathway were similar to that of QGHXR; however, the QGR- and HXR-induced changes in vimentin mRNA levels, the QGR-induced changes in fibronectin mRNA levels and the HXR-induced changes in snail and TGF-β1 mRNA levels were not significant. CONCLUSION Qinggan Huoxue Recipe inhibits EMT in ALF rats by modulating the TGF-β1/Smad signaling pathway, suggesting that the mechanism underlying the amelioration of ALF induced by QGHXR is associated with this pathway.
Collapse
|
41
|
Zakaria S, El-Sisi A. Rebamipide retards CCl4-induced hepatic fibrosis in rats: Possible role for PGE2. J Immunotoxicol 2016; 13:453-62. [PMID: 26849241 DOI: 10.3109/1547691x.2015.1128022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a potent physiological suppressor of liver fibrosis. Because the anti-ulcer drug rebamipide can induce the formation of endogenous PGE2, this study investigated the potential effects of rebamipide on development of a hepatic fibrosis that was inducible by carbon tetrachloride (CCl4). Groups of Wistar rats received intraperitoneal (IP) injections of CCl4 (0.45 ml/kg [0.72 g CCl4/kg]) over the course of for 4 weeks. Sub-sets of CCl4-treated rats were also treated concurrently with rebamipide at 60 or 100 mg/kg. At 24 h after the final treatments, liver function and oxidative stress were indirectly assessed. The extent of hepatic fibrosis was evaluated using two fibrotic markers, hyaluronic acid (HA) and pro-collagen-III (Procol-III); isolated liver tissues underwent histology and were evaluated for interleukin (IL)-10 and PGE2 content. The results indicated that treatment with rebamipide significantly inhibited CCl4-induced increases in serum ALT and AST and also reduced oxidative stress induced by CCl4. Fibrotic marker assays revealed that either dose of rebamipide decreased the host levels of Procol-III and HA that had become elevated due to the CCl4. At the higher dose tested, rebamipide appeared to be able to permit the hosts to have a normal liver histology and to minimize any CCl4-induced collagen precipitation in the liver. Lastly, the use of rebamipide was seen to be associated with significant increases in liver levels of both PGE2 and the anti-inflammatory cytokine IL-10. Based on these findings, it is concluded that rebamipide can retard hepatic fibrosis induced by CCl4 and that this effect may, in part, be mediated by an induction of PGE2 and IL-10 in the liver itself.
Collapse
Affiliation(s)
- Sherin Zakaria
- a Department of Pharmacology and Toxicology , Damanhour University , Damanhour , Egypt
| | - Alaa El-Sisi
- b Department of Pharmacology and Toxicology , Tanta University , Tanta , Egypt
| |
Collapse
|
42
|
MicroRNA-130b improves renal tubulointerstitial fibrosis via repression of Snail-induced epithelial-mesenchymal transition in diabetic nephropathy. Sci Rep 2016; 6:20475. [PMID: 26837280 PMCID: PMC4738324 DOI: 10.1038/srep20475] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/05/2016] [Indexed: 12/29/2022] Open
Abstract
MicroRNA-130b (miR-130b) downregulation has been identified in diabetes, but the role and mechanisms for miR-130b in mediating renal tubulointerstitial fibrosis in diabetic nephropathy (DN) remain unknown. We demonstrated that plasma miR-130b downregulation exhibited clinical and biological relevance as it was linked to increased serum creatinine, β2-microglobulin and proteinuria, increased Snail expression and tubulointerstitial fibrosis in renal biopsies of DN patients. MiR-130b inhibitor caused Snail upregulation and enhanced molecular features of epithelial-to-mesenchymal transition (EMT) in high glucose (30 mM) cultured NRK-52E cells. In contrast, miR-130b mimic downregulated Snail expression and increased epithelial hallmarks. Notably, Snail was identified as an miR-130b direct target and inversely correlated with E-CADHERIN expression. Furthermore, the miR-130b-dependent effects were due to Snail suppression that in turn deregulated E-CADHERIN, VIMENTIN, COLLAGEN IV and α-smooth muscle actin (α-SMA), key mediators of EMT. These effects were reproduced in streptozotocin-induced diabetic rats. Thus, we propose a novel role of the miR-130b-SNAIL axis in fostering EMT and progression toward increased tubulointerstitial fibrosis in DN. Detection of plasma miR-130b and its association with SNAIL can be extrapolated to quantifying the severity of renal tubulointerstitial fibrosis. Targeting miR-130b could be evaluated as a potential therapeutic approach for DN.
