1
|
Wan W, Liu H, Zou J, Xie T, Zhang G, Ying W, Zou X. The optimization and application of photodynamic diagnosis and autofluorescence imaging in tumor diagnosis and guided surgery: current status and future prospects. Front Oncol 2025; 14:1503404. [PMID: 39845324 PMCID: PMC11750647 DOI: 10.3389/fonc.2024.1503404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Photodynamic diagnosis (PDD) and autofluorescence imaging (AFI) are emerging cancer diagnostic technologies that offer significant advantages over traditional white-light endoscopy in detecting precancerous lesions and early-stage cancers; moreover, they hold promising potential in fluorescence-guided surgery (FGS) for tumors. However, their shortcomings have somewhat hindered the clinical application of PDD and AFI. Therefore, it is imperative to enhance the efficacy of PDD and AFI, thereby maximizing their potential for practical clinical use. This article reviews the principles, characteristics, current research status, and advancements of PDD and AFI, focusing on analyzing and discussing the optimization strategies of PDD and AFI in tumor diagnosis and FGS scenarios. Considering the practical and technical feasibility, optimizing PDD and AFI may result in an effective real-time diagnostic tool to guide clinicians in tumor diagnosis and surgical guidance to achieve the best results.
Collapse
Affiliation(s)
- Wei Wan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huiquan Liu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianpeng Xie
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Weihai Ying
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofeng Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Uckermann O, Ziegler J, Meinhardt M, Richter S, Schackert G, Eyüpoglu IY, Hijazi MM, Krex D, Juratli TA, Sobottka SB, Galli R. Raman and autofluorescence spectroscopy for in situ identification of neoplastic tissue during surgical treatment of brain tumors. J Neurooncol 2024; 170:543-553. [PMID: 39196481 PMCID: PMC11614956 DOI: 10.1007/s11060-024-04809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Raman spectroscopy (RS) is a promising method for brain tumor detection. Near-infrared autofluorescence (AF) acquired during RS provides additional useful information for tumor identification and was investigated in comparison with RS for delineating brain tumors in situ. METHODS Raman spectra were acquired together with AF in situ within the solid tumor and at the tumor border during routine brain tumor surgeries (218 spectra; glioma WHO II-III, n = 6; GBM, n = 10; metastases, n = 10; meningioma, n = 3). Tissue classification for tumor identification in situ was trained on ex vivo data (375 spectra; glioma/GBM patients, n = 20; metastases, n = 11; meningioma, n = 13; and epileptic hippocampi, n = 4). RESULTS Both in situ and ex vivo data showed that AF intensity in brain tumors was lower than that in border regions and normal brain tissue. Moreover, a positive correlation was observed between the AF intensity and the intensity of the Raman band corresponding to lipids at 1437 cm- 1, while a negative correlation was found with the intensity of the protein band at 1260 cm- 1. The classification of in situ AF and RS datasets matched the surgeon's evaluation of tissue type, with correct rates of 0.83 and 0.84, respectively. Similar correct rates were achieved in comparison to histopathology of tissue biopsies resected in selected measurement positions (AF: 0.80, RS: 0.83). CONCLUSIONS Spectroscopy was successfully integrated into existing neurosurgical workflows, and in situ spectroscopic data could be classified based on ex vivo data. RS confirmed its ability to detect brain tumors, while AF emerged as a competitive method for intraoperative tumor delineation.
Collapse
Affiliation(s)
- Ortrud Uckermann
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Ziegler
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology (Neuropathology), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sven Richter
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ilker Y Eyüpoglu
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mido M Hijazi
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
3
|
Cho YH, Kim S, Won TK, Cho S, Ahn DJ. Accumulated in-situ spectral information analysis of room-temperature phosphorescence with time-gated bioimaging. Mater Today Bio 2024; 28:101238. [PMID: 39318377 PMCID: PMC11421373 DOI: 10.1016/j.mtbio.2024.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
This study introduces the time-gated analysis of room-temperature phosphorescence (RTP) for the in-situ analysis of the visible and spectral information of photons. Time-gated analysis is performed using a microscopic system consisting of a spectrometer, which is advantageous for in-situ analysis since it facilitates the real-time measurement of luminescence signal changes. An RTP material hybridized with a DNA aptamer that targets a specific protein enhances the intensity and lifetime of phosphorescence after selective recognition with the target protein. In addition, time-gated analysis allows for the millisecond-scale imaging of phosphorescence signals, excluding autofluorescence, and improves the signal-to-background ratio (SBR) through the accumulation of signals. While collecting the time-gated images and spectra of RTP and autofluorescent materials simultaneously, we develop a method for obtaining phosphorescence signals by means of selective exclusion of autofluorescence signals in simulated or real cell conditions. It is confirmed that the accumulated time-gated analysis can provide ample information about luminescence signals for bioimaging and biosensing applications.
Collapse
Affiliation(s)
- Yong Ho Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Seokho Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Tae Kyung Won
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Sunki Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
- Korea Institute of Science and Technology, Seoul, 02792, South Korea
| |
Collapse
|
4
|
Leach BI, Lister D, Adams SR, Bykowski J, Schwartz AB, McConville P, Dimant H, Ahrens ET. Cryo-Fluorescence Tomography as a Tool for Visualizing Whole-Body Inflammation Using Perfluorocarbon Nanoemulsion Tracers. Mol Imaging Biol 2024; 26:888-898. [PMID: 39023693 DOI: 10.1007/s11307-024-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE We explore the use of intravenously delivered fluorescent perfluorocarbon (PFC) nanoemulsion tracers and multi-spectral cryo-fluorescence tomography (CFT) for whole-body tracer imaging in murine inflammation models. CFT is an emerging technique that provides high-resolution, three-dimensional mapping of probe localization in intact animals and tissue samples, enabling unbiased validation of probe biodistribution and minimizes reliance on laborious histological methods employing discrete tissue panels, where disseminated populations of PFC-labeled cells may be overlooked. This methodology can be used to streamline the development of new generations of non-invasive, cellular-molecular imaging probes for in vivo imaging. PROCEDURES Mixtures of nanoemulsions with different fluorescent emission wavelengths were administered intravenously to naïve mice and models of acute inflammation, colitis, and solid tumor. Mice were euthanized 24 h post-injection, frozen en bloc, and imaged at high resolution (~ 50 µm voxels) using CFT at multiple wavelengths. RESULTS PFC nanoemulsions were visualized using CFT within tissues of the reticuloendothelial system and inflammatory lesions, consistent with immune cell (macrophage) labeling, as previously reported in in vivo magnetic resonance and nuclear imaging studies. The CFT signals show pronounced differences among fluorescence wavelengths and tissues, presumably due to autofluorescence, differential fluorescence quenching, and scattering of incident and emitted light. CONCLUSIONS CFT is an effective and complementary methodology to in vivo imaging for validating PFC nanoemulsion biodistribution at high spatial localization, bridging the resolution gap between in vivo imaging and histology.
