1
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
2
|
Bhole R, Shinkar J, Labhade S, Karwa P, Kapare H. MED12 dysregulation: insights into cancer and therapeutic resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04006-0. [PMID: 40105922 DOI: 10.1007/s00210-025-04006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 03/21/2025]
Abstract
MED12, a critical subunit of the mediator (MED) complex, plays a central role in transcriptional regulation by bridging signal-dependent transcription factors and RNA polymerase II. Dysregulation of MED12, often through mutation, has emerged as a significant driver in various cancers, including uterine leiomyomas, breast cancer (B.C.), and prostate cancer (P.C.). These mutations disrupt normal transcriptional processes by impairing the mediator complex's ability to properly regulate gene expression, which activates oncogenic pathways such as Wnt/β-catenin and TGF-β signaling, promoting tumorigenesis and drug resistance. Specifically, mutations in the MED12 gene lead to altered interactions with the transcriptional machinery, fostering aberrant activation of oncogenic networks. MED12 alterations have also been implicated in chemoresistance, particularly to therapies targeting EGFR, ALK, and BRAF, highlighting its role as a barrier to effective treatment. This review explores the mechanisms underlying MED12 dysregulation, its impact on cancer progression, and its association with therapeutic resistance. By examining its potential as a predictive biomarker and a therapeutic target, the article underscores the importance of MED12 in advancing precision oncology. Understanding MED12-mediated mechanisms offers insights into overcoming therapeutic resistance and paves the way for innovative, personalized cancer treatments.
Collapse
Affiliation(s)
- Ritesh Bhole
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India.
- Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Jagruti Shinkar
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Sonali Labhade
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Pawan Karwa
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| | - Harshad Kapare
- Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, 411018, Maharashtra, India
| |
Collapse
|
3
|
Fukushima H, Furusawa A, Okada R, Fujii Y, Choyke PL, Kobayashi H. Antitumor host immunity enhanced by near-infrared photoimmunotherapy. Cancer Sci 2025; 116:572-580. [PMID: 39663860 PMCID: PMC11875768 DOI: 10.1111/cas.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel antitumor therapy that selectively kills cancer cells by NIR light-triggered photochemical reaction of IRDye700DX within Ab-photoabsorber conjugates (APCs). NIR-PIT induces immunogenic cell death, causing immune cell migration between the tumor and tumor-draining lymph nodes, and expanding multiclonal tumor-infiltrating CD8+ T cells. Crucially, the cytotoxic effects of NIR-PIT are limited to cancer cells, sparing immune cells such as antigen-presenting cells and T cells, which are key players in boosting antitumor host immunity. By modifying the Ab used in APC synthesis, NIR-PIT can be repurposed to target and deplete noncancerous immunosuppressive cells including regulatory T cells, myeloid-derived suppressor cells, and cancer-associated fibroblasts in the tumor microenvironment. Immunosuppressive cell targeted NIR-PIT strongly potentiates antitumor host immunity, including the induction of abscopal effects and the development of immune memory. Furthermore, antitumor immune responses and therapeutic efficacy are synergistically enhanced when NIR-PIT is combined with other immune-activating treatments, such as interleukin-15 and immune checkpoint inhibitors. These new findings make NIR-PIT a valuable tool in the evolving landscape of cancer immunotherapy. This review explains the role of NIR-PIT in activating antitumor host immunity.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Department of UrologyInstitute of Science TokyoTokyoJapan
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
- Department of Head and Neck SurgeryInstitute of Science TokyoTokyoJapan
| | - Yasuhisa Fujii
- Department of UrologyInstitute of Science TokyoTokyoJapan
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
4
|
Dong J, Li C, Wang B, Li Y, Wang S, Cui H, Gao M. Prognostic analysis of esophageal cancer patients after neoadjuvant therapy. Front Immunol 2025; 16:1553086. [PMID: 40061941 PMCID: PMC11885245 DOI: 10.3389/fimmu.2025.1553086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/04/2025] [Indexed: 05/13/2025] Open
Abstract
Background Neoadjuvant therapy is widely used for esophageal cancer (EC), but optimal treatment regimens and predictive factors for outcomes remain unclear. This study retrospectively analyzed data from EC patients who underwent neoadjuvant therapy. Methods The chi-square test or Fisher's exact test was utilized to examine differences in general clinicopathological data between treatment benefit groups. Survival analyses were conducted using Kaplan-Meier methods. Cox univariate and multivariate regression analyses were employed to identify independent risk factors affecting overall survival (OS) in EC patients receiving different treatment modalities. Results The study included 175 EC patients who underwent neoadjuvant therapy. Analysis of clinical benefit differences revealed that patients aged < 65 years (P = 0.028) and those with esophageal squamous cell carcinoma (ESCC) (P = 0.027) were more likely to achieve a complete response, while N1 patients more frequently attained an objective response (P < 0.001). OS analysis indicated that patients who did not receive immunotherapy exhibited better survival outcomes compared to those who did (P = 0.002). Patients with pretreatment N3 status demonstrated poorer survival compared to those with N0 (P = 0.004), N1 (P = 0.003), and N2 (P = 0.003) status. Among post-neoadjuvant EC patients who did not receive immunotherapy, those with primary tumors located in the middle esophagus (hazard ratio [HR], 0.181; 95% Confidence interval (CI) = 0.044-0.739; P = 0.017) and lower esophagus (HR, 0.163; 95%CI = 0.032-0.821; P = 0.028) demonstrated a better prognosis compared to patients with tumors in the upper esophagus. Notably, EC patients who did not receive immunotherapy after neoadjuvant therapy and underwent 3-6 cycles of therapy exhibited a poorer prognosis compared to those who received 1-2 cycles (HR, 2.731; 95%CI = 1.187-6.284; P = 0.018). Conclusions In conclusion, this study found that immunotherapy did not play a decisive role in neoadjuvant EC therapy. Instead, 1-2 cycles of chemotherapy or chemoradiotherapy were associated with a more favorable prognosis for these patients.
Collapse
Affiliation(s)
- Jing Dong
- Department of Oncology, Affiliated Tangshan Gongren Hospital, North China University of Science and Technology, Tangshan, China
| | - Cheng Li
- Quality Management Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bingxiang Wang
- Quality Management Department, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yang Li
- Security Department Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Suzhen Wang
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongxia Cui
- Department of Oncology, Jining First People’s Hospital, Jining, China
| | - Min Gao
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
5
|
Fukushima H, Furusawa A, Takao S, Thankarajan E, Luciano MP, Usama SM, Kano M, Okuyama S, Yamamoto H, Suzuki M, Kano M, Choyke PL, Schnermann MJ, Kobayashi H. Near-infrared duocarmycin photorelease from a Treg-targeted antibody-drug conjugate improves efficacy of PD-1 blockade in syngeneic murine tumor models. Oncoimmunology 2024; 13:2370544. [PMID: 38915782 PMCID: PMC11195482 DOI: 10.1080/2162402x.2024.2370544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Regulatory T cells (Tregs) play a crucial role in mediating immunosuppression in the tumor microenvironment. Furthermore, Tregs contribute to the lack of efficacy and hyperprogressive disease upon Programmed cell death protein 1 (PD-1) blockade immunotherapy. Thus, Tregs are considered a promising therapeutic target, especially when combined with PD-1 blockade. However, systemic depletion of Tregs causes severe autoimmune adverse events, which poses a serious challenge to Treg-directed therapy. Here, we developed a novel treatment to locally and predominantly damage Tregs by near-infrared duocarmycin photorelease (NIR-DPR). In this technology, we prepared anti-CD25 F(ab')2 conjugates, which site-specifically uncage duocarmycin in CD25-expressing cells upon exposure to NIR light. In vitro, CD25-targeted NIR-DPR significantly increased apoptosis of CD25-expressing HT2-A5E cells. When tumors were irradiated with NIR light in vivo, intratumoral CD25+ Treg populations decreased and Ki-67 and Interleukin-10 expression was suppressed, indicating impaired functioning of intratumoral CD25+ Tregs. CD25-targeted NIR-DPR suppressed tumor growth and improved survival in syngeneic murine tumor models. Of note, CD25-targeted NIR-DPR synergistically enhanced the efficacy of PD-1 blockade, especially in tumors with higher CD8+/Treg PD-1 ratios. Furthermore, the combination therapy induced significant anti-cancer immunity including maturation of dendritic cells, extensive intratumoral infiltration of cytotoxic CD8+ T cells, and increased differentiation into CD8+ memory T cells. Altogether, CD25-targeted NIR-DPR locally and predominantly targets Tregs in the tumor microenvironment and synergistically improves the efficacy of PD-1 blockade, suggesting that this combination therapy can be a rational anti-cancer combination immunotherapy.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ebaston Thankarajan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Motofumi Suzuki
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Miyu Kano
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Sonokawa T, Fujiwara Y, Pan C, Komohara Y, Usuda J. Enhanced systemic antitumor efficacy of PD-1/PD-L1 blockade with immunological response induced by photodynamic therapy. Thorac Cancer 2024; 15:1429-1436. [PMID: 38739102 PMCID: PMC11194119 DOI: 10.1111/1759-7714.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an antitumor therapy and has traditionally been regarded as a localized therapy in itself. However, recent reports have shown that it not only exerts a direct cytotoxic effect on cancer cells but also enhances body's tumor immunity. We hypothesized that the immunological response induced by PDT could potentially enhance the efficacy of programmed death-1 (PD-1) / programmed death-ligand 1 (PD-L1) blockade. METHODS The cytotoxic effects of PDT on colon 26 cells were investigated in vitro using the WST assay. We investigated whether the antitumor effect of anti-PD-1 antibodies could be amplified by the addition of PDT. We performed combination therapy by randomly allocating tumor-bearing mice to four treatment groups: control, anti-PD-1 antibodies, PDT, and a combination of anti-PD-1 antibodies and PDT. To analyze the tumor microenvironment after treatment, the tumors were resected and pathologically evaluated. RESULTS The viability rate of colon 26 cells decreased proportionally with the laser dose. In vivo experiments for combined PDT and anti-PD-1 antibody treatment, combination therapy showed an enhanced antitumor effect compared with the control. Immunohistochemical findings of the tumor microenvironment 10 days after PDT indicated that the number of CD8+ cells, the area of Iba-1+ cells and the area expressing PD-L1 were significantly higher in tumors treated with combination therapy than in tumors treated with anti-PD-1 antibody alone, PDT alone, or the control. CONCLUSIONS PDT increased immune cell infiltration into the tumor microenvironment. The immunological response induced by PDT may enhance the efficacy of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic SurgeryNippon Medical School HospitalTokyoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Jitsuo Usuda
- Department of Thoracic SurgeryNippon Medical School HospitalTokyoJapan
| |
Collapse
|
7
|
Sabaghian A, Shamsabadi S, Momeni S, Mohammadikia M, Mohebbipour K, Sanami S, Ahmad S, Akhtar N, Sharma NR, Kushwah RBS, Gupta Y, Prakash A, Pazoki-Toroudi H. The role of PD-1/PD-L1 signaling pathway in cancer pathogenesis and treatment: a systematic review. JOURNAL OF CANCER METASTASIS AND TREATMENT 2024. [DOI: 10.20517/2394-4722.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Aim: Cancer as a complex disease poses significant challenges for both diagnosis and treatment. Researchers have been exploring various avenues to find effective therapeutic strategies, with a particular emphasis on cellular signaling pathways and immunotherapy. One such pathway that has recently been suggested is the PD-1/PD-L1 pathway, which is an immune checkpoint signaling system that plays an important role in regulating the immune system and maintaining tissue homeostasis. Cancer cells exploit this pathway by producing PD-L1, which attaches to PD-1 on T cells, thus inhibiting immune responses and enabling the cancer cells to escape detection by the immune system. This study aimed to evaluate the role of the PD-1/PD-L1 pathway in cancer pathogenesis and treatment. Method: This study was performed based on the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). All in vitro , in vivo , and clinical studies that were published in English have been considered during a thorough search of the Scopus, Web of Science, and PubMed databases without date restriction until March 2024. Results: According to the studies reviewed, the PD-1/PD-L1 signaling axis suggests promising therapeutic effects on various types of cancers such as non-small cell lung cancer, melanoma, breast cancer, hepatocellular carcinoma, squamous cell carcinoma, and colorectal cancer, among others. Additionally, research suggests that immune checkpoint inhibitors that block PD1/PD-L1, such as pembrolizumab, atezolizumab, nivolumab, durvalumab, cemiplimab, avelumab, etc. , can effectively prevent tumor cells from escaping the immune system. Moreover, there might be a possible interaction between microbiome, obesity, etc. on immune mechanisms and on the immune checkpoint inhibitors (ICIs). Conclusion: Although we have gained considerable knowledge about ICIs, we are still facing challenges in effectively prescribing the appropriate ICIs for individual patients. This is largely due to the complex interactions between different intracellular pathways, which need to be thoroughly studied. To resolve this issue, it is necessary to conduct more reliable clinical trials that can produce a scientific consensus.