Collapse
|
43
|
Ouyang F, Huang H, Zhang M, Chen M, Huang H, Huang F, Zhou S. HMGB1 induces apoptosis and EMT in association with increased autophagy following H/R injury in cardiomyocytes. Int J Mol Med 2016; 37:679-89. [PMID: 26847839 PMCID: PMC4771104 DOI: 10.3892/ijmm.2016.2474] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) is a critical factor in the pathogenesis of tissue injury following myocardial infarction (MI) which can lead to tissue damage and pathological remodeling. Therefore, it is necessary to try and prevent myocardial H/R injury in order to optimize the treatment of MI. This study aimed to explore the functions and molecular mechanisms of action of high mobility group box 1 (HMGB1) and its role in H/R injury to H9c2 cells. The mRNA expression of levels genes were detected by RT-qPCR. The protein levels were examined by western blot analysis. The Beclin 1 expression level was further determined by immunocytochemistry (ICC). In addition, an HMGB1 overexpression vector and a shRNA lentiviral vector were constructed in order to induce the overexpression and silencing of HMGB1, respectively. The apoptotic rate of the H9c2 cells was determined by flow cytometry. The expression of miR-210 was markedly increased following the exposure of the cells to H/R, thus indicating that the cell model of H/R injury was successfully established. In addition, an in vivo model of MI was also created using rats. The mRNA and protein level of HMGB1 was found to be upregulated in the myocardial tissue of the rats with MI and in the H9c2 cells subjected to H/R injury. HMGB1 promoted apoptosis by increasing the expression of cleaved caspase-3 and the apoptotic rate of the cells, while decreasing the expression of Bcl-2 during H/R in the H9c2 cells. HMGB1 promoted epithelial-to-mesenchymal transition (EMT) by reducing the protein level of the epithelial marker, E-cadherin, while increasing the expression of the mesenchymal markers, vimentin and fibroblast-specific protein (FSP), during H/R in the H9c2 cells. HMGB1 induced the apoptosis of the H9c2 cells and EMT following H/R in association with the induction of autophagy. HMGB1 induced autophagy by upregulating the expression of discoidin domain receptor 1 (DDR1) and downregulating the phosphorylation levels of mammalian target of rapamycin (mTOR). In conclusion, the findings of our study suggest that HMGB1 promotes apoptosis and EMT in association with the induction of autophagy through the upregulation of the expression of DDR1 and the downregulation of the phosphorylation of mTOR following H/R injury in H9c2 cells.
