1
|
Erland LA. Views and perspectives on the indoleamines serotonin and melatonin in plants: past, present and future. PLANT SIGNALING & BEHAVIOR 2024; 19:2366545. [PMID: 38899558 PMCID: PMC11195476 DOI: 10.1080/15592324.2024.2366545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
In the decades since their discovery in plants in the mid-to-late 1900s, melatonin (N-acetyl-5-methoxytryptamine) and serotonin (5-methoxytryptamine) have been established as their own class of phytohormone and have become popular targets for examination and study as stress ameliorating compounds. The indoleamines play roles across the plant life cycle from reproduction to morphogenesis and plant environmental perception. There is growing interest in harnessing the power of these plant neurotransmitters in applied and agricultural settings, particularly as we face increasingly volatile climates for food production; however, there is still a lot to learn about the mechanisms of indoleamine action in plants. A recent explosion of interest in these compounds has led to exponential growth in the field of melatonin research in particular. This concept paper aims to summarize the current status of indoleamine research and highlight some emerging trends.
Collapse
|
2
|
Arya M, Kumar G, Giridhar P. Serotonin-Salt-Stress Model-Induced Cell Growth via Promoting an Antioxidant System and Secondary Metabolites in Capsicum annuum Cell Suspension Culture. ACS OMEGA 2024; 9:37330-37342. [PMID: 39246503 PMCID: PMC11375698 DOI: 10.1021/acsomega.4c05353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Capsicum annuum contains potential therapeutic capsaicinoids, and various stress factors influence plant productivity. Serotonin is an indoleamine involved in signaling several stress response mechanisms in plants. However, the influence of serotonin on cell growth and the accumulation of secondary metabolites, mainly capsaicinoids production, is not yet clearly defined under salt stress. In this study, we optimized chili cell suspension cultures to maximize biomass, capsaicinoids, and phenolic compounds production using response surface methodology with two variables (serotonin and NaCl) of different concentrations in culture media supplemented with 2,4-dichlorophenoxyacetic acid and Kinetin. The results revealed a significant increase in biomass (14.3 g/L FW), capsaicin (0.93 μg/g FW), and dihydrocapsaicin content (0.32 μg/g FW) in chili cell suspension cultures compared with the control. Among all the phenolic compounds, chlorogenic acid was enhanced (17.4 μg/g FW), compared to control cultures. Serotonin exhibited stress mitigation effects and boosted antioxidant potential in chili suspension cultures. The present results illustrated that the optimized conditions can be used in scale-up studies of capsaicinoids production through the bioreactor.
Collapse
Affiliation(s)
- Monisha Arya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Parvatam Giridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| |
Collapse
|
3
|
Vongnhay V, Shukla MR, Ayyanath MM, Sriskantharajah K, Saxena PK. Enhanced In Vitro Plant Morphogenesis of Tobacco: Unveiling Indoleamine-Modulated Adaptogenic Properties of Tulsi ( Ocimum sanctum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1370. [PMID: 38794439 PMCID: PMC11125241 DOI: 10.3390/plants13101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
The medicinal plant tulsi (Ocimum sanctum L.) is acknowledged for its invigorating and healing properties that enhance resilience to stress in various human and animal models by modulating antioxidant compounds. While extensive research has documented these effects in humans, the adaptogenic potential of tulsi in stressful in vitro plant systems has not been explored. This study aimed to elucidate the adaptogenic properties of tulsi leaf extract on the in vitro regeneration of tobacco leaf explants through an investigation of the indoleamines at different developmental stages. Shoot regeneration from leaf explants on the medium supplemented with tulsi extract (20%) was compared to the control, and the differences in indoleamine compounds were analyzed using ultra-performance liquid chromatography. Treatment of the explants with the extract resulted in an almost two-fold increase in the number of regenerants after four weeks of culture, and 9% of the regenerants resembled somatic embryo-like structures. The occurrence of browning in the extract-treated explants stopped on day 10, shoots began to develop, and a significant concentration of tryptamine and N-acetyl-serotonin accumulated. A comparative analysis of indoleamine compounds in intact and cut tobacco leaves also revealed the pivotal role of melatonin and 2-hydroxymelatonin functioning as antioxidants during stress adaptation. This study demonstrates that tulsi is a potent adaptogen that is capable of modulating plant morphogenesis in vitro, paving the way for further investigations into the role of adaptogens in plant stress biology.
Collapse
Affiliation(s)
| | | | | | | | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (M.R.S.); (M.-M.A.); (K.S.)
| |
Collapse
|
4
|
Ayyanath MM, Shukla MR, Hezema YS, Saxena PK. Straw Mulch Induced Indoleamines Alleviate Reproductive Depression in Cold Sensitive Hazelnut Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:2577. [PMID: 37447137 DOI: 10.3390/plants12132577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Climate change is forcing physiological changes, especially in temperate trees, in which the reproduction phase has been affected harshly, eventually resulting in poor performance. Erratic fluctuations during the flowering periods, predominantly in cold-sensitive, yet industry-desired (sourced), hazelnut cultivars have been causing at least a 10-fold decline in the nut yield. Indoleamines have been noted to provide protection during such abiotic stress conditions. In this study, we investigated the potential involvement of the indoleamine pathway in countering reproductive depression in cold-sensitive hazelnuts by blanketing the ground with wheat straw mulch. The female flower ratio; titers of tryptophan, serotonin, and melatonin; and indoleamine pathway gene regulation were the endpoints for assessing the effects of straw mulch. In the preceding year, we noted that the occurrence of phenological events through the modulation of indoleamines was necessitated via percolation of snowmelt into the rootzone. Otherwise, reproductive depression was noted, especially in harsh conditions, such as 'no snow' or when the rootzone was covered with a plastic sheet to disallow water percolation. When cold-sensitive hazelnut cultivars that were subjected to such deleterious treatments in the preceding years' experiments were treated with straw mulch, the female flower ratio was unaffected and remained on par with that of the cold-hardy locally adapted cultivars. Tryptophan accumulation improved in the (cold-sensitive) sourced cultivars treated with straw mulch and was available as serotonin to counter the cold stress. Lower titers of melatonin explained the slight improvement in female ratio in the sourced cultivars blanketed with straw mulch. ASMT gene regulation via straw mulch treatment emphasized its role in abiotic stress mitigation. A negative trend was noted when improved flowering was compared to the decreased expression of the ASMT gene. Horticultural changes, such as mulch, should provide mitigating solutions to relieve reproductive depression in cold-sensitive hazelnuts, alongside implications in other horticultural crops. The indoleamine toolkit (cellular markers) developed in this study provides insights into the mechanisms of cold sensitivity (abiotic stress) and plausible solutions, such as exogenous application of indoleamines, to propagate climate resilient plant materials with an enhanced capacity to mitigate abiotic stress conditions.
Collapse
Affiliation(s)
- Murali-Mohan Ayyanath
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mukund R Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yasmine S Hezema
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Horticulture, Damanhour University, Damanhour, El-Beheira 22713, Egypt
| | - Praveen K Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
5
|
Mishra V, Sarkar AK. Serotonin: A frontline player in plant growth and stress responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13968. [PMID: 37402164 DOI: 10.1111/ppl.13968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Serotonin is a well-studied pineal hormone that functions as a neurotransmitter in mammals and is found in varying amounts in diverse plant species. By modulating gene and phytohormonal crosstalk, serotonin has a significant role in plant growth and stress response, including root, shoot, flowering, morphogenesis, and adaptability responses to numerous environmental signals. Despite its prevalence and importance in plant growth and development, its molecular action, regulation and signalling processes remain unknown. Here, we highlight the current knowledge of the role of serotonin-mediated regulation of plant growth and stress response. We focus on serotonin and its regulatory connections with phytohormonal crosstalk and address their possible functions in coordinating diverse phytohormonal responses during distinct developmental phases, correlating with melatonin. Additionally, we have also discussed the possible role of microRNAs (miRNAs) in the regulation of serotonin biosynthesis. In summary, serotonin may act as a node molecule to coordinate the balance between plant growth and stress response, which may shed light on finding its key regulatory pathways for uncovering its mysterious molecular network.
Collapse
Affiliation(s)
- Vishnu Mishra
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ananda K Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Ayyanath MM, Shukla MR, Saxena PK. Indoleamines Impart Abiotic Stress Tolerance and Improve Reproductive Traits in Hazelnuts. PLANTS (BASEL, SWITZERLAND) 2023; 12:1233. [PMID: 36986922 PMCID: PMC10056574 DOI: 10.3390/plants12061233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Hazelnuts have recently gathered tremendous attention due to the expansion of the confectionary industry. However, the sourced cultivars fail to perform in initial phase of cultivation as they enter bare survival mode due to changes in climatic zones, for example, Southern Ontario, where the climate is continental, as opposed to the milder climate in Europe and Turkey. Indoleamines have been shown to counter abiotic stress and modulate vegetative and reproductive development of plants. Here, we examined the effect of indoleamines on the flowering response of the dormant stem cuttings of sourced hazelnut cultivars in controlled environment chambers. The stem cuttings were exposed to sudden summer-like conditions (abiotic stress) and the female flower development was assessed in relation to endogenous indoleamine titers. The sourced cultivars responded well to serotonin treatment by producing more flowers compared to the controls or other treatments. The probability of buds resulting in female flowers was highest in the middle region of the stem cuttings. It is interesting to note that the tryptamine titers of the locally adapted, and N-acetyl serotonin titers of native hazelnut cultivars, provided the best explanation for adaptation to the stress environment. Titers of both compounds were compromised in the sourced cultivars which resorted mostly to serotonin concentrations to counter the stress. The indoleamines tool kit identified in this study could be deployed in assessing cultivars for stress adaptation attributes.