Collapse
Affiliation(s)
- Benjamin I Leach
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Julie Bykowski
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Amy B Schwartz
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | - Eric T Ahrens
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
6
|
Chandrasekara CMN, Gemikonakli G, Mach J, Sang R, Anwer AG, Agha A, Goldys EM, Hilmer SN, Campbell JM. Ageing and Polypharmacy in Mesenchymal Stromal Cells: Metabolic Impact Assessed by Hyperspectral Imaging of Autofluorescence. Int J Mol Sci 2024; 25:5830. [PMID: 38892017 PMCID: PMC11171960 DOI: 10.3390/ijms25115830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The impact of age on mesenchymal stromal cell (MSC) characteristics has been well researched. However, increased age is concomitant with increased prevalence of polypharmacy. This adjustable factor may have further implications for the functionality of MSCs and the effectiveness of autologous MSC procedures. We applied hyperspectral microscopy of cell autofluorescence-a non-invasive imaging technique used to characterise cytometabolic heterogeneity-to identify changes in the autofluorescence signals of MSCs from (1) young mice, (2) old mice, (3) young mice randomised to receive polypharmacy (9-10 weeks of oral therapeutic doses of simvastatin, metoprolol, oxycodone, oxybutynin and citalopram), and (4) old mice randomised to receive polypharmacy. Principal Component Analysis and Logistic Regression Analysis were used to assess alterations in spectral and associated metabolic characteristics. Modelling demonstrated that cells from young mice receiving polypharmacy had less NAD(P)H and increased porphyrin relative to cells from old control mice, allowing for effective separation of the two groups (AUC of ROC curve > 0.94). Similarly, cells from old polypharmacy mice were accurately separated from those from young controls due to lower levels of NAD(P)H (p < 0.001) and higher porphyrin (p < 0.001), allowing for an extremely accurate logistic regression (AUC of ROC curve = 0.99). This polypharmacy regimen may have a more profound impact on MSCs than ageing, and can simultaneously reduce optical redox ratio (ORR) and increase porphyrin levels. This has implications for the use of autologous MSCs for older patients with chronic disease.
Collapse
Affiliation(s)
- Chandrasekara M. N. Chandrasekara
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - Rui Sang
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Ayad G. Anwer
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Adnan Agha
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Ewa M. Goldys
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| | - Sarah N. Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Northern Sydney Local Health District and Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia; (G.G.); (J.M.); (S.N.H.)
| | - Jared M. Campbell
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW 2052, Australia; (C.M.N.C.); (R.S.); (A.G.A.); (A.A.); (E.M.G.)
| |
Collapse
|
7
|
Seo PW, Kim GJ, Kim JS. A short guide on blue fluorescent proteins: limits and perspectives. Appl Microbiol Biotechnol 2024; 108:208. [PMID: 38353763 PMCID: PMC10866763 DOI: 10.1007/s00253-024-13012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
The advent of the so-called colorful biology era is in line with the discovery of fluorescent proteins (FPs), which can be widely used to detect the intracellular locations of macromolecules or to determine the abundance of metabolites in organelles. The application of multiple FPs that emit different spectra and colors could be implemented to precisely evaluate cellular events. FPs were initially established with the emergence of the green fluorescent protein (GFP) from jellyfish. Red fluorescent proteins (RFPs) from marine anemones and several corals adopt fluorescent chromophores that are similar to GFP. Chromophores of GFP and GFP-like FPs are formed through the oxidative rearrangement of three chromophore-forming residues, thereby limiting their application to only oxidative environments. Alternatively, some proteins can be fluorescent upon their interaction with cellular prosthetic cofactors and, thus, work in aerobic and anaerobic conditions. The modification of an NADPH-dependent blue fluorescent protein (BFP) also expanded its application to the quantization of NADPH in the cellular environment. However, cofactor-dependent BFPs have an intrinsic weakness of poor photostability with a high fluorescent background. This review explores GFP-derived and NADPH-dependent BFPs with a focus on NADPH-dependent BFPs, which might be technically feasible in the near future upon coupling with two-photon fluorescence microscopy or nucleic acid-mimickers. KEY POINTS: • Oxidation-dependent GFP-like BFPs and redox-free NADPH-dependent BFPs • GFPs of weak photostability and intensity with a high fluorescent background • Real-time imaging using mBFP under two-photon fluorescence microscopy.
Collapse
Affiliation(s)
- Pil-Won Seo
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
8
|
Chen CC, Peng SJ, Chou YH, Lee CY, Lee PH, Hu RH, Ho MC, Chung MH, Hsiao FT, Tien YW, Tang SC. Human liver afferent and efferent nerves revealed by 3-D/Airyscan super-resolution imaging. Am J Physiol Endocrinol Metab 2024; 326:E107-E123. [PMID: 38170164 DOI: 10.1152/ajpendo.00205.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Neural regulation of hepatic metabolism has long been recognized. However, the detailed afferent and efferent innervation of the human liver has not been systematically characterized. This is largely due to the liver's high lipid and pigment contents, causing false-negative (light scattering and absorption) and false-positive (autofluorescence) results in in-depth fluorescence imaging. Here, to avoid the artifacts in three-dimensional (3-D) liver neurohistology, we embed the bleached human liver in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution imaging. Importantly, using the paired substance P (SP, sensory marker) and PGP9.5 (pan-neuronal marker) labeling, we detect the sensory nerves in the portal space, featuring the SP+ varicosities in the PGP9.5+ nerve bundles/fibers, confirming the afferent liver innervation. Also, using the tyrosine hydroxylase (TH, sympathetic marker) labeling, we identify 1) condensed TH+ sympathetic nerves in the portal space, 2) extension of sympathetic nerves from the portal to the intralobular space, in which the TH+ nerve density is 2.6 ± 0.7-fold higher than that of the intralobular space in the human pancreas, and 3) the TH+ nerve fibers and varicosities contacting the ballooning cells, implicating potential sympathetic influence on hepatocytes with macrovesicular fatty change. Finally, using the vesicular acetylcholine transporter (VAChT, parasympathetic marker), PGP9.5, and CK19 (epithelial marker) labeling with panoramic-to-Airyscan super-resolution imaging, we detect and confirm the parasympathetic innervation of the septal bile duct. Overall, our labeling and 3-D/Airyscan imaging approach reveal the hepatic sensory (afferent) and sympathetic and parasympathetic (efferent) innervation, establishing a clinically related setting for high-resolution 3-D liver neurohistology.NEW & NOTEWORTHY We embed the human liver (vs. pancreas, positive control) in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution neurohistology. The pancreas-liver comparison reveals: 1) sensory nerves in the hepatoportal space; 2) intralobular sympathetic innervation, including the nerve fibers and varicosities contacting the ballooning hepatocytes; and 3) parasympathetic innervation of the septal bile duct. Our results highlight the sensitivity and resolving power of 3-D/Airyscan super-resolution imaging in human liver neurohistology.