Collapse
|
8
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O'Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating tumor necrosis factor receptors. Cell Chem Biol 2024; 31:944-954.e5. [PMID: 38653243 PMCID: PMC11142405 DOI: 10.1016/j.chembiol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.
Collapse
MESH Headings
- Humans
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Receptors, OX40/agonists
- Receptors, OX40/immunology
- Receptors, OX40/metabolism
- Receptors, OX40/antagonists & inhibitors
- Antibodies/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/pharmacology
- Mice
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O'Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Kim HM, Kim KJ, Lee K, Yoon MJ, Choih J, Hong TJ, Cho EJ, Jung HJ, Kim J, Park JS, Na HY, Heo YS, Park CG, Park H, Han S, Bae D. GNUV201, a novel human/mouse cross-reactive and low pH-selective anti-PD-1 monoclonal antibody for cancer immunotherapy. BMC Immunol 2024; 25:29. [PMID: 38730320 PMCID: PMC11088064 DOI: 10.1186/s12865-024-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.
Collapse
MESH Headings
- Animals
- Humans
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Mice
- Cross Reactions/immunology
- Immunotherapy/methods
- Hydrogen-Ion Concentration
- Neoplasms/immunology
- Neoplasms/therapy
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/antagonists & inhibitors
- Cell Line, Tumor
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Epitopes/immunology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Hae-Mi Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kyoung-Jin Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kwanghyun Lee
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Myeong Jin Yoon
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jenny Choih
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Tae-Joon Hong
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Eun Ji Cho
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Hak-Jun Jung
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jayoung Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS/FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Chae Gyu Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heungrok Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Sungho Han
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Donggoo Bae
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Wang Y, Pattarayan D, Huang H, Zhao Y, Li S, Wang Y, Zhang M, Li S, Yang D. Systematic investigation of chemo-immunotherapy synergism to shift anti-PD-1 resistance in cancer. Nat Commun 2024; 15:3178. [PMID: 38609378 PMCID: PMC11015024 DOI: 10.1038/s41467-024-47433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Chemo-immunotherapy combinations have been regarded as one of the most practical ways to improve immunotherapy response in cancer patients. In this study, we integrate the transcriptomics data from anti-PD-1-treated tumors and compound-treated cancer cell lines to systematically screen for chemo-immunotherapy synergisms in silico. Through analyzing anti-PD-1 induced expression changes in patient tumors, we develop a shift ability score to measure if a chemotherapy or a small molecule inhibitor treatment can shift anti-PD-1 resistance in tumor cells. By applying shift ability analysis to 41,321 compounds and 16,853 shRNA treated cancer cell lines transcriptomic data, we characterize the landscape of chemo-immunotherapy synergism and experimentally validated a mitochondrial RNA-dependent mechanism for drug-induced immune activation in tumor. Our study represents an effort to mechanistically characterize chemo-immunotherapy synergism and will facilitate future pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhamotharan Pattarayan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
12
|
Xiong F, Zhou YW, Hao YT, Wei GX, Chen XR, Qiu M. Combining Anti-epidermal Growth Factor Receptor (EGFR) Therapy with Immunotherapy in Metastatic Colorectal Cancer (mCRC). Expert Rev Gastroenterol Hepatol 2024; 18:185-192. [PMID: 37705376 DOI: 10.1080/17474124.2023.2232718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/30/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Monoclonal antibodies binding the EGFR, such as cetuximab and panitumumab, have been extensively used as targeted therapy for the treatment of mCRC. However, in clinical practice, it has been found that these treatment options have some limitations and fail to fully exploit their immunoregulatory activities. Meanwhile, because of the limited effects of current treatments, immunotherapy is being widely studied for patients with mCRC. However, previous immunotherapy trials in mCRC patients have had unsatisfactory outcomes as monotherapy. Thus, combinatorial treatment strategies are being researched. AREAS COVERED The authors retrieved relevant documents of combination therapy for mCRC from PubMed and Medline. This review elaborates on the knowledge of immunomodulatory effects of anti-EGFR therapy alone and in combination with immunotherapy for mCRC. EXPERT OPINION Although current treatment options have improved median overall survival (OS) for advanced disease to 30 months, the prognosis remains challenging for those with metastatic disease. More recently, the combination of anti-EGFR therapy with immunotherapy has been shown activity with complementary mechanisms. Hence, anti-EGFR therapy in combination with immunotherapy may hold the key to improving the therapeutic effect of refractory mCRC.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Ting Hao
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Gui-Xia Wei
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Rong Chen
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lv Y, Luo X, Xie Z, Qiu J, Yang J, Deng Y, Long R, Tang G, Zhang C, Zuo J. Prospects and challenges of CAR-T cell therapy combined with ICIs. Front Oncol 2024; 14:1368732. [PMID: 38571495 PMCID: PMC10989075 DOI: 10.3389/fonc.2024.1368732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Immune checkpoint molecules are a group of molecules expressed on the surface of immune cells that primarily regulate their immune homeostasis. Chimeric antigen receptor (CAR) T cell therapy is an immunotherapeutic technology that realizes tumor-targeted killing by constructing synthetic T cells expressing specific antigens through biotechnology. Currently, CAR-T cell therapy has achieved good efficacy in non-solid tumors, but its treatment of solid tumors has not yielded the desired results. Immune checkpoint inhibitors (ICIs) combined with CAR-T cell therapy is a novel combination therapy with high expectations to defeat solid tumors. This review addresses the challenges and expectations of this combination therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Yufan Lv
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinyu Luo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhuoyi Xie
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jieya Qiu
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinsai Yang
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqi Deng
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Rou Long
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guiyang Tang
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chaohui Zhang
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianhong Zuo
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Transformation Research Lab, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Computer Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Third Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
14
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
15
|
Reuthner K, Aubele P, Menhart K, Rath P, Harrer DC, Herr W, Hahn J, Vogelhuber M, Heudobler D, Lueke F, Reichle A, Grube M. Case report: Sustained complete remission with all-oral MEPED therapy in a patient with Hodgkin's disease developing resistance to pembrolizumab. Front Pharmacol 2024; 15:1334233. [PMID: 38444946 PMCID: PMC10912635 DOI: 10.3389/fphar.2024.1334233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024] Open
Abstract
Targeted chemotherapy and immune checkpoint inhibitors (ICPi) have expanded the spectrum of therapies for patients with relapsed/refractory (r/r) Hodgkin's disease and significantly improved the proportion of patients with long-term disease control. However, there is no standardized therapeutic option in case of further progression. Recently, we demonstrated that therapy with MEPED (metronomic chemotherapy, everolimus, pioglitazone, etoricoxib, dexamethasone) is highly effective in patients with r/r Hodgkin's disease. The benefit after pre-treatment with ICPi has not been studied, yet. Here, we report a patient with progressive Hodgkin's disease on Pembrolizumab for the first time who achieved sustained complete remission (CR) after initiation of MEPED therapy. A 57-year-old patient was pre-treated with brentuximab vedotin for relapsed advanced Hodgkin's disease and had received Pembrolizumab for progression from November 2020 to July 2022. Due to further progression, MEPED therapy was started in August 2022 and continued until May 2023. It consisted of a strictly oral daily (28-day cycle) application of low-dose treosulfan 250 mg, everolimus 15 mg, pioglitazone 45 mg, etoricoxib 60 mg, and dexamethasone 0.5 mg. Treatment response was evaluated by F-18 FDG-PET/CT (PET/CT). CR was defined by a negative Deauville score (DS) of 1-3. Already 3 months after starting MEPED, a CR (DS: 3) was confirmed by PET/CT in November 2022. The next follow-up in May 2023 continued to show CR (DS: 3). The therapy was very well tolerated. No hematological or other organ toxicity was observed. However, in May 2023 the patient presented with leg edema and weight gain, most likely due to pioglitazone and the PET/CT revealed suspected everolimus-induced pneumonitis, so MEPED was discontinued and diuretic therapy and treatment with prednisolone was started with gradual dose reduction. This resulted in a rapid complete resolution of the symptoms. The next PET-CT in July 2023 continued to show CR (DS: 3) without evidence of pneumonitis. Currently, therapy with MEPED has not been resumed. In conclusion, we demonstrate for the first time that MEPED therapy is highly effective in a patient with Hodgkin's disease who has been refractory to ICPi. Sustained CR was achieved over 11 months after initiation of MEPED therapy. Further studies on a larger patient cohort should be performed.