Collapse
|
7
|
Yang S, Zhao Y, Qin X, Ding C, Chen Y, Tang Z, Huang Y, Reiter RJ, Yuan S, Yuan M. New insights into the role of melatonin in photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5918-5927. [PMID: 35665805 DOI: 10.1093/jxb/erac230] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/03/2022] [Indexed: 05/27/2023]
Abstract
There are numerous studies on enhancing plant resistance to stress using melatonin, but few studies about its effect on photosynthesis. Herein, we summarized the role of melatonin in photosynthesis. Melatonin regulates chlorophyll synthesis and degradation through the transcription of related genes and hormone signals. It protects photosynthetic proteins and maintains the photosynthetic process through improving the transcription of photosystem genes, activating the antioxidant system, and promoting the xanthophyll cycle. Melatonin potentially regulates plant stomatal movement through CAND2/PMTR1. Finally, it controls the photosynthetic carbon cycle by regulating the metabolism of sugar, the gluconeogenesis pathway, and the degradation and transport of transient starch.
Collapse
Affiliation(s)
- Sijia Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yuqing Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Xiaolong Qin
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Chunbang Ding
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Yan Huang
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
8
|
Sun C, Sun N, Ou Y, Gong B, Jin C, Shi Q, Lin X. Phytomelatonin and plant mineral nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5903-5917. [PMID: 35767844 DOI: 10.1093/jxb/erac289] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/29/2022] [Indexed: 05/27/2023]
Abstract
Plant mineral nutrition is critical for agricultural productivity and for human nutrition; however, the availability of mineral elements is spatially and temporally heterogeneous in many ecosystems and agricultural landscapes. Nutrient imbalances trigger intricate signalling networks that modulate plant acclimation responses. One signalling agent of particular importance in such networks is phytomelatonin, a pleiotropic molecule with multiple functions. Evidence indicates that deficiencies or excesses of nutrients generally increase phytomelatonin levels in certain tissues, and it is increasingly thought to participate in the regulation of plant mineral nutrition. Alterations in endogenous phytomelatonin levels can protect plants from oxidative stress, influence root architecture, and influence nutrient uptake and efficiency of use through transcriptional and post-transcriptional regulation; such changes optimize mineral nutrient acquisition and ion homeostasis inside plant cells and thereby help to promote growth. This review summarizes current knowledge on the regulation of plant mineral nutrition by melatonin and highlights how endogenous phytomelatonin alters plant responses to specific mineral elements. In addition, we comprehensively discuss how melatonin influences uptake and transport under conditions of nutrient shortage.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Nan Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Yiqun Ou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, PR China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
9
|
Raza A, Salehi H, Rahman MA, Zahid Z, Madadkar Haghjou M, Najafi-Kakavand S, Charagh S, Osman HS, Albaqami M, Zhuang Y, Siddique KHM, Zhuang W. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:961872. [PMID: 36176673 PMCID: PMC9514553 DOI: 10.3389/fpls.2022.961872] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/03/2022] [Indexed: 05/24/2023]
Abstract
Due to global climate change, abiotic stresses are affecting plant growth, productivity, and the quality of cultivated crops. Stressful conditions disrupt physiological activities and suppress defensive mechanisms, resulting in stress-sensitive plants. Consequently, plants implement various endogenous strategies, including plant hormone biosynthesis (e.g., abscisic acid, jasmonic acid, salicylic acid, brassinosteroids, indole-3-acetic acid, cytokinins, ethylene, gibberellic acid, and strigolactones) to withstand stress conditions. Combined or single abiotic stress disrupts the normal transportation of solutes, causes electron leakage, and triggers reactive oxygen species (ROS) production, creating oxidative stress in plants. Several enzymatic and non-enzymatic defense systems marshal a plant's antioxidant defenses. While stress responses and the protective role of the antioxidant defense system have been well-documented in recent investigations, the interrelationships among plant hormones, plant neurotransmitters (NTs, such as serotonin, melatonin, dopamine, acetylcholine, and γ-aminobutyric acid), and antioxidant defenses are not well explained. Thus, this review discusses recent advances in plant hormones, transgenic and metabolic developments, and the potential interaction of plant hormones with NTs in plant stress response and tolerance mechanisms. Furthermore, we discuss current challenges and future directions (transgenic breeding and genome editing) for metabolic improvement in plants using modern molecular tools. The interaction of plant hormones and NTs involved in regulating antioxidant defense systems, molecular hormone networks, and abiotic-induced oxidative stress tolerance in plants are also discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | - Md Atikur Rahman
- Grassland and Forage Division, National Institute of Animal Science, Rural Development Administration, Cheonan, South Korea
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maryam Madadkar Haghjou
- Department of Biology, Plant Physiology, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Shiva Najafi-Kakavand
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hany S. Osman
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yuhui Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Erland LAE, Dumigan CR, Forsyth JA, Frolova L, Yasunaga AB, Pun W, Li ITS, Deyholos MK, Murch SJ. Mammalian Melatonin Agonist Pharmaceuticals Stimulate Rhomboid Proteins in Plants. Biomolecules 2022; 12:biom12070882. [PMID: 35883439 PMCID: PMC9313243 DOI: 10.3390/biom12070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Melatonin is a human neurotransmitter and plant signalling metabolite that perceives and directs plant metabolism. The mechanisms of melatonin action in plants remain undefined. We hypothesized that roots have a melatonin-specific receptor and/or transporter that can respond to melatonin-mediating pharmaceuticals. To test this hypothesis Arabidopsis seedlings were grown with melatonin pharmaceutical receptor agonists: ramelteon and tasimelteon, and/or antagonists: luzindole and 4-P-PDOT. Ramelteon was found both to mimic and competitively inhibit melatonin metabolism in plants. Due to the higher selectivity of ramelteon for the MT1 receptor type in humans, a sequence homology search for MT1 in Arabidopsis identified the rhomboid-like protein 7 (RBL7). In physiological studies, Arabidopsis rbl7 mutants were less responsive to ramelteon and melatonin. Quantum dot visualizations of the effects of ramelteon on melatonin binding to root cell membranes revealed a potential mechanism. We propose that RBL7 is a melatonin-interacting protein that directs root architecture and growth in a mechanism that is responsive to environmental factors.
Collapse
Affiliation(s)
- Lauren A. E. Erland
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
- Department of Agriculture, University of the Fraser Valley, Chilliwack, BC V6T 1Z4, Canada
| | - Christopher R. Dumigan
- Department of Biology, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (C.R.D.); (M.K.D.)
| | - Jillian A. Forsyth
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Liubov Frolova
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Adam B. Yasunaga
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Winnie Pun
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
| | - Michael K. Deyholos
- Department of Biology, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (C.R.D.); (M.K.D.)
| | - Susan J. Murch
- Department of Chemistry, University of British Columbia, Kelowna, BC V1V 1V7, Canada; (L.A.E.E.); (J.A.F.); (L.F.); (A.B.Y.); (W.P.); (I.T.S.L.)
- Correspondence:
| |
Collapse
|
11
|
Teng Z, Zheng W, Jiang S, Hong SB, Zhu Z, Zang Y. Role of melatonin in promoting plant growth by regulating carbon assimilation and ATP accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111276. [PMID: 35487649 DOI: 10.1016/j.plantsci.2022.111276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/23/2022] [Accepted: 03/27/2022] [Indexed: 05/27/2023]
Abstract
Melatonin (MT) is a phytohormone important in mediating diverse plant growth processes. In this study, we performed transcriptomic, qRT-PCR, physiological and biochemical analyses of Brassica rapa seedlings in order to understand how MT promotes plant growth. The results showed that exogenous MT increased the rate of cyclic electron flow around photosystem (PS) I, fluorescence quantum yield, and electron transport efficiency between PSII and PSI to promote the vegetative growth of B. rapa seedlings without affecting oxidative stress level, as compared to control. However, MT treatment significantly reduced photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) by 2.25-, 1.23- and 3.50-fold at 0.05 level, respectively. This occurred in parallel with the down-regulation of the genes for carbon fixation in photosynthetic organisms in a KEGG pathway enrichment. More accelerated plant growth despite the reduced photosynthesis rate and the enhanced electron transport rate suggested that NADPH and adenosine triphosphate (ATP) were preferentially diverted into other anabolic reactions than the Calvin cycle upon MT application. MT treatment increased ATP level and facilitated carbon assimilation into primary metabolism that led to a significant enhancement of soluble protein, sucrose, and fructose, but a significant decrease in glucose content. MT-induced carbon assimilation into primary metabolism was driven by up-regulation of the genes for glutathione metabolism, Krebs cycle, ribosome, and DNA replication in a KEGG pathway enrichment, as well as down-regulation of the genes for secondary metabolites. Our results provide an insight into MT-mediated metabolic adjustments triggered by coordinate changes in a wide range of gene expression profiles to help improve the plant functionality.
Collapse
Affiliation(s)
- Zhiyan Teng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Weiwei Zheng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Shufang Jiang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China
| | - Yunxiang Zang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&~F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
12
|
Bhowal B, Bhattacharjee A, Goswami K, Sanan-Mishra N, Singla-Pareek SL, Kaur C, Sopory S. Serotonin and Melatonin Biosynthesis in Plants: Genome-Wide Identification of the Genes and Their Expression Reveal a Conserved Role in Stress and Development. Int J Mol Sci 2021; 22:ijms222011034. [PMID: 34681693 PMCID: PMC8538589 DOI: 10.3390/ijms222011034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Annapurna Bhattacharjee
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Kavita Goswami
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Sneh L. Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
| | - Charanpreet Kaur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (B.B.); (A.B.); (K.G.); (N.S.-M.); (S.L.S.-P.)