Collapse
Affiliation(s)
- Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Jung Peng
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsien Chou
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital-Yunlin Branch, Yunlin, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Department of Surgery, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Mei-Hsin Chung
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Pathology, National Taiwan University Hospital-Hsinchu Branch, Hsinchu, Taiwan
| | - Fu-Ting Hsiao
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Wen Tien
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiue-Cheng Tang
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
9
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
10
|
Kronenberg K, Werner J, Bohrer P, Steiger K, Buchholz R, von Bremen-Kühne M, Elinkmann M, Paprottka PM, Braren RF, Lohöfer FK, Karst U. Simultaneous quantification of Gadoxetic acid and Cisplatin in hepatocellular carcinomas using laser ablation-inductively coupled plasma-mass spectrometry. Metallomics 2023; 15:mfad052. [PMID: 37715341 DOI: 10.1093/mtomcs/mfad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The gadolinium-based contrast agent Gadoxetic acid and the platinum-based antitumor agent Cisplatin were quantitatively imaged in liver and liver cancer (hepatocellular carcinoma, HCC) tissue of rats by means of laser ablation-inductively coupled plasma-mass spectrometry. HCC bearing rats simultaneously received a tail vein injection of the hepatocyte-specific magnetic resonance imaging contrast agent Gadoxetic acid and a transarterial injection of Cisplatin 15 min before sacrifice and liver removal. Resecting HCC with adjacent liver tissue allows the comparison of Gd, Pt, and endogenous elements like Fe, Cu, and Zn in the various tissue types. Region of interest analysis reveals lower concentrations of Gd in HCC and higher Gd content in the adjacent liver, fitting the selective uptake of Gadoxetic acid into hepatocytes. Furthermore, two malignancy grades and their possible impact on the Gadoxetic acid and Cisplatin uptake are compared. For this, four high grade (G3) and two moderate grade (G2) HCCs were analysed, including a control sample each. Gd concentrations were lower in HCC irrespective of the grade of dedifferentiation (G2, G3) compared to adjacent liver. Despite local arterial Cisplatin injection, concentrations of Pt were similar or also reduced in HCC compared to liver tissue. In addition, endogenous Fe, Cu, and Zn were quantified. While Zn was homogenously distributed, higher Fe concentrations were determined in liver tissue compared to HCC. Hotspots of Cu suggest a deregulated copper homeostasis in certain liver lesions. The Gd and Fe distributions are compared in detail with cellular alterations examined by hematoxylin and eosin staining.
Collapse
Affiliation(s)
- Katharina Kronenberg
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Julia Werner
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Peter Bohrer
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | | | - Matthias Elinkmann
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| | - Philipp M Paprottka
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Rickmer F Braren
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Fabian K Lohöfer
- Institute of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, 48149 Münster, Germany
| |
Collapse
|
11
|
Kandurova KY, Sumin DS, Mamoshin AV, Potapova EV. Deconvolution of the fluorescence spectra measured through a needle probe to assess the functional state of the liver. Lasers Surg Med 2023; 55:690-701. [PMID: 37300892 DOI: 10.1002/lsm.23695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Currently, one of the most pressing issues for surgeons in the treatment of obstructive jaundice is the ability to assess the functional state of the liver and to detect and determine the degree of liver failure in a timely manner with simple and objective techniques. In this regard, the use of fluorescence spectroscopy method can be considered as one of the ways to improve the informativity of existing diagnostic algorithms in clinical practice and to introduce new diagnostic tools. Thus, the aim of the work was to study in vivo the functional state of liver parenchyma by the method of fluorescence spectroscopy implemented through a needle probe and assess the contribution of the main tissue fluorophores to reveal new diagnostic criteria. MATERIALS AND METHODS We compared data from 20 patients diagnosed with obstructive jaundice and 11 patients without this syndrome. Measurements were performed using a fluorescence spectroscopy method at excitation wavelengths of 365 and 450 nm. Data were collected using a 1 mm fiber optic needle probe. The analysis was based on the comparison of the results of deconvolution with the combinations of Gaussian curves reflecting the contribution of the pure fluorophores in the liver tissues. RESULTS The results showed a statistically significant increase in the contribution of curves reflecting NAD(P)H fluorescence, bilirubin, and flavins in the group of patients with obstructive jaundice. This and the calculated redox ratio values indicated that the energy metabolism of the hepatocytes may have shifted to glycolysis due to hypoxia. An increase in vitamin A fluorescence was also observed. It may also serve as a marker of liver damage, indicating impaired vitamin A mobilization from the liver due to cholestasis. CONCLUSIONS The results obtained reflect changes associated with shifts in the content of the main fluorophores characterizing hepatocyte dysfunction caused by accumulation of bilirubin and bile acids and after disturbance of oxygen utilization. The contributions of NAD(P)H, flavins, and bilirubin as well as vitamin A can be used for further studies as promising diagnostic and prognostic markers for the course of liver failure. Further work will include collecting fluorescence spectroscopy data in patients with different clinical effects of obstructive jaundice on postoperative clinical outcome after biliary decompression.
Collapse
Affiliation(s)
- Ksenia Y Kandurova
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Dmitry S Sumin
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
- Department of Interventional Radiology, Orel Regional Clinical Hospital, Orel, Russia
| | - Andrian V Mamoshin
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
- Department of Interventional Radiology, Orel Regional Clinical Hospital, Orel, Russia
| | - Elena V Potapova
- Research and Development Center of Biomedical Photonics, Orel State University, Orel, Russia
| |
Collapse
|
12
|
Uzhytchak M, Smolková B, Frtús A, Stupakov A, Lunova M, Scollo F, Hof M, Jurkiewicz P, Sullivan GJ, Dejneka A, Lunov O. Sensitivity of endogenous autofluorescence in HeLa cells to the application of external magnetic fields. Sci Rep 2023; 13:10818. [PMID: 37402779 DOI: 10.1038/s41598-023-38015-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/30/2023] [Indexed: 07/06/2023] Open
Abstract
Dramatically increased levels of electromagnetic radiation in the environment have raised concerns over the potential health hazards of electromagnetic fields. Various biological effects of magnetic fields have been proposed. Despite decades of intensive research, the molecular mechanisms procuring cellular responses remain largely unknown. The current literature is conflicting with regards to evidence that magnetic fields affect functionality directly at the cellular level. Therefore, a search for potential direct cellular effects of magnetic fields represents a cornerstone that may propose an explanation for potential health hazards associated with magnetic fields. It has been proposed that autofluorescence of HeLa cells is magnetic field sensitive, relying on single-cell imaging kinetic measurements. Here, we investigate the magnetic field sensitivity of an endogenous autofluorescence in HeLa cells. Under the experimental conditions used, magnetic field sensitivity of an endogenous autofluorescence was not observed in HeLa cells. We present a number of arguments indicating why this is the case in the analysis of magnetic field effects based on the imaging of cellular autofluorescence decay. Our work indicates that new methods are required to elucidate the effects of magnetic fields at the cellular level.