Collapse
Affiliation(s)
- K. Reuthner
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - P. Aubele
- Medical Care Center (MVZ), Oncology, Hospital of Straubing, Straubing, Germany
| | - K. Menhart
- Department of Nuclear Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - P. Rath
- Department of Nuclear Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - D. C. Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - W. Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - J. Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - M. Vogelhuber
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - D. Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), University Hospital Regensburg, Regensburg, Germany
| | - F. Lueke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - A. Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - M. Grube
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Kim K, Park MH. Advancing Cancer Treatment: Enhanced Combination Therapy through Functionalized Porous Nanoparticles. Biomedicines 2024; 12:326. [PMID: 38397928 PMCID: PMC10887220 DOI: 10.3390/biomedicines12020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer remains a major global health challenge, necessitating the development of innovative treatment strategies. This review focuses on the functionalization of porous nanoparticles for combination therapy, a promising approach to enhance cancer treatment efficacy while mitigating the limitations associated with conventional methods. Combination therapy, integrating multiple treatment modalities such as chemotherapy, phototherapy, immunotherapy, and others, has emerged as an effective strategy to address the shortcomings of individual treatments. The unique properties of mesoporous silica nanoparticles (MSN) and other porous materials, like nanoparticles coated with mesoporous silica (NP@MS), metal-organic frameworks (MOF), mesoporous platinum nanoparticles (mesoPt), and carbon dots (CDs), are being explored for drug solubility, bioavailability, targeted delivery, and controlled drug release. Recent advancements in the functionalization of mesoporous nanoparticles with ligands, biomaterials, and polymers are reviewed here, highlighting their role in enhancing the efficacy of combination therapy. Various research has demonstrated the effectiveness of these nanoparticles in co-delivering drugs and photosensitizers, achieving targeted delivery, and responding to multiple stimuli for controlled drug release. This review introduces the synthesis and functionalization methods of these porous nanoparticles, along with their applications in combination therapy.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
17
|
Wang J, Tong T, Zhang G, Jin C, Guo H, Liu X, Zhang Z, Li J, Zhao Y. Evaluation of neoadjuvant immunotherapy in resectable gastric/gastroesophageal junction tumors: a meta-analysis and systematic review. Front Immunol 2024; 15:1339757. [PMID: 38352873 PMCID: PMC10861722 DOI: 10.3389/fimmu.2024.1339757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Background Neoadjuvant therapy for resectable gastric cancer/gastroesophageal junction tumors is progressing slowly. Although immunotherapy for advanced gastric cancer/gastroesophageal junction tumors has made great progress, the efficacy and safety of neoadjuvant immunotherapy for locally resectable gastric cancer/gastroesophageal junction tumors have not been clearly demonstrated. Here, we conducted a systematic review and meta-analysis to assess the efficacy and safety of neoadjuvant immunotherapy and advance the current research. Methods Original articles describing the safety and efficacy of neoadjuvant immunotherapy for resectable gastric cancer/gastroesophageal junction tumors published up until October 15, 2023 were retrieved from PubMed, Embase, the Cochrane Library, and other major databases. The odds ratios (OR) and 95% confidence intervals (CIs) were calculated for heterogeneity and subgroup analysis. Results A total of 1074 patients from 33 studies were included. The effectiveness of neoadjuvant immunotherapy was mainly evaluated using pathological complete remission (PCR), major pathological remission (MPR), and tumor regression grade (TRG). Among the included patients, 1015 underwent surgical treatment and 847 achieved R0 resection. Of the patients treated with neoadjuvant immunotherapy, 24% (95% CI: 19%-28%) achieved PCR and 49% (95% CI: 38%-61%) achieved MPR. Safety was assessed by a surgical resection rate of 0.89 (95% CI: 85%-93%), incidence of ≥ 3 treatment-related adverse events (TRAEs) of 28% (95% CI: 17%-40%), and incidence of ≥ 3 immune-related adverse events (irAEs) of 19% (95% CI: 11%-27%). Conclusion Neoadjuvant immunotherapy, especially neoadjuvant dual-immunotherapy combinations, is effective and safe for resectable gastric/gastroesophageal junction tumors in the short term. Nevertheless, further multicenter randomized trials are required to demonstrate which combination model is more beneficial. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=358752, identifier CRD42022358752.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yinghao Zhao
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Bandy R, Shahi S, Quagraine N, Shahbazi Nia S, Howlader MSI, Srivenugopal K, Stephan C, Das H, Mikelis CM, German NA. Mechanistic Aspects of Biphenyl Urea-Based Analogues in Triple-Negative Breast Cancer Cell Lines. ACS Pharmacol Transl Sci 2024; 7:120-136. [PMID: 38230276 PMCID: PMC10789150 DOI: 10.1021/acsptsci.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges due to its aggressive nature and limited treatment options. In this study, we investigated the impact of urea-based compounds on TNBC cells to uncover their mechanisms of action and therapeutic potential. Notably, polypharmacology urea analogues were found to work via p53-related pathways, and their cytotoxic effects were amplified by the modulation of oxidative phosphorylation pathways in the mitochondria of cancer cells. Specifically, compound 1 demonstrated an uncoupling effect on adenosine triphosphate (ATP) synthesis, leading to a time- and concentration-dependent shift toward glycolysis-based ATP production in MDA-MB-231 cells. At the same time, no significant changes in ATP synthesis were observed in noncancerous MCF10A cells. Moreover, the unique combination of mitochondrial- and p53-related effects leads to a higher cytotoxicity of urea analogues in cancer cells. Notably, the majority of tested clinical agents, but sorafenib, showed significantly higher toxicity in MCF10A cells. To test our hypothesis of sensitizing cancer cells to the treatment via modulation of mitochondrial health, we explored the combinatorial effects of urea-based analogues with established chemotherapeutic agents commonly used in TNBC treatment. Synergistic effects were evident in most tested combinations in TNBC cell lines, while noncancerous MCF10A cells exhibited higher resistance to these combination treatments. The combination of compound 1 with SN38 displayed nearly 60-fold selectivity toward TNBC cells over MCF10A cells. Encouragingly, combinations involving compound 1 restored the sensitivity of TNBC cells to cisplatin. In conclusion, our study provides valuable insights into the mechanisms of action of urea-based compounds in TNBC cells. The observed induction of mitochondrial membrane depolarization, inhibition of superoxide dismutase activity, disruption of ATP synthesis, and cell-line-specific responses contribute to their cytotoxic effects. Additionally, we demonstrated the synergistic potential of compound 1 to enhance the efficacy of existing TNBC treatments. However, the therapeutic potential and underlying molecular mechanisms of urea-based analogues in TNBC cell lines require further exploration.
Collapse
Affiliation(s)
- Rayna Bandy
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Sadisna Shahi
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Naana Quagraine
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Siavash Shahbazi Nia
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Md Sariful Islam Howlader
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Kalkunte Srivenugopal
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Clifford Stephan
- Institute
of Biosciences and Technology, Texas A&M
University, Houston, Texas 79106, United States
- Department
of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, Texas 77030, United States
| | - Hiranmoy Das
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
| | - Constantinos M. Mikelis
- Laboratory
of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
| | - Nadezhda A. German
- Department
of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79430, United States
- Center
of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, United States
| |
Collapse
|
19
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O’Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating receptors in the tumor necrosis factor superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571146. [PMID: 38168220 PMCID: PMC10760063 DOI: 10.1101/2023.12.11.571146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Agonist antibodies that activate cellular receptors are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their potent activation. This can be achieved using antibodies that recognize two unique epitopes on the same receptor and mediate receptor superclustering. However, identifying compatible pairs of antibodies to generate biepitopic antibodies (also known as biparatopic antibodies) for activating TNF receptors typically requires animal immunization and is a laborious and unpredictable process. Here, we report a simple method for systematically identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses off-the-shelf, receptor-specific IgG antibodies, which lack intrinsic (Fc-gamma receptor-independent) agonist activity, to first block their corresponding epitopes. Next, we perform selections for single-chain antibodies from human nonimmune libraries that bind accessible epitopes on the same ectodomains using yeast surface display and fluorescence-activated cell sorting. The selected single-chain antibodies are finally fused to the light chains of IgGs to generate human tetravalent antibodies that engage two different receptor epitopes and mediate potent receptor activation. We highlight the broad utility of this approach by converting several existing clinical-stage antibodies against TNF receptors, including ivuxolimab and pogalizumab against OX40 and utomilumab against CD137, into biepitopic antibodies with highly potent agonist activity. We expect that this widely accessible methodology can be used to systematically generate biepitopic antibodies for activating other receptors in the TNF receptor superfamily and many other receptors whose activation is dependent on strong receptor clustering.