- Correspondence: (C.K.); (S.S.)
| |
Collapse
|
13
|
Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. Int J Mol Sci 2021; 22:ijms22158180. [PMID: 34360945 PMCID: PMC8347486 DOI: 10.3390/ijms22158180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.
Collapse
|
14
|
Färkkilä SMA, Kiers ET, Jaaniso R, Mäeorg U, Leblanc RM, Treseder KK, Kang Z, Tedersoo L. Fluorescent nanoparticles as tools in ecology and physiology. Biol Rev Camb Philos Soc 2021; 96:2392-2424. [PMID: 34142416 DOI: 10.1111/brv.12758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022]
Abstract
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists' tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.
Collapse
Affiliation(s)
- Sanni M A Färkkilä
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam, Noord-Holland, The Netherlands
| | - Raivo Jaaniso
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Tartumaa, Estonia
| | - Uno Mäeorg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Roger M Leblanc
- Department of Chemistry, Cox Science Center, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33124, U.S.A
| | - Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine, 3106 Biological Sciences III, Mail Code: 2525, 92697, Irvine, CA, U.S.A
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Leho Tedersoo
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| |
Collapse
|
15
|
Monthony AS, Page SR, Hesami M, Jones AMP. The Past, Present and Future of Cannabis sativa Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2021; 10:185. [PMID: 33478171 PMCID: PMC7835777 DOI: 10.3390/plants10010185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
The recent legalization of Cannabis sativa L. in many regions has revealed a need for effective propagation and biotechnologies for the species. Micropropagation affords researchers and producers methods to rapidly propagate insect-/disease-/virus-free clonal plants and store germplasm and forms the basis for other biotechnologies. Despite this need, research in the area is limited due to the long history of prohibitions and restrictions. Existing literature has multiple limitations: many publications use hemp as a proxy for drug-type Cannabis when it is well established that there is significant genotype specificity; studies using drug-type cultivars are predominantly optimized using a single cultivar; most protocols have not been replicated by independent groups, and some attempts demonstrate a lack of reproducibility across genotypes. Due to culture decline and other problems, the multiplication phase of micropropagation (Stage 2) has not been fully developed in many reports. This review will provide a brief background on the history and botany of Cannabis as well as a comprehensive and critical summary of Cannabis tissue culture. Special attention will be paid to current challenges faced by researchers, the limitations of existing Cannabis micropropagation studies, and recent developments and future directions of Cannabis tissue culture technologies.
Collapse
Affiliation(s)
| | | | | | - Andrew Maxwell P. Jones
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.S.M.); (S.R.P.); (M.H.)
| |
Collapse
|
16
|
Murch SJ, Erland LAE. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. FRONTIERS IN PLANT SCIENCE 2021; 12:683047. [PMID: 34249052 PMCID: PMC8270005 DOI: 10.3389/fpls.2021.683047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 05/06/2023]
Abstract
Melatonin (N-acetyl-5-methoxy-tryptamine) is a mammalian neurohormone, antioxidant and signaling molecule that was first discovered in plants in 1995. The first studies investigated plant melatonin from a human perspective quantifying melatonin in foods and medicinal plants and questioning whether its presence could explain the activity of some plants as medicines. Starting with these first handful of studies in the late 1990s, plant melatonin research has blossomed into a vibrant and active area of investigation and melatonin has been found to play critical roles in mediating plant responses and development at every stage of the plant life cycle from pollen and embryo development through seed germination, vegetative growth and stress response. Here we have utilized a systematic approach in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocols to reduce bias in our assessment of the literature and provide an overview of the current state of melatonin research in plants, covering 1995-2021. This review provides an overview of the biosynthesis and metabolism of melatonin as well as identifying key themes including: abiotic stress responses, root development, light responses, interkingdom communication, phytohormone and plant signaling. Additionally, potential biases in the literature are investigated and a birefringence in the literature between researchers from plant and medical based which has helped to shape the current state of melatonin research. Several exciting new opportunities for future areas of melatonin research are also identified including investigation of non-crop and non-medicinal species as well as characterization of melatonin signaling networks in plants.
Collapse
|
17
|
Yang SJ, Huang B, Zhao YQ, Hu D, Chen T, Ding CB, Chen YE, Yuan S, Yuan M. Melatonin Enhanced the Tolerance of Arabidopsis thaliana to High Light Through Improving Anti-oxidative System and Photosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:752584. [PMID: 34691129 PMCID: PMC8529209 DOI: 10.3389/fpls.2021.752584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 05/03/2023]
Abstract
Land plants live in a crisis-filled environment and the fluctuation of sunlight intensity often causes damage to photosynthetic apparatus. Phyto-melatonin is an effective bioactive molecule that helps plants to resist various biotic and abiotic stresses. In order to explore the role of melatonin under high light stress, we investigated the effects of melatonin on anti-oxidative system and photosynthesis of Arabidopsis thaliana under high light. Results showed that exogenous melatonin increased photosynthetic rate and protected photosynthetic proteins under high light. This was mainly owing to the fact that exogenous melatonin effectively decreased the accumulation of reactive oxygen species and protected integrity of membrane and photosynthetic pigments, and reduced cell death. Taken together, our study promoted more comprehensive understanding in the protective effects of exogenous melatonin under high light.
Collapse
Affiliation(s)
- Si-Jia Yang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Bo Huang
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yu-Qing Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Di Hu
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Tao Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Chun-Bang Ding
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Ming Yuan,
| |
Collapse
|
18
|
Vafadar F, Amooaghaie R, Ehsanzadeh P, Ghanati F, Sajedi RH. Crosstalk between melatonin and Ca 2+/CaM evokes systemic salt tolerance in Dracocephalum kotschyi. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153237. [PMID: 32768684 DOI: 10.1016/j.jplph.2020.153237] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 05/23/2023]
Abstract
In this study, the role of calcium/calmodulin (Ca2+/CaM) and melatonin (Mel) as two signal molecules in inducing systemic salt tolerance of Dracocephalum kotschyi Boiss. was investigated. Salinity stress (100 mM NaCl) reduced plant growth and induced ionic, osmotic, and oxidative damages in D. kotschyi leaves. Detection of cytosolic free Ca2+ ([Ca2+]cyt) by the Fura-2 method and the measurement of endogenous Mel by GC-MS demonstrated that salinity induced Ca2+ burst and increased endogenous Mel content in D. kotschyi leaves. Root pretreatment with 5 mM Ca2+ or 100 μM Mel recovered plant growth, reduced leaf electrolytic leakage, H2O2, and MDA contents and improved membrane integrity not only at the application site (roots), but also at the untreated distal parts (leaves) under salt stress. Rhizospheric treatment with Mel and Ca2+ triggered systemic tolerance in D. kotschyi, as judged from improving RWC, increasing proline content, modulating Na+, K+, and Ca2+ homeostasis, and enhancing the activities of SOD, CAT, APX, and POD in the leaves of salt-stressed plants. Mel augmented [Ca2+]cyt, but the rhizospheric application of Ca2+ antagonists impaired the latter responses. Furthermore, root pretreatment with Ca2+ increased Mel content, but the application of p-chlorophenylalanine (as an inhibitor of Mel biosynthesis) decreased the above attributes in the leaves of Ca2+-treated plants, leading to an arrest in the Ca2+-induced systemic salt tolerance. These novel results suggest that interaction of Ca2+/CaM and Mel is involved in overcoming salt-induced ionic, osmotic, and oxidative damages and Ca2+ and Mel may act as long-distance signals for inducing systemic salt tolerance in D. kotschyi.
Collapse
Affiliation(s)
- Farinaz Vafadar
- Plant Biology Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
| | - Rayhaneh Amooaghaie
- Plant Biology Department, Faculty of Science, Shahrekord University, Shahrekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| | - Parviz Ehsanzadeh
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University (TMU), POB141115-154, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University (TMU), POB141115-154, Tehran, Iran.
| |
Collapse
|
19
|
Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1737450. [PMID: 32375557 PMCID: PMC8570756 DOI: 10.1080/15592324.2020.1737450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
Neurotransmitters (NTs) such as acetylcholine, biogenic amines (dopamine, noradrenaline, adrenaline, histamine), indoleamines [(melatonin (MEL) & serotonin (SER)] have been found not only in mammalians, but also in diverse living organisms-microorganisms to plants. These NTs have emerged as potential signaling molecules in the last decade of investigations in various plant systems. NTs have been found to play important roles in plant life including-organogenesis, flowering, ion permeability, photosynthesis, circadian rhythm, reproduction, fruit ripening, photomorphogenesis, adaptation to environmental changes. This review will provide an overview of recent advancements on the physiological and molecular mechanism of NTs in plants. Moreover, molecular crosstalk of SER and MEL with various biomolecules is also discussed. The study of these NTs may serve as new understanding of the mechanisms of signal transmission and cell sensing in plants subjected to various environmental stimulus.