Collapse
Affiliation(s)
- Fan Ouyang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - He Huang
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyu Zhang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Haobo Huang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Fang Huang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
44
|
Choi JS, Kim JK, Yang YJ, Kim Y, Kim P, Park SG, Cho EY, Lee DH, Choi JW. Identification of cromolyn sodium as an anti-fibrotic agent targeting both hepatocytes and hepatic stellate cells. Pharmacol Res 2015; 102:176-83. [PMID: 26453959 DOI: 10.1016/j.phrs.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 11/30/2022]
Abstract
Liver fibrosis and cirrhosis, the late stage of fibrosis, are threatening diseases that lead to liver failure and patient death. Although aberrantly activated hepatic stellate cells (HSCs) are the main cause of disease initiation, the symptoms are primarily related to damaged hepatocytes. Thus, damaged hepatocytes, as well as HSCs, need to be simultaneously considered as therapeutic targets to develop more efficient treatments. Here, we suggest cromolyn sodium as an anti-fibrotic agent to commonly modulate hepatocytes and hepatic stellate cells. The differentially expressed genes from 6 normal and 40 cirrhotic liver tissues which were collected from GEO data were assessed by pharmacokinetic analysis using a connectivity map to identify agents that commonly revert abnormal hepatocytes and HSCs to normal conditions. Based on a series of analyses, a few candidates were selected. Candidates were tested in vitro to determine their anti-fibrotic efficacy on HSCs and hepatocytes. Cromolyn, which was originally developed as a mast cell stabilizer, showed the potential to ameliorate activated HSCs in vitro. The activation and collagen accumulation for HSC cell lines LX2 and HSC-T6 were reduced by 50% after cromolyn treatment at a low concentration without apoptosis. Furthermore, cromolyn treatment compromised the TGF-β-induced epithelial mesenchyme transition and replicative senescence rate of hepatocytes, which are generally associated with fibrogenesis. Taken together, cromolyn may be the basis for an effective cure for fibrosis and cirrhosis because it targets both HSCs and hepatocytes.
Collapse
Affiliation(s)
- Joon-Seok Choi
- College of Pharmacy, Catholic University of Daegu, Gyeongbuk 712-702, Republic of Korea
| | - Jun Ki Kim
- Biomedical Engineering Center, Asan Institute for Life Sciences, Asan Medical Center and University of Ulsan, College of Medicine, Seoul, 138-736, Republic of Korea
| | - Yoon Jung Yang
- Wonkwang Institute of Integrative Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-711, Republic of Korea
| | - Yeseul Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 305-338, Republic of Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 305-338, Republic of Korea
| | - Sang Gyu Park
- Department of Pharmacy, Ajou University, Suwon, Gyenggi-do 443-270, Republic of Korea
| | - Eun-Young Cho
- Department of Internal Medicine, Wonkwang University School of Medicine & Hospital, Iksan, Jeonbuk 570-711, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Wonkwang University School of Medicine & Hospital, Iksan, Jeonbuk 570-711, Republic of Korea
| | - Jin Woo Choi
- Wonkwang Institute of Integrative Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-711, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do 443-270, Republic of Korea.
| |
Collapse
|
45
|
Vernetti LA, Senutovitch N, Boltz R, DeBiasio R, Shun TY, Gough A, Taylor DL. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood) 2015. [PMID: 26202373 DOI: 10.1177/1535370215592121] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This paper describes the development and characterization of a microphysiology platform for drug safety and efficacy in liver models of disease that includes a human, 3D, microfluidic, four-cell, sequentially layered, self-assembly liver model (SQL-SAL); fluorescent protein biosensors for mechanistic readouts; as well as a microphysiology system database (MPS-Db) to manage, analyze, and model data. The goal of our approach is to create the simplest design in terms of cells, matrix materials, and microfluidic device parameters that will support a physiologically relevant liver model that is robust and reproducible for at least 28 days for stand-alone liver studies and microfluidic integration with other organs-on-chips. The current SQL-SAL uses primary human hepatocytes along with human endothelial (EA.hy926), immune (U937) and stellate (LX-2) cells in physiological ratios and is viable for at least 28 days under continuous flow. Approximately, 20% of primary hepatocytes and/or stellate cells contain fluorescent protein biosensors (called sentinel cells) to measure apoptosis, reactive oxygen species (ROS) and/or cell location by high content analysis (HCA). In addition, drugs, drug metabolites, albumin, urea and lactate dehydrogenase (LDH) are monitored in the efflux media. Exposure to 180 μM troglitazone or 210 μM nimesulide produced acute toxicity within 2-4 days, whereas 28 μM troglitazone produced a gradual and much delayed toxic response over 21 days, concordant with known mechanisms of toxicity, while 600 µM caffeine had no effect. Immune-mediated toxicity was demonstrated with trovafloxacin with lipopolysaccharide (LPS), but not levofloxacin with LPS. The SQL-SAL exhibited early fibrotic activation in response to 30 nM methotrexate, indicated by increased stellate cell migration, expression of alpha-smooth muscle actin and collagen, type 1, alpha 2. Data collected from the in vitro model can be integrated into a database with access to related chemical, bioactivity, preclinical and clinical information uploaded from external databases for constructing predictive models.