Collapse
Affiliation(s)
- Mariia Uzhytchak
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Barbora Smolková
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Adam Frtús
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Alexandr Stupakov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Mariia Lunova
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
- Institute for Clinical and Experimental Medicine (IKEM), Prague, 14021, Czech Republic
| | - Federica Scollo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Gareth John Sullivan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, 18221, Czech Republic.
| |
Collapse
|
13
|
Croce AC, Ferrigno A, Palladini G, Mannucci B, Vairetti M, Di Pasqua LG. Fatty Acids and Bilirubin as Intrinsic Autofluorescence Serum Biomarkers of Drug Action in a Rat Model of Liver Ischemia and Reperfusion. Molecules 2023; 28:molecules28093818. [PMID: 37175228 PMCID: PMC10180479 DOI: 10.3390/molecules28093818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The autofluorescence of specific fatty acids, retinoids, and bilirubin in crude serum can reflect changes in liver functional engagement in maintaining systemic metabolic homeostasis. The role of these fluorophores as intrinsic biomarkers of pharmacological actions has been investigated here in rats administered with obeticholic acid (OCA), a Farnesoid-X Receptor (FXR) agonist, proven to counteract the increase of serum bilirubin in hepatic ischemia/reperfusion (I/R) injury. Fluorescence spectroscopy has been applied to an assay serum collected from rats submitted to liver I/R (60/60 min ± OCA administration). The I/R group showed changes in the amplitude and profiles of emission spectra excited at 310 or 366 nm, indicating remarkable alterations in the retinoid and fluorescing fatty acid balance, with a particular increase in arachidonic acid. The I/R group also showed an increase in bilirubin AF, detected in the excitation spectra recorded at 570 nm. OCA greatly reversed the effects observed in the I/R group, confirmed by the biochemical analysis of bilirubin and fatty acids. These results are consistent with a relationship between OCA anti-inflammatory effects and the acknowledged roles of fatty acids as precursors of signaling agents mediating damaging responses to harmful stimuli, supporting serum autofluorescence analysis as a possible direct, real-time, cost-effective tool for pharmacological investigations.
Collapse
Affiliation(s)
- Anna C Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, 27100 Pavia, Italy
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Internal Medicine, Fondazione, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | | | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Laura G Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
14
|
Lifante J, de la Fuente-Fernández M, Román-Carmena M, Fernandez N, Jaque García D, Granado M, Ximendes E. In vivo grading of lipids in fatty liver by near-infrared autofluorescence and reflectance. JOURNAL OF BIOPHOTONICS 2023; 16:e202200208. [PMID: 36377726 DOI: 10.1002/jbio.202200208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The prevalence of nonalcoholic fatty liver (NAFLD) is rapidly increasing worldwide. When untreated, it may lead to complications such as liver cirrhosis or hepatocarcinoma. The diagnosis of NAFLD is usually obtained by ultrasonography, a technique that can underestimate its prevalence. For this reason, physicians aspire for an accurate, cost-effective, and noninvasive method to determine both the presence and the specific stage of the NAFLD. In this paper, we report an integrated approach for the quantitative estimation of the density of triglycerides in the liver based on the use of autofluorescence and reflectance signals generated by the abdomen of obese C57BL6/J mice. Singular value decomposition is applied to the generated spectra and its corresponding regression model provided a determination coefficient of 0.99 and a root mean square error of 240 mg/dl. This, in turn, enabled the quantitative imaging of triglycerides density in the livers of mice under in vivo conditions.
Collapse
Affiliation(s)
- José Lifante
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| | | | | | - Nuria Fernandez
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Jaque García
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| | - Miriam Granado
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG), Universidad Autónoma de Madrid, Madrid, Spain
- IRYCIS, Madrid, Spain
| |
Collapse
|
15
|
Corden C, Boitor R, Dusanjh PK, Harwood A, Mukherjee A, Gomez D, Notingher I. Autofluorescence-Raman Spectroscopy for Ex Vivo Mapping Colorectal Liver Metastases and Liver Tissue. J Surg Res 2023; 288:10-20. [PMID: 36940563 DOI: 10.1016/j.jss.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Identifying colorectal liver metastases (CRLM) during liver resection could assist in achieving clear surgical margins, which is an important prognostic variable for both disease-free and overall survival. The aim of this study was to investigate the effect of auto-fluorescence (AF) and Raman spectroscopy for ex vivo label-free discrimination of CRLMs from normal liver tissue. Secondary aims include exploring options for multimodal AF-Raman integration with respect to diagnosis accuracy and imaging speed on human liver tissue and CRLM. METHODS Liver samples were obtained from patients undergoing liver surgery for CRLM who provided informed consent (15 patients were recruited). AF and Raman spectroscopy was performed on CRLM and normal liver tissue samples and then compared to histology. RESULTS AF emission spectra demonstrated that the 671 nm and 775/785 nm excitation wavelengths provided the highest contrast, as normal liver tissue elicited on average around eight-fold higher AF intensity compared to CRLM. The use of the 785 nm wavelength had the advantage of enabling Raman spectroscopy measurements from CRLM regions, allowing discrimination of CRLM from regions of normal liver tissue eliciting unusual low AF intensity, preventing misclassification. Proof-of-concept experiments using small pieces of CRLM samples covered by large normal liver tissue demonstrated the feasibility of a dual-modality AF-Raman for detection of positive margins within few minutes. CONCLUSIONS AF imaging and Raman spectroscopy can discriminate CRLM from normal liver tissue in an ex vivo setting. These results suggest the potential for developing integrated multimodal AF-Raman imaging techniques for intraoperative assessment of surgical margins.
Collapse
Affiliation(s)
- Christopher Corden
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Radu Boitor
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Palminder Kaur Dusanjh
- Histopathology Department, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Andrew Harwood
- Histopathology Department, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Abhik Mukherjee
- Histopathology Department, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK; School of Medicine, University of Nottingham, Nottingham, UK
| | - Dhanwant Gomez
- Department of Hepatobiliary and Pancreatic Surgery, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, UK
| | - Ioan Notingher
- School of Physics and Astronomy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
16
|
Francis SJ, Torelli MD, Nunn NA, Arepally GM, Shenderova OA. Clot Imaging Using Photostable Nanodiamond. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:961. [PMID: 36985855 PMCID: PMC10055895 DOI: 10.3390/nano13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color contrast. However, photodegradation of fluorophores limits the application in longitudinal studies (e.g., clot progression and/or dissolution). Fluorescent nanodiamond (FND) is a fluorophore which utilizes intrinsic fluorescence of chromogenic centers within and protected by the diamond crystalline lattice. Recent developments in diamond processing have allowed for the controlled production of nanodiamonds emitting in green or red. Here, the use of FND to label blood clots and/or clot lysis is demonstrated and compared to commonly used organic fluorophores. Model ex vivo clots were formed with incorporated labeled fibrinogen to allow imaging. FND was shown to match the morphology of organic fluorophore labels absent of photobleaching over time. The addition of tissue plasminogen activator (tPa) allowed visualization of the clot lysis stage, which is vital to studies of both DVT and pulmonary embolism resolution.
Collapse
Affiliation(s)
- Samuel J. Francis
- Division of Hematology, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | | | | | - Gowthami M. Arepally
- Division of Hematology, Duke University Medical Center, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
18
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Croce AC, Palladini G, Ferrigno A, Vairetti M. Autofluorescence Label-Free Imaging of the Liver Reticular Structure. Methods Mol Biol 2023; 2566:29-35. [PMID: 36152239 DOI: 10.1007/978-1-0716-2675-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Autofluorescence rising from biological substrates under proper excitation light depends on the presence of specific endogenous fluorophores and can provide information on the morpho-functional properties in which they are strictly involved. Besides the numerous endogenous fluorophores involved in metabolic functions, fibrous proteins may act as direct, label-free biomarkers of the tissue structural organization. The optical properties of collagen, in particular, are currently applied as an alternative to established histochemical procedures to investigate the connective tissue as well as its changes in diseased conditions. This is particularly true in hepatology where the histochemical procedures to label the reticular structure are not routinely applied, as they are complex and time-consuming. The morphology of the liver reticular structure and its changes are up to now poorly considered despite the increasing awareness of the regulatory role played by the remodeling of the reticular structure in pathological conditions. In this context, the autofluorescence label-free imaging has proven to be a suitable approach.