Collapse
Affiliation(s)
- Ramakrishna Akula
- Bayer Crop Science division, Vegetable R & D Department, Chikkaballapur, India
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, Kalyani, India
| |
Collapse
|
20
|
Xin T, Lu C. Irisin activates Opa1-induced mitophagy to protect cardiomyocytes against apoptosis following myocardial infarction. Aging (Albany NY) 2020; 12:4474-4488. [PMID: 32155590 PMCID: PMC7093202 DOI: 10.18632/aging.102899] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Myocardial infarction is characterized by sudden ischemia and cardiomyocyte death. Mitochondria have critical roles in regulating cardiomyocyte viability and can sustain damage under ischemic conditions. Mitophagy is a mechanism by which damaged mitochondria are removed by autophagy to maintain mitochondrial structure and function. We investigated the role of the dynamin-like GTPase optic atrophy 1 (Opa1) in mitophagy following myocardial infarction. Opa1 expression was downregulated in infarcted hearts in vivo and in hypoxia-treated cardiomyocytes in vitro. We found that Opa1 overexpression protected cardiomyocytes against hypoxia-induced damage and enhanced cell viability by inducing mitophagy. Opa1-induced mitophagy was activated by treatment with irisin, which protected cardiomyocytes from further damage following myocardial infarction. Opa1 knockdown abolished the cardioprotective effects of irisin resulting in an enhanced inflammatory response, increased oxidative stress, and mitochondrial dysfunction in cardiomyocytes. Our data indicate that Opa1 plays an important role in maintaining cardiomyocyte viability and mitochondrial function following myocardial infarction by inducing mitophagy. Irisin can activate Opa1-induced mitophagy and protect against cardiomyocyte injury following myocardial infarction.
Collapse
Affiliation(s)
- Ting Xin
- The First Center Clinic College of Tianjin Medical University, Tianjin First Center Hospital, Tianjin, China.,Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
21
|
Shang X, Zhang Y, Xu J, Li M, Wang X, Yu R. SRV2 promotes mitochondrial fission and Mst1-Drp1 signaling in LPS-induced septic cardiomyopathy. Aging (Albany NY) 2020; 12:1417-1432. [PMID: 31951593 PMCID: PMC7053598 DOI: 10.18632/aging.102691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial fission is associated with cardiomyocyte death and myocardial depression, and suppressor of ras val-2 (SRV2) is a newly discovered pro-fission protein. In this study, we examined the mechanisms of SRV2-mediated mitochondrial fission in septic cardiomyopathy. Western blotting, ELISA, and immunofluorescence were used to evaluate mitochondrial function, oxidative balance, energy metabolism and caspase-related death, and siRNA and adenoviruses were used to perform loss- and gain-of-function assays. Our results demonstrated that increased SRV2 expression promotes, while SRV2 knockdown attenuates, cardiomyocyte death in LPS-induced septic cardiomyopathy. Mechanistically, SRV2 activation promoted mitochondrial fission and physiological abnormalities by upregulating oxidative injury, ATP depletion, and caspase-9-related apoptosis. Our results also demonstrated that SRV2 promotes mitochondrial fission via a Mst1-Drp1 axis. SRV2 knockdown decreased Mst1 and Drp1 levels, while Mst1 overexpression abolished the mitochondrial protection and cardiomyocyte survival-promoting effects of SRV2 knockdown. SRV2 is thus a key novel promotor of mitochondrial fission and Mst1-Drp1 axis activity in septic cardiomyopathy.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Min Li
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
22
|
Zia SF, Berkowitz O, Bedon F, Whelan J, Franks AE, Plummer KM. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC PLANT BIOLOGY 2019; 19:567. [PMID: 31856719 PMCID: PMC6921455 DOI: 10.1186/s12870-019-2158-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/25/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Melatonin (N-acetyl-5-methoxytryptamine) in plants, regulates shoot and root growth and alleviates environmental stresses. Melatonin and the phyto-hormone auxin are tryptophan-derived compounds. However, it largely remains controversial as to whether melatonin and auxin act through similar or overlapping signalling and regulatory pathways. RESULTS Here, we have used a promoter-activation study to demonstrate that, unlike auxin (1-naphthalene acetic acid, NAA), melatonin neither induces Direct repeat 5 DR5 expression in Arabidopsis thaliana roots under normal growth conditions nor suppresses the induction of Alternative oxidase 1a AOX1a in leaves upon Antimycin A treatment, both of which are the hallmarks of auxin action. Additionally, comparative global transcriptome analysis conducted on Arabidopsis treated with melatonin or NAA revealed differences in the number and types of differentially expressed genes. Auxin (4.5 μM) altered the expression of a diverse and large number of genes whereas melatonin at 5 μM had no significant effect but melatonin at 100 μM had a modest effect on transcriptome compared to solvent-treated control. Interestingly, the prominent category of genes differentially expressed upon exposure to melatonin trended towards biotic stress defence pathways while downregulation of key genes related to photosynthesis was observed. CONCLUSION Together these findings indicate that though they are both indolic compounds, melatonin and auxin act through different pathways to alter gene expression in Arabidopsis thaliana. Furthermore, it appears that effects of melatonin enable Arabidopsis thaliana to prioritize biotic stress defence signalling rather than growth. These findings clear the current confusion in the literature regarding the relationship of melatonin and auxin and also have greater implications of utilizing melatonin for improved plant protection.
Collapse
Affiliation(s)
- Sajal F Zia
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Frank Bedon
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Kim M Plummer
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
23
|
Tian Y, Lv W, Lu C, Zhao X, Zhang C, Song H. LATS2 promotes cardiomyocyte H9C2 cells apoptosis via the Prx3-Mfn2-mitophagy pathways. J Recept Signal Transduct Res 2019; 39:470-478. [PMID: 31829064 DOI: 10.1080/10799893.2019.1701031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: The pathogenesis of cardiomyocyte death is closely associated with mitochondrial homeostasis via poorly understood mechanisms.Objective: The aim of our study is to explore the contribution of large tumor suppressor kinase 2 (LATS2) to the apoptosis of cardiomyocyte H9C2 cells.Materials and Methods: Adenovirus-mediated LATS2 overexpression was carried out in H9C2 cells. The cell viability and apoptosis rate were measured via an MTT assay, TUNEL staining, western blotting, an ELISA, and an LDH release assay. Mitophagy was quantified using immunofluorescence and western blotting.Results: The overexpression of LATS2 in H9C2 cells drastically promoted cell death. Molecular investigations showed that LATS2 overexpression was associated with mitochondrial injury, as evidenced by increased mitochondrial ROS production, reduced antioxidant factor levels, increased cyt-c liberation into the nucleus and activated mitochondrial caspase-9-dependent apoptotic pathway activity. Furthermore, our results demonstrated that LATS2-mediated mitochondrial malfunction by repressing mitophagy and that the reactivation of mitophagy could sustain mitochondrial integrity and homeostasis in response to LATS2 overexpression. Furthermore, we found that LATS2 inhibited mitophagy by inactivating the Prx3-Mfn2 axis. The reactivation of Prx3-Mfn2 pathways abrogated the LATS2-mediated inhibition of mitochondrial apoptosis in H9C2 cells.Conclusions: The overexpression of LATS2 induces mitochondrial stress by repressing protective mitophagy in a manner dependent on Prx3-Mfn2 pathways, thus reducing the survival of H9C2 cells.
Collapse
Affiliation(s)
| | - Wei Lv
- Tianjin First Central Hospital, Tianjin, China
| | - Chengzhi Lu
- Tianjin First Central Hospital, Tianjin, China
| | | | - Chunguang Zhang
- North District Maternal and Child Health Family Planning Service Center, Qingdao, China
| | - Haoming Song
- Department of Cardiology, Shanghai Tongji Hospital, Shanghai, China
| |
Collapse
|
24
|
Dong Q, Jie Y, Ma J, Li C, Xin T, Yang D. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res 2019; 39:383-391. [PMID: 31782334 DOI: 10.1080/10799893.2019.1698050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Context: Cell death and inflammation response have been found to the primary features of acute kidney injury.Objective: The aim of our study is to figure out the molecular mechanism by which hypoxia-reoxygenation injury affects the viability of tubular cell death.Materials and methods: HK2 cells were treated with hypoxia-reoxygenation injury in vitro. Pathway agonist was added into the medium of HK2 cell to activate MAPK-EEK-CREB axis.Results: Hypoxia-reoxygenation injury reduced HK2 cell viability and increased cell apoptosis rate in vitro. Besides, inflammation response has been found to be induced by hypoxia-reoxygenation injury in HK2 cells in vitro. In addition, MAPK-ERK-CREB pathway was deactivated during hypoxia-reoxygenation injury. Interestingly, activation of MAPK-ERK-CREB pathway could attenuate hypoxia-reoxygenation injury-mediated HK2 cell apoptosis and inflammation. Mechanistically, MAPK-ERK-CREB pathway activation upregulated the transcription of anti-apoptotic genes and reduced the levels of pro-apoptotic factors under hypoxia-reoxygenation injury.Conclusions: Our results report a novel signaling pathway responsible for acute kidney injury-related tubular cell death. Activation of MAPK-ERK-CREB signaling could protect tubular cell against hypoxia-reoxygenation-related cell apoptosis and inflammation response.
Collapse
Affiliation(s)
- Qi Dong
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| | - Yingxin Jie
- Department of Emergency, Tianjin Hospital, Tianjin, P.R. China
| | - Jian Ma
- Tianjin Women's and Children's Health Center, Tianjin Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, P.R. China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R.China
| |
Collapse
|
25
|
Song J, Lu C, Zhao W, Shao X. Melatonin attenuates TNF-α-mediated hepatocytes damage via inhibiting mitochondrial stress and activating the Akt-Sirt3 signaling pathway. J Cell Physiol 2019; 234:20969-20979. [PMID: 31025320 DOI: 10.1002/jcp.28701] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
The role of mitochondrial dysfunction and its molecular mechanism in inflammation-induced acute liver failure (ALF) remain unknown. Despite the numerous studies performed to date, very few therapies are available for inflammation-induced ALF. Therefore, our study is aimed to explore the regulatory effects of mitochondrial stress and the Akt-Sirt3 pathway on the development of TNF-α-induced hepatocyte death and assess the therapeutic effects of melatonin on the damaged liver. Our results exhibited that TNF-α treatment induced hepatocyte damage in vitro; the effect of which was dose-dependently inhibited by melatonin. At the molecular level, TNF-α-treated hepatocytes expressed lower levels of Sirt3 and subsequently exhibited mitochondrial stress. Interestingly, melatonin treatment improved mitochondrial bioenergetics, reduced mitochondrial oxidative stress, reversed mitochondrial dynamics, and repressed mitochondrial apoptosis by reversing the decrease in Sirt3 expression after TNF-α challenge. In addition, we found that melatonin-regulated Sirt3 expression in a manner dependent on the Akt pathway. Blockade of the Akt pathway abolished the protective exerted by melatonin on mitochondria and hepatocyte under TNF-α treatment. In conclusion, TNF-α promotes hepatocyte apoptosis by inducing mitochondrial stress. However, melatonin significantly increases the activity of the Akt/Sirt3 axis and consequently maintains mitochondrial homeostasis, restoring hepatocyte viability in an inflammatory environment. Thus, the information compiled here might provide important perspectives for the use of melatonin in the clinic for preventive and therapeutic applications in patients with ALF based on its anti-inflammatory and mitochondria-protective effects.