Collapse
Affiliation(s)
- Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S. Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L. Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Lu S, Xu J, Zhao Z, Guo Y, Zhang H, Jurutka PW, Huang D, Cao C, Cheng S. Dietary Lactobacillus rhamnosus GG extracellular vesicles enhance antiprogrammed cell death 1 (anti-PD-1) immunotherapy efficacy against colorectal cancer. Food Funct 2023; 14:10314-10328. [PMID: 37916395 DOI: 10.1039/d3fo02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Shun Lu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Jing Xu
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Zihao Zhao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Yuheng Guo
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Hanwen Zhang
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Peter W Jurutka
- School of Mathematical and Natural Sciences, Arizona State University, AZ 85306, USA
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| | - Shujie Cheng
- Department of Food Nutrition and Safety, School of Engineering, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
21
|
Gevertz JL, Kareva I. Guiding model-driven combination dose selection using multi-objective synergy optimization. CPT Pharmacometrics Syst Pharmacol 2023; 12:1698-1713. [PMID: 37415306 PMCID: PMC10681518 DOI: 10.1002/psp4.12997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 07/08/2023] Open
Abstract
Despite the growing appreciation that the future of cancer treatment lies in combination therapies, finding the right drugs to combine and the optimal way to combine them remains a nontrivial task. Herein, we introduce the Multi-Objective Optimization of Combination Synergy - Dose Selection (MOOCS-DS) method for using drug synergy as a tool for guiding dose selection for a combination of preselected compounds. This method decouples synergy of potency (SoP) and synergy of efficacy (SoE) and identifies Pareto optimal solutions in a multi-objective synergy space. Using a toy combination therapy model, we explore properties of the MOOCS-DS algorithm, including how optimal dose selection can be influenced by the metric used to define SoP and SoE. We also demonstrate the potential of our approach to guide dose and schedule selection using a model fit to preclinical data of the combination of the PD-1 checkpoint inhibitor pembrolizumab and the anti-angiogenic drug bevacizumab on two lung cancer cell lines. The identification of optimally synergistic combination doses has the potential to inform preclinical experimental design and improve the success rates of combination therapies. Jel classificationDose Finding in Oncology.
Collapse
Affiliation(s)
- Jana L. Gevertz
- Department of Mathematics and StatisticsThe College of New JerseyEwingNew JerseyUSA
| | - Irina Kareva
- Quantitative Pharmacology Department, EMD SeronoMerck KGaABillericaMassachusettsUSA
| |
Collapse
|
22
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol 2023; 16:103. [PMID: 37700339 PMCID: PMC10498649 DOI: 10.1186/s13045-023-01498-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Jing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jia Xi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bi-Han Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Wu K, Li Y, Li Z, Zhou Z, Ge X, Li Y, Han X, Chen P, Ren K. Transcatheter arterial chemoembolization combined with apatinib and camrelizumab for unresectable advanced gastric or gastroesophageal junction cancer: a single-arm, single-center, retrospective study. Front Oncol 2023; 13:1143578. [PMID: 37746269 PMCID: PMC10512224 DOI: 10.3389/fonc.2023.1143578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose This study aims to investigate the efficacy and safety of transcatheter arterial chemoembolization (TACE) combined with Apatinib and Camrelizumab for treating unresectable advanced gastric or gastroesophageal junction (G/GEJ) cancer. Material and methods In this study, data of patients with unresectable advanced G/GEJ cancer who received TACE combined with Apatinib and Camrelizumab from August 2018 to December 2021 was evaluated. After TACE, patients were given intravenous Camrelizumab 200mg every three weeks and oral apatinib 250mg/day for treatment. The primary endpoint was overall survival (OS), and the secondary endpoints were objective response rate (ORR), disease control rate (DCR), and adverse events (AEs). Results A total of 49 patients were enrolled in this study. The median follow-up time was 14.0 months, and the median OS was 20.0 months (95% CI = 13.6-26.4). Two patients (4.08%) achieved complete remission, 28 patients (57.14%) achieved partial remission, 18 patients (36.73%) had stable disease, and 1 patient (2.04%) had disease progression. The ORR was 61.22%, and the DCR was 97.96%. Multivariate Cox regression analysis indicated that age (HR 4.74, 95% CI = 1.674-13.440, P=0.003) and multiple distant metastases (HR 20.916, 95% CI = 4.094-106.808, P = 0.001) were independent risk factors for OS. Most AEs were classified as grade 1-2, the most common being RCCEP (69.39%). There were 5 cases of grade 3-4 adverse events (10.20%). No patients discontinued or reduced the treatment dose due to AEs, and all patients received symptomatic treatment. Conclusion TACE combined with Apatinib and Camrelizumab is a safe and effective therapeutic option for patients with unresectable advanced G/GEJ cancer, which can significantly improve the median OS and ORR of patients. And the adverse events (AEs) are tolerable and manageable.
Collapse
Affiliation(s)
- Kunpeng Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Yahua Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Zongming Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Zihe Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Xiaoyong Ge
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Yifan Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| | - Peng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Wang Y, Yang W, Wang Q, Zhou Y. Mechanisms of esophageal cancer metastasis and treatment progress. Front Immunol 2023; 14:1206504. [PMID: 37359527 PMCID: PMC10285156 DOI: 10.3389/fimmu.2023.1206504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Esophageal cancer is a prevalent tumor of the digestive tract worldwide. The detection rate of early-stage esophageal cancer is very low, and most patients are diagnosed with metastasis. Metastasis of esophageal cancer mainly includes direct diffusion metastasis, hematogenous metastasis, and lymphatic metastasis. This article reviews the metabolic process of esophageal cancer metastasis and the mechanisms by which M2 macrophages, CAF, regulatory T cells, and their released cytokines, including chemokines, interleukins, and growth factors, form an immune barrier to the anti-tumor immune response mediated by CD8+ T cells, impeding their ability to kill tumor cells during tumor immune escape. The effect of Ferroptosis on the metastasis of esophageal cancer is briefly mentioned. Moreover, the paper also summarizes common drugs and research directions in chemotherapy, immunotherapy, and targeted therapy for advanced metastatic esophageal cancer. This review aims to serve as a foundation for further investigations into the mechanism and management of esophageal cancer metastasis.
Collapse
Affiliation(s)
- Yusheng Wang
- Department of Thoracic Surgery, The First People’s Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Wei Yang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Qianyun Wang
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu, China
| |
Collapse
|
25
|
Li Z, Gao Y, Cao Y, He F, Jiang R, Liu H, Cai H, Zan T. Extracellular RNA in melanoma: Advances, challenges, and opportunities. Front Cell Dev Biol 2023; 11:1141543. [PMID: 37215082 PMCID: PMC10192583 DOI: 10.3389/fcell.2023.1141543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Melanoma, a malignant mass lesion that originates in melanocytes and has a high rate of malignancy, metastasis, and mortality, is defined by these characteristics. Malignant melanoma is a kind of highly malignant tumor that produces melanin and has a high mortality rate. Its incidence accounts for 1%-3% of all malignant tumors and shows an obvious upward trend. The discovery of biomolecules for the diagnosis and treatment of malignant melanoma has important application value. So far, the exact molecular mechanism of melanoma development relevant signal pathway still remains unclear. According to previous studies, extracellular RNAs (exRNAs) have been implicated in tumorigenesis and spread of melanoma. They can influence the proliferation, invasion and metastasis of melanoma by controlling the expression of target genes and can also influence tumor progression by participating in signal transduction mechanisms. Therefore, understanding the relationship between exRNA and malignant melanoma and targeting therapy is of positive significance for its prevention and treatment. In this review, we did an analysis of extracellular vesicles of melanoma which focused on the role of exRNAs (lncRNAs, miRNAs, and mRNAs) and identifies several potential therapeutic targets. In addition, we discuss the typical signaling pathways involved in exRNAs, advances in exRNA detection and how they affect the tumor immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Gao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Cao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifan He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Baranda JC, Mohyuddin GR, Bur AM, Shnayder Y, Sweeney KR, Kakarala K, Prouty M, Pathak H, Puri R, Mitra A, Madan R, Forrest ML, Huang A, Weir S, Godwin AK, Alhakamy NA, Griffin JD, Berkland CJ. A window of opportunity trial evaluating intratumoral injection of Copaxone® in patients with percutaneously accessible tumors. TRANSLATIONAL MEDICINE COMMUNICATIONS 2023; 8:5. [PMID: 40230575 PMCID: PMC11996204 DOI: 10.1186/s41231-023-00137-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 04/16/2025]
Abstract
Background This window of opportunity trial evaluated the safety of intratumoral Copaxone® and profiled immune markers in biopsies before and after treatment. Methods Patients with percutaneously accessible malignancies scheduled for surgical resection with curative intent were eligible to participate. Adverse events from one, two, or three injections of Copaxone® were monitored leading up to surgical resection. Using RNA sequencing and spatial protein profiling of immune-related targets, changes in mRNA and protein expression patterns, respectively were assessed in tumor biopsy samples pre- and post-treatment. Results Adverse events at the injection site were mild and consistent with historic subcutaneous administration of Copaxone®. Increased intratumoral immune activity was evident in most patients, including the upregulation of genes associated with immune stimulation and targets of checkpoint inhibitor therapy. Conclusions Intratumoral injection of Copaxone® was well tolerated, and immune profile changes in the tumor microenvironment warrant its further evaluation as human intratumoral immunotherapy. Trial registration clinicaltrials.gov, NCT03982212 First posted June 11th,2019.
Collapse
Affiliation(s)
- Joaquina C. Baranda
- Clinical Research Center, University of Kansas Comprehensive Cancer Center, Fairway, KS, USA
| | - Ghulam Rehman Mohyuddin
- Division of Hematology and Hematological Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Andrés M. Bur
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yelizaveta Shnayder
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kyle R. Sweeney
- Department of Orthopedic Surgery and Sports Medicine, Sarcoma Center, University of Kansas Comprehensive Cancer Center, Kansas City, KS, USA
| | - Kiran Kakarala
- Department of Otolaryngology-Head and Neck Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Megan Prouty
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Rajni Puri
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Amrita Mitra
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, KS, USA
| | - M. Laird Forrest
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Aric Huang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Scott Weir
- Institute for Advancing Medical Innovation, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, KS, USA
- Kansas Institute for Precision Medicine, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Kinimmune, Inc, St. Louis, MO, USA
| | | | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
- Kinimmune, Inc, St. Louis, MO, USA
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
27
|
Dang YC, Kong QT, Wang Z, Sang H. Cutaneous adverse events in lung cancer patients on the therapy based on PD-1/PD-L1 inhibitors: A prospective observational cohort study. Curr Probl Cancer 2023; 47:100934. [PMID: 36580870 DOI: 10.1016/j.currproblcancer.2022.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/02/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
AIM This is a prospective study of cutaneous adverse events (CAEs) in lung cancer patients treated by programmed cell death-1(PD-1) inhibitors and programmed cell death-ligand 1(PD-L1) inhibitors-based single or combination therapy. PATIENTS & METHODS It were included that lung cancer patients who developed CAEs from January 2019 to July 2021 after applying PD-1/PD-L1 inhibitors in our institution. RESULTS A total of 107 patients with 112 CAEs were enrolled, of which 71 patients received PD-1/PD-L1 inhibitors plus chemotherapy, 31 patients received PD-1/PD-L1 inhibitors plus anti-angiogenic/targeted therapy, and 5 patients received PD-1/PD-L1 inhibitors monotherapy. The median time to CAEs onset was 8.7w (0.3w-70.7w) for PD-1/PD-L1 inhibitors plus chemotherapy, 10.1w (0.4w-103.0w) for PD-1/PD-L1 inhibitors plus anti-angiogenic/targeted therapy, and 13.6w (0.7w-50.6w) for PD-1/PD-L1 inhibitors monotherapy. The most common CAEs were reactive cutaneous capillary endothelial proliferation (RCCEP) (30.8%, 33/107), followed by eczematous (21.5%, 23/107) and pruritus only (15.9%, 17/107). 7 patients (6.5%, 7/107) had grade 3-4 CAE. CONCLUSION Most CAEs are mild to moderate and easily controlled. Early diagnosis and intervention for CAEs are important.