Collapse
Affiliation(s)
- Anna C Croce
- Institute of Molecular Genetics "Luigi Luca Cavalli Sforza" (IGM) - CNR, Pavia, Italy.
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| | - Giuseppina Palladini
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Kaniyala Melanthota S, Kistenev YV, Borisova E, Ivanov D, Zakharova O, Boyko A, Vrazhnov D, Gopal D, Chakrabarti S, K SP, Mazumder N. Types of spectroscopy and microscopy techniques for cancer diagnosis: a review. Lasers Med Sci 2022; 37:3067-3084. [PMID: 35834141 PMCID: PMC9525344 DOI: 10.1007/s10103-022-03610-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Cancer is a life-threatening disease that has claimed the lives of many people worldwide. With the current diagnostic methods, it is hard to determine cancer at an early stage, due to its versatile nature and lack of genomic biomarkers. The rapid development of biophotonics has emerged as a potential tool in cancer detection and diagnosis. Using the fluorescence, scattering, and absorption characteristics of cells and tissues, it is possible to detect cancer at an early stage. The diagnostic techniques addressed in this review are highly sensitive to the chemical and morphological changes in the cell and tissue during disease progression. These changes alter the fluorescence signal of the cell/tissue and are detected using spectroscopy and microscopy techniques including confocal and two-photon fluorescence (TPF). Further, second harmonic generation (SHG) microscopy reveals the morphological changes that occurred in non-centrosymmetric structures in the tissue, such as collagen. Again, Raman spectroscopy is a non-destructive method that provides a fingerprinting technique to differentiate benign and malignant tissue based on Raman signal. Photoacoustic microscopy and spectroscopy of tissue allow molecule-specific detection with high spatial resolution and penetration depth. In addition, terahertz spectroscopic studies reveal the variation of tissue water content during disease progression. In this review, we address the applications of spectroscopic and microscopic techniques for cancer detection based on the optical properties of the tissue. The discussed state-of-the-art techniques successfully determines malignancy to its rapid diagnosis.
Collapse
Affiliation(s)
- Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Yury V Kistenev
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
- Central Research Laboratory, Siberian State Medical University, Tomsk, 634050, Russia
| | - Ekaterina Borisova
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria.
- Biology Faculty, Saratov State University, 83, Astrakhanskaya Str, 410012, Saratov, Russia.
| | - Deyan Ivanov
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria
| | - Olga Zakharova
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Andrey Boyko
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Denis Vrazhnov
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Dharshini Gopal
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shweta Chakrabarti
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
21
|
Reistad N, Sturesson C. Distinguishing tumor from healthy tissue in human liver ex vivo using machine learning and multivariate analysis of diffuse reflectance spectra. JOURNAL OF BIOPHOTONICS 2022; 15:e202200140. [PMID: 35860880 DOI: 10.1002/jbio.202200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The aim of this work was to evaluate the capability of diffuse reflectance spectroscopy to distinguish malignant liver tissues from surrounding tissues and to determine whether an extended wavelength range (450-1550 nm) offers any advantages over using the conventional wavelength range. Furthermore, multivariate analysis combined with a machine learning algorithm, either linear discriminant analysis or the more advanced support vector machine, was used to discriminate between and classify freshly excised human liver specimens from 18 patients. Tumors were distinguished from surrounding liver tissues with a sensitivity of 99%, specificity of 100%, classification rate of 100% and a Matthews correlation coefficient of 100% using the extended wavelength range and a combination of principal component analysis and support vector techniques. The results indicate that this technology may be useful in clinical applications for real-time tissue diagnostics of tumor margins where rapid classification is important.
Collapse
Affiliation(s)
- Nina Reistad
- Department of Physics, Lund University, Lund, Sweden
| | - Christian Sturesson
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Gusliakova OI, Prikhozhdenko ES, Plastun VO, Mayorova OA, Shushunova NA, Abdurashitov AS, Kulikov OA, Abakumov MA, Gorin DA, Sukhorukov GB, Sindeeva OA. Renal Artery Catheterization for Microcapsules' Targeted Delivery to the Mouse Kidney. Pharmaceutics 2022; 14:1056. [PMID: 35631642 PMCID: PMC9144148 DOI: 10.3390/pharmaceutics14051056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
The problem of reducing the side effects associated with drug distribution throughout the body in the treatment of various kidney diseases can be solved by effective targeted drug delivery. The method described herein involves injection of a drug encapsulated in polyelectrolyte capsules to achieve prolonged local release and long-term capillary retention of several hours while these capsules are administered via the renal artery. The proposed method does not imply disruption (puncture) of the renal artery or aorta and is suitable for long-term chronic experiments on mice. In this study, we compared how capsule size and dosage affect the target kidney blood flow. It has been established that an increase in the diameter of microcapsules by 29% (from 3.1 to 4.0 μm) requires a decrease in their concentration by at least 50% with the same suspension volume. The photoacoustic method, along with laser speckle contrast imaging, was shown to be useful for monitoring blood flow and selecting a safe dose. Capsules contribute to a longer retention of a macromolecular substance in the target kidney compared to its free form due to mechanical retention in capillaries and slow impregnation into surrounding tissues during the first 1-3 h, which was shown by fluorescence tomography and microscopy. At the same time, the ability of capillaries to perform almost complete "self-cleaning" from capsular shells during the first 12 h leads to the preservation of organ tissues in a normal state. The proposed strategy, which combines endovascular surgery and the injection of polymer microcapsules containing the active substance, can be successfully used to treat a wide range of nephropathies.
Collapse
Affiliation(s)
- Olga I. Gusliakova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Ekaterina S. Prikhozhdenko
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Valentina O. Plastun
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Oksana A. Mayorova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Natalia A. Shushunova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
| | - Arkady S. Abdurashitov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
| | - Oleg A. Kulikov
- Institute of Medicine, National Research Ogarev Mordovia State University, 68 Bolshevistskaya Str., 430005 Saransk, Russia;
| | - Maxim A. Abakumov
- Department of Medical Nanobiotecnology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Str., 117997 Moscow, Russia;
| | - Dmitry A. Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia;
| | - Gleb B. Sukhorukov
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Olga A. Sindeeva
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (E.S.P.); (V.O.P.); (O.A.M.); (N.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; (A.S.A.); (G.B.S.)
| |
Collapse
|
23
|
Hepatocyte Thorns, A Novel Drug-Induced Stress Response in Human and Mouse Liver Spheroids. Cells 2022; 11:cells11101597. [PMID: 35626634 PMCID: PMC9139950 DOI: 10.3390/cells11101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
The in vivo-relevant phenotype of 3D liver spheroids allows for long-term studies of, e.g., novel mechanisms of chronic drug-induced liver toxicity. Using this system, we present a novel drug-induced stress response in human and murine hepatocyte spheroids, wherein long slender filaments form after chronic treatment with four different drugs, of which three are PPARα antagonists. The morphology of the thorns varies between donors and the compounds used. They are mainly composed of diverse protein fibres, which are glycosylated. Their formation is inhibited by treatment with fatty acids or antioxidants. Treatment of mice with GW6471 revealed changes in gene and protein expression, such as those in the spheroids. In addition, similar changes in keratin expression were seen following the treatment of hepatotoxic drugs, including aflatoxin B1, paracetamol, chlorpromazine, cyclosporine, and ketoconazole. We suggest that thorn formation may be indicative of hepatocyte metaplasia in response to toxicity and that more focus should be placed on alterations of ECM-derived protein expression as biomarkers of liver disease and chronic drug-induced hepatotoxicity, changes that can be studied in stable in vivo-like hepatic cell systems, such as the spheroids.