Collapse
Affiliation(s)
- Jie Song
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Erland LAE, Saxena P. Auxin driven indoleamine biosynthesis and the role of tryptophan as an inductive signal in Hypericum perforatum (L.). PLoS One 2019; 14:e0223878. [PMID: 31622392 PMCID: PMC6797091 DOI: 10.1371/journal.pone.0223878] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022] Open
Abstract
In the 60 years since Skoog and Miller first reported the chemical redirection of plant growth the underlying biochemical mechanisms are still poorly understood, with one challenge being the capacity for applied growth regulators to act indirectly or be metabolized to active phytohormones. We hypothesized that tryptophan is metabolized to auxin, melatonin or serotonin inducing organogenesis in St. John's wort (Hypericum perforatum L.). Root explants from two germplasm lines of St. John's wort with altered melatonin metabolism and wildtype were incubated with auxin or tryptophan for 24, 48 or 72 h to induce regeneration. In wildtype, tryptophan had little effect on the indoleamine pathway, and was found to promote primary growth, suggesting excess tryptophan moved quickly through various secondary metabolite pathways and protein synthesis. In lines 4 and 112 tryptophan was associated with modified morphogenesis, indoleamine and auxin levels. Incubation with tryptophan increased shoot organogenesis while incubation with auxin led to root regeneration. The established paradigm of thought views tryptophan primarily as a precursor for auxin and indoleamines, among other metabolites, and mediation of auxin action by the indoleamines as a one-way interaction. We propose that these processes run in both directions with auxin modifying indoleamine biosynthesis and the melatonin:serotonin balance contributing to its effects on plant morphogenesis, and that tryptophan also functions as an inductive signal to mediate diverse phytochemical and morphogenetic pathways.
Collapse
Affiliation(s)
- Lauren A. E. Erland
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, Ontario, Canada
| | - Praveen Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Huang D, Jiang Y. MKP1 reduces neuroinflammation via inhibiting endoplasmic reticulum stress and mitochondrial dysfunction. J Cell Physiol 2019; 235:4316-4325. [PMID: 31612495 DOI: 10.1002/jcp.29308] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
MAP kinase phosphatase 1 (MKP1) has been identified as an antiapoptotic protein via sustaining mitochondrial function. However, the role of MKP1 in neuroinflammation has not been fully understood. The aim of this study is to figure out the influence of MKP1 in lipopolysaccharide (LPS)-treated microglia BV-2 cells and investigate whether MKP1 reduces BV-2 cell death via modulating endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The results of this study demonstrated that MKP1 was rapidly downregulated after exposure to LPS. However, the transfection of MKP1 adenovirus could reverse cell viability and attenuate LPS-mediated BV-2 cell apoptosis. Mechanistically, MKP1 overexpression alleviated ER stress and corrected LPS-induced calcium overloading. Besides, MKP1 adenovirus transfection also reversed mitochondrial bioenergetics, maintained mitochondrial membrane potential, and blocked mitochondria-initiated apoptosis signals. Furthermore, we found that MKP1 overexpression is associated with inactivation of mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK) pathway. Interestingly, the activation of MAPK-JNK pathway could abolish the protective effects of MKP1 on BV-2 cells survival and mitochondrial function in the presence of LPS. Altogether, our results identified MKP1 as a primary defender of neuroinflammation via modulating ER stress and mitochondrial function in a manner dependent on MAPK-JNK pathway. These findings may open a new window for the treatment of neuroinflammation in the clinical setting.
Collapse
Affiliation(s)
- Dezhi Huang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Ma C, Wang J, Fan L. Therapeutic effects of bone mesenchymal stem cells on oral and maxillofacial defects: a novel signaling pathway involving miR-31/CXCR4/Akt axis. J Recept Signal Transduct Res 2019; 39:321-330. [PMID: 31573375 DOI: 10.1080/10799893.2019.1669054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Context: Although bone mesenchymal stem cells (BMSCs) have been used for the treatment of oral and maxillofacial defects, the survival rate and limited proliferation reduces the therapeutic efficiency of BMSC.Objective: The aim of our study is to explore the role of miR-31 in regulating survival, proliferation, and migration of BMSC in vitro.Materials and methods: LPS was used in vitro to induce BMSC damage and then miR-31 was used to incubate with BMSC. Subsequently, BMSC proliferation, survival, and migration were determined via ELISA, qPCR, western blots, and immunofluorescence.Results: The expression of miR-31 was downregulated in response to LPS stress. Interestingly, supplementation of miR-31 could reverse the survival, proliferation and migration of BMSC under LPS. Mechanically, miR-31 treatment inhibited the activation of caspase, and thus promoted BMSC survival. Besides, miR-31 upregulated the genes related to cell proliferation, an effect that was followed by an increase in the levels of migratory factors. Further, we found that miR-31 treatment activated the CXCR4/Akt pathway and blockade of CXCR4/Akt could abolish the beneficial effects of miR-31 on BMSC proliferation, survival, and migration.Conclusions: miR-31 could increase the therapeutic efficiency of BMSC via the CXCR4/Akt pathway.
Collapse
Affiliation(s)
- Chao Ma
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Jingxian Wang
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Longkun Fan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| |
Collapse
|
29
|
Zhang J, Wang L, Xie W, Hu S, Zhou H, Zhu P, Zhu H. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: A new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J Cell Physiol 2019; 235:2847-2856. [PMID: 31535369 DOI: 10.1002/jcp.29190] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022]
Abstract
Septic cardiomyopathy is associated with mitochondrial damage and endoplasmic reticulum (ER) dysfunction. However, the upstream mediator of mitochondrial injury and ER stress has not been identified and thus little drug is available to treat septic cardiomyopathy. Here, we explored the role of B-cell receptor-associated protein 31 (BAP31) in septic cardiomyopathy and figure out whether melatonin could attenuate sepsis-mediated myocardial depression via modulating BAP31. Lipopolysaccharide (LPS) was used to establish the septic cardiomyopathy model. Pathway analysis was performed via western blot, quantitative polymerase chain reaction and immunofluorescence. Mitochondrial function and ER stress were detected via enzyme-linked immunosorbent assay, western blot, and immunofluorescence. After exposure to LPS, cardiac function was reduced due to excessive inflammation response and extensive cardiomyocyte death. Mechanistically, melatonin treatment could dose-dependently improve cardiomyocyte viability via preserving mitochondrial function and reducing ER stress. Further, we found that BAP31 transcription was repressed by LPS whereas melatonin could restore BAP31 expression; this effect was dependent on the MAPK-ERK pathway. Inhibition of the ERK pathway and/or knockdown of BAP31 could attenuate the beneficial effects of melatonin on mitochondrial function and ER homeostasis under LPS stress. Altogether, our results indicate that ERK-BAP31 pathway could be used as a critical mediator for mitochondrial function and ER homeostasis in sepsis-related myocardial injury. Melatonin could stabilize BAP31 via the ERK pathway and thus contribute to the preservation of cardiac function in septic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhang
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Leili Wang
- Center of Project Management, Department of Aerospace Systems, Strategic Support Force, China
| | - Wei Xie
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Shunying Hu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Hao Zhou
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China.,Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, Wyoming
| | - Pingjun Zhu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Hang Zhu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| |
Collapse
|
30
|
Hou S, Wang L, Zhang G. Mitofusin-2 regulates inflammation-mediated mouse neuroblastoma N2a cells dysfunction and endoplasmic reticulum stress via the Yap-Hippo pathway. J Physiol Sci 2019; 69:697-709. [PMID: 31134519 PMCID: PMC10717024 DOI: 10.1007/s12576-019-00685-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress is involved in inflammation-induced neurotoxicity. Mitofusin 2 (Mfn2), a member of the GTPase family of proteins, resides in the ER membrane and is known to regulate ER stress. However, the potential role and underlying mechanism of Mfn2 in inflammation-induced neuronal dysfunction is unknown. In our study, we explored the potential of Mfn2 to attenuate inflammation-mediated neuronal dysfunction by inhibiting ER stress. Our data show that Mfn2 overexpression significantly ameliorated tumor necrosis factor alpha (TNFα)-induced ER stress, as indicated by the downregulation of the ER stress proteins PERK, GRP78 and CHOP. Mfn2 overexpression also prevented the TNFα-mediated activation of caspase-3, caspase-12 and cleaved poly (ADP-ribose) polymerase (PARP). Cellular antioxidant dysfunction and reactive oxygen species overproduction were also improved by Mfn2 in the setting of TNFα in mouse neuroblastoma N2a cells in vitro. Similarly, disordered calcium homeostasis, indicated by disturbed levels of calcium-related proteins and calcium overloading, was corrected by Mfn2, as evidenced by the increased expression of store-operated calcium entry (SERCA), decreased levels of inositol trisphosphate receptor (IP3R), and normalized calcium content in TNFα-treated N2a cells. Mfn2 overexpression was found to elevate Yes-associated protein (Yap) expression; knockdown of Yap abolished the regulatory effects of Mfn2 on ER stress, oxidative stress, calcium balance, neural death and inflammatory injury. These results lead us to conclude that re-activation of the Mfn2-Yap signaling pathway alleviates TNFα-induced ER stress and dysfunction of mouse neuroblastoma N2a cells. Our findings provide a better understanding of the regulatory role of Mfn2-Yap-ER stress in neuroinflammation and indicate that the Mfn2-Yap axis may be a focus of research in terms of having therapeutic value for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Hou
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China
| | - Lili Wang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China
| | - Guoping Zhang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China.