Collapse
Affiliation(s)
- Lawrence A Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA University of Pittsburgh Dept. of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
46
|
Ji Q, Liu X, Han Z, Zhou L, Sui H, Yan L, Jiang H, Ren J, Cai J, Li Q. Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer 2015; 15:97. [PMID: 25884904 PMCID: PMC4362662 DOI: 10.1186/s12885-015-1119-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/24/2015] [Indexed: 12/02/2022] Open
Abstract
Background Resveratrol extracted from grape has been an ideal alternative drug in the therapy of different cancers including colorectal cancer (CRC). Since the underlying mechanisms of resveratrol on the invasion and metastasis of CRC have not been fully elucidated, and epithelial-to-mesenchymal transition (EMT) is a key process associated with the progression of CRC, here we aimed to investigate the potential mechanism of resveratrol on the inhibition of TGF-β1-induced EMT in CRC LoVo cells. Methods We investigated the anticancer effect of resveratrol against LoVo cells in vitro and in vivo. In vivo, the impact of resveratrol on invasion and metastasis was investigated by mice tail vein injection model and mice orthotopic transplantation tumor model. In vivo imaging was applied to observe the lungs metastases, and hemaoxylin-eosin (HE) staining was used to evaluate metastatic lesions. In vitro, impact of resveratrol on the migration and invasion of LoVo cells was evaluated by transwell assay. Inhibition effect of resveratrol on TGF-β-induced EMT was examined by morphological observation. Epithelial phenotype marker E-cadherin and mesenchymal phenotype marker Vimentin were detected by western blot and immunofluorescence. Promoter activity of E-cadherin was measured using a dual-luciferase assay kit. mRNA expression of Snail and E-cadherin was measured by RT-PCR. Results We demonstrated that, resveratrol inhibited the lung metastases of LoVo cells in vivo. In addition, resveratrol reduced the rate of lung metastases and hepatic metastases in mice orthotopic transplantation. In vitro, TGF-β1-induced EMT promoted the invasion and metastasis of CRC, reduced the E-cadherin expression and elevated the Vimentin expression, and activated the TGF-β1/Smads signaling pathway. But resveratrol could inhibit the invasive and migratory ability of LoVo cells in a concentration-dependent manner, increase the expression of E-cadherin, repress the expression of Vimentin, as well as the inhibition of TGF-β1/Smads signaling pathway. Meanwhile, resveratrol reduced the level of EMT-inducing transcription factors Snail and the transcription of E-cadherin during the initiation of TGF-β1-induced EMT. Conclusions Our new findings provided evidence that, resveratrol could inhibit EMT in CRC through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression, and this might the potential mechanism of resveratrol on the inhibition of invasion and metastases in CRC.
Collapse
Affiliation(s)
- Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Research Center for Traditional Chinese Medicine and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xuan Liu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhifen Han
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Linlin Yan
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haili Jiang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianlin Ren
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Department of Oncology, Shanghai, 200071, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
47
|
Huang YE, Xu JB, An HY. Notch signaling regulates epithelial-mesenchymal transition in hepatic fibrosis. Shijie Huaren Xiaohua Zazhi 2014; 22:4588-4592. [DOI: 10.11569/wcjd.v22.i30.4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Notch signaling is a conserved cellular interaction mechanism that widely exists in many kinds of cells. It can influence proliferation, differentiation and apoptotic cell fates, mediating interaction between cells. Epithelial-mesenchymal transition (EMT) is a process in which cells lose their epithelial phenotype and acquire mesenchymal cellular characteristics that enhance migration and invasion. This process is mediated by several cell signaling pathways. It has been proved that Notch signaling regulates EMT in hepatic fibrosis. This article will discuss how Notch signaling regulates EMT in hepatic fibrosis.
Collapse
|