Collapse
|
24
|
Assessment of lipophilic fluorescence products in β-amyloid-induced cognitive decline: A parallel track in hippocampus, CSF, plasma and erythrocytes. Exp Gerontol 2021; 157:111645. [PMID: 34843902 DOI: 10.1016/j.exger.2021.111645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Oxidative stress implicates in Alzheimer's disease (AD) pathophysiology, and associates with the creation of end products of free radical reactions, are known as lipophilic fluorescent products (LFPs). This study aimed to evaluate the probable parallel alterations in the spectral properties of the LFPs in the hippocampus tissues, cerebrospinal fluid (CSF), plasma, and erythrocytes during AD model induction by intra-cerebroventricular (ICV) amyloid β-protein fragment 25-35 (Aβ) injection. METHODS Male rats received an intra-ICV injection of Aβ. Hippocampus, CSF, plasma, and erythrocytes were harvested at 5, 14, and 21 days after Aβ injection. The fluorescent intensity of LFPs was assessed by spectrofluorimetry using synchronous fluorescence spectra 25 (SYN 25) and 50 (SYN 50) in the range of 250-500 nm. Hippocampal tissue malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Cognitive alterations were evaluated using Morris water maze (MWM) test. RESULTS The parallel significant rise in the fluorescence intensity of LFPs was detected in the hippocampus, CSF, plasma, and erythrocytes, 14, and 21 days after ICV-Aβ injection. These alterations were found in both types of synchronous spectra 25, and 50, and were coincided with hippocampal cognitive decline, the MDA rise, and decrease of SOD activity. There was a positive correlation between hippocampus homogenate, and plasma or CSF rise in fluorescence intensity. CONCLUSION Data showed that the Aβ increased hippocampal MDA, and decreased SOD activity, led to a higher rate of oxidative products and subsequently resulted in an increase in LFPs fluorescence intensity during the development of cognitive decline. LFPs' alterations reflect a comprehensive view of tissue redox status. The fluorescence properties of LFPs indicate their composition, which may pave the way to trace the different pathological states.
Collapse
|
25
|
Ember KJI, Forbes SJ, Oniscu GC, Campbell CJ. REPLY. Hepatology 2021; 74:2310-2311. [PMID: 33938014 DOI: 10.1002/hep.31880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
| | - Stuart J Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Gabriel C Oniscu
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
- Department of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
26
|
Ferkowicz MJ, Winfree S, Sabo AR, Kamocka MM, Khochare S, Barwinska D, Eadon MT, Cheng YH, Phillips CL, Sutton TA, Kelly KJ, Dagher PC, El-Achkar TM, Dunn KW. Large-scale, three-dimensional tissue cytometry of the human kidney: a complete and accessible pipeline. J Transl Med 2021; 101:661-676. [PMID: 33408350 PMCID: PMC8363780 DOI: 10.1038/s41374-020-00518-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/08/2023] Open
Abstract
The advent of personalized medicine has driven the development of novel approaches for obtaining detailed cellular and molecular information from clinical tissue samples. Tissue cytometry is a promising new technique that can be used to enumerate and characterize each cell in a tissue and, unlike flow cytometry and other single-cell techniques, does so in the context of the intact tissue, preserving spatial information that is frequently crucial to understanding a cell's physiology, function, and behavior. However, the wide-scale adoption of tissue cytometry as a research tool has been limited by the fact that published examples utilize specialized techniques that are beyond the capabilities of most laboratories. Here we describe a complete and accessible pipeline, including methods of sample preparation, microscopy, image analysis, and data analysis for large-scale three-dimensional tissue cytometry of human kidney tissues. In this workflow, multiphoton microscopy of unlabeled tissue is first conducted to collect autofluorescence and second-harmonic images. The tissue is then labeled with eight fluorescent probes, and imaged using spectral confocal microscopy. The raw 16-channel images are spectrally deconvolved into 8-channel images, and analyzed using the Volumetric Tissue Exploration and Analysis (VTEA) software developed by our group. We applied this workflow to analyze millimeter-scale tissue samples obtained from human nephrectomies and from renal biopsies from individuals diagnosed with diabetic nephropathy, generating a quantitative census of tens of thousands of cells in each. Such analyses can provide useful insights that can be linked to the biology or pathology of kidney disease. The approach utilizes common laboratory techniques, is compatible with most commercially-available confocal microscope systems and all image and data analysis is conducted using the VTEA image analysis software, which is available as a plug-in for ImageJ.
Collapse
Affiliation(s)
- Michael J Ferkowicz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Seth Winfree
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela R Sabo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Malgorzata M Kamocka
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Suraj Khochare
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Daria Barwinska
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael T Eadon
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ying-Hua Cheng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Carrie L Phillips
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Pathology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Timothy A Sutton
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Katherine J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pierre C Dagher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tarek M El-Achkar
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Kenneth W Dunn
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Lu H, Grygoryev K, Bermingham N, Jansen M, O’Sullivan M, Nunan G, Buckley K, Manley K, Burke R, Andersson-Engels S. Combined autofluorescence and diffuse reflectance for brain tumour surgical guidance: initial ex vivo study results. BIOMEDICAL OPTICS EXPRESS 2021; 12:2432-2446. [PMID: 33996239 PMCID: PMC8086447 DOI: 10.1364/boe.420292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
This ex vivo study was conducted to assess the potential of using a fibre optic probe system based on autofluorescence and diffuse reflectance for tissue differentiation in the brain. A total of 180 optical measurements were acquired from 28 brain specimens (five patients) with eight excitation and emission wavelengths spanning from 300 to 700 nm. Partial least square-linear discriminant analysis (PLS-LDA) was used for tissue discrimination. Leave-one-out cross validation (LOOCV) was then used to evaluate the performance of the classification model. Grey matter was differentiated from tumour tissue with sensitivity of 89.3% and specificity of 92.5%. The variable importance in projection (VIP) derived from the PLS regression was applied to wavelengths selection, and identified the biochemical sources of the detected signals. The initial results of the study were promising and point the way towards a cost-effective, miniaturized hand-held probe for real time and label-free surgical guidance.
Collapse
Affiliation(s)
- Huihui Lu
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Konstantin Grygoryev
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Niamh Bermingham
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | - Michael Jansen
- Department of Neuropathology, Cork University Hospital, Cork, Ireland
| | | | - Gerard Nunan
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Kevin Buckley
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Kevin Manley
- Stryker, Instruments Innovation Centre, IDA Business and Technology Park, Cork, Ireland
| | - Ray Burke
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Stefan Andersson-Engels
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Suhito IR, Han Y, Ryu YS, Son H, Kim TH. Autofluorescence-Raman Mapping Integration analysis for ultra-fast label-free monitoring of adipogenic differentiation of stem cells. Biosens Bioelectron 2021; 178:113018. [DOI: 10.1016/j.bios.2021.113018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 01/08/2023]
|
29
|
Krajčíková K, Skirková M, Moravská M, Birková A, Tomečková V. Native fluorescence of tear fluid as a tool for diagnostics of glaucoma. RSC Adv 2021; 11:10842-10846. [PMID: 35423590 PMCID: PMC8695866 DOI: 10.1039/d1ra00473e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022] Open
Abstract
Glaucoma is one of the leading causes of irreversible vision loss worldwide. There is an enormous need for the detection of its early stages and also speeding up and simplifying regular examinations. Among the new diagnostic approaches, the use of tear fluid has been intensively investigated in recent years. For this purpose, we analyzed the tear fluid of patients with glaucoma and related diseases. To sensitively capture the subtle ocular abnormalities related to glaucoma and manifested in tear fluid, we used synchronous fluorescence spectroscopy. In this observational case-control study, we detected significant differences in the intensity of tear fluid fluorescence located at λ ex/Δλ = 280/70 nm between the groups of primary open-angle glaucoma (p < 0.01), suspected glaucoma (p < 0.0001), and ocular hypertension (p < 0.05), when compared to the healthy control group. The signal was not significantly higher in women than in men (p = 0.05), and no correlation was found with age (r = -0.05, p > 0.05), nor treatment (p > 0.05). Taken together, tear fluid fluorescence could serve as a discriminative parameter between patients with glaucoma, related diseases, and healthy control subjects and might contribute to the improvement of diagnostics of these diseases.
Collapse
Affiliation(s)
- Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Miriama Skirková
- Department of Ophthalmology, University Hospital Louis Pasteur, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Monika Moravská
- Department of Ophthalmology, University Hospital Louis Pasteur, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice Trieda SNP 1 Košice 040 11 Slovakia
| |
Collapse
|
30
|
Arista Romeu EJ, Rivera Fernández JD, Roa Tort K, Valor A, Escobedo G, Fabila Bustos DA, Stolik S, de la Rosa JM, Guzmán C. Combined methods of optical spectroscopy and artificial intelligence in the assessment of experimentally induced non-alcoholic fatty liver. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105777. [PMID: 33069975 DOI: 10.1016/j.cmpb.2020.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Due to the existing prevalence of nonalcoholic fatty liver disease (NAFLD) and its relation to the epidemic of obesity in the general population, it is imperative to develop detection and evaluation methods of the early stages of the disease with improved efficacy over the current diagnostic approaches. We aimed to obtain an improved diagnosis, combining methods of optical spectroscopy -diffuse reflectance and fluorescence- with statistical data analysis applied to detect early stages of NAFLD. METHODS Statistical analysis scheme based on quadratic discriminant analysis followed by canonical discriminant analysis were applied to the diffuse reflectance data combined with endogenous fluorescence spectral data excited at one of these wavelengths: 330, 365, 385, 405 or 415 nm. The statistical scheme was also applied to the combinations of fluorescence spectrum (405 nm) with each one of the other fluorescence spectra. Details of the developed software, including the application of machine learning algorithms to the combination of spectral data followed by classification statistical schemes, are discussed. RESULTS Steatosis progression was differentiated with little classification error (≤1.3%) by using diffuse reflectance and endogenous fluorescence at different wavelengths. Similar results were obtained using fluorescence at 405 nm and one of the other fluorescence spectra (classification error ≤1.0%). Adding the corresponding areas under the curves to the above combinations of spectra diminished errors to 0.6% and 0.3% or less, respectively. The best results for the compounded reflectance-plus-fluorescence spectra were obtained with fluorescence spectra excited at 415 nm with a total classification error of 0.2%; for the combination of the 405nm-excited fluorescence spectrum with another fluorescence spectrum, the best results were achieved for 385 nm, for which total relative classification error amounted 0.4%. The consideration of the area under the spectral curves further improved both classifiers, reducing the error to 0.0% in both cases. CONCLUSION Spectrometric techniques combined with statistical processing are a promising tool to improve steatosis classification through a label free approach. However, statistical schemes here applied, might result complex for the everyday medical practice, the designed software including machine learning algorithms is able to render automatic classification of samples according to their steatosis grade with low error.
Collapse
Affiliation(s)
- Eduardo J Arista Romeu
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Josué D Rivera Fernández
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Karen Roa Tort
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Alma Valor
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico.
| | - Galileo Escobedo
- Laboratorio de Proteómica, Dirección de Investigación, Hospital General de Mexico "Dr. Eduardo Liceaga", Dr. Balmis 148, Col. Doctores, Alc. Cuauhtémoc, Ciudad de Mexico 06720, Mexico
| | - Diego A Fabila Bustos
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico; Laboratorio de Espectroscopia, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42162, Hidalgo, Mexico
| | - Suren Stolik
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - José Manuel de la Rosa
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Carolina Guzmán
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México/Hospital General de México "Dr. Eduardo Liceaga", Dr. Balmis 148, Col. Doctores, Alc. Cuauhtémoc, Ciudad de México 06720, México.
| |
Collapse
|
31
|
Fluorescence excitation properties of bilirubin in solution and in serum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 215:112121. [PMID: 33422899 DOI: 10.1016/j.jphotobiol.2020.112121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022]
Abstract
The bichromophore nature of bilirubin explains the presence of at least two partially overlaying bands in both absorption and fluorescence emission spectra, and accounts for interchromophore exciton transfer events responsible for the emission sensitivity to the molecular environment and excitation wavelength. These concepts were likely responsible for the previously reported good yield of the unexpected remarkable bilirubin fluorescence emission under excitation at 366 nm, at which bilirubin absorption is very low. In this connection, aim of this work is to further investigate bilirubin spectral excitation properties and their diagnostic potential, until now poorly considered. Fluorescence excitation spectra of pure bilirubin in solution with solubilizing agents observed at 520 and 570 nm showed a wide region in the 430-510 nm range, similar to the absorption profile. In addition, an excitation band centered at about 400 nm was detected. Comparable excitation features were detected in rat serum. The 430-510 nm excitation region was well separated from a main band at shorter wavelength, ascribable to other endogenous fluorophores, with a shoulder at about 400 nm which was also easily discriminated by spectral fitting analysis. The bands ascribable to bilirubin showed changes of their relative contribution to the overall spectral region after liver ischemia/reperfusion, comparable to bilirubin biochemical data. Excitation spectra proved to discriminate the fluorescence of serum bilirubin at levels much lower than emission spectra, opening promising perspectives to improve the real time fluorescence analysis of crude serum in the absence of any exogenous labelling agent, and advance the diagnostic application of optical-biopsy in experimental hepatology and biomedicine.
Collapse
|
32
|
Roa-Tort K, Rivera-Fernández JD, de la Rosa-Vázquez JM, Escobedo G, Stolik S, Valor A, Fabila-Bustos DA. Fluorescence spectroscopy on paraffin-preserved human liver samples to classify several grades of fibrosis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118737. [PMID: 32745938 DOI: 10.1016/j.saa.2020.118737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, it is well established that biopsy is the gold standard for medical diagnosis of liver disease; however, recent studies have shown numerous discrepancies in biopsy assessment, even when it is evaluated by senior pathologists. Fluorescence spectroscopy is a tool that has been of utility in the diagnosis of different diseases based on biopsy analysis. Thus, fluorescence study of liver samples with five different degrees of fibrosis is presented. Paraffin-preserved human liver tissue was provided on white plastic cassettes by the Hospital General de Mexico "Dr. Eduardo Liceaga". Specimens were diagnosed by two independent-senior pathologists in a double-blind test and classified into five different groups: F0, F1, F2, F3, and F4, according to the METAVIR scale for liver fibrosis. Fluorescence spectroscopy measurements were performed using three different excitation wavelengths: 385, 405, and 450 nm. Besides, diffuse reflectance spectroscopy (DRS) measurements were taken with white light to determine morphological changes in the tissue and to compare the results with medical diagnosis. The spectral analysis at excitation wavelengths of 385 nm and 405 nm showed poor correlation with medical diagnosis. Likewise, in order to discard all possible error-sources involved in the measurements, an exhaustive study was carried out; it included the determination of the fluorescence noise produced by paraffin, cassette, and the tissue itself. At 450 nm excitation wavelength, no fluorescence by the cassette was detected and noise-subtraction methods were not required, this allows a high correlation of hepatic fibrosis stages between pathological diagnosis and spectroscopic analysis. For this excitation wavelength, 89.87% correlation with DRS measurements and 82.00% with medical diagnosis were obtained. This work demonstrates that fluorescence spectroscopy using 450 nm excitation wavelength might work as a complementary tool to grade hepatic fibrosis in human liver specimens.
Collapse
Affiliation(s)
- Karen Roa-Tort
- Laboratorio de Biofotónica, ESIME Zacatenco, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Josué D Rivera-Fernández
- Laboratorio de Biofotónica, ESIME Zacatenco, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - José M de la Rosa-Vázquez
- Laboratorio de Biofotónica, ESIME Zacatenco, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Galileo Escobedo
- Laboratorio de Proteómica y Metabolómica, División de Investigación, Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México 06726, Mexico
| | - Suren Stolik
- Laboratorio de Biofotónica, ESIME Zacatenco, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Alma Valor
- Laboratorio de Biofotónica, ESIME Zacatenco, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Diego A Fabila-Bustos
- Laboratorio de Biofotónica, ESIME Zacatenco, Instituto Politécnico Nacional, Ciudad de México, Mexico; Laboratorio de Espectroscopia, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca, Hidalgo, Mexico
| |
Collapse
|
33
|
Croce AC. Photobiology and Endogenous Fluorophore Based Applications, from Natural Environment to Biomedicine to Improve Human Life. Molecules 2020; 25:molecules25235707. [PMID: 33287262 PMCID: PMC7731228 DOI: 10.3390/molecules25235707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Anna C. Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; ; Tel.: +39-0382-986-428
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
34
|
Optical percutaneous needle biopsy of the liver: a pilot animal and clinical study. Sci Rep 2020; 10:14200. [PMID: 32848190 PMCID: PMC7449966 DOI: 10.1038/s41598-020-71089-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
This paper presents the results of the experiments which were performed using the optical biopsy system specially developed for in vivo tissue classification during the percutaneous needle biopsy (PNB) of the liver. The proposed system includes an optical probe of small diameter acceptable for use in the PNB of the liver. The results of the feasibility studies and actual tests on laboratory mice with inoculated hepatocellular carcinoma and in clinical conditions on patients with liver tumors are presented and discussed. Monte Carlo simulations were carried out to assess the diagnostic volume and to trace the sensing depth. Fluorescence and diffuse reflectance spectroscopy measurements were used to monitor metabolic and morphological changes in tissues. The tissue oxygen saturation was evaluated using a recently developed approach to neural network fitting of diffuse reflectance spectra. The Support Vector Machine Classification was applied to identify intact liver and tumor tissues. Analysis of the obtained results shows the high sensitivity and specificity of the proposed multimodal method. This approach allows to obtain information before the tissue sample is taken, which makes it possible to significantly reduce the number of false-negative biopsies.
Collapse
|
35
|
Saif M, Kwanten WJ, Carr JA, Chen IX, Posada JM, Srivastava A, Zhang J, Zheng Y, Pinter M, Chatterjee S, Softic S, Kahn CR, van Leyen K, Bruns OT, Jain RK, Bawendi MG. Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nat Biomed Eng 2020; 4:801-813. [PMID: 32572196 PMCID: PMC8310386 DOI: 10.1038/s41551-020-0569-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
Monitoring the progression of non-alcoholic fatty liver disease is hindered by a lack of suitable non-invasive imaging methods. Here, we show that the endogenous pigment lipofuscin displays strong near-infrared and shortwave-infrared fluorescence when excited at 808 nm, enabling label-free imaging of liver injury in mice and the discrimination of pathological processes from normal liver processes with high specificity and sensitivity. We also show that the near-infrared and shortwave-infrared fluorescence of lipofuscin can be used to monitor the progression and regression of liver necroinflammation and fibrosis in mouse models of non-alcoholic fatty liver disease and advanced fibrosis, as well as to detect non-alcoholic steatohepatitis and cirrhosis in biopsied samples of human liver tissue.
Collapse
Affiliation(s)
- Mari Saif
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wilhelmus J Kwanten
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory of Experimental Medicine and Pediatrics (LEMP)-Gastroenterology and Hepatology, University of Antwerp, Wilrijk, Belgium
| | - Jessica A Carr
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ivy X Chen
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica M Posada
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Juanye Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yi Zheng
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Matthias Pinter
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sampurna Chatterjee
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Samir Softic
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Kentucky College of Medicine and Kentucky Children's Hospital, Lexington, KY, USA
| | - C Ronald Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Oliver T Bruns
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rakesh K Jain
- Edwin L. Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
36
|
Bendau E, Smith J, Zhang L, Ackerstaff E, Kruchevsky N, Wu B, Koutcher JA, Alfano R, Shi L. Distinguishing metastatic triple-negative breast cancer from nonmetastatic breast cancer using second harmonic generation imaging and resonance Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e202000005. [PMID: 32219996 PMCID: PMC7433748 DOI: 10.1002/jbio.202000005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 05/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subset of breast cancer that is more common in African-American and Hispanic women. Early detection followed by intensive treatment is critical to improving poor survival rates. The current standard to diagnose TNBC from histopathology of biopsy samples is invasive and time-consuming. Imaging methods such as mammography and magnetic resonance (MR) imaging, while covering the entire breast, lack the spatial resolution and specificity to capture the molecular features that identify TNBC. Two nonlinear optical modalities of second harmonic generation (SHG) imaging of collagