1
|
Zhang X, Wang J, Li S, Chen K, Wang L, Feng C, Gao Y, Yan X, Zhao Q, Li B, Zheng J, Qiu Y. Mechanism of arsenic regulation of mitochondrial damage and autophagy induced synaptic damage through SIRT1 and protective effect of melatonin in HT22 cell. Chem Biol Interact 2025; 412:111461. [PMID: 40081728 DOI: 10.1016/j.cbi.2025.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Arsenic (As), a widespread environmental pollutant, can induce severe neurological damage worldwide; however, the underlying mechanisms remain unclear. Sirtuin 1 (SIRT1) has been reported to exert neuroprotective effects against various neurological diseases by resisting mitochondrial damage and autophagy through deacetylation. In this study, we established a model of HT22 cells exposed to NaAsO2 and examined the levels of mitochondrial, autophagy, and synaptic damage in HT22 cells and HT22 cells with high expression of SIRT1 (pre-treated with the agonist SRT1720) 24 h after exposure. Our results suggest that NaAsO2 exposure induces down-regulation of SIRT1, causing mitochondrial damage and activation of autophagy, which in turn leads to synaptic damage. Notably, melatonin (Mel) intervention upregulated SIRT1 and attenuated mitochondrial damage and autophagy, restoring synaptic damage. In conclusion, the results of the present study indicate that As causes neurotoxicity by decreasing SIRT1 production, causing mitochondrial damage and activating autophagy, which provides fundamental data for further study of arsenic neurotoxicity. In addition, blocking this pathway attenuated the synaptic damage of arsenic exposure, which provides a new therapeutic avenue for arsenic neurotoxicity.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Department of Microbiology Laboratory, Linfen Central Hospital, Linfen, 041000, Shanxi, China; Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Shanxi Province for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Jing Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shuyuan Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Kun Chen
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Longmei Wang
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chao Feng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qian Zhao
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ben Li
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jinping Zheng
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; Key Laboratory of Shanxi Province for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, 046000, Shanxi, China.
| | - Yulan Qiu
- Department of Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Gerić M, Nanić L, Micek V, Novak Jovanović I, Gajski G, Rašić D, Orct T, Ljubojević M, Karaica D, Jurasović J, Vrhovac Madunić I, Peraica M, Sabolić I, de Andrade VM, Breljak D, Rubelj I. The Impact of Resveratrol and Melatonin on the Genome and Oxidative Status in Ageing Rats. Nutrients 2025; 17:1187. [PMID: 40218945 PMCID: PMC11990809 DOI: 10.3390/nu17071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Given the growing challenges posed by an ageing population, particularly in Western countries, we aimed to investigate the potential geroprotective effects of resveratrol and melatonin in ageing rats. METHODS The animals were treated with these two compounds starting at 3 months of age and continuing until 1 year or 2 years of age. Using a multibiomarker approach, we assessed DNA damage, telomere length, and the oxidative status in their urine, liver, and kidneys. RESULTS Despite employing this experimental approach, our results did not provide conclusive evidence of geroprotective effects across the evaluated organs. However, we observed sex-dependent differences in response to treatment. CONCLUSIONS Given the high potency of these two compounds, further research is warranted to explore their incorporation into daily routines as a strategy to mitigate ageing-related effects.
Collapse
Affiliation(s)
- Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Novak Jovanović
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dubravka Rašić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Tatjana Orct
- Division of Occupational and Environmental Health, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marija Ljubojević
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Dean Karaica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Jasna Jurasović
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Maja Peraica
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivan Sabolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina–UNESC, Criciúma 88806-000, Brazil;
| | - Davorka Breljak
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Zhang X, Zhuang M, Zhang H, Zhu Y, Yang J, Wu X, Yu X, Tao J, Liu X. Melatonin-mediated cGAS-STING signal in senescent macrophages promote TNBC chemotherapy resistance and drive the SASP. J Biol Chem 2025:108438. [PMID: 40127867 DOI: 10.1016/j.jbc.2025.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/08/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025] Open
Abstract
The build-up of senescent cells in tissues is a key indicator of aging, associated with negative prognosis and therapy resistance. Despite immune dysfunction related to aging, also known as immunosenescence, is recognized as a factor in this process, the exact mechanisms are still unclear. In this study, we reported that melatonin deficiency accelerated macrophage senescence in triple-negative breast cancer (TNBC), whereas, melatonin could defend macrophages against senescence through the Nfatc1-Trim26-cgas-Sting pathway. Mechanistically, melatonin enhanced the nuclear translocation of Nfatc1 and elevated Trim26 transcription levels. Trim26, functioning as an E3 ligase, ubiquitinates cgas, thereby inhibiting the activation of the cgas-Sing pathway and consequently preventing cell senescence. Conversely, melatonin deficiency induced cgas-Sting pathway activation to promote macrophage aging. Our results show that melatonin inhibited macrophage senescence and improved chemotherapy responsiveness, with further enhancement when combined with the cgas inhibitor (G150). Overall, our findings indicated that melatonin protects macrophages from immunosenescence, suggesting its therapeutic potential for enhancing chemotherapy response.
Collapse
Affiliation(s)
- Xiaoqiang Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Minyu Zhuang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Hongfei Zhang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yanhui Zhu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Junzhe Yang
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Xian Wu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China
| | - Xiafei Yu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China.
| | - Jing Tao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xiaoan Liu
- Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, P.R. China.
| |
Collapse
|
4
|
Kaczmarek-Szczepańska B, Grabska-Zielińska S. Biopolymeric Scaffolds with Melatonin for Tissue Engineering-A Review. Int J Mol Sci 2025; 26:2520. [PMID: 40141163 PMCID: PMC11942045 DOI: 10.3390/ijms26062520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Melatonin, a natural hormone with antioxidant, anti-inflammatory, and regenerative properties, has gained increasing attention in tissue engineering for its ability to enhance the therapeutic potential of biopolymeric scaffolds. These scaffolds, designed to mimic the extracellular matrix, provide structural support and a bioactive environment for tissue regeneration. By integrating melatonin, researchers aim to create multifunctional scaffolds that promote cell proliferation, modulate inflammatory responses, and improve wound healing outcomes. Challenges in utilizing melatonin include maintaining its stability under light, heat, and oxygen exposure, and optimizing its release profile for sustained therapeutic effects. Innovative fabrication methods, such as electrospinning, 3D printing, and lyophilization, have enabled precise control over scaffold architecture and melatonin delivery. These techniques ensure enhanced interactions with target tissues and tailored regeneration processes. Combining melatonin with growth factors, cytokines, and antimicrobial agents offers the potential for multifunctional applications, from chronic wound management to bone and nerve regeneration. Continued research in this field promises transformative solutions in regenerative medicine, expanding the clinical applicability of melatonin-enriched scaffolds. This review highlights the current progress, challenges, and opportunities associated with harnessing melatonin's therapeutic potential within tissue engineering frameworks.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Laboratory for Functional Polymeric Materials, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Toruń, Poland
| | - Sylwia Grabska-Zielińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
5
|
Tian Z, He J, Wang Z, Yang Q, Ma L, Qi Y, Li J, Meng Y, Quinet M. Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109487. [PMID: 39793329 DOI: 10.1016/j.plaphy.2025.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/07/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control. Results demonstrated that exogenous MT at different concentrations improved the growth and physiological parameters of buckwheats, ameliorating damage induced by high-temperature stress. Notably, the application of 100 μM MT significantly augmented shoot biomasses of buckwheat seedlings under high-temperature conditions. Furthermore, the MT significantly increased the levels of osmotic adjustment substances and chlorophyll concentrations, enhanced antioxidant enzyme activities, chlorophyll fluorescence parameters, and improved photosynthetic gas exchange parameters in five different varieties of buckwheat. This led to the alleviation of damage to buckwheat seedlings subjected to high-temperature stress. Subsequently, five advanced statistical analysis methods: Principal Component Analysis, Grey Relational Analysis, Path Coefficient Analysis, Membership Function Method, and Coupling Coordination Analysis were employed to delve deeper into the existing data indicators. To summarize, the beneficial effect of exogenous melatonin on seedling growth is primarily achieved through the coordination and regulation of the antioxidant enzyme system and osmotic regulatory substances, ensuring the growth and development of buckwheat seedlings while also improving their heat tolerance. The treatment with a concentration of 100 μM of MT was the most effective.
Collapse
Affiliation(s)
- Zemiao Tian
- Hebei Agricultural University, Baoding, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiadong He
- Laboratory of Mycology, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium
| | - Zhanyu Wang
- Hebei Agricultural University, Baoding, China
| | - Qian Yang
- Hebei Agricultural University, Baoding, China
| | - Luping Ma
- Hebei Agricultural University, Baoding, China
| | - Yongzhi Qi
- Hebei Agricultural University, Baoding, China
| | - Jinbo Li
- Luoyang Normal University, Luoyang, China
| | - Yu Meng
- Hebei Agricultural University, Baoding, China; Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium.
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain-UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Zhang K, Guo J, Wang S, Min C, Wang J, Liu H, Fang Y, Ding H, Zhao J, Ma X, Lu W. Melatonin protects bovine oocyte from βHB-induced oxidative stress through the Nrf2 pathway. Theriogenology 2025; 234:64-72. [PMID: 39644523 DOI: 10.1016/j.theriogenology.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Accumulation of ketone bodies in the blood or tissues can trigger ketosis, exerting detrimental effects on bovine oocytes maturation. Exposure to its primary component, β-hydroxybutyric acid (βHB), disrupts mitochondrial function, culminating in the excessive buildup of reactive oxygen species (ROS) and subsequent initiation of apoptosis in oocytes. These ultimately result in poor oocyte quality. Melatonin, recognized for its endogenous antioxidant properties, is capable of mitigating ROS levels and enhancing the expression of antioxidant enzymes. In this study, we explored the protective effects of melatonin on the damages induced by βHB. Melatonin was added at a concentration of 10-9 M to the culture medium on bovine oocytes. Parameters including first polar body extrusion rate, mitochondrial membrane potential, ROS, cell apoptosis were assessed. Results showed that melatonin could restore bovine oocyte maturation rate, enhance mitochondrial function, reduce cell apoptosis rate, and mitigate oxidative stress levels. Notably, Nrf2 signaling pathway inhibitor ML385 significantly attenuated the protective effects of melatonin on oxidative stress induced by βHB exposure. In summary, our study demonstrates that melatonin can protect oocytes from oxidative stress induced by βHB exposure, with indications that this protective mechanism may be mediated through the Nrf2 pathway.