| |
Collapse
|
31
|
Zhong J, Ouyang H, Sun M, Lu J, Zhong Y, Tan Y, Hu Y. Tanshinone IIA attenuates cardiac microvascular ischemia-reperfusion injury via regulating the SIRT1-PGC1α-mitochondrial apoptosis pathway. Cell Stress Chaperones 2019; 24:991-1003. [PMID: 31388827 PMCID: PMC6717231 DOI: 10.1007/s12192-019-01027-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac microvascular ischemia-reperfusion (IR) injury has been a neglected topic in recent decades. In the current study, we investigated the mechanism underlying microvascular IR injury, with a focus on mitochondrial homeostasis. We also explored the protective role of tanshinone IIA (Tan IIA) in microvascular protection in the context of IR injury. Through animal studies and cell experiments, we demonstrated that IR injury mediated microvascular wall destruction, lumen stenosis, perfusion defects, and cardiac microvascular endothelial cell (CMEC) apoptosis via inducing mitochondrial damage. In contrast, Tan IIA administration had the ability to sustain CMEC viability and microvascular homeostasis, finally attenuating microvascular IR injury. Function studies have confirmed that the SIRT1/PGC1α pathway is responsible for the microvascular protection from the Tan IIA treatment. SIRT1 activation by Tan IIA sustained the mitochondrial potential, alleviated the mitochondrial pro-apoptotic factor leakage, reduced the mPTP opening, and blocked mitochondrial apoptosis, providing a survival advantage for CMECs and preserving microvascular structure and function. By comparison, inhibiting SIRT1 abrogated the beneficial effects of Tan IIA on mitochondrial function, CMEC survival, and microvascular homeostasis. Collectively, this study indicated that Tan IIA should be considered a microvascular-protective drug that alleviates acute cardiac microcirculation IR injury via activating the SIRT1/PGC1α pathway and thereby blocking mitochondrial damage.
Collapse
Affiliation(s)
- Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Haichun Ouyang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Mingming Sun
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Yuanlin Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China.
| |
Collapse
|
32
|
Zhong J, Tan Y, Lu J, Liu J, Xiao X, Zhu P, Chen S, Zheng S, Chen Y, Hu Y, Guo Z. Therapeutic contribution of melatonin to the treatment of septic cardiomyopathy: A novel mechanism linking Ripk3-modified mitochondrial performance and endoplasmic reticulum function. Redox Biol 2019; 26:101287. [PMID: 31386965 PMCID: PMC6692063 DOI: 10.1016/j.redox.2019.101287] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 12/30/2022] Open
Abstract
The basic pathophysiological mechanisms underlying septic cardiomyopathy have not yet been completely clarified. Disease-specific treatments are lacking, and care is still based on supportive modalities. The aim of our study was to assess the protective effects of melatonin on septic cardiomyopathy, with a focus on the interactions between receptor-interacting protein kinase 3 (Ripk3), the mitochondria, endoplasmic reticulum (ER) and cytoskeletal degradation in cardiomyocytes. Ripk3 expression was increased in heart samples challenged with LPS, followed by myocardial inflammation, cardiac dysfunction, myocardial breakdown and cardiomyocyte death. The melatonin treatment attenuated septic myocardial injury in a comparable manner to the genetic depletion of Ripk3. Molecular investigations revealed that Ripk3 intimately regulated mitochondrial function, ER stress, cytoskeletal homeostasis and cardioprotective signaling pathways. Melatonin-mediated inhibition of Ripk3 improved mitochondrial bioenergetics, reduced mitochondria-initiated oxidative damage, sustained mitochondrial dynamics, ameliorated ER stress, normalized calcium recycling, and activated cardioprotective signaling pathways (including AKT, ERK and AMPK) in cardiomyocytes. Interestingly, Ripk3 overexpression mediated resistance to melatonin therapy following the infection of LPS-treated hearts with an adenovirus expressing Ripk3. Altogether, our findings identify Ripk3 upregulation as a novel risk factor for the development of sepsis-related myocardial injury, and melatonin restores the physiological functions of the mitochondria, ER, contractile cytoskeleton and cardioprotective signaling pathways. Additionally, our data also reveal a new, potentially therapeutic mechanism by which melatonin protects the heart from sepsis-mediated dysfunction, possibly by targeting Ripk3.
Collapse
Affiliation(s)
- Jiankai Zhong
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Jichen Liu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochan Xiao
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pinji Zhu
- Medical School of Chinese PLA, PLA General Hospital, Beijing, 100853, China
| | - Sainan Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sulin Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Yuying Chen
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528308, Guangdong, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Tian H, Wang K, Jin M, Li J, Yu Y. Proinflammation effect of Mst1 promotes BV-2 cell death via augmenting Drp1-mediated mitochondrial fragmentation and activating the JNK pathway. J Cell Physiol 2019; 235:1504-1514. [PMID: 31283035 DOI: 10.1002/jcp.29070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Inflammation has been increasingly studied as part of the pathophysiology of neurodegenerative diseases. Mammalian Ste20-like kinase 1 (Mst1), a key factor of the Hippo pathway, is connected to cell death. Unfortunately, little study has been performed to detect the impact of Mst1 in neuroninflammation. The results indicated that Mst1 expression was upregulated because of LPS treatment. However, the loss of Mst1 sustained BV-2 cell viability and promoted cell survival in the presence of LPS treatment. Molecular investigation assay demonstrated that Mst1 deletion was followed by a drop in the levels of mitochondrial fission via repressing Drp1 expression. However, Drp1 adenovirus transfection reduced the protective impacts of Mst1 knockdown on mitochondrial stress and neuronal dysfunction. Finally, our results illuminated that Mst1 affected Drp1 content and mitochondrial fission in a JNK-dependent mechanism. Reactivation of the JNK axis inhibited Mst1 knockdown-mediated neuronal protection and mitochondrial homeostasis. Altogether, our results indicated that Mst1 upregulation and the activation of JNK-Drp1-mitochondrial fission pathway could be considered as the novel mechanism regulating the progression of neuroninflammation. This finding would pave a new road for the treatment of neurodegenerative diseases via modulating the Mst1-JNK-Drp1-mitochondrial fission axis.
Collapse
Affiliation(s)
- Hong Tian
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Kang Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Jin
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Jingtao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
34
|
Fan J, Zhu Q, Wu Z, Ding J, Qin S, Liu H, Miao P. Protective effects of irisin on hypoxia-reoxygenation injury in hyperglycemia-treated cardiomyocytes: Role of AMPK pathway and mitochondrial protection. J Cell Physiol 2019; 235:1165-1174. [PMID: 31268170 DOI: 10.1002/jcp.29030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.
Collapse
Affiliation(s)
- Jiamao Fan
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Qing Zhu
- Department of Cardiology, Linfen Central Hospital, Linfen, China.,Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhenhua Wu
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Jiao Ding
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Shuai Qin
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Hui Liu
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Pengfei Miao
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| |
Collapse
|
35
|
Ma C, Fan L, Wang J, Hao L, He J. Hippo/Mst1 overexpression induces mitochondrial death in head and neck squamous cell carcinoma via activating β-catenin/Drp1 pathway. Cell Stress Chaperones 2019; 24:807-816. [PMID: 31127452 PMCID: PMC6629754 DOI: 10.1007/s12192-019-01008-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
Mammalian Ste20-like kinase 1 (Mst1) is associated with cell apoptosis. In the current study, we explored the regulatory effects of Mst1 on squamous cell carcinoma of the head and neck (SCCHN) in vitro. SCCHN Cal27 cells and Tu686 cells were transfected with adenovirus-loaded Mst1 to detect the role of Mst1 in cell viability. Then, siRNA against Drp1 was transfected into cells to evaluate the influence of mitochondrial fission in cancer survival. Our data illustrated that Mst1 overexpression promoted SCCHN Cal27 cell and Tu686 cell death via activating mitochondria-related apoptosis. Cells transfected with adenovirus-loaded Mst1 have increased expression of DRP1 and higher DRP1 promoted mitochondrial fission. Active mitochondrial fission mediated mitochondrial damage, as evidenced by increased mitochondrial oxidative stress, decreased mitochondrial energy production, and reduced mitochondrial respiratory complex function. Moreover, Mst1 overexpression triggered mitochondria-dependent cell apoptosis via DRP1-related mitochondrial fission. Further, we found that Mst1 overexpression controlled mitochondrial fission via the β-catenin/DRP1 pathways; inhibition of β-catenin and/or knockdown of DRP1 abolished the pro-apoptotic effects of Mst1 overexpression on SCCHN Cal27 cells and Tu686 cells, leading to the survival of cancer cells in vitro. In sum, our results illustrate that Mst1/β-catenin/DRP1 axis affects SCCHN Cal27 cell and Tu686 cell viability via controlling mitochondrial dynamics balance. This finding identifies Mst1 activation might be an effective therapeutic target for the treatment of SCCHN.
Collapse
Affiliation(s)
- Chao Ma
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China.
| | - Longkun Fan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jingxian Wang
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Lixia Hao
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| | - Jinqiu He
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, 061001, China
| |
Collapse
|
36
|
Shang X, Lin K, Zhang Y, Li M, Xu J, Chen K, Zhu P, Yu R. Mst1 deletion reduces septic cardiomyopathy via activating Parkin-related mitophagy. J Cell Physiol 2019; 235:317-327. [PMID: 31215035 DOI: 10.1002/jcp.28971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
Cardiomyocyte function and viability are highly modulated by mammalian Ste20-like kinase 1 (Mst1)-Hippo pathway and mitochondria. Mitophagy, a kind of mitochondrial autophagy, is a protective program to attenuate mitochondrial damage. However, the relationship between Mst1 and mitophagy in septic cardiomyopathy has not been explored. In the present study, Mst1 knockout mice were used in a lipopolysaccharide (LPS)-induced septic cardiomyopathy model. Mitophagy activity was measured via immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay. Pathway blocker and small interfering RNA were used to perform the loss-of-function assay. The results demonstrated that Mst1 was rapidly increased in response to LPS stress. Knockout of Mst1 attenuated LPS-mediated inflammation damage, reduced cardiomyocyte death, and improved cardiac function. At the molecular levels, LPS treatment activated mitochondrial damage, such as mitochondrial respiratory dysfunction, mitochondrial potential reduction, mitochondrial ATP depletion, and caspase family activation. Interestingly, in response to mitochondrial damage, Mst1 deletion activated mitophagy which attenuated LPS-mediated mitochondrial damage. However, inhibition of mitophagy via inhibiting parkin mitophagy abolished the protective influences of Mst1 deletion on mitochondrial homeostasis and cardiomyocyte viability. Overall, our results demonstrated that septic cardiomyopathy is linked to Mst1 upregulation which is followed by a drop in the protective mitophagy.
Collapse
Affiliation(s)
- Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaiyang Lin
- Department of Cardiology, Fujian Provincial Hospital, Fujian Cardiovascular Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yingrui Zhang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Min Li
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Jingqing Xu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaihua Chen
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Pengli Zhu
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Provincial Institute of Clinical Geriatrics, Fujian Key Laboratory of Geriatrics, Fujian, Provincial Center for Geriatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Rongguo Yu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian, Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
37
|
Qin R, Lin D, Zhang L, Xiao F, Guo L. Mst1 deletion reduces hyperglycemia-mediated vascular dysfunction via attenuating mitochondrial fission and modulating the JNK signaling pathway. J Cell Physiol 2019; 235:294-303. [PMID: 31206688 DOI: 10.1002/jcp.28969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022]
Abstract
Diabetes is a leading cause of microvascular complications, such as nephropathy and retinopathy. Recent studies have proposed that hyperglycemia-induced endothelial cell dysfunction is modulated by mitochondrial stress. Therefore, our experiment was to detect the upstream mediator of mitochondrial stress in hyperglycemia-treated endothelial cells with a focus on macrophage-stimulating 1 (Mst1) and mitochondrial fission. Our data illuminated that hyperglycemia incubation reduced cell viability, as well as increased apoptosis ratio in endothelial cell, and this alteration seemed to be associated with Mst1 upregulation. Inhibition of Mst1 via transfection of Mst1 siRNA into an endothelial cell could sustain cell viability and maintain mitochondrial function. At the molecular levels, endothelial cell death was accompanied with the activation of mitochondrial oxidative stress, mitochondrial apoptosis, and mitochondrial fission. Genetic ablation of Mst1 could reduce mitochondrial oxidative injury, block mitochondrial apoptosis, and repress mitochondrial fission. Besides, we also found Mst1 triggered mitochondrial dysfunction as well as endothelial cell damage through augmenting JNK pathway. Suppression of JNK largely ameliorated the protective actions of Mst1 silencing on hyperglycemia-treated endothelial cells and sustain mitochondrial function. The present study identifies Mst1 as a primary key mediator for hyperglycemia-induced mitochondrial damage and endothelial cell dysfunction. Increased Mst1 impairs mitochondrial function and activates endothelial cell death via opening mitochondrial death pathway through JNK.
Collapse
Affiliation(s)
- Ruijie Qin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Lin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Fei Xiao
- Department of Pathology, The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
38
|
Wang Q, Xu J, Li X, Liu Z, Han Y, Xu X, Li X, Tang Y, Liu Y, Yu T, Li X. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the ERK-OPA1 signaling pathway. J Cell Physiol 2019; 234:23495-23506. [PMID: 31173361 DOI: 10.1002/jcp.28918] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial fusion is linked to heart and liver ischemia-reperfusion (IR) insult. Unfortunately, there is no report to elucidate the detailed influence of mitochondrial fusion in renal IR injury. This study principally investigated the mechanism by which mitochondrial fusion protected kidney against IR injury. Our results indicated that sirtuin 3 (Sirt3) was inhibited after renal IR injury in vivo and in vitro. Overexpression of Sirt3 improved kidney function, modulated oxidative injury, repressed inflammatory damage, and reduced tubular epithelial cell apoptosis. The molecular investigation found that Sirt3 overexpression attenuated IR-induced mitochondrial damage in renal tubular epithelial cells, as evidenced by decreased reactive oxygen species production, increased antioxidants sustained mitochondrial membrane potential, and inactivated mitochondria-initiated death signaling. In addition, our information also illuminated that Sirt3 maintained mitochondrial homeostasis against IR injury by enhancing optic atrophy 1 (OPA1)-triggered fusion of mitochondrion. Inhibition of OPA1-induced fusion repressed Sirt3 overexpression-induced kidney protection, leading to mitochondrial dysfunction. Further, our study illustrated that OPA1-induced fusion could be affected through ERK; inhibition of ERK abolished the regulatory impacts of Sirt3 on OPA1 expression and mitochondrial fusion, leading to mitochondrial damage and tubular epithelial cell apoptosis. Altogether, our results suggest that renal IR injury is closely associated with Sirt3 downregulation and mitochondrial fusion inhibition. Regaining Sirt3 and/or activating mitochondrial fission by modifying the ERK-OPA1 cascade may represent new therapeutic modalities for renal IR injury.
Collapse
Affiliation(s)
- Qiang Wang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Junnan Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoli Li
- Department of Geriatric Cardiology, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijia Liu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Han
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoguang Xu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiubin Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuzhe Tang
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yubao Liu
- Urology Department, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Tao Yu
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiang Li
- Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, The Organ Transplant Institute of People's Liberation Army, the 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Lu K, Liu X, Guo W. Melatonin attenuates inflammation‐related venous endothelial cells apoptosis through modulating the MST1–MIEF1 pathway. J Cell Physiol 2019; 234:23675-23684. [PMID: 31169304 DOI: 10.1002/jcp.28935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Lu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular Surgery Da Qing Oil General Hospital Daquing Hei Longjiang China
| | - Xiaoping Liu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| |
Collapse
|
40
|
Song H, Wang M, Xin T. Mst1 contributes to nasal epithelium inflammation via augmenting oxidative stress and mitochondrial dysfunction in a manner dependent on Nrf2 inhibition. J Cell Physiol 2019; 234:23774-23784. [PMID: 31165471 DOI: 10.1002/jcp.28945] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Nasal epithelium inflammation plays an important role in transmitting and amplifying damage signals for the lower airway. However, the molecular basis of nasal epithelium inflammation damage has not been fully addressed. Mst1 is reported to modulate inflammation via multiple effects. Thus, the aim of our study is to understand the pathological mechanism underlying Mst1-related nasal epithelium inflammation in vitro. Our result indicated that Mst1 expression was rapidly increased in response to tumor necrosis factor-α (TNF-α) treatment in vitro and this effect was a dose-dependent manner. Interestingly, knockdown of Mst1 via transfecting small interfering RNA markedly reversed cell viability in the presence of TNF-α. Further, we found that Mst1 deficiency reduced cellular oxidative stress and attenuated mitochondrial dysfunction, as evidenced by reversed mitochondrial complex-I activity, decreased mitochondrial permeability transition pore opening rate, and stabilized mitochondrial membrane potential. Besides, we found that Nrf2 expression was increased after deletion of Mst1 whereas silencing of Nrf2 abolished the protective effects of Mst1 deletion on nasal epithelium survival and mitochondrial homeostasis. Moreover, Nrf2 overexpression also protected nasal epithelium against TNF-α-induced inflammation damage. Altogether, our data confirm that the Mst1 activation and Nrf2 downregulation seem to be the potential mechanisms responsible for the inflammation-mediated injury in nasal epithelium via mediating mitochondrial damage and cell oxidative stress.
Collapse
Affiliation(s)
- Henge Song
- Department of Respiratory Medicine, Tianjin Dongli Hospital, Tianjin, China
| | - Mengmeng Wang
- Department of Rheumatism and Immunology, Tianjin First Central Hospital, Tianjin, China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
41
|
Xing J, Xu H, Liu C, Wei Z, Wang Z, Zhao L, Ren L. Melatonin ameliorates endoplasmic reticulum stress in N2a neuroblastoma cell hypoxia-reoxygenation injury by activating the AMPK-Pak2 pathway. Cell Stress Chaperones 2019; 24:621-633. [PMID: 30976981 PMCID: PMC6527732 DOI: 10.1007/s12192-019-00994-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/27/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been identified as a primary factor involved in brain ischemia-reperfusion injury progression. p21-activated kinase 2 (Pak2) is a novel ER function regulator. The aim of our study is to explore the influence of Pak2 on ER stress and determine whether melatonin attenuates ER stress-mediated cell death by modulating Pak2 expression in vitro using N2a cells. The results of our study demonstrated that hypoxia-reoxygenation (HR) injury repressed the levels of Pak2, an effect that was accompanied by activation of ER stress. In addition, decreased Pak2 was associated with oxidative stress, calcium overload, and caspase-12-mediated apoptosis activation in HR-treated N2a cells. Interestingly, melatonin treatment reversed the decreased Pak2 expression under HR stress. Knockdown of Pak2 abolished the protective effects of melatonin on ER stress, oxidative stress, and caspase-12-related N2a cells death. Additionally, we found that Pak2 was regulated by melatonin via the AMPK pathway; inhibition of AMPK prevented melatonin-mediated Pak2 upregulation, a result that was accompanied by an increase in N2a cell death. Altogether, these results identify the AMPK-Pak2 axis as a new signaling pathway responsible for ER stress and N2a cell viability under HR injury. Modulation of the AMPK-Pak2 cascade via supplementation of melatonin might be considered an effective approach to attenuate reperfusion-mediated N2a cell damage via repression of ER stress.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, 201399, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, 201399, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, 201399, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, 201399, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, 201399, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, 201399, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, 201399, China.
| |
Collapse
|
42
|
Hou Y, Lan C, Kong Y, Zhu C, Peng W, Huang Z, Zhang C. Genetic ablation of TAZ induces HepG2 liver cancer cell apoptosis through activating the CaMKII/MIEF1 signaling pathway. Onco Targets Ther 2019; 12:1765-1779. [PMID: 30881030 PMCID: PMC6402445 DOI: 10.2147/ott.s196142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background and objective Transcriptional coactivator with PDZ-binding motif (TAZ) has been found to be associated with tumor progression. Mitochondrial homeostasis regulates cancer cell viability and metastasis. However, the roles of TAZ and mitochondrial homeostasis in liver cancer viability have not been explored. The aim of our study was to investigate the influence of TAZ on HepG2 liver cancer cell apoptosis. Materials and methods HepG2 liver cancer cell was used in the present study, and shRNA against TAZ was transfected into HepG2 cell to knockdown TAZ expression. Mitochondrial function was analyzed using Western blotting, immunofluorescence assay, and flow cytometry. Pathway blocker was used to confirm the role of CaMKII pathway in TAZ-mediated cancer cell death. Results Our results indicated that TAZ deletion induced death in HepG2 cell via apoptosis. Biological analysis demonstrated that mitochondrial stress, including mitochondrial bioenergetics disorder, mitochondrial oxidative stress, and mitochondrial apoptosis, were activated by TAZ deletion. Furthermore, we found that TAZ affected mitochondrial stress by triggering mitochondrial elongation factor 1 (MIEF1)-related mitochondrial dysfunction. The loss of MIEF1 sustained mitochondrial function and promoted cancer cell survival. Molecular investigation illustrated that TAZ regulated MIEF1 expression via the CaMKII signaling pathway. Blockade of the CaMKII pathway prevented TAZ-mediated MIEF1 upregulation and improved cancer cell survival. Conclusion Taken together, our results highlight the key role of TAZ as a master regulator of HepG2 liver cancer cell viability via the modulation of MIEF1-related mitochondrial stress and the CaMKII signaling pathway. These findings define TAZ and MIEF1-related mitochondrial dysfunction as tumor suppressors that act by promoting cancer apoptosis via the CaMKII signaling pathway, with potential implications for new approaches to liver cancer therapy.
Collapse
Affiliation(s)
- Yi Hou
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China,
| | - Chunna Lan
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China,
| | - Ying Kong
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China,
| | - Chunjiao Zhu
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China,
| | - Wenna Peng
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China,
| | - Zhichao Huang
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China,
| | - Changjie Zhang
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China,
| |
Collapse
|
43
|
Ouyang H, Zhou E, Wang H. Mst1-Hippo pathway triggers breast cancer apoptosis via inducing mitochondrial fragmentation in a manner dependent on JNK-Drp1 axis. Onco Targets Ther 2019; 12:1147-1159. [PMID: 30809096 PMCID: PMC6376886 DOI: 10.2147/ott.s193787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Mst1-Hippo pathway and mitochondrial fragmentation participate in the progression of several types of cancers. However, their roles in breast cancer requires investigation. The aim of our study is to determine whether Mst1 overexpression regulates the viability of breast cancer cells via modulating mitochondrial fragmentation. MATERIALS AND METHODS TUNEL staining, MTT assay and Western blotting were used to detect cancer cell death. Adenovirus-loaded Mst1 was transfected into cells to overexpress Mst1. Mitochondrial fragmentation was observed via immunofluorescence staining and Western blotting. Pathway blocker was used to detect whether Mst1 modulated cell death and mitochondrial fragmentation via JNK signaling pathway. RESULTS Our data showed that Mst1 overexpression promoted breast cancer cell death in a manner dependent on mitochondrial apoptosis. Mitochondrial oxidative stress, energy metabolism disorder, mitochondrial cyt-c liberation and mitochondrial apoptosis activation were observed after Mst1 overexpression. Furthermore, we demonstrated that Mst1 overexpression activated mitochondrial stress via triggering Drp1-related mitochondrial fragmentation, and that inhibition of Drp1-related mitochondrial fragmentation abrogated the proapoptotic effect of Mst1 overexpression on breast cancer cells. To this end, we found that Mst1 modulated Drp1 expression via the JNK signaling pathway, and that blockade of the JNK pathway attenuated mitochondrial stress and repressed apoptosis in Mst1-overexpressed cells. CONCLUSION Altogether, our results identified a tumor suppressive role for Mst1 overexpression in breast cancer via activation of the JNK-Drp1 axis and subsequent initiation of fatal mitochondrial fragmentation. Given these findings, strategies to enhance Mst1 activity and elevate the JNK-Drp1-mitochondrial fragmentation cascade have clinical benefits for patients with breast cancer.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Breast and Thyroid Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China,
| | - Enxiang Zhou
- Department of Breast and Thyroid Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China,
| | - Huan Wang
- Department of Breast and Thyroid Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China,
| |
Collapse
|
44
|
Yoon YH, Kim M, Park WJ. Foliar Accumulation of Melatonin Applied to the Roots of Maize ( Zea mays) Seedlings. Biomolecules 2019; 9:biom9010026. [PMID: 30642071 PMCID: PMC6358889 DOI: 10.3390/biom9010026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
Plants absorb melatonin from the environments as well as they synthesize the regulatory molecule. We applied melatonin to the roots of maize (Zea mays) seedlings and examined its accumulation in the leaves. Melatonin accumulation in the leaves was proportional to the exogenously applied concentrations up to 5 mM, without saturation. Time-course analysis of the accumulated melatonin content did not show an adaptable (or desensitizable) uptake system over a 24-h period. Melatonin accumulation in the leaves was reduced significantly by the plant hormones abscisic acid (ABA) and salicylic acid (SA), which commonly cause stomatal closure. The application of ABA and benzo-18-crown-6 (18-CR, a stomata-closing agent) induced stomatal closure and simultaneously decreased melatonin content in the leaves. When plants were shielded from airflow in the growth chamber, melatonin accumulation in the leaves decreased, indicating the influence of reduced transpiration. We conclude that melatonin applied exogenously to the root system is absorbed, mobilized upward according to the transpirational flow, and finally accumulated in the leaves.
Collapse
Affiliation(s)
- Young Ha Yoon
- Department of Molecular Biology, Institute of Nanosensor & Biotech, Dankook University, Cheonan-si 31116, Korea.
| | - Minjae Kim
- Department of Molecular Biology, Institute of Nanosensor & Biotech, Dankook University, Cheonan-si 31116, Korea.
| | - Woong June Park
- Department of Molecular Biology, Institute of Nanosensor & Biotech, Dankook University, Cheonan-si 31116, Korea.
| |
Collapse
|
45
|
Zhao S, Li P, Wang P, Yang J, Song P, Zhang D, Zhou G. Nurr1 Promotes Lung Cancer Apoptosis Via Enhancing Mitochondrial Stress and p53-Drp1 Pathway. Open Life Sci 2019; 14:262-274. [PMID: 33817160 PMCID: PMC7874811 DOI: 10.1515/biol-2019-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Mitochondrial homeostasis is vital for the progression of lung cancer. Nurr1 has been identified as a novel mediator of mitochondrial homeostasis in several types of cancers. The aim of our study was to investigate whether Nurr1 modulates the viability of A549 lung cancer cells by inducing mitochondrial dysfunction, with a focus on the p53-Drp1 signaling pathway. METHODS western blotting, ELISA and immunofluorescence assay was used to verify the alterations of cell death. siRNA was used to determine the role of p53-Drp1 pathway in lung cancer death. RESULTS Nurr1 was downregulated in A549 lung cancer cells compared to normal pulmonary epithelial cells. Interestingly, overexpression of Nurr1 reduced the viability of A549 lung cancer cells by activating apoptosis and mitochondrial stress. At the molecular level, we provide data to support the regulatory effects of Nurr1 on the p53-Drp1 signaling pathway. Blockade of the p53-Drp1 signaling pathway abolished the proapoptotic action of Nurr1 on A549 cells and sustained mitochondrial homeostasis. CONCLUSION Taken together, our results depict the tumor-suppressive role played by Nurr1 in A549 lung cancer in vitro and show that the anticancer effects of Nurr1 are executed via triggering of mitochondrial dysfunction and activation of the p53-Drp1 signaling pathway.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Li
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Wang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Jing Yang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Song
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Dong Zhang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Gang Zhou
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| |
Collapse
|