Collapse
Affiliation(s)
- Yong-Chao Dang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Qing-Tao Kong
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Zhen Wang
- Department of Radiation Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hong Sang
- Department of Dermatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
28
|
Zou H, Mou X, Zhu B. Combining of Oncolytic Virotherapy and Other Immunotherapeutic Approaches in Cancer: A Powerful Functionalization Tactic. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200094. [PMID: 36618103 PMCID: PMC9818137 DOI: 10.1002/gch2.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Indexed: 06/17/2023]
Abstract
Oncolytic viruses have found a good place in the treatment of cancer. Administering oncolytic viruses directly or by applying genetic changes can be effective in cancer treatment through the lysis of tumor cells and, in some cases, by inducing immune system responses. Moreover, oncolytic viruses induce antitumor immune responses via releasing tumor antigens in the tumor microenvironment (TME) and affect tumor cell growth and metabolism. Despite the success of virotherapy in cancer therapies, there are several challenges and limitations, such as immunosuppressive TME, lack of effective penetration into tumor tissue, low efficiency in hypoxia, antiviral immune responses, and off-targeting. Evidence suggests that oncolytic viruses combined with cancer immunotherapy-based methods such as immune checkpoint inhibitors and adoptive cell therapies can effectively overcome these challenges. This review summarizes the latest data on the use of oncolytic viruses for the treatment of cancer and the challenges of this method. Additionally, the effectiveness of mono, dual, and triple therapies using oncolytic viruses and other anticancer agents has been discussed based on the latest findings.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiao‐Zhou Mou
- General SurgeryCancer CenterDepartment of Hepatobiliary and Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital of Hangzhou Medical College)Hangzhou310014China
- Key Laboratory of Cancer Molecular Diagnosis and Individualized Therapy of Zhejiang ProvinceZhejiang Provincial People's HospitalAffiliated People's Hospital of Hangzhou Medical CollegeHangzhou310014China
| | - Biao Zhu
- Department of Critical CareFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
29
|
Liu S, Liu T, Jiang J, Guo H, Yang R. p53 mutation and deletion contribute to tumor immune evasion. Front Genet 2023; 14:1088455. [PMID: 36891151 PMCID: PMC9986462 DOI: 10.3389/fgene.2023.1088455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023] Open
Abstract
TP53 (or p53) is widely accepted to be a tumor suppressor. Upon various cellular stresses, p53 mediates cell cycle arrest and apoptosis to maintain genomic stability. p53 is also discovered to suppress tumor growth through regulating metabolism and ferroptosis. However, p53 is always lost or mutated in human and the loss or mutation of p53 is related to a high risk of tumors. Although the link between p53 and cancer has been well established, how the different p53 status of tumor cells help themselves evade immune response remains largely elusive. Understanding the molecular mechanisms of different status of p53 and tumor immune evasion can help optimize the currently used therapies. In this context, we discussed the how the antigen presentation and tumor antigen expression mode altered and described how the tumor cells shape a suppressive tumor immune microenvironment to facilitate its proliferation and metastasis.
Collapse
Affiliation(s)
- Siyang Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaxuan Jiang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
30
|
Tanaka K, Chamoto K, Saeki S, Hatae R, Ikematsu Y, Sakai K, Ando N, Sonomura K, Kojima S, Taketsuna M, Kim YH, Yoshida H, Ozasa H, Sakamori Y, Hirano T, Matsuda F, Hirai T, Nishio K, Sakagami T, Fukushima M, Nakanishi Y, Honjo T, Okamoto I. Combination bezafibrate and nivolumab treatment of patients with advanced non-small cell lung cancer. Sci Transl Med 2022; 14:eabq0021. [PMID: 36516270 DOI: 10.1126/scitranslmed.abq0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the success of cancer immunotherapies such as programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) inhibitors, patients often develop resistance. New combination therapies with PD-1/PD-L1 inhibitors are needed to overcome this issue. Bezafibrate, a ligand of peroxisome proliferator-activated receptor-γ coactivator 1α/peroxisome proliferator-activated receptor complexes, has shown a synergistic antitumor effect with PD-1 blockade in mice that is mediated by activation of mitochondria in T cells. We have therefore now performed a phase 1 trial (UMIN000017854) of bezafibrate with nivolumab in previously treated patients with advanced non-small cell lung cancer. The primary end point was the percentage of patients who experience dose-limiting toxicity, and this combination regimen was found to be well tolerated. Preplanned comprehensive analysis of plasma metabolites and gene expression in peripheral cytotoxic T cells indicated that bezafibrate promoted T cell function through up-regulation of mitochondrial metabolism including fatty acid oxidation and may thereby have prolonged the duration of response. This combination strategy targeting T cell metabolism thus has the potential to maintain antitumor activity of immune checkpoint inhibitors and warrants further validation.
Collapse
Affiliation(s)
- Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Sho Saeki
- Department of Respiratory Medicine, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | - Ryusuke Hatae
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Ikematsu
- Department of Respiratory Medicine, National Hospital Organization Omuta National Hospital, Omuta 837-0911, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan
| | - Nobuhisa Ando
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhiro Sonomura
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Life Science Research Center, Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan
| | - Shinsuke Kojima
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe 650-0047, Japan
| | - Masanori Taketsuna
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation, Kobe 650-0047, Japan
| | - Young Hak Kim
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hironori Yoshida
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroaki Ozasa
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yuichi Sakamori
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Tomoko Hirano
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan
| | - Takuro Sakagami
- Department of Respiratory Medicine, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | | | - Yoichi Nakanishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.,Kitakyushu City Hospital Organization, Kitakyushu 802-0082, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Zhang Y, Li J, Yang F, Zhang X, Ren X, Wei F. Relationship and prognostic significance of IL-33, PD-1/PD-L1, and tertiary lymphoid structures in cervical cancer. J Leukoc Biol 2022; 112:1591-1603. [PMID: 35501298 DOI: 10.1002/jlb.5ma0322-746r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
IL-33, an epithelial-derived cytokine, functions as an alarmin for the immune system in the tumor microenvironment (TME). However, the expression and role of IL-33 on cervical cancer remain unclear. The aim of this study was to investigate the expression of IL-33 and its relationship with clinicopathologic features, tertiary lymphoid structures (TLS), and programmed cell death 1 (PD-1)/programmed cell death 1 ligand (PD-L1) immune checkpoints by immunohistochemistry in 93 cervical cancer patient specimens. Down-regulation of IL-33 expression was observed in tumor tissues compared with adjacent tissues. More importantly, IL-33 was detected in the cytoplasm of tumor fraction. IL-33 expression in tumor cytoplasm was associated with tumor size and the invasive depth of tumors (p < 0.05). Meanwhile, IL-33 expression in tumor cytoplasm was positively correlated with infiltration of CD3+ T cells, CD8+ T cells, and PD-L1 expression in tumor tissues (p < 0.05). The number of TLS strongly correlated with the depth of tumor invasion, preoperative chemotherapy, human papillomavirus infection, and high level of PD-1 (p < 0.05). However, there was no significant relationship between IL-33 and TLS. Kaplan-Meier survival curves showed that the formation of TLS was associated with a better prognosis (p = 0.008). In multivariable Cox regression modeling, high expression of PD-L1 in tumor tissues was correlated with poor prognosis (HR = 0.128; 95% CI: 0.026-0.646; p = 0.013), whereas the high expression of IL-33 in tumor tissues was associated with better prognosis (HR = 5.097; 95% CI:1.050-24.755; p = 0.043). These results indicate that IL-33, TLS, and PD-L1 are potentially valuable prognostic predictor for cervical cancer. IL-33 has potential for combination with PD-L1-related antitumor therapy.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jing Li
- Department of Pediatrics, Union Hospital, Tongji medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiying Zhang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
32
|
Zhou M, Chen M, Shi B, Di S, Sun R, Jiang H, Li Z. Radiation enhances the efficacy of EGFR-targeted CAR-T cells against triple-negative breast cancer by activating NF-κB/Icam1 signaling. Mol Ther 2022; 30:3379-3393. [PMID: 35927951 PMCID: PMC9637637 DOI: 10.1016/j.ymthe.2022.07.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/18/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with limited treatment options. Epidermal growth factor receptor (EGFR) is reported to be expressed in 50%-75% of TNBC patients, making it a promising target for cancer treatment. Here we show that EGFR-targeted chimeric antigen receptor (CAR) T cell therapy combined with radiotherapy provides enhanced antitumor efficacy in immunocompetent and immunodeficient orthotopic TNBC mice. Intriguingly, this combination therapy resulted in a substantial increase in the number of tumor-infiltrating CAR-T cells. The efficacy of this combination was independent of tumor radiosensitivity and lymphodepleting preconditioning. Cytokine profiling showed that this combination did not increase the risk of cytokine release syndrome (CRS). RNA sequencing (RNA-seq) analysis revealed that EGFR-targeting CAR-T therapy combined with radiotherapy increased the infiltration of CD8+ T and natural killer (NK) cells into tumors. Mechanistically, radiation significantly increased Icam1 expression on TNBC cells via activating nuclear factor κB (NF-κB) signaling, thereby promoting CAR-T cell infiltration and killing. These results suggest that CAR-T therapy combined with radiotherapy may be a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Muhua Chen
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Shengmeng Di
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Ruixin Sun
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China.
| | - Zonghai Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; CARsgen Therapeutics, Shanghai 200032, China.
| |
Collapse
|
33
|
Lin CT, Su PJ, Huang SY, Wu CC, Wang HJ, Cheng YT, Luo HL, Chen CH, Liu TT, Huang CC, Su YL. First-line Immune Checkpoint Inhibitor Versus Immune Checkpoint Inhibitor With Chemotherapy for Cisplatin-ineligible Metastatic Urothelial Carcinoma: Evidence From a Real-world, Multicenter Analysis. J Immunother 2022; 45:407-414. [PMID: 36121316 PMCID: PMC9528941 DOI: 10.1097/cji.0000000000000441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Immune checkpoint inhibitors (ICIs) are widely used for first-line cisplatin-ineligible patients with metastatic urothelial carcinoma (mUC). However, whether to use ICIs as monotherapy or in combination with chemotherapy is still uncertain. We retrospectively analyzed cisplatin-ineligible patients with mUC who underwent first-line ICI monotherapy or ICI plus chemotherapy at 2 medical centers in Taiwan from 2016 to 2021. We calculated the objective response rate, progression-free survival, and overall survival (OS) using the Kaplan-Meier method and Cox regression model for multivariable analysis. In total, 130 patients were enrolled and categorized into 2 groups: an ICI monotherapy group [immunotherapy (IO), n=101] and an ICI plus noncisplatin chemotherapy group [immunotherapy and chemotherapy (IC), n=29]. The median OS of patients in the IO and IC groups was 19.5 and 9.7 months ( P =0.33). Among patients with high programmed cell death ligand-1-expressing tumors, the median OS was significantly prolonged in the IO group compared with the IC group (not reached vs. 6.3 mo, P =0.02). First-line ICI monotherapy demonstrated robust antitumor activity in cisplatin-ineligible patients with mUC. Combining noncisplatin chemotherapy with ICI did not improve clinical outcomes.
Collapse
Affiliation(s)
- Chang-Ting Lin
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung
| | - Po-Jung Su
- Division of Hematology Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, College of Medicine, Taoyuan
| | - Shih-Yu Huang
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung
| | - Chia-Che Wu
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung
| | | | | | | | | | | | - Chun-Chieh Huang
- Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung
- Clinical Trial Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Abdou MM, Dong D, O’Neill PM, Amigues E, Matziari M. Design, Synthesis, and Study of a Novel RXPA380- Proline Hybrid ( RXPA380-P) as an Antihypertensive Agent. ACS OMEGA 2022; 7:35035-35043. [PMID: 36211060 PMCID: PMC9535653 DOI: 10.1021/acsomega.2c03813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/02/2022] [Indexed: 06/12/2023]
Abstract
In drug discovery, molecular modification over the lead molecule is often crucial for the development of a drug. Herein, we report the molecular hybridization design of a novel RXPA380-proline hybrid via linking the parent compound, phosphinic peptide RXPA380, with a proline analogue. The presented synthetic route is straightforward and produces the desired product RXPA380-P in moderate yield. The C- and N-domain constructs of the angiotensin-converting enzyme of RXPA380-P appeared to be poor inhibitors of ACE as compared to the parent compound RXPA380.
Collapse
Affiliation(s)
- Moaz M. Abdou
- Egyptian
Petroleum Research Institute, Nasr City, P.O. Cairo 11727, Egypt
| | - Dewen Dong
- Changchun
Institute of Applied Chemistry, Chinese
Academy of Sciences, Changchun 130022, China
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Eric Amigues
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou 215123, PR China
| | - Magdalini Matziari
- Department
of Chemistry, Xi’an Jiaotong Liverpool
University, Suzhou 215123, PR China
| |
Collapse
|
35
|
Kim EJ, Cho YH, Kim DH, Ko DH, Do EJ, Kim SY, Kim YM, Jung JS, Kang Y, Ji W, Choi MG, Lee JC, Rho JK, Choi CM. A Phase I/IIa Randomized Trial Evaluating the Safety and Efficacy of SNK01 Plus Pembrolizumab in Patients with Stage IV Non-Small Cell Lung Cancer. Cancer Res Treat 2022; 54:1005-1016. [PMID: 34856706 PMCID: PMC9582480 DOI: 10.4143/crt.2021.986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
PURPOSE The aim of this study is to evaluate the safety and efficacy of ex vivo activated and expanded natural killer (NK) cell therapy (SNK01) plus pembrolizumab in a randomized phase I/IIa clinical trial. MATERIALS AND METHODS Overall, 18 patients with advanced non-small cell lung cancer (NSCLC) and a programmed death ligand 1 tumor proportion score of 1% or greater who had a history of failed frontline platinum-based therapy were randomized (2:1) to receive pembrolizumab every 3 weeks +/- 6 weekly infusions of SNK01 at either 2×109 or 4×109 cells per infusion (pembrolizumab monotherapy vs. SNK01 combination). The primary endpoint was safety, whereas the secondary endpoints were the objective response rate (ORR), progression-free survival (PFS), overall survival, and quality of life. RESULTS Since no dose-limiting toxicity was observed, the maximum tolerated dose was determined as SNK01 4×109 cells/dose. The safety data did not show any new safety signals when SNK01 was combined with pembrolizumab. The ORR and the 1-year survival rate in the NK combination group were higher than those in patients who underwent pembrolizumab monotherapy (ORR, 41.7% vs. 0%; 1-year survival rate, 66.7% vs. 50.0%). Furthermore, the median PFS was higher in the SNK01 combination group (6.2 months vs. 1.6 months, p=0.001). CONCLUSION Based on the findings of this study, the NK cell combination therapy may consider as a safe treatment method for stage IV NSCLC patients who had a history of failed platinum-based therapy without an increase in adverse events.
Collapse
Affiliation(s)
- Eo Jin Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
- Division of Hematology/Oncology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Yong-Hee Cho
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon,
Korea
| | - Dong Ha Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Dae-Hyun Ko
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Eun-Ju Do
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Sang-Yeob Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | | | | | | | - Wonjun Ji
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Myeong Geun Choi
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jae Cheol Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Jin Kyung Rho
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Chang-Min Choi
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
- Department of Pulmonology and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| |
Collapse
|
36
|
Wang J, Zhang K, Liu T, Song Y, Hua P, Chen S, Li J, Liu Y, Zhao Y. Efficacy and safety of neoadjuvant immunotherapy combined with chemotherapy in locally advanced esophageal cancer: A meta-analysis. Front Oncol 2022; 12:974684. [PMID: 36158679 PMCID: PMC9495441 DOI: 10.3389/fonc.2022.974684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveThe progress of neoadjuvant therapy for resectable locally advanced esophageal cancer has been stagnant. There has been much progress in immunotherapy for advanced esophageal cancer, but the efficacy and safety of neoadjuvant immunotherapy for resectable locally advanced esophageal cancer have not yet been definitively demonstrated.MethodsOriginal articles describing the safety and efficacy of neoadjuvant immunotherapy in resectable locally advanced esophagus published until July 2022 were retrieved from PubMed, Embase, and the Cochrane Library. The ratio (OR) and 95% confidence interval (CI) were calculated to conduct heterogeneity and subgroup analysis.ResultsIn total, 759 patients from 21 studies were enrolled. The effectiveness of neoadjuvant immunotherapy in combination with chemotherapy was evaluated using the major pathologic response (MPR) and pathologic complete response (PCR). In the enrolled patients, 677 were treated surgically and 664 achieved R0 resection. Major pathological remission was achieved in 52.0% (95% CI: 0.44–0.57) of patients on neoadjuvant immunotherapy combined with chemotherapy and complete pathological remission in 29.5% (95% CI: 0.25–0.32) of patients. The safety was primarily assessed by the incidence of treatment-related adverse events (TRAEs) and surgical resection rates. The incidence of TRAEs and the surgical resection rate combined ORs were 0.15 (95% CI: 0.09–0.22) and 0.86 (95% CI: 0.83–0.89), respectively.ConclusionNeoadjuvant immunotherapy combined with chemotherapy in locally advanced resectable esophageal cancer is effective and safe.
Collapse
Affiliation(s)
- Jincheng Wang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Tianzhou Liu
- Department of the Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Peiyan Hua
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Shu Chen
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Jindong Li
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yinghao Zhao
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Yinghao Zhao,
| |
Collapse
|
37
|
Kareva I. Different costs of therapeutic resistance in cancer: Short- and long-term impact of population heterogeneity. Math Biosci 2022; 352:108891. [PMID: 35998834 DOI: 10.1016/j.mbs.2022.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
Abstract
Therapeutic resistance continues to undercut long-term success of many promising cancer treatments. At times, development of therapeutic resistance can come at a fitness cost for the cancer cell population, which could potentially be leveraged to the patient's advantage. A mathematical formulation of such a situation was proposed by Pressley et al. (2020), who discussed two scenarios, namely, when developing therapeutic resistance can come at a cost to proliferative capacity (such as when a drug targets a growth receptor), or to the total tumor carrying capacity (such as when a drug targets neovascularization). Here we expand the analysis of the two models and evaluate both short- and long-term dynamics of a population heterogeneous with respect to resistance. We analyze the four initial distributions with respect to resistance at the time of treatment initiation: uniform, bell-shaped, exponential, and U-shaped. We show that final population composition is invariant to the initial distribution, with a single clone eventually dominating within the population; the value of the resistance parameter of the final clone depends on other system parameters but not on the initial distribution. Transitional behaviors, however, which may have more significant implications for immediate treatment decisions, depend critically on the initial distribution. Furthermore, we show that depending on the mechanism for the cost of resistance (i.e., proliferation vs carrying capacity), increase in natural cell death rate has opposite effects, with higher natural death rate selecting for less resistant cell clones in the long term for proliferation-dependent model, and selecting for more resistant cell clones for carrying capacity-dependent model, a prediction that may have implications for combination therapy with cytotoxic agents. We conclude with a discussion of strengths and limitations of using modeling for understanding treatment trajectory, as well as the promise of model-informed evolutionary steering for improved long-term therapeutic outcomes.
Collapse
Affiliation(s)
- Irina Kareva
- Department of Biomedical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
38
|
Yu B, Mei Z, Yu H, Wang Y, Geng Q, Pu J. Risk of cardiovascular disease among cancer survivors: Protocol of a pooled analysis of population-based cohort studies. Front Cardiovasc Med 2022; 9:926218. [PMID: 35990968 PMCID: PMC9391087 DOI: 10.3389/fcvm.2022.926218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Cancer and cardiovascular disease remain leading causes of death and disability worldwide, which places a heavy burden on public health systems and causes widespread suffering. Because these entities have highly overlapping risk factors, including hyperlipidemia, hypertension, diabetes, obesity, smoking and other lifestyle factors, many studies have reported that they have similar etiological mechanisms. Accumulating evidence indicates that there is an increased risk of cardiovascular disease among cancer survivors compared with the general population. However, whether cancer is associated with an increased risk of cardiovascular disease remains controversial. METHODS AND ANALYSIS We will conduct and report the meta-analysis strictly based on the Cochrane Handbook for Systematic Reviews and the Meta-analysis of Observational Studies in Epidemiology guidelines combined with the Preferred Reporting Items for Systematic Reviews and Meta-analysis for Protocols (PRISM-P). This meta-analysis was registered with PROSPERO (registration number CRD42022307056). We will search for studies published from database inception to December 1, 2021, regardless of language or date, in three electronic databases (PubMed, EMBASE, and Cochrane Library) to identify and appraise cohort studies examining the relationship between cancer and subsequent cardiovascular disease risk. The literature screening, inclusion and data extraction will be conducted independently by two investigators using pre-designed standardized data extraction forms. A senior investigator will be consulted in cases of disagreement. We will assess risk of bias in the included cohort studies using the Newcastle-Ottawa Scale (NOS). Quantitative synthesis will be conducted using a random-effects model. To explore potential sources of heterogeneity, we will carry out multiple sensitivity analysis, meta-regression and subgroup analysis according to baseline characteristics. Publication bias will be evaluated through visual inspection of funnel plot asymmetry as well as by Begg's rank correlation test and Egger's weighted linear regression test.
Collapse
Affiliation(s)
- Botao Yu
- Emergency Department, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Zubing Mei
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
- Department of Anorectal Surgery, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Yu
- Emergency Department, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Yan Wang
- The Second Department of Neurology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Qian Geng
- Special Clinic of Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Jin Pu
- Special Clinic of Changhai Hospital, Naval Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Estimation of time to progression and post progression survival using joint modeling of summary level OS and PFS data with an ordinary differential equation model. J Pharmacokinet Pharmacodyn 2022; 49:455-469. [DOI: 10.1007/s10928-022-09816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/27/2022] [Indexed: 10/16/2022]
|
40
|
Falletta P, Goding CR, Vivas-García Y. Connecting Metabolic Rewiring With Phenotype Switching in Melanoma. Front Cell Dev Biol 2022; 10:930250. [PMID: 35912100 PMCID: PMC9334657 DOI: 10.3389/fcell.2022.930250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Melanoma is a complex and aggressive cancer type that contains different cell subpopulations displaying distinct phenotypes within the same tumor. Metabolic reprogramming, a hallmark of cell transformation, is essential for melanoma cells to adopt different phenotypic states necessary for adaptation to changes arising from a dynamic milieu and oncogenic mutations. Increasing evidence demonstrates how melanoma cells can exhibit distinct metabolic profiles depending on their specific phenotype, allowing adaptation to hostile microenvironmental conditions, such as hypoxia or nutrient depletion. For instance, increased glucose consumption and lipid anabolism are associated with proliferation, while a dependency on exogenous fatty acids and an oxidative state are linked to invasion and metastatic dissemination. How these different metabolic dependencies are integrated with specific cell phenotypes is poorly understood and little is known about metabolic changes underpinning melanoma metastasis. Recent evidence suggests that metabolic rewiring engaging transitions to invasion and metastatic progression may be dependent on several factors, such as specific oncogenic programs or lineage-restricted mechanisms controlling cell metabolism, intra-tumor microenvironmental cues and anatomical location of metastasis. In this review we highlight how the main molecular events supporting melanoma metabolic rewiring and phenotype-switching are parallel and interconnected events that dictate tumor progression and metastatic dissemination through interplay with the tumor microenvironment.
Collapse
Affiliation(s)
- Paola Falletta
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Falletta, ; Colin R. Goding, ; Yurena Vivas-García, ,
| | - Colin R. Goding
- Nuffield Department of Clinical Medicine, Ludwig Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paola Falletta, ; Colin R. Goding, ; Yurena Vivas-García, ,
| | - Yurena Vivas-García
- Nuffield Department of Clinical Medicine, Ludwig Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Paola Falletta, ; Colin R. Goding, ; Yurena Vivas-García, ,
| |
Collapse
|
41
|
Liu C, Wang Y. Identification of Two Subtypes and Prognostic Characteristics of Lung Adenocarcinoma Based on Pentose Phosphate Metabolic Pathway-Related Long Non-coding RNAs. Front Public Health 2022; 10:902445. [PMID: 35801241 PMCID: PMC9253426 DOI: 10.3389/fpubh.2022.902445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
This study analyzed the differences in subtypes and characteristics of advanced lung adenocarcinoma (LUAD) patients based on the pentose phosphate metabolic pathway-related long non-coding RNAs (lncRNAs), along with their potential regulatory mechanisms. Using the expression profiling and corresponding clinical information of LUAD patients from Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA). Differential pathway scores between normal and tumor samples from TCGA were identified by rank-sum tests. Pearson correlation coefficients between pentose phosphate scores of the pentose phosphate samples and lncRNAs of the corresponding datasets were calculated. Next, the clusterProfiler software package was used for functional annotation. Clustering of pentose phosphate-related lncRNAs from LUAD samples categorized two molecular subtypes (C1, and C2). C1 was associated with a lower pentose phosphate score and a good prognosis; the C2 showed a higher pentose phosphate score and was related to poorer prognoses. The C2 was markedly associated with energy metabolic pathways. The expression of most immune cells were markedly higher in C1 subtype. Some crucial immune checkpoints, including CTLA4, CD274, and CD47, were also significantly upregulated in C1 subtype, leading to a higher score of clinical effect on the C1 subtype. Finally, one TF, BACH1, was found to be significantly upregulated in C1 subtypes; the pathways activated by this TF may be associated with tumor progression and poor prognoses. LUAD typing based on pentose phosphate metabolic pathway-related lncRNAs was confirmed. Differences in characteristics between C1 and C2 subtypes improved the current LUAD detection and treatment.
Collapse
|
42
|
Li H, Zhang Y, Xu M, Yang D. Current trends of targeted therapy for oral squamous cell carcinoma. J Cancer Res Clin Oncol 2022; 148:2169-2186. [PMID: 35501496 DOI: 10.1007/s00432-022-04028-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant disease in the world which has a profound effect on human health and life quality. According to tumor stage and pathological diagnosis, OSCC is mainly treated by combinations of surgery, radiotherapy and chemotherapy. However, traditional treatment methods suffer from some limitations, such as systemic toxicity, limited therapeutic effect and drug resistance. With the rapid development of nanotechnology, nanodrug delivery systems (DDSs) and intelligent DDSs have been widely used in targeted therapy for OSCC. Meanwhile, the newly developed therapeutic techniques such as immunotherapy, gene therapy and bionic technology provide the possibility to realize the active targeted therapy. Here, the latest advances of target therapy for OSCC are reviewed, and their therapeutic remarks, current limits and future prospects are also systematically interpreted. It is believed that active and passive targeted therapies have great potentials for clinical transformation and application of OSCC, which will greatly improve human quality of life.
Collapse
Affiliation(s)
- Hongjiao Li
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Yao Zhang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Mengmeng Xu
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China
| | - Deqin Yang
- School and Hospital of Stomatology, College of Stomatology, Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
43
|
Lithium salts as a treatment for COVID-19: Pre-clinical outcomes. Biomed Pharmacother 2022; 149:112872. [PMID: 35364381 PMCID: PMC8947939 DOI: 10.1016/j.biopha.2022.112872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Identifying effective drugs for Coronavirus disease 2019 (COVID-19) is urgently needed. An efficient approach is to evaluate whether existing approved drugs have anti-SARS-CoV-2 effects. The antiviral properties of lithium salts have been studied for many years. Their anti-inflammatory and immune-potentiating effects result from the inhibition of glycogen synthase kinase-3. AIMS To obtain pre-clinical evidence on the safety and therapeutic effects of lithium salts in the treatment of COVID-19. RESULTS Six different concentrations of lithium, ranging 2-12 mmol/L, were evaluated. Lithium inhibited the replication of SARS-CoV-2 virus in a dose-dependent manner with an IC50 value of 4 mmol/L. Lithium-treated wells showed a significantly higher percentage of monolayer conservation than viral control, particularly at concentrations higher than 6 mmol/L, verified through microscopic observation, the neutral red assay, and the determination of N protein in the supernatants of treated wells. Hamsters treated with lithium showed less intense disease with fewer signs. No lithium-related mortality or overt signs of toxicity were observed during the experiment. A trend of decreasing viral load in nasopharyngeal swabs and lungs was observed in treated hamsters compared to controls. CONCLUSIONS These results provide pre-clinical evidence of the antiviral and immunotherapeutic effects of lithium against SARS-CoV-2, which supports an advance to clinical trials on COVID-19's patients.
Collapse
|
44
|
Kumar GS, Moustafa M, Sahoo AK, Malý P, Bharadwaj S. Computational Investigations on the Natural Small Molecule as an Inhibitor of Programmed Death Ligand 1 for Cancer Immunotherapy. Life (Basel) 2022; 12:659. [PMID: 35629327 PMCID: PMC9145275 DOI: 10.3390/life12050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Several therapeutic monoclonal antibodies approved by the FDA are available against the PD-1/PD-L1 (programmed death 1/programmed death ligand 1) immune checkpoint axis, which has been an unprecedented success in cancer treatment. However, existing therapeutics against PD-L1, including small molecule inhibitors, have certain drawbacks such as high cost and drug resistance that challenge the currently available anti-PD-L1 therapy. Therefore, this study presents the screening of 32,552 compounds from the Natural Product Atlas database against PD-L1, including three steps of structure-based virtual screening followed by binding free energy to refine the ideal conformation of potent PD-L1 inhibitors. Subsequently, five natural compounds, i.e., Neoenactin B1, Actinofuranone I, Cosmosporin, Ganocapenoid A, and 3-[3-hydroxy-4-(3-methylbut-2-enyl)phenyl]-5-(4-hydroxybenzyl)-4-methyldihydrofuran-2(3H)-one, were collected based on the ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling and binding free energy (>−60 kcal/mol) for further computational investigation in comparison to co-crystallized ligand, i.e., JQT inhibitor. Based on interaction mapping, explicit 100 ns molecular dynamics simulation, and end-point binding free energy calculations, the selected natural compounds were marked for substantial stability with PD-L1 via intermolecular interactions (hydrogen and hydrophobic) with essential residues in comparison to the JQT inhibitor. Collectively, the calculated results advocate the selected natural compounds as the putative potent inhibitors of PD-L1 and, therefore, can be considered for further development of PD-L1 immune checkpoint inhibitors in cancer immunotherapy.
Collapse
Affiliation(s)
- Geethu S Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida 201310, Uttar Pradesh, India;
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, Uttar Pradesh, India
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 62529, Saudi Arabia;
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad 211015, Uttar Pradesh, India
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., BIOCEV Research Center, 25250 Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., BIOCEV Research Center, 25250 Vestec, Czech Republic
| |
Collapse
|
45
|
Li Q, Cheng X, Zhou C, Tang Y, Li F, Zhang B, Huang T, Wang J, Tu S. Fruquintinib Enhances the Antitumor Immune Responses of Anti-Programmed Death Receptor-1 in Colorectal Cancer. Front Oncol 2022; 12:841977. [PMID: 35371995 PMCID: PMC8968679 DOI: 10.3389/fonc.2022.841977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Programmed death receptor-1 (PD-1) blockade shows little benefit in patients with microsatellite-stable colorectal cancer (MSS-CRC). Fruquintinib is a China-made anti-angiogenic drug which is approved for the third line therapy in mCRC. This study investigates the effect of the combination of fruquintinib and PD-1 blockade on MSS-CRC and its relative mechanisms. Methods The mouse allograft tumor models that represent MSS and microsatellite instability (MSI) CRC were established using murine CT26 and MC38 colon cancer cells, respectively, to assess the treatment efficacy. The percentages of immune cells were detected in the peripheral blood, spleen and tumor tissues in the tumor-bearing mice by flow cytometry analysis. Angiogenesis in tumor tissues was detected by immunofluorescence. The safety of drug treatment was evaluated by histopathology analysis in murine main organs. The efficacy of the combination of fruquintinib and sintilimab were verified in the treatment of MSS-CRC patients. Results Our results showed that the combination of fruquintinib and sintilimab exhibited the strongest inhibition of tumor growth and achieved the longest survival time in mice bearing MC38 or CT26 xenograft tumors, compared to fruquintinib and sintilimab alone. Mechanistically, the combination of fruquintinib and sintilimab reduced angiogenesis, reprogramed the vascular structure, enhanced the infiltration of CD8+T cells (p<0.05), CD8+TNFα+ (p<0.05) T cells and CD8+IFNγ+ (p<0.05) T cells and reduced the ratios of MDSCs and macrophages in mice. There was no obvious toxicity observed in the main organs of the tumor-bearing mice with the combined treatment. Moreover, the treatment using the combination of fruquintinib and sintilimab achieved effective response in five patients with refractory advanced MSS CRC. Conclusion Our results show that the combination of fruquintinib and sintilimab greatly inhibits CRC growth by altering tumor immune microenvironment. This study provides the rational for using the combination of fruquintinib and anti-PD-1 antibody for the treatment of advanced CRC.
Collapse
Affiliation(s)
- Qingli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojiao Cheng
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Zhou
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Tang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baiwen Zhang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tinglei Huang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzheng Wang
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Shuiping Tu, ; Jianzheng Wang,
| | - Shuiping Tu
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Shuiping Tu, ; Jianzheng Wang,
| |
Collapse
|
46
|
Brown J, Li B, Yang L. MAOI Antidepressants: Could They Be a Next-Generation ICB Therapy? Front Immunol 2022; 13:853624. [PMID: 35359979 PMCID: PMC8963899 DOI: 10.3389/fimmu.2022.853624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- James Brown
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bo Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW In this review, we update the latest findings on the impacts of FA metabolism reprogramming on the phenotypes and functions of immune cells in tumor-related immune responses. We also summarize the combinatorial interventions of FA metabolism, which improve the effects of current immunotherapies. RECENT FINDINGS Multiple studies have shown that either the abnormality in signaling pathways or nutrition competition in the TME can lead to phenotypic reprogramming of FA metabolism and functional changes in tumor-infiltrating immune cells, thereby influencing the therapeutic effects of cancer immunotherapies. Accordingly, regulating FA metabolism in immune cells has emerged and become promising approaches to synergize with immunotherapies. One of the mechanisms behind suboptimal therapeutic effects of immunotherapies is metabolic reprogramming of the TME that impairs immunosuppressive activity. FA metabolism is a crucial process involved in the survival and function of primary immune cells. It is of great significance to explore the feasibility of overcoming FA metabolic barriers to improve cancer immunotherapy.
Collapse
|
48
|
Assumpção JAF, Pasquarelli-do-Nascimento G, Duarte MSV, Bonamino MH, Magalhães KG. The ambiguous role of obesity in oncology by promoting cancer but boosting antitumor immunotherapy. J Biomed Sci 2022; 29:12. [PMID: 35164764 PMCID: PMC8842976 DOI: 10.1186/s12929-022-00796-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is nowadays considered a pandemic which prevalence's has been steadily increasingly in western countries. It is a dynamic, complex, and multifactorial disease which propitiates the development of several metabolic and cardiovascular diseases, as well as cancer. Excessive adipose tissue has been causally related to cancer progression and is a preventable risk factor for overall and cancer-specific survival, associated with poor prognosis in cancer patients. The onset of obesity features a state of chronic low-grade inflammation and secretion of a diversity of adipocyte-derived molecules (adipokines, cytokines, hormones), responsible for altering the metabolic, inflammatory, and immune landscape. The crosstalk between adipocytes and tumor cells fuels the tumor microenvironment with pro-inflammatory factors, promoting tissue injury, mutagenesis, invasion, and metastasis. Although classically established as a risk factor for cancer and treatment toxicity, recent evidence suggests mild obesity is related to better outcomes, with obese cancer patients showing better responses to treatment when compared to lean cancer patients. This phenomenon is termed obesity paradox and has been reported in different types and stages of cancer. The mechanisms underlying this paradoxical relationship between obesity and cancer are still not fully described but point to systemic alterations in metabolic fitness and modulation of the tumor microenvironment by obesity-associated molecules. Obesity impacts the response to cancer treatments, such as chemotherapy and immunotherapy, and has been reported as having a positive association with immune checkpoint therapy. In this review, we discuss obesity's association to inflammation and cancer, also highlighting potential physiological and biological mechanisms underlying this association, hoping to clarify the existence and impact of obesity paradox in cancer development and treatment.
Collapse
Affiliation(s)
| | | | - Mariana Saldanha Viegas Duarte
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernan Bonamino
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
49
|
Nicoli F, Cabral-Piccin MP, Papagno L, Gallerani E, Fusaro M, Folcher V, Dubois M, Clave E, Vallet H, Frere JJ, Gostick E, Llewellyn-Lacey S, Price DA, Toubert A, Dupré L, Boddaert J, Caputo A, Gavioli R, Appay V. Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8 + T Cells in Elderly Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:562-570. [PMID: 35031578 PMCID: PMC7615155 DOI: 10.4049/jimmunol.2100194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mariela P Cabral-Piccin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
| | - Victor Folcher
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Marion Dubois
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Emmanuel Clave
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
| | - Hélène Vallet
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Justin J Frere
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine Tucson, Tucson, AZ
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antoine Toubert
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jacques Boddaert
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan; and
- Université de Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
50
|
Martín-Villa JM, Vaquero-Yuste C, Molina-Alejandre M, Juarez I, Suárez-Trujillo F, López-Nares A, Palacio‐Gruber J, Barrera-Gutiérrez L, Fernández-Cruz E, Rodríguez-Sainz C, Arnaiz-Villena A. HLA-G: Too Much or Too Little? Role in Cancer and Autoimmune Disease. Front Immunol 2022; 13:796054. [PMID: 35154112 PMCID: PMC8829012 DOI: 10.3389/fimmu.2022.796054] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
HLA-G is a non-classical HLA class I molecule with immunomodulatory properties. It was initially described at the maternal-fetal interface, and it was later found that this molecule was constitutively expressed on certain immuneprivileged tissues, such as cornea, endothelial and erythroid precursors, and thymus. The immunosuppressive effect of HLA-G is exerted through the interaction with its cognate receptors, expressed on immunocompetent cells, like ILT2, expressed on NK, B, T cells and APCs; ILT4, on APCs; KIR, found on the surface of NK cells; and finally, the co-receptor CD8. Because of these immunomodulatory functions, HLA-G has been involved in several processes, amongst which organ transplantation, viral infections, cancer progression, and autoimmunity. HLA-G neo-expression on tumors has been recently described in several types of malignancies. In fact, tumor progression is tightly linked to the presence of the molecule, as it exerts its tolerogenic function, inhibiting the cells of the immune system and favoring tumor escape. Several polymorphisms in the 3'UTR region condition changes in HLA-G expression (14bp and +3142C/G, among others), which have been associated with both the development and outcome of patients with different tumor types. Also, in recent years, several studies have shown that HLA-G plays an important role in the control of autoimmune diseases. The ability of HLA-G to limit the progression of these diseases has been confirmed and, in fact, levels of the molecule and several of its polymorphisms have been associated with increased susceptibility to the development of autoimmune diseases, as well as increased disease severity. Thus, modulating HLA-G expression in target tissues of oncology patients or patients with autoimmune diseases may be potential therapeutic approaches to treat these pathological conditions.
Collapse
Affiliation(s)
- José Manuel Martín-Villa
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Fabio Suárez-Trujillo
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Adrián López-Nares
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - José Palacio‐Gruber
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Barrera-Gutiérrez
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Inmunología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Servicio de Inmunología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Antonio Arnaiz-Villena
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|