Collapse
Affiliation(s)
- Kaiyan Zhang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China.
| | - Jing Guo
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China
| | - Simin Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China
| | - Changguo Min
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jun Wang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongyu Liu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yi Fang
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China
| | - He Ding
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Jing Zhao
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China
| | - Xin Ma
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenfa Lu
- Key Laboratory of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, Jilin, China; Jilin Provincial International Joint Research Center of Animal Breeding and Reproduction Technology, Jilin Agricultural University, Changchun, Jilin, China; Jilin Province Key Laboratory of Beef Cattle Germplasm Resources Utilization, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
7
|
Jauhari A, Monek AC, Suofu Y, Amygdalos OR, Singh T, Baranov SV, Carlisle DL, Friedlander RM. Melatonin Deficits Result in Pathologic Metabolic Reprogramming in Differentiated Neurons. J Pineal Res 2025; 77:e70037. [PMID: 39982401 PMCID: PMC11844733 DOI: 10.1111/jpi.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/14/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Differentiation from neural progenitor to mature neuron requires a metabolic switch, whereby mature neurons become almost entirely dependent upon oxidative phosphorylation (OXPHOS) for ATP production. Although more efficient with respect to ATP production, OXPHOS produces additional reactive oxygen species, as compared to glycolysis; thus, endogenous mechanisms to quench free radicals are essential for the maintenance of neuronal health. Melatonin is synthesized in neuronal mitochondria and has a dual role as a free radical scavenger and as an inhibitor of mitochondrial-triggered cell death and proinflammatory pathways. Previously, we showed that loss of endogenous melatonin induced mitochondrial DNA (mtDNA) and cytochrome c (CytC) release triggering pathological inflammation and cell death pathways, respectively. Here we find that in mature neurons, but not undifferentiated neuronal cells, melatonin deficiency altered metabolic reprogramming in aralkylamine N-acetyltransferase knockout (AANAT-KO) neurons as compared with neurons expressing AANAT. Interestingly, there are no differences in neural progenitors regardless of AANAT status. In addition, AANAT-KO deficiency elevated BAK and BAX levels in AANAT-KO neurons. Further, we found that exogenous melatonin treatment of AANAT-KO cells during differentiation into mature neurons rescued metabolic reprogramming defects and restored normal BAK/BAX levels. Thus, we demonstrated that the metabolic reprogramming and subsequent consequences of the switch to OXPHOS that normally occurs during neuronal maturation are compromised by melatonin deficiency and rescued by melatonin supplementation.
Collapse
Affiliation(s)
- Abhishek Jauhari
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Adam C. Monek
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yalikun Suofu
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Olivia R. Amygdalos
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tanisha Singh
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sergei V. Baranov
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Diane L. Carlisle
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Robert M. Friedlander
- Neuroapoptosis Laboratory, Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
8
|
Kaval Oğuz E, Oğuz AR, Özok N, Alkan Z, Ergöz Azizoğlu B, Örgi E, Erdemir AN, Yeşilbaş A. Investigation of the therapeutic effect of melatonin on deltamethrin applied mouse primary hepatocyte culture. Arch Physiol Biochem 2025; 131:63-70. [PMID: 39101831 DOI: 10.1080/13813455.2024.2387696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE In recent years, it has been known that the melatonin hormone, secreted from the pineal gland, possesses significant antioxidant activity. This study explores the therapeutic effect of melatonin on the deleterious effects of deltamethrin, a pyrethroid pesticide extensively used worldwide, including in Türkiye, on mouse liver cells. METHODS Hepatocytes from Balb/C mice were isolated using a two-stage perfusion method, resulting in over 85% live hepatocytes. The isolated cells were cultured with different doses of deltamethrin (1 and 10 µM) and melatonin (100 µM) for 24 and 48 hours. At the conclusion of the culture period, hepatocytes were extracted at the 24th and 48th hours, and Malondialdehyde (MDA), Total Antioxidant Capacity (TAC), Total Oxidation Status (TOS), and DNA damages (8-hydroxy-2'-deoxyguanosine (8-OHdG)) were examined. RESULTS While an increase in MDA, TOS, and DNA damage was observed in the deltamethrin-administered groups of hepatocytes, a decrease in TAC level was noted. It was determined that the applied deltamethrin had no effect on cell viability throughout the application period. CONCLUSION Furthermore, it was observed that melatonin, when administered concurrently with deltamethrin, reduced the toxic effect of deltamethrin. This study suggests that melatonin has a protective effect against deltamethrin-induced damage in mouse hepatocyte cells.
Collapse
Affiliation(s)
- Elif Kaval Oğuz
- Faculty of Education, Science Education, Van Yüzüncü Yıl University, Van, Türkiye
| | - Ahmet Regaib Oğuz
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Necati Özok
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Zehra Alkan
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Burcu Ergöz Azizoğlu
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Elif Örgi
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Ayşe Nur Erdemir
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Ayşe Yeşilbaş
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| |
Collapse
|
9
|
Kato Y, Sato K, Nagamine H, Kanatani M, Horikoshi Y, Nakaso K. Cytoprotective effect of melatonin against MPP + toxicity in SH-SY5Y cells: Role sharing of two types of antioxidative activities of melatonin. Biochem Biophys Res Commun 2025; 742:151074. [PMID: 39626365 DOI: 10.1016/j.bbrc.2024.151074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Melatonin is a neurohormone that is not only a regulator of circadian cycles, but also a potent antioxidant. Parkinson's disease (PD) is a major neurodegenerative disease that may result from oxidative stress as a part of its pathogenic cascade. Therefore, antioxidants, including melatonin, have attracted attention as potential candidates for neuroprotection against PD-related neurotoxicity. In this study, we report that melatonin has 2 types of antioxidant mechanisms of neuroprotection in an experimental cellular PD model using 1-Methyl-4-phenylpyridinium ion (MPP+) in human neuroblastoma SH-SY5Y cells. The first mechanism is a classical antioxidative mechanism through the direct action of melatonin, which reduces lipid hydroperoxide and 8-OHdG. The second mechanism is an indirect antioxidative effect via the melatonin receptor (Mel-R)/PI3K/Akt/Nrf2 cascade. Melatonin and Mel-R agonist activated PI3K/Akt signaling and Nrf2. Both Mel-R antagonist and the PI3K inhibitor blocked transcription induced by Nrf2 and the cytoprotective effect of melatonin. Interestingly, the antioxidative effect due to the Nrf2-related mechanism contributed mainly to a decrease of protein carbonyl, but not to lipid hydroperoxide and 8-OHdG. Mel-R agonist also showed a similar effect. Our results elucidate the mechanism of melatonin's powerful antioxidative effect and suggest the application of melatonin therapy to PD-related cytotoxicity.
Collapse
Affiliation(s)
- Yugo Kato
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Kanon Sato
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Hidetoshi Nagamine
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Masahiro Kanatani
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan; Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Yosuke Horikoshi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Kazuhiro Nakaso
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan.
| |
Collapse
|
10
|
Wei Z, Shen H, Wang F, Huang W, Li X, Xu H, Zhu H, Guan J. Melatonin mediates intestinal barrier dysfunction and systemic inflammation in moderate-severe OSA patients. Ann Med 2024; 56:2361825. [PMID: 38973375 PMCID: PMC11232642 DOI: 10.1080/07853890.2024.2361825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Intestinal barrier dysfunction and systemic inflammation are common in obstructive sleep apnoea (OSA). We aimed to investigate the role of melatonin, an anti-inflammatory mediator, in mediating the relationships between OSA, intestinal barrier dysfunction and systemic inflammation. METHODS Two hundred and thirty-five male participants who complained with sleep problems and underwent whole night polysomnography at our sleep centre between 2017 and 2018 were enrolled. Polysomnographic data, anthropometric measurements and biochemical indicators were collected. Serum melatonin, intestinal barrier function biomarker zonula occludens-1 (ZO-1) and inflammatory biomarkers C-reactive protein (CRP) with lipopolysaccharide (LPS) were detected. Spearman's correlation analysis assessed the correlations between sleep parameters, melatonin and biomarkers (ZO-1, LPS and CRP). Mediation analysis explored the effect of OSA on intestinal barrier dysfunction and systemic inflammation in moderate-severe OSA patients. RESULTS As OSA severity increased, serum melatonin decreased, whereas ZO-1, LPS and CRP increased. Spearman's correlation analysis showed that serum melatonin was significantly negatively correlated with ZO-1 (r = -0.19, p < .05) and LPS (r = -0.20, p < .05) in the moderate-OSA group; serum melatonin was significantly negatively correlated with ZO-1 (r = -0.46, p < .01), LPS (r = -0.35, p < .01) and CPR (r = -0.30, p < .05) in the severe-OSA group. Mediation analyses showed melatonin explain 36.12% and 35.38% of the effect of apnoea-hypopnea index (AHI) on ZO-1 and LPS in moderate to severe OSA patients. CONCLUSIONS Our study revealed that melatonin may be involved in mediating intestinal barrier dysfunction and systemic inflammation in moderate-to-severe OSA patients.
Collapse
Affiliation(s)
- Zhicheng Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Hangdong Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Fan Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Huaming Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Verbovaya ER, Kadnikov IA, Logvinov IO, Antipova TA, Voronin MV, Seredenin SB. In vitro modelling of Parkinson's disease using 6-OHDA is associated with increased NQO2 activity. Toxicol In Vitro 2024; 101:105940. [PMID: 39271030 DOI: 10.1016/j.tiv.2024.105940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The pathogenesis of Parkinson's disease (PD) involves abnormalities in the metabolism of catecholamines. The enzyme quinone reductase 2 (NQO2) reduces quinone derivatives of catecholamines, which promotes the formation of reactive oxygen species (ROS), suggesting a role for NQO2 in the development of cellular damage typical of PD. In the present study, we investigated the relationship between 6-hydroxydophamine (6-OHDA) induced cellular damage and NQO2 activity and its levels in SH-SY5Y cell culture to establish an experimental model to evaluate the pharmacological properties of NQO2 inhibitors. Cellular damage was evaluated using the MTT and comet assays. It was shown that oxidative damage of SH-SY5Y cells upon incubation with 6-OHDA for 6, 12 and 24 h was accompanied by an increase in NQO2 activity. The increase in NQO2 protein level in SH-SY5Y cells was observed 24 h after incubation with 6-OHDA at concentrations of 50 and 100 μM. Oxidative damage of SH-SY5Y cells upon 1 h incubation with 6-OHDA is increased in the presence of the selective enzyme co-substrate 1-benzyl-1,4-dihydronicotinamide (BNAH), but is not accompanied by changes in NQO2 activity and protein levels. The data obtained demonstrate the contribution of NQO2 to the cytotoxic mechanism of 6-OHDA action.
Collapse
Affiliation(s)
- Ekaterina R Verbovaya
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia.
| | - Ilya A Kadnikov
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Ilya O Logvinov
- Laboratory of Molecular Pharmacology, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Tatyana A Antipova
- Laboratory of Molecular Pharmacology, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Mikhail V Voronin
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| | - Sergei B Seredenin
- Laboratory of Pharmacogenetics, Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Baltiyskaya Street 8, 125315 Moscow, Russia
| |
Collapse
|
12
|
Grabeklis SA, Kozlova MA, Mikhaleva LM, Dygai AM, Vandysheva RA, Anurkina AI, Areshidze DA. Effect of Constant Illumination on the Morphofunctional State and Rhythmostasis of Rat Livers at Experimental Toxic Injury. Int J Mol Sci 2024; 25:12476. [PMID: 39596541 PMCID: PMC11594381 DOI: 10.3390/ijms252212476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The effect of dark deprivation on the morphofunctional state and rhythmostasis of the liver under CCl4 toxic exposure has been studied. The relevance of this study is due to the fact that the hepatotoxic effect of carbon tetrachloride on the liver is well studied, but there are very few data on the relationship between CCl4 intoxication and circadian biorhythms, and most of the studies consider the susceptibility of the organism in general and of the liver in particular to the influence of CCl4 in some separate periods of the rhythm, but not the influence of this chemical agent on the structure of the whole rhythm. In addition, earlier studies indicate that light disturbance causes certain changes in the morphofunctional state of the liver and the structure of the circadian rhythm of a number of parameters. As a result of this study, we found that the effect of CCl4 in conditions of prolonged dark deprivation causes more significant structural and functional changes in hepatocytes, as well as leading to significant changes in the circadian rhythms of a number of parameters, which was not observed in the action of CCl4 as a monofactor. We assume that the severity of structural and functional changes is due to the light-induced deficiency of melatonin, which has hepatoprotective properties. Thus, the mechanisms of CCl4 action on CRs under conditions of light regime violations leave a large number of questions requiring further study, including the role of melatonin in these processes.
Collapse
Affiliation(s)
- Sevil A. Grabeklis
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Maria A. Kozlova
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Lyudmila M. Mikhaleva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Alexander M. Dygai
- Research Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Rositsa A. Vandysheva
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - Anna I. Anurkina
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| | - David A. Areshidze
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 117418 Moscow, Russia
| |
Collapse
|
13
|
Liu S, Yang TN, Wang YX, Ma XY, Shi YS, Zhao Y, Li JL. Parkin-TLR4-NLRP3 Axis Directs Melatonin to Alleviate Atrazine-Induced Immune Impairment in Splenic Macrophages. J Pineal Res 2024; 76:e70014. [PMID: 39648693 DOI: 10.1111/jpi.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
Atrazine (ATR) is a widespread environmental herbicide that seriously affects agricultural work and human safety. Melatonin (MLT) as an endogenous neuroendocrine hormone is widely found in animals and plants, which have antioxidant and anti-inflammatory effects. Pink1/Parkin-mediated mitophagy keeps normal physiological processes by degrading damaged mitochondria in cells. Therefore, we investigated the potential role and mechanism of MLT in ATR-induced toxic injury of the spleen. The results showed that MLT alleviated ATR-induced unclear boundary between the white pulp and the red pulp of the spleen. It is also shown that ATR resulted in swollen mitochondria, partial extinction of mitochondrial membranes and cristae, and increased mitophagy under the action of MLT. ATR-induced reactive oxygen species (ROS) activates the Pink1/Parkin pathway, which guides mitophagy development and then causes the activation of TLR4/NF-κB inflammatory pathway. Meanwhile, these damages further exacerbated the production of NLRP3 inflammasomes, leading to spleen necrosis. Interestingly, these changes were improved after MLT treatment. Collectively, we found that MLT alleviates ATR-induced immune impairment in splenic macrophages via regulating Parkin-TLR4-NLRP3 axis which elucidates the effect of melatonin on the spleen and provides a novel perspective on melatonin in splenic inflammatory injury treatment.
Collapse
Affiliation(s)
- Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Kim JM, Kim DH, Kim WT, Shin SC, Cheon YI, Park GC, Lee HW, Lee BJ. Amifostine and Melatonin Prevent Acute Salivary Gland Dysfunction 10 Days After Radiation Through Anti-Ferroptosis and Anti-Ferritinophagy Effects. Int J Mol Sci 2024; 25:11613. [PMID: 39519165 PMCID: PMC11546762 DOI: 10.3390/ijms252111613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Irradiation of the head and neck inevitably leads to decreased salivary gland function. It is postulated that radiation generates excessive reactive oxygen species (ROS) and reduces salivary gland function by ferroptosis, a new cell death mechanism; however, research in this area is currently lacking. In this study, we investigated the effects of amifostine and melatonin on acute salivary gland dysfunction and ferroptosis. Thirty-two Sprague Dawley rats were divided into four groups: control, radiation, radiation + amifostine, and radiation + melatonin. ROS; iron levels; glutathione peroxidase 4; 4-hydroxynonenal; various cytokines; and fibrosis and salivary gland functional markers were measured. Western blotting was used to detect ferritinophagy. After irradiation, we observed an increase in iron levels, ROS generation, oxidized glutathione, lipid peroxidation, fibrosis, and salivary gland dysfunction and a decrease in glutathione peroxidase 4 in salivary gland tissue. Treatment with amifostine or melatonin decreased the ferroptotic response and improved acute salivary gland function 10 days after radiation. The increase in iron levels associated with ferritinophagy was reduced after treatment with amifostine or melatonin. Our results demonstrate that radiation-induced acute salivary gland dysfunction is associated with ferroptosis and ferritinophagy. Amifostine and melatonin inhibit radiation-induced ferroptosis and ferritinophagy in the salivary gland and prevent acute salivary gland dysfunction 10 days after radiation.
Collapse
Affiliation(s)
- Ji-Min Kim
- Pusan National University Medical Research Institute, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiation Oncology, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Won-Taek Kim
- Department of Radiation Oncology, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Sung-Chan Shin
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yong-il Cheon
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Gi-Cheol Park
- Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Hyoun-Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Byung-Joo Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
15
|
Sohn EH, Kim SN, Lee SR. Melatonin's Impact on Wound Healing. Antioxidants (Basel) 2024; 13:1197. [PMID: 39456451 PMCID: PMC11504849 DOI: 10.3390/antiox13101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Melatonin (5-methoxy-N-acetyltryptamine) is an indoleamine compound that plays a critical role in the regulation of circadian rhythms. While melatonin is primarily synthesized from the amino acid tryptophan in the pineal gland of the brain, it can also be produced locally in various tissues, such as the skin and intestines. Melatonin's effects in target tissues can be mediated through receptor-dependent mechanisms. Additionally, melatonin exerts various actions via receptor-independent pathways. In biological systems, melatonin and its endogenous metabolites often produce similar effects. While injuries are common in daily life, promoting optimal wound healing is essential for patient well-being and healthcare outcomes. Beyond regulating circadian rhythms as a neuroendocrine hormone, melatonin may enhance wound healing through (1) potent antioxidant properties, (2) anti-inflammatory actions, (3) infection control, (4) regulation of vascular reactivity and angiogenesis, (5) analgesic (pain-relieving) effects, and (6) anti-pruritic (anti-itch) effects. This review aims to provide a comprehensive overview of scientific studies that demonstrate melatonin's potential roles in supporting effective wound healing.
Collapse
Affiliation(s)
- Eun-Hwa Sohn
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea
| | - Sung-Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea
| |
Collapse
|
16
|
Mineiro R, Rodrigues Cardoso M, Catarina Duarte A, Santos C, Cipolla-Neto J, Gaspar do Amaral F, Costa D, Quintela T. Melatonin and brain barriers: The protection conferred by melatonin to the blood-brain barrier and blood-cerebrospinal fluid barrier. Front Neuroendocrinol 2024; 75:101158. [PMID: 39395545 DOI: 10.1016/j.yfrne.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The blood-brain barrier and the blood-cerebrospinal fluid barrier separate the blood from brain tissue and cerebrospinal fluid. These brain barriers are important to maintain homeostasis and complex functions by protecting the brain from xenobiotics and harmful endogenous compounds. The disruption of brain barriers is a characteristic of neurologic diseases. Melatonin is a lipophilic hormone that is mainly produced by the pineal gland. The blood-brain barrier and the blood-cerebrospinal fluid barriers are melatonin-binding sites. Among the several melatonin actions, the most characteristic one is the regulation of sleep-wake cycles, melatonin has anti-inflammatory and antioxidant properties. Since brain barriers disruption can arise from inflammation and oxidative stress, knowing the influence of melatonin on the integrity of brain barriers is extremely important. Therefore, the objective of this review is to gather and discuss the available literature about the regulation of brain barriers by melatonin.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Maria Rodrigues Cardoso
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Jose Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal.
| |
Collapse
|
17
|
Silveira HS, Cesário RC, Vígaro RA, Gaiotte LB, Cucielo MS, Guimarães F, Seiva FRF, Zuccari DAPC, Reiter RJ, Chuffa LGDA. Melatonin changes energy metabolism and reduces oncogenic signaling in ovarian cancer cells. Mol Cell Endocrinol 2024; 592:112296. [PMID: 38844096 DOI: 10.1016/j.mce.2024.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Ovarian cancer (OC) adjusts energy metabolism in favor of its progression and dissemination. Because melatonin (Mel) has antitumor actions, we investigated its impact on energy metabolism and kinase signaling in OC cells (SKOV-3 and CAISMOV-24). Cells were divided into control and Mel-treated groups, in the presence or absence of the antagonist luzindole. There was a decrease in the levels of HIF-1α, G6PDH, GAPDH, PDH, and CS after Mel treatment even in the presence of luzindole in both OC cells. Mel treatment also reduced the activity of OC-related enzymes including PFK-1, G6PDH, LDH, CS, and GS whereas PDH activity was increased. Lactate and glutamine levels dropped after Mel treatment. Mel further promoted a reduction in the concentrations of CREB, JNK, NF-kB, p-38, ERK1/2, AKT, P70S6K, and STAT in both cell lines. Mel reverses Warburg-type metabolism and possibly reduces glutaminolysis, thereby attenuating various oncogenic molecules associated with OC progression and invasion.
Collapse
Affiliation(s)
- Henrique Spaulonci Silveira
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Roberta Carvalho Cesário
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Renan Aparecido Vígaro
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Leticia Barbosa Gaiotte
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | - Fernando Guimarães
- Hospital da Mulher "Professor Doutor José Aristodemo Pinotti" - CAISM, UNICAMP, Campinas, São Paulo, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, UTHealth, San Antonio, TX, 78229, USA
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618-689, São Paulo, Brazil.
| |
Collapse
|
18
|
Ongoren B, Kara A, Casettari L, Tiboni M, Lalatsa A, Sanz-Perez A, Gonzalez-Burgos E, Romero A, Juberías A, Torrado JJ, Serrano DR. Leveraging 3D-printed microfluidic micromixers for the continuous manufacture of melatonin loaded SNEDDS with enhanced antioxidant activity and skin permeability. Int J Pharm 2024; 663:124536. [PMID: 39074648 DOI: 10.1016/j.ijpharm.2024.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Vesicants are chemical warfare agents (CWAs) capable of causing severe skin damage and systemic toxicity. Melatonin, known for its anti-inflammatory and antioxidant properties, can mitigate the effects of these agents. Self-nano-emulsifying drug delivery systems (SNEDDS) containing a high melatonin concentration (5 %, 50 mg/g) were optimized using a quality-by-design approach from biocompatible, non-irritant excipients with a particle size of about 100 nm. The melatonin-loaded SNEDDS showed a 43-fold greater permeability than a conventional melatonin cream. Chemical stability at ambient temperature (25 °C) was maintained for one year. The preparation of optimised melatonin-loaded SNEDDS using a simple mixing method was compared to microfluidic micromixers. Mixing was successfully achieved using a 3D-printed (fused deposition modeling or stereolithography) T-shaped toroidal microfluidic chip (with a channel geometry optimized by computational fluid dynamics), resulting in a scalable, continuous process for the first time with a substantial reduction in preparation time compared to other conventional mixing approaches. No statistically significant differences were observed in the key quality attributes, such as particle size and melatonin loading, between mixing method till kinetic equilibrium solubility is reached and mixing using the 3D-printed micromixers. This scalable, continuous, cost-effective approach improves the overall efficiency of SNEDDS production, reduces the cost of quality control for multiple batches, and demonstrates the potential of continuous microfluidic manufacture with readily customizable 3D-printed micromixers at points of care, such as military bases.
Collapse
Affiliation(s)
- Baris Ongoren
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aytug Kara
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento 6, 61029 Urbino, Italy
| | - Aikaterini Lalatsa
- Cancer Research UK Formulation Unit, School of Pharmacy and Biomedical Sciences, Robertson Wing, University of Strathclyde, 161, Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Amadeo Sanz-Perez
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Elena Gonzalez-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, School of Veterinary, Complutense University of Madrid, 28040 Madrid, Spain
| | - Antonio Juberías
- Dirección de Sanidad del Ejército del Aire, Princesa 87, 28008 Madrid, Spain
| | - Juan J Torrado
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy Complutense University of Madrid, 28040 Madrid, Spain.
| | - Dolores R Serrano
- Department of Pharmaceutics and Food Technology, School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Institute of Industrial Pharmacy Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
19
|
Lee K, Back K. Functional Characterization of the Ciliate Stylonychia lemnae Serotonin N-Acetyltransferase, a Pivotal Enzyme in Melatonin Biosynthesis and Its Overexpression Leads to Peroxidizing Herbicide Tolerance in Rice. Antioxidants (Basel) 2024; 13:1177. [PMID: 39456431 PMCID: PMC11505474 DOI: 10.3390/antiox13101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonin N-acetyltransferase (SNAT) is a pivotal enzyme for melatonin biosynthesis in all living organisms. It catalyzes the conversion of serotonin to N-acetylserotonin (NAS) or 5-methoxytrypytamine (5-MT) to melatonin. In contrast to animal- and plant-specific SNAT genes, a novel clade of archaeal SNAT genes has recently been reported. In this study, we identified homologues of archaeal SNAT genes in ciliates and dinoflagellates, but no animal- or plant-specific SNAT homologues. Archaeal SNAT homologue from the ciliate Stylonychia lemnae was annotated as a putative N-acetyltransferase. To determine whether the putative S. lemnae SNAT (SlSNAT) exhibits SNAT enzyme activity, we chemically synthesized and expressed the full-length SlSNAT coding sequence (CDS) in Escherichia coli, from which the recombinant SlSNAT protein was purified by Ni2+ affinity column chromatography. The recombinant SlSNAT exhibited SNAT enzyme activity toward serotonin (Km = 776 µM) and 5-MT (Km = 246 µM) as substrates. Furthermore, SlSNAT-overexpressing (SlSNAT-OE) transgenic rice plants showed higher levels of melatonin synthesis than wild-type controls. The SlSNAT-OE rice plants exhibited delayed leaf senescence and tolerance against treatment with the reactive oxygen species (ROS)-inducing herbicide butafenacil by decreasing hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, suggesting that melatonin alleviates ROS production in vivo.
Collapse
Affiliation(s)
| | - Kyoungwhan Back
- Department of Molecular Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea;
| |
Collapse
|
20
|
Rigamonti AE, Rubino FM, Caroli D, Bondesan A, Mai S, Cella SG, Centofanti L, Paroni R, Sartorio A. Effects of Melatonin on Exercise-Induced Oxidative Stress in Adults with Obesity Undergoing a Multidisciplinary Body Weight Reduction Program. J Clin Med 2024; 13:5216. [PMID: 39274429 PMCID: PMC11396206 DOI: 10.3390/jcm13175216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Obesity is characterized by increased oxidative stress, which, in a vicious circle, promotes chronic low-grade inflammation. Melatonin, a well-documented antioxidant, might be useful as a supplement to enhance the cardiometabolic benefits of any body weight reduction program (BWRP). Objectives/Methods: The present study aimed to evaluate the post-exercise oxidative stress and inflammation in a group of subjects with obesity treated with melatonin (2 mg/die) or placebo, undergoing a 2-week BWRP, with the administration of a single bout of acute exercise at the start and the end of the protocol (G1-G15). Results: Eighteen adults with obesity were enrolled and distributed to the two arms of the study: the melatonin group (F/M: 7/2; age: 27.8 ± 5.6 years; body mass index [BMI]: 43.0 ± 4.9 kg/m2) and the placebo group (F/M: 6/3; age: 28.8 ± 5.0 years; BMI: 42.8 ± 4.0 kg/m2). BWRP induced a decrease in BMI and waist circumference (WC) in both groups; plasma glucose, blood glycated hemoglobin (HbA1c), and neutrophil to lymphocyte ratio (NLR) were reduced only in the placebo group. Importantly, plasma biological antioxidant potential (BAP) increased throughout BWRP. Paradoxically, melatonin enhanced post-exercise production of plasma derivatives of reactive oxygen metabolites (d-ROMs) and erythrocytic glutathionyl-Hb (HbSSG) (at G1 and G15). Finally, differently from the placebo group, melatonin-treated subjects did not exhibit the BWRP-induced decrease in plasma levels of interleukin-6 (IL-6), before and after exercise, at the end of two weeks (G15). Conclusions: Melatonin is presumably an antioxidant with "conditional" prooxidant actions. The use of melatonin as a supplement in subjects with obesity might be deleterious due to the abolishment of BWRP-induced cardiometabolic benefits.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Federico M Rubino
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Metabolic Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Lucia Centofanti
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| |
Collapse
|
21
|
Chen F, Zhang M, Song Z, Meng R, He J, Xu X, Deng S, Sun M, Kou Z, Lin J. Melatonin partially rescues defects induced by tranexamic acid exposure during oocyte maturation in mice. Am J Physiol Cell Physiol 2024; 327:C778-C789. [PMID: 39069826 DOI: 10.1152/ajpcell.00339.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Tranexamic acid (TXA) is widely used among young women because of its ability to whiten skin and treat menorrhagia. Nevertheless, its potential effects on oocyte maturation and quality have not yet been clearly clarified. Melatonin (MT) is an endogenous hormone released by the pineal gland and believed to protect cells from oxidative stress injury. In the present study, we used an in vitro maturation model to investigate the toxicity of TXA and the protective role of MT in mouse oocytes. Compared with the control group, the TXA-exposed group had significantly lower nuclear maturation (57.72% vs. 94.08%, P < 0.001) and early embryo cleavage rates (38.18% vs. 87.66%, P < 0.001). Further study showed that spindle organization (52.56% vs. 18.77%, P < 0.01) and chromosome alignment (33.23% vs. 16.66%, P < 0.01) were also disrupted after TXA treatment. Mechanistically, we have demonstrated that TXA induced early apoptosis of oocytes (P < 0.001) by raising the level of reactive oxygen species (P < 0.001), which was consistent with an increase in mitochondrial damage (P < 0.01). Fortunately, all these effects except the spindle defect were successfully rescued by an appropriate level of MT. Collectively, our findings indicate that MT could partially reverse TXA-induced oocyte quality deterioration in mice by effectively improving mitochondrial function and reducing oxidative stress-mediated apoptosis.NEW & NOTEWORTHY Tranexamic acid is increasingly used to whiten skin, reverse dermal damages, and treat heavy menstrual bleeding in young women. However, its potential toxicity in mammalian oocytes is still unclear. Our study revealed that tranexamic acid exposure impaired the mouse oocyte quality and subsequent embryo development. Meanwhile, melatonin has been found to exert beneficial effects in reducing tranexamic acid-induced mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Mengyao Zhang
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Zihan Song
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Rui Meng
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Jiayi He
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Xiuli Xu
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Shuwen Deng
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Meng Sun
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Zhenyu Kou
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| | - Juan Lin
- Department of Physiology, Jining Medical University, Jining, People's Republic of China
| |
Collapse
|
22
|
Maisto M, Piccolo V, Marzocchi A, Maresca DC, Romano B, Summa V, Tenore GC, Ercolano G, Ianaro A. Nutraceutical formulation based on a synergic combination of melatonin and palmitoylethanolamide for the management of allergic events. Front Nutr 2024; 11:1417747. [PMID: 39257610 PMCID: PMC11385308 DOI: 10.3389/fnut.2024.1417747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The management of allergic events is a growing global health issue, especially in industrialized countries. This disease is an immune-mediated process, regulated by the interaction of IgE with an allergen, resulting in mast cell activation, which concerns the release of several immune-inflammatory modulators, i.e., histamine, β-hexosaminidase, COX-2, IL-6, and TNF-α, responsible for the main allergic-reaction associated symptoms. The aim of the present study was the efficacy evaluation of an alternative remedy, an innovative nutraceutical formulation (NF) based on the synergic combination of melatonin (MEL) and palmitoylethanolamide (PEA) for the prevention and treatment of immune disease. At first, the intestinal bioaccessibility of PEA and MEL in NF was assessed at 1.6 and 36%, respectively. Then the MEL and PEA ability to modulate the release of immune-inflammatory modulators in the human mast cell line (HMC-1.2) at their bioaccessible concentration was investigated. Our results underline that NF treatment was able to reduce COX-2 mRNA transcription levels (-30% vs. STIM, p < 0.0001) in stimulated HMC-1.2 and to contract COX-2 enzymatic activity directly (IC50: 152 μg/mL). Additionally, NF showed valuable ability in reducing histamine and β-hexosaminidase release in stimulated HMC-1.2, as well as in decreasing TNF-α and IL-6 mRNA transcription levels and protein production.
Collapse
Affiliation(s)
- Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | - Benedetta Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe Ercolano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Angela Ianaro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
Kumari N, Saini S, Thakur S, Sharma S, Punetha M, Kumar P, Sango C, Sharma RK, Datta TK, Yadav PS, Kumar D. Enhancing the quality of inferior oocytes of buffalo for in vitro embryo production: The impact of melatonin on maturation, SCNT, and epigenetic modifications. Tissue Cell 2024; 89:102480. [PMID: 39029316 DOI: 10.1016/j.tice.2024.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Success of animal cloning is limited by oocyte quality, which is closely linked to reprogramming ability. The number of layers of cumulus cells is typically used to assess the quality of oocyte; a minimum of one-third of collected cumulus-oocyte complexes (COCs) are discarded as inferior oocytes because they have less cumulus cells. Melatonin, which has been recognised for its ability to sequester free radicals and perform multiple functions, has emerged as a potentially effective candidate for enhancing inferior oocytes quality and, consequently, embryo development competency. The current study investigates to improve the quality of inferior oocytes by supplementation of melatonin (10-9 M) during in vitro maturation (IVM) and subsequent cloned embryo production and its mechanism. The results indicate that melatonin supplementation significantly (p<0.05) enhances inferior oocytes maturation, reduces oxidative stress by reducing ROS levels, and improves mitochondrial function by boosting GSH levels. The melatonin treatment (10-9 M) enhances the expression of SOD, GPx1, GDF 9, BMP 15, ATPase 6, and ATPase 8 in inferior oocytes. Furthermore, melatonin treatment increases the total cell number in the treated groups, promoting cloned blastocyst formation rates derived from inferior oocytes. Furthermore, compared to the control, 10-9 M melatonin supplementation enhances H3K9ac acetylation and lowers H3K27me3 methylation in cloned blastocysts derived from inferior oocytes. In conclusion, 10-9 M melatonin supplementation during IVM increased inferior oocyte maturation and promoted cloned buffalo embryo development by lowering oxidative stress and promoting epigenetic alterations. These studies show that melatonin may improve the quality of poor oocytes and buffalo cloning.
Collapse
Affiliation(s)
- Nidhi Kumari
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India; Animal Biotechnology Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sheetal Saini
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Swati Thakur
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Surabhi Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Meeti Punetha
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| | - Pradeep Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - Chakarvati Sango
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - R K Sharma
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - T K Datta
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India
| | - P S Yadav
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| | - Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana 125001, India.
| |
Collapse
|
24
|
Ye Y, Huang J, Li S, Li Y, Zhao Y. Effects of Dietary Melatonin on Antioxidant Capacity, Immune Defense, and Intestinal Microbiota in Red Swamp Crayfish (Procambarus clarkii). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:623-638. [PMID: 38814375 DOI: 10.1007/s10126-024-10326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
The aim of this study was to investigate the effects of melatonin (MT) feed supplementation on the antioxidant capacity, immune defense, and intestinal flora in Procambarus clarkii (P. clarkii). Six groups of P. clarkii were fed test feeds containing different levels of MT: 0 mg/kg (control), 22.5, 41.2, 82.7, 165.1, and 329.2 mg/kg for a duration of 2 months. The specific growth rate, hepatosomatic index, and condition factor were recorded highest in the test group of shrimp fed an MT concentration of 165.1 mg/kg. Compared to the control group, the rate of apoptosis was lower in hepatopancreas cells of P. clarkii supplemented with high concentrations of MT. Analyses of antioxidant capacity and immune-response-related enzymes in the hepatopancreas indicated that dietary supplementation of MT significantly augmented both the antioxidant system and immune responses. Dietary MT supplementation significantly increased the expression levels of antioxidant-immunity-related genes and decreased the expression levels of genes linked to apoptosis. Dietary MT was associated with an elevation in the abundance of the Firmicutes and a reduction in the abundance of the Proteobacteria in the intestines; besides, resulting in an increase in the abundance of beneficial bacteria, such as Lactobacilli. The broken-line model indicated that the suitable MT concentration was 154.09-157.09 mg/kg. MT supplementation enhanced the growth performance of P. clarkii, exerting a positive influence on the intestinal microbiota, and bolstered both immune response and disease resistance. Thus, this study offered novel perspectives regarding the application of dietary MT supplementation within the aquaculture field.
Collapse
Affiliation(s)
- Yucong Ye
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Jiarong Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Siwen Li
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, 63 Chifeng Rd, Shanghai, 200092, China.
| | - Yunlong Zhao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
25
|
Özer Simsek Z, Aras S, Cikrikcioglu M, Baydili KN, Cortuk M. Melatonin as a radioprotective agent against flattening filter and flattening filter-free beam in radiotherapy-induced lung tissue damage. Int J Radiat Biol 2024; 101:28-34. [PMID: 39074356 DOI: 10.1080/09553002.2024.2381492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/09/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Radiotherapy is a widely used treatment method in oncology, applied by delivering high-energy particles or waves to the tumor tissue. Although tumor cells are targeted with radiotherapy, it can cause acute or long-term damage to healthy tissues. Therefore, the preservation of healthy tissues has been an important subject of various scientific researches. Melatonin has been shown to have a radioprotective effect on many tissues and organs such as liver, parotid gland, brain, and testicles. This study aimed to evaluate the protective effect of melatonin against the radiation at various doses and rates administered to the lung tissue of healthy mice. METHODS This study was a randomized case-control study conducted with 80 rats comprising 10 groups with eight animals per group. Of the 10 groups, first is the control group, which is not given any melatonin, and second is the group that does not receive RT, which is given only melatonin, and the other eight groups are RT groups, four with melatonin and four without melatonin. RESULTS There was no statistical difference in terms of histopathological findings in the lung tissue between the second group, which did not receive radiotherapy and received only melatonin, and the control group. Lung damage due to radiotherapy was statistically significantly higher in the groups that did not receive melatonin compared to the groups that received melatonin. CONCLUSIONS This study revealed that melatonin has a protective effect against the cytotoxic damage of RT in rats receiving RT.
Collapse
Affiliation(s)
- Zuhal Özer Simsek
- Department of Chest Intensive Care Unit, Kayseri City Hospitals, Kayseri, Turkey
| | - Serhat Aras
- Department of Radiation Oncology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, Istanbul, Turkey
| | - Makbule Cikrikcioglu
- Department of Pathology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, Istanbul, Turkey
| | - Kursad Nuri Baydili
- Department of Biostatistics, University of Health Sciences Turkey, Istanbul, Turkey
| | - Mustafa Cortuk
- Department of Chest Diseases, Health Science University Yedikule Chest Diseases and Thoracic Surgery Hospital, İstanbul, Turkey
| |
Collapse
|
26
|
Li Y, Sun Y, Chen Y, Dong Y. Melatonin via MTNR1B regulates METTL3 to protect ileum cell differentiation. Inflammation 2024:10.1007/s10753-024-02098-z. [PMID: 39014159 DOI: 10.1007/s10753-024-02098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024]
Abstract
Intestinal stem cells rapidly differentiate into various epithelial cells, playing a crucial role in maintaining intestinal homeostasis. Melatonin, a known endogenous molecule with anti-inflammatory and antioxidant properties, has its potential efficacy in ileum stem cells differentiation not fully understood to date. This study indicates that melatonin suppresses ileum inflammation and maintains normal differentiation of ileum stem cells through MTNR1B. Subsequent outcomes following treatment with MTNR1B inhibitors further substantiate these findings. Additionally, overexpression of METTL3 protein appears to be a potential instigator for promoting ileum inflammation and disruptions in cell differentiation. Treatment with the METTL3 inhibitor SAH significantly inhibits ileum inflammation and Wnt/β-catenin activity, thereby sustaining normal cellular differentiation functions. In summary, this study showed that melatonin may improve ileum inflammation and maintain cell differentiation functions by inhibiting abnormal METTL3 expression via MTNR1B.
Collapse
Affiliation(s)
- Yuanyuan Li
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, People's Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
27
|
Ziaei S, Hasani M, Malekahmadi M, Daneshzad E, Kadkhodazadeh K, Heshmati J. Effect of melatonin supplementation on cardiometabolic risk factors, oxidative stress and hormonal profile in PCOS patients: a systematic review and meta-analysis of randomized clinical trials. J Ovarian Res 2024; 17:138. [PMID: 38965577 PMCID: PMC11225253 DOI: 10.1186/s13048-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/08/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND To investigate whether melatonin supplementation can enhance cardiometabolic risk factors, reduce oxidative stress, and improve hormonal and pregnancy-related factors in patients with PCOS. METHODS We conducted a systematic search of PubMed/Medline, Scopus, and the Cochrane Library for articles published in English from inception to March 2023. We included randomized controlled trials (RCTs) on the use of melatonin for patients with polycystic ovary syndrome (PCOS). We performed a meta-analysis using a random-effects model and calculated the standardized mean differences (SMDs) and 95% confidence intervals (CIs). RESULTS Six studies met the inclusion criteria. The result of meta-analysis indicated that melatonin intake significantly increase TAC levels (SMD: 0.87, 95% CI: 0.46, 1.28, I2 = 00.00%) and has no effect on FBS, insulin, HOMA-IR, TC, TG, HDL, LDL, MDA, hs-CRP, mFG, SHBG, total testosterone, and pregnancy rate in patients with PCOS compare to controls. The included trials did not report any adverse events. CONCLUSION Melatonin is a potential antioxidant that may prevent damage from oxidative stress in patients with PCOS. However, the clear effect of melatonin supplementation on cardiometabolic risk factors, hormonal outcomes, and pregnancy-related outcomes needs to be evaluated further in large populations and long-term RCTs.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Katayoun Kadkhodazadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
28
|
Benítez-King G, Argueta J, Miranda-Riestra A, Muñoz-Delgado J, Estrada-Reyes R. Interaction of the Melatonin/Ca 2+-CaM Complex with Calmodulin Kinase II: Physiological Importance. Mol Pharmacol 2024; 106:3-12. [PMID: 38811168 DOI: 10.1124/molpharm.123.000812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Melatonin N-acetyl-5-methoxytriptamine is an ancient molecule which synchronizes the internal biologic activity with the environmental photoperiod. It is synthesized by the pineal gland during the night and released to the general circulation, where it reaches nanomolar concentrations. The indolamine acts through melatonin receptors and binds to different proteins such as calmodulin: a phylogenetically conserved protein which is the main transductor of the calcium signaling. In this review, we will describe evidence supporting that melatonin binds to calmodulin in presence of calcium, and we discuss the effects of this indolamine on the activity of calmodulin kinase II as an inhibitor and as stimulator of calmodulin-dependent protein kinase II activity. We also provide a literature review supporting the relevance of melatonin binding to calmodulin in the regulation of circadian rhythms in unicellular organisms, as well as in neuronal development in mammals as an ancient, conserved mechanism. Finally, we highlight the importance of antioxidant effects of melatonin on calmodulin preservation. SIGNIFICANCE STATEMENT: This review compiled evidence supporting that melatonin binds to calmodulin. We discuss the dual effect of melatonin on the activity of calmodulin kinase II, the possible mechanisms involved, and the relevance on regulation of circadian rhythms and neurodevelopment. Finally, we describe evidence supporting that the binding of melatonin to calmodulin hydrophobic pockets may prevent the oxidation of methionine species with a shielding effect that preserves the functionality of calmodulin.
Collapse
Affiliation(s)
- Gloria Benítez-King
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Jesús Argueta
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Armida Miranda-Riestra
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Jairo Muñoz-Delgado
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| | - Rosa Estrada-Reyes
- Laboratorio de Neurofarmacología, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (G.B.-K., J.A., A.M.-R.); Laboratorio de Cronoecología y Etología Humana, Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (J.M.-D.); and Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México (R.E-R.)
| |
Collapse
|
29
|
Zhang L, Cheng T, Chen W, Zhong C, Li M, Xie Y, Deng Q, Wang H, Yang Z, Ju J, Liang H. Preventive effects of Ramelteon on bleomycin-induced pulmonary fibrosis in mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4153-4163. [PMID: 38032492 DOI: 10.1007/s00210-023-02867-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Pulmonary fibrosis (PF) is a devastating lung disease that leads to impaired lung function and ultimately death. Several studies have suggested that melatonin, a hormone involved in regulating sleep-wake cycles, may be effective in improving PF. Ramelteon, an FDA-approved melatonin receptor agonist, has shown promise in exerting an anti-PF effect similar to melatonin. However, further investigations are required for illuminating the extent on its therapeutic benefits and the underlying molecular mechanisms. In this work, a mouse lung fibrosis model was built through intratracheal administration of bleomycin (BLM). Subsequently, the mice were administrated Ramelteon for a duration of 3 weeks to explore its efficacy and mechanism of action. Additionally, we utilized a TGF-β1-induced MRC-5 cell model to further investigate the molecular mechanism underlying ramelteon's effects. Functionally, Ramelteon partially abrogated TGF-β1-induced pulmonary fibrosis and reduced fibroblast proliferation, extracellular matrix deposition, and differentiation into myofibroblasts. In vivo experiments, ramelteon attenuated BLM-induced pulmonary fibrosis and collagen deposition. Mechanistically, ramelteon exerts its beneficial effect by alleviating translocation and expression of YAP1, a core component of Hippo pathway, from cytoplasm to nucleus; however, overexpression of YAP1 reversed this effect. In conclusion, our findings indicate that ramelteon can improve PF by regulating Hippo pathway and may become a potential candidate as a therapy to PF.
Collapse
Affiliation(s)
- Lei Zhang
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ting Cheng
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Wenxian Chen
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Changsheng Zhong
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Mengyang Li
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yilin Xie
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Qin Deng
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Huifang Wang
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhenbo Yang
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jin Ju
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Haihai Liang
- School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
30
|
Hosseinzadeh A, Jamshidi Naeini A, Sheibani M, Gholamine B, Reiter RJ, Mehrzadi S. Melatonin and oral diseases: possible therapeutic roles based on cellular mechanisms. Pharmacol Rep 2024; 76:487-503. [PMID: 38607587 DOI: 10.1007/s43440-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Oral diseases, including periodontal disorders, oral cancer, periodontitis, and mucositis are the major challenges for both patients and healthcare providers. These conditions often involve inflammation, oxidative stress, and impaired cellular processes, leading to symptoms ranging from discomfort to severe debilitation. Conventional treatments for such oral diseases exhibit constraints, prompting the investigation of innovative therapeutic approaches. Considering the anti-inflammatory, anti-oxidant, and anti-cancer effects of melatonin, this study was carried out to investigate the potential protective effects of melatonin in mitigating the severity of oral diseases. Studies indicate that melatonin influences the differentiation of periodontal stem cells, inhibits oral cancer progression, reduces inflammation associated with periodontitis, and alleviates the severity of oral mucositis. Melatonin has demonstrated potential efficacy in both preclinical and clinical investigations; however, findings are frequently heterogeneous and contingent upon contextual factors. This review provides a comprehensiveoverview of current state of knowledge in this domain, elucidating the multifaceted role that melatonin may assume in combatingoral diseases. Further research should be directed toward determining the most effective dosing, timing, and administration methods for melatonin-based therapies for oral diseases.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Hao EY, Liu XL, Chen XY, Xue H, Su BF, Chen YF, Wang DH, Shi L, Bai K, Hou F, Hou JK, Bao HL, Chen H. Melatonin alleviates endoplasmic reticulum stress and follicular granulosa cell apoptosis by regulating ATF4 to activate mTOR signaling pathway in chickens. Poult Sci 2024; 103:103656. [PMID: 38583308 PMCID: PMC11004419 DOI: 10.1016/j.psj.2024.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Follicular atresia in chickens reduces the number of follicles that can further develop, leading to decrease egg laying. Endoplasmic reticulum stress (ERS) can initiate a unique pathway inducing the apoptosis of follicular granulosa cells, thus reducing egg laying. Melatonin (MEL) is involved in the regulation of follicle development, ovulation, and oocyte maturation, and is closely related to follicle fate. Mammalian target of Rapamycin (mTOR) signaling pathway plays an important role in cell growth regulation, and that there is a possible crosstalk between melatonin and mTOR activity in granular cells maturation and ovulation. This study aimed to investigate whether MEL inhibits ERS and follicular granulosa cell apoptosis by regulating ATF4 to activate mTOR signaling pathway in chickens. Frist, we established an in vitro ERS cell model using tunicamycin (TM). The results showed that different concentrations of TM exhibited dose-dependent inhibition of cell activity and induction of granulosa cells (P<0.01). Therefore, we chose 5 µg/mL of TM and a treatment time for 6 h as the optimal concentration for the following experiments. Then we investigate whether melatonin can inhibit ERS. TM treatment decreased the cell viability and Bcl-2 expression, increasing ROS levels and the mRNA expression of Grp78, ATF4, CHOP, PERK, eIF-2α, and BAX (P<0.01), whereas TM+MEL treatment significantly inhibited these changes (P<0.01). Then we explored whether melatonin protects follicular granulosa cells from ERS-induced apoptosis through the mammalian target of rapamycin (mTOR) signaling pathway by regulating ATF4, we found that ATF4 knockdown inhibited ERS by decreasing the expression of ERS-related genes and proteins and activating mTOR signaling pathway by increasing the protein expression of p4E-BP1 and pT389-S6K (P<0.001), while these changes were promoted by TM+si-ATF4+MEL treatment (P<0.01). These results indicate that MEL could alleviate TM-induced ERS by regulating ATF4 to activate mTOR signaling pathway in follicular granulosa cells, thus providing a new perspective for prolonging the laying cycle in chickens.
Collapse
Affiliation(s)
- Er-Ying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Xue-Lu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Xiang-Yu Chen
- Baoding Livestock Husbandry Workstation, Baoding Hebei 071001, China
| | - Han Xue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Bo-Fei Su
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Yi-Fan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - De-He Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Kang Bai
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China
| | - Fei Hou
- Shunping County Agriculture and Rural Affairs Bureau, Baoding Hebei 071001, China
| | - Jian-Ku Hou
- Shunping County Agriculture and Rural Affairs Bureau, Baoding Hebei 071001, China
| | - Hui-Ling Bao
- Animal Disease Prevention and Control Center, Shijiazhuang Hebei 050000, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding Hebei 071001, China.
| |
Collapse
|
32
|
Masoudi M, Moti D, Masoudi R, Auwal A, Hossain MM, Pronoy TUH, Rashel KM, Gopalan V, Islam F. Metabolic adaptations in cancer stem cells: A key to therapy resistance. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167164. [PMID: 38599259 DOI: 10.1016/j.bbadis.2024.167164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that can initiate and sustain tumor growth and cause recurrence and metastasis. CSCs are particularly resistant to conventional therapies compared to their counterparts, owing greatly to their intrinsic metabolic plasticity. Metabolic plasticity allows CSCs to switch between different energy production and usage pathways based on environmental and extrinsic factors, including conditions imposed by conventional cancer therapies. To cope with nutrient deprivation and therapeutic stress, CSCs can transpose between glycolysis and oxidative phosphorylation (OXPHOS) metabolism. The mechanism behind the metabolic pathway switch in CSCs is not fully understood, however, some evidence suggests that the tumor microenvironment (TME) may play an influential role mediated by its release of signals, such as Wnt/β-catenin and Notch pathways, as well as a background of hypoxia. Exploring the factors that promote metabolic plasticity in CSCs offers the possibility of eventually developing therapies that may more effectively eliminate the crucial tumor cell subtype and alter the disease course substantially.
Collapse
Affiliation(s)
- Matthew Masoudi
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Dilpreet Moti
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Raha Masoudi
- Faculty of Science, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdul Auwal
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M Matakabbir Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tasfik Ul Haque Pronoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Khan Mohammad Rashel
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Vinod Gopalan
- School of Medicine and Dentistry, Griffith University, Gold Coast 4222, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| |
Collapse
|
33
|
Askar EM, Abdelmegid AM, Elshal LM, Shaheen MA. Effect of platelet rich plasma versus melatonin on testicular injury induced by Busulfan in adult albino rats: a histological and immunohistochemical study. Ultrastruct Pathol 2024; 48:192-212. [PMID: 38420954 DOI: 10.1080/01913123.2024.2322567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
This study was done to estimate the testicular histological alterations induced by Busulfan (BUS) and compare the possible protective effects of melatonin (MT) and platelet rich plasma (PRP) in a rat model. Sixty-four male rats were dispersed into: control group, BUS group, melatonin group, and PRP group. Blood samples were processed for biochemical analysis. Tissue specimens were managed for light and electron microscopic studies. Immunohistochemical expression of vimentin and proliferating cell nuclear antigen (PCNA) was performed. Busulfan induced severe testicular damage in all studied methodologies. It showed a statistically significant decrease in serum testosterone and elevation of MDA when compared to the control group. Abnormal testicular cytostructures suggesting defective spermatogenesis were observed: distorted seminiferous tubules, deformed spermatogenic cells, low germinal epithelium height, few mature spermatozoa, and also deformed barrier. Vimentin and PCNA expressions were reduced. Ultrastructurally, Sertoli cells and the blood testis barrier were deformed, spermatogenic cells were affected, and mature spermatozoa were few and showed abnormal structure. Both melatonin and PRP induced improvement in all the previous parameters and restoration of spermatogenesis as confirmed by improvement of Johnsen's score from 2.6 ± .74 to 7.6 ± .92. In conclusion, melatonin and PRP have equal potential to ameliorate the testicular toxicity of BUS. Melatonin can provide a better noninvasive way to combat BUS induced testicular injury.
Collapse
Affiliation(s)
- Eman M Askar
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| | - Amira M Abdelmegid
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| | | | - Mohamed A Shaheen
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig university, Zagazig, Egypt
| |
Collapse
|
34
|
Remigante A, Spinelli S, Zuccolini P, Gavazzo P, Marino A, Pusch M, Morabito R, Dossena S. Melatonin protects Kir2.1 function in an oxidative stress-related model of aging neuroglia. Biofactors 2024; 50:523-541. [PMID: 38095328 DOI: 10.1002/biof.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 06/15/2024]
Abstract
Melatonin is a pleiotropic biofactor and an effective antioxidant and free radical scavenger and, as such, can be protective in oxidative stress-related brain conditions including epilepsy and aging. To test the potential protective effect of melatonin on brain homeostasis and identify the corresponding molecular targets, we established a new model of oxidative stress-related aging neuroglia represented by U-87 MG cells exposed to D-galactose (D-Gal). This model was characterized by a substantial elevation of markers of oxidative stress, lipid peroxidation, and protein oxidation. The function of the inward rectifying K+ channel Kir2.1, which was identified as the main Kir channel endogenously expressed in these cells, was dramatically impaired. Kir2.1 was unlikely a direct target of oxidative stress, but the loss of function resulted from a reduction of protein abundance, with no alterations in transcript levels and trafficking to the cell surface. Importantly, melatonin reverted these changes. All findings, including the melatonin antioxidant effect, were reproduced in heterologous expression systems. We conclude that the glial Kir2.1 can be a target of oxidative stress and further suggest that inhibition of its function might alter the extracellular K+ buffering in the brain, therefore contributing to neuronal hyperexcitability and epileptogenesis during aging. Melatonin can play a protective role in this context.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Paolo Zuccolini
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Pusch
- Institute of Biophysics, National Research Council, Genova, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
35
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Li Y, Sun X, Wang M, Jiang Y, Ge QQ, Li T, Hou Z, Shi P, Yao K, Yin J. Meta-analysis and machine learning reveal the antiobesity effects of melatonin on obese rodents. Obes Rev 2024; 25:e13701. [PMID: 38311366 DOI: 10.1111/obr.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Melatonin appears to be a promising supplement for obesity treatment. The antiobesity effects of melatonin on obese rodents are influenced by various factors, including the species, sex, the dosage of melatonin, treatment duration, administration via, daily treatment time, and initial body weight (IBW). Therefore, we conducted a meta-analysis and machine learning study to evaluate the antiobesity effect of melatonin on obese mice or rats from 31 publications. The results showed that melatonin significantly reduced body weight, serum glucose (GLU), triglycerides (TGs), low-density lipoprotein (LDL), and cholesterol (TC) levels in obese mice or rats but increased high-density lipoprotein (HDL) levels. Melatonin showed a slight positive effect on clock-related genes, although the number of studies was limited. Meta-regression analysis and machine learning indicated that the dosage of melatonin was the primary factor influencing body weight, with higher melatonin dosages leading to a stronger weight reduction effect. Together, male obese C57BL/6 mice and Sprague-Dawley rats with an IBW of 100-200 g showed better body weight reduction when supplemented with a dose of 10-30 mg/kg melatonin administered at night via injection for 5-8 weeks.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xihang Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Qian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
37
|
Liu X, Yao S, Liu Y, Han H, Wang W, Yi Q, Yan L, Ji P, Zhang L, Liu G. Effects of Prepartum L-Tryptophan Supplementation on the Postpartum Performance of Holstein Cows. Animals (Basel) 2024; 14:1278. [PMID: 38731282 PMCID: PMC11083187 DOI: 10.3390/ani14091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The negative energy balance occurring in the periparturient period of cows will impede their health and postpartum performance. To target this issue, L-tryptophan was supplied to the prepartum cows. The results showed that L-tryptophan supplementation significantly increased the serum melatonin level and was accompanied with increases in SOD activity, IL-10 and colostrum IgA levels as well as decreases in MDA and IL-6 levels compared to the control cows. The incidence of postpartum diseases was significantly lower and the pregnancy rate was significantly higher in cows fed L-tryptophan than in the control group. A striking observation was that prepartum L-tryptophan supplementation not only improved the milk production but also the quality compared to the control cows. In general, supplementation with L-tryptophan in the prepartum period can improve the postpartum reproduction and lactation performance of cows to some extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (X.L.)
| |
Collapse
|
38
|
Soto ME, Pérez-Torres I, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Guarner-Lans V, Soria-Castro E, Díaz-Díaz E, Castrejón-Tellez V. Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study. Int J Mol Sci 2024; 25:4543. [PMID: 38674128 PMCID: PMC11050031 DOI: 10.3390/ijms25084543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2-), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2-, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Adrían Palacios-Chavarría
- Critical Care Units, Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | | | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico;
| | - Vicente Castrejón-Tellez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| |
Collapse
|
39
|
Shan J, Guan H, Zhang Z, Ma W, Cai J, Gao G, Zhang Z. BDE-47-induced damage prevented by melatonin in grass carp hepatocytes (L8824). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26089-26098. [PMID: 38492135 DOI: 10.1007/s11356-024-32856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic to organisms with melatonin (MT) providing protection for tissues and cells against these. This study investigates the mechanism of damage of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and the cellular protection of MT on grass carp hepatocytes. Grass carp hepatocytes were exposed to 25 μmol/L BDE-47 and/or 40 μmol/L MT for 24 h before testing. Acridine orange/ethidium bromide (AO/EB) double fluorescence staining results showed that BDE-47 could induce cell apoptosis. The expression levels of the endoplasmic reticulum (ER) stress-related genes ire1, atf4, grp78, perk, and chop were also significantly up-regulated (P < 0.01). The levels of the apoptosis-related genes caspase3, bax, and caspase9 were significantly up-regulated (P < 0.0001), while the level of bcl-2 was significantly down-regulated (P < 0.01). Compared with the BDE-47 group, the BDE-47 + MT group showed reduced levels of ER and apoptosis of hepatocytes, while the expression of the ER stress-related genes ire1, atf4, grp78, perk, and chop and the apoptosis-related genes caspase3, bax, and caspase9 were down-regulated (P < 0.05), and the level of bcl-2 was up-regulated (P < 0.01). In conclusion, BDE-47 can activate ER and apoptosis in grass carp hepatocytes, while MT can reduce these responses.
Collapse
Affiliation(s)
- Jianhua Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhuoqi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wenxue Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, People's Republic of China
| | - Ge Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, People's Republic of China.
| |
Collapse
|
40
|
Kim JI, Cheon HG. Melatonin ameliorates hepatic fibrosis via the melatonin receptor 2-mediated upregulation of BMAL1 and anti-oxidative enzymes. Eur J Pharmacol 2024; 966:176337. [PMID: 38246330 DOI: 10.1016/j.ejphar.2024.176337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Hepatic fibrosis, when left untreated, causes serious health problems that progress to cirrhosis and, in some cases, liver cancer. Activation of hepatic stellate cells may be a key characteristic in the development of hepatic fibrosis. Melatonin, a pineal hormone, exerts anti-fibrotic effects; however, the exact mechanisms remain unclear. In this study, the beneficial effects of melatonin against hepatic fibrosis and the underlying mechanisms were investigated using the human hepatic stellate cell line, LX-2, and in vivo murine animal models. The results showed that melatonin suppressed the expression of transforming growth factor (TGF)-β1-induced fibrosis markers and production of reactive oxygen species in LX-2 cells. Either 4-phenyl-2-propionamidotetralin, a melatonin receptor 2 selective antagonist, or melatonin receptor 2 small interfering RNA abolished the suppressive effects of melatonin, suggesting the involvement of melatonin receptor 2 in melatonin-induced anti-fibrotic and anti-oxidative actions. Melatonin increased the expression of the brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1), a positive circadian clock gene. BMAL1 knockdown reduced the anti-fibrotic and anti-oxidative effects of melatonin, demonstrating the protective effects of melatonin against TGF-β1-induced hepatic stellate cell activation by exhibiting melatonin receptor 2-BMAL1-anti-oxidative effects. In high-fat diet-induced and carbon tetrachloride-induced hepatic fibrosis models, oral melatonin administration decreased the expression of hepatic fibrosis markers and increased the expression of messenger RNA and levels of proteins of BMAL1 and melatonin receptor 2. Thus, melatonin exerted protective effects against hepatic fibrosis through melatonin receptor 2 activation, followed by an upregulation of the BMAL1-anti-oxidative enzyme pathways.
Collapse
Affiliation(s)
- Jea Il Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Republic of Korea; Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
41
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
42
|
Ruan H, Li X, Zhou L, Zheng Z, Hua R, Wang X, Wang Y, Fan Y, Guo S, Wang L, Ur Rahman S, Wang Z, Wei Y, Yu S, Zhang R, Cheng Q, Sheng J, Li X, Liu X, Yuan R, Zhang X, Chen L, Xu G, Guan Y, Nie J, Qin H, Zheng F. Melatonin decreases GSDME mediated mesothelial cell pyroptosis and prevents peritoneal fibrosis and ultrafiltration failure. SCIENCE CHINA. LIFE SCIENCES 2024; 67:360-378. [PMID: 37815699 DOI: 10.1007/s11427-022-2365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/12/2023] [Indexed: 10/11/2023]
Abstract
Peritoneal fibrosis together with increased capillaries is the primary cause of peritoneal dialysis failure. Mesothelial cell loss is an initiating event for peritoneal fibrosis. We find that the elevated glucose concentrations in peritoneal dialysate drive mesothelial cell pyroptosis in a manner dependent on caspase-3 and Gasdermin E, driving downstream inflammatory responses, including the activation of macrophages. Moreover, pyroptosis is associated with elevated vascular endothelial growth factor A and C, two key factors in vascular angiogenesis and lymphatic vessel formation. GSDME deficiency mice are protected from high glucose induced peritoneal fibrosis and ultrafiltration failure. Application of melatonin abrogates mesothelial cell pyroptosis through a MT1R-mediated action, and successfully reduces peritoneal fibrosis and angiogenesis in an animal model while preserving dialysis efficacy. Mechanistically, melatonin treatment maintains mitochondrial integrity in mesothelial cells, meanwhile activating mTOR signaling through an increase in the glycolysis product dihydroxyacetone phosphate. These effects together with quenching free radicals by melatonin help mesothelial cells maintain a relatively stable internal environment in the face of high-glucose stress. Thus, Melatonin treatment holds some promise in preserving mesothelium integrity and in decreasing angiogenesis to protect peritoneum function in patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
- Hongxia Ruan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xuejuan Li
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China.
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai, 200241, China.
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zihan Zheng
- Chongqing International Institute for Immunology, Chongqing, 401320, China
| | - Rulin Hua
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xu Wang
- Department of Nephrology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518101, China
| | - Yuan Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yujie Fan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shuwen Guo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lihua Wang
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Shafiq Ur Rahman
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ziwei Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yuyuan Wei
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shuangyan Yu
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Rongzhi Zhang
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Qian Cheng
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Jie Sheng
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xue Li
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Xiaoyan Liu
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiaoyan Zhang
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai, 200241, China
| | - Jing Nie
- Peking University First Hospital, Peking University, Beijing, 100034, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- Department of Nephrology, Second Hospital, Dalian Medical University, Dalian, 116023, China.
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
43
|
Liang Y, Wang Y, Zhang X, Jin S, Guo Y, Yu Z, Xu X, Shuai Q, Feng Z, Chen B, Liang T, Ao R, Li J, Zhang J, Cao R, Zhao H, Chen Z, Liu Z, Xie J. Melatonin alleviates valproic acid-induced neural tube defects by modulating Src/PI3K/ERK signaling and oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2024; 56:23-33. [PMID: 38062774 PMCID: PMC10875364 DOI: 10.3724/abbs.2023234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/27/2023] [Indexed: 01/26/2024] Open
Abstract
Neural tube defects (NTDs) represent a developmental disorder of the nervous system that can lead to significant disability in children and impose substantial social burdens. Valproic acid (VPA), a widely prescribed first-line antiepileptic drug for epilepsy and various neurological conditions, has been associated with a 4-fold increase in the risk of NTDs when used during pregnancy. Consequently, urgent efforts are required to identify innovative prevention and treatment approaches for VPA-induced NTDs. Studies have demonstrated that the disruption in the delicate balance between cell proliferation and apoptosis is a crucial factor contributing to NTDs induced by VPA. Encouragingly, our current data reveal that melatonin (MT) significantly inhibits apoptosis while promoting the restoration of neuroepithelial cell proliferation impaired by VPA. Moreover, further investigations demonstrate that MT substantially reduces the incidence of neural tube malformations resulted from VPA exposure, primarily by suppressing apoptosis through the modulation of intracellular reactive oxygen species levels. In addition, the Src/PI3K/ERK signaling pathway appears to play a pivotal role in VPA-induced NTDs, with significant inhibition observed in the affected samples. Notably, MT treatment successfully reinstates Src/PI3K/ERK signaling, thereby offering a potential underlying mechanism for the protective effects of MT against VPA-induced NTDs. In summary, our current study substantiates the considerable protective potential of MT in mitigating VPA-triggered NTDs, thereby offering valuable strategies for the clinical management of VPA-related birth defects.
Collapse
Affiliation(s)
- Yuxiang Liang
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- Experimental Animal Center of Shanxi Medical UniversityShanxi Key Laboratory of Human Disease and Animal ModelsTaiyuan030001China
| | - Ying Wang
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Xiao Zhang
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- School of PharmacyShanxi Medical UniversityTaiyuan030001China
| | - Shanshan Jin
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuqian Guo
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhaowei Yu
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- School of PharmacyShanxi Medical UniversityTaiyuan030001China
| | - Xinrui Xu
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Qizhi Shuai
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zihan Feng
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Binghong Chen
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ting Liang
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ruifang Ao
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Jianting Li
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Juan Zhang
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Rui Cao
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Hong Zhao
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhaoyang Chen
- Experimental Animal Center of Shanxi Medical UniversityShanxi Key Laboratory of Human Disease and Animal ModelsTaiyuan030001China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
44
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
45
|
Guerrero M, Hernández J, Gomez L, Guerrero C. Oxidative stress enhances rotavirus oncolysis in breast cancer and leukemia, except in melanoma with abundant matrix. Virus Res 2024; 339:199285. [PMID: 38013142 PMCID: PMC10711233 DOI: 10.1016/j.virusres.2023.199285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVES This study aimed to explore the impact of oxidative stress and extracellular matrix integrity on rotavirus infection in various cancer cells, including breast cancer, acute lymphoblastic leukemia, and melanoma. METHODS We induced oxidative stress using ROS-inducing drugs (cisplatin, metronidazole, melatonin, valproic acid, doxorubicin, losartan, nitrofurantoin, and DHA) and investigated the effects on viral infection in MCF-7, Reh, A375, B16-F1, and SK-MEL-28 cells and the generation of virions from infected cells by harvesting the supernatants every two hours, reinfecting other cells, and analyzing cell viability and DNA fragmentation. FINDINGS In MCF-7 and Reh cells, rotavirus Wt1-5 infection led to increased ROS generation, virion production, membrane permeability, mitochondrial dysfunction, DNA damage, and cell death. These effects were amplified by ROS-inducing drugs. Conversely, melanoma cells (SK-MEL-28 and A375) with a robust extracellular matrix network showed limited sensitivity to the drugs. Notably, losartan, which modulates the extracellular matrix, enhanced viral infection in melanoma cells (99 %). CONCLUSIONS Oxidative stress promotes oncolytic rotavirus infection in breast cancer and acute lymphoblastic leukemia cells, suggesting potential utility in combination with radiotherapy or chemotherapy due to their shared induction of intracellular oxidative stress.
Collapse
Affiliation(s)
- Marvi Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi
| | - Juan Hernández
- Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Luis Gomez
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi; Grupo de Fisiología Molecular del Instituto Nacional de Salud. A. A. 80080. Av. Calle 26 No. 51-20 DC, Bogotá, Colombia
| | - Carlos Guerrero
- Departamento de Ciencias Fisiológicas, Facultad de Medicina, Universidad Nacional de Colombia, DC, Bogotá, Colombi.
| |
Collapse
|
46
|
Park JH, Hwang Y, Nguyen YND, Kim HC, Shin EJ. Ramelteon attenuates hippocampal neuronal loss and memory impairment following kainate-induced seizures. J Pineal Res 2024; 76:e12921. [PMID: 37846173 DOI: 10.1111/jpi.12921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Evidence suggests that the neuroprotective effects of melatonin involve both receptor-dependent and -independent actions. However, little is known about the effects of melatonin receptor activation on the kainate (KA) neurotoxicity. This study examined the effects of repeated post-KA treatment with ramelteon, a selective agonist of melatonin receptors, on neuronal loss, cognitive impairment, and depression-like behaviors following KA-induced seizures. The expression of melatonin receptors decreased in neurons, whereas it was induced in astrocytes 3 and 7 days after seizures elicited by KA (0.12 μg/μL) in the hippocampus of mice. Ramelteon (3 or 10 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) mitigated KA-induced oxidative stress and impairment of glutathione homeostasis and promoted the nuclear translocation and DNA binding activity of Nrf2 in the hippocampus after KA treatment. Ramelteon and melatonin also attenuated microglial activation but did not significantly affect astroglial activation induced by KA, despite the astroglial induction of melatonin receptors after KA treatment. However, ramelteon attenuated KA-induced proinflammatory phenotypic changes in astrocytes. Considering the reciprocal regulation of astroglial and microglial activation, these results suggest ramelteon inhibits microglial activation by regulating astrocyte phenotypic changes. These effects were accompanied by the attenuation of the nuclear translocation and DNA binding activity of nuclear factor κB (NFκB) induced by KA. Consequently, ramelteon attenuated the KA-induced hippocampal neuronal loss, memory impairment, and depression-like behaviors; the effects were comparable to those of melatonin. These results suggest that ramelteon-mediated activation of melatonin receptors provides neuroprotection against KA-induced neurotoxicity in the mouse hippocampus by activating Nrf2 signaling to attenuate oxidative stress and restore glutathione homeostasis and by inhibiting NFκB signaling to attenuate neuroinflammatory changes.
Collapse
Affiliation(s)
- Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Yen Nhi Doan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
47
|
Mousavi SM, Etemad L, Yari D, Hashemi M, Salmasi Z. Evaluation of Melatonin and its Nanostructures Effects on Skin Disorders Focused on Wound Healing. Mini Rev Med Chem 2024; 24:1856-1881. [PMID: 38685805 DOI: 10.2174/0113895575299255240422055203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
Skin is the largest organ of the human body functioning as a great primitive defensive barrier against different harmful environmental factors. However, it is damaged through varying injuries such as different wounds, burns, and skin cancers that cause disruption in internal organs and essential mechanisms of the body through inflammation, oxidation, coagulation problems, infection, etc. Melatonin is the major hormone of the pineal gland that is also effective in skin disorders due to strong antioxidant and anti-inflammatory features with additional desirable antiapoptotic, anti-cancer, and antibiotic properties. However, melatonin characteristics require improvements due to its limited water solubility, halflife and stability. The application of nanocarrier systems can improve its solubility, permeability, and efficiency, as well as inhibit its degradation and promote photostability. Our main purpose in the current review is to explore the possible role of melatonin and melatonin-containing nanocarriers in skin disorders focused on wounds. Additionally, melatonin's effect in regenerative medicine and its structures as a wound dressing in skin damage has been considered.
Collapse
Affiliation(s)
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Wang SC, Hsu HC, Chang YC, Yu CY, Liu CT, Sung WW. Melatonin exhibits partial protective effects against gemcitabine- and cisplatin-induced kidney and reproductive injuries in mice. Aging (Albany NY) 2023; 15:14372-14383. [PMID: 38097341 PMCID: PMC10756091 DOI: 10.18632/aging.205307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/24/2023] [Indexed: 12/21/2023]
Abstract
Cisplatin has the potential to cause kidney and reproductive organ injuries, prompting the search for protective agents against cisplatin-induced toxicity. Melatonin, an antioxidant hormone, has shown promise in mitigating oxidative stress in various organs. However, its protective effects on cisplatin-induced kidney and reproductive injuries have not been extensively investigated. The aim of this study was to explore the potential protective effects of melatonin on cisplatin-induced kidney and reproductive injuries when administered in combination with gemcitabine in mice. Male C57BL/6 mice were subjected to a seven-week treatment with gemcitabine plus cisplatin, with or without melatonin intervention. The testis, epididymis, and kidney were assessed through histological analysis and measurement of blood parameters. Treatment with cisplatin led to a significant reduction in testicular weight, histological abnormalities, and alterations in reproductive hormone levels. Melatonin exhibited a slight protective effect on the testis, with higher doses of melatonin yielding better outcomes. However, melatonin did not reverse the effects of cisplatin on the epididymis. Administration of melatonin before and during treatment with cisplatin plus gemcitabine in mice demonstrated a modest protective effect on testicular injuries, while showing limited effects on epididymal injuries. Serum creatinine levels in the group treated with gemcitabine plus cisplatin treatment and high-dose melatonin approached those of the control group, indicating a protective effect on the kidney. These findings underscore the potential of melatonin as a protective agent against cisplatin-induced kidney and reproductive injuries and emphasize the need for further research to optimize its dosage and evaluate its long-term effects.
Collapse
Affiliation(s)
- Shao-Chuan Wang
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hsuan-Chih Hsu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ya-Chuan Chang
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chia-Ying Yu
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chien-Te Liu
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wen-Wei Sung
- Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
49
|
Sever T, Ellidokuz EB, Basbinar Y, Ellidokuz H, Yilmaz ÖH, Calibasi-Kocal G. Beta-Hydroxybutyrate Augments Oxaliplatin-Induced Cytotoxicity by Altering Energy Metabolism in Colorectal Cancer Organoids. Cancers (Basel) 2023; 15:5724. [PMID: 38136270 PMCID: PMC10741617 DOI: 10.3390/cancers15245724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 12/24/2023] Open
Abstract
Deregulation of cellular metabolism has recently emerged as a notable cancer characteristic. This reprogramming of key metabolic pathways supports tumor growth. Targeting cancer metabolism demonstrates the potential for managing colorectal cancer. Beta-hydroxybutyrate (BOHB) acts as an acetyl-CoA source for the tricarboxylic acid (TCA) cycle, possibly redirecting energy metabolic pathways towards the TCA cycle that could enhance sensitivity to oxaliplatin, through the generation of reactive oxygen species (ROS). This study explores the potential of BOHB to enhance oxaliplatin's cytotoxic effect by altering the energy metabolism in colorectal cancer. The study employed advanced in vitro organoid technology, which successfully emulates in vivo physiology. The combination treatment efficacy of BOHB and oxaliplatin was evaluated via cell viability assay. The levels of key proteins involved in energy metabolism, apoptotic pathways, DNA damage markers, and histone acetylation were analyzed via Western Blot. ROS levels were evaluated via flow cytometer. Non-toxic doses of BOHB with oxaliplatin significantly amplified cytotoxicity in colorectal cancer organoids. Treatment with BOHB and/or melatonin resulted in significantly decreased lactate dehydrogenase A and increased mitochondrial carrier protein 2 levels, indicating inhibited aerobic glycolysis and an increased oxidative phosphorylation rate. This metabolic shift induced apoptotic cell death mediated by oxaliplatin, owing to high levels of ROS. Melatonin counteracted this effect by protecting cancer cells from high oxidative stress conditions. BOHB may enhance the efficacy of chemotherapeutics with a similar mechanism of action to oxaliplatin in colorectal cancer treatment. These innovative combinations could improve treatment outcomes for colorectal cancer patients.
Collapse
Affiliation(s)
- Tolga Sever
- Department of Translational Oncology, Institute of Health Sciences, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Ender Berat Ellidokuz
- Department of Internal Diseases, Gastroenterology, Faculty of Medicine, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Hulya Ellidokuz
- Department of Preventive Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey
| | - Ömer H. Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gizem Calibasi-Kocal
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, 35340 Izmir, Turkey
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| |
Collapse
|
50
|
Peng X, Wang J, Li Z, Jia X, Zhang A, Ju J, Eulenburg V, Gao F. Toll-like Receptor 2-Melatonin Feedback Loop Regulates the Activation of Spinal NLRP3 Inflammasome in Morphine-Tolerant Rats. Neurochem Res 2023; 48:3597-3609. [PMID: 37561258 DOI: 10.1007/s11064-023-03998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND AND PURPOSE Morphine is amongst the most effective analgesics available for the management of severe pain. However, prolonged morphine treatment leads to analgesic tolerance which limits its clinical usage. Previous studies have demonstrated that melatonin ameliorates morphine tolerance by reducing neuroinflammation. However, little is known about the relationship between Toll like receptor 2 (TLR2) and neuroinflammation in morphine tolerance. The aim of this study was to explore the role of TLR2 in morphine tolerance and its connections with melatonin and Nod-like receptor protein 3 (NLRP3) inflammasome. METHODS Sprague-Dawley rats were treated with morphine for 7 days and tail-flick latency test was performed to identify the induction of analgesic tolerance. The roles of TLR2 in microglia activation and morphine tolerance were assessed pharmacologically, and the possible interactions between melatonin, TLR2 and NLRP3 inflammasome were investigated. KEY RESULTS Morphine tolerance was accompanied by increased TLR2 expression and NLRP3 inflammasome activation in spinal cord. whereas melatonin level was down-regulated. Chronic melatonin administration resulted in a reduced TLR2 expression and NLRP3 inflammasome activation. Moreover, the analgesic effect of morphine was partially restored. Inhibition of TLR2 suppressed the microglia and NLRP3 inflammasome activation, as well as restored the spinal melatonin level while attenuated the development of morphine tolerance. Furthermore, the inhibition of microglia activation ameliorated morphine tolerance via inhibiting TLR2-NLRP3 inflammasome signaling in spinal cord. CONCLUSION In this study, we directly demonstrate a TLR2-melatonin negative feedback loop regulating microglia and NLRP3 inflammasome activation during the development of morphine tolerance.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jihong Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zheng Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoqian Jia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Anqi Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jie Ju
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Volker Eulenburg
- Department for Translational Anaesthesiology and Intensive Care Medicine, Medical Faculty University of Augsburg, 86156, Augsburg, Germany.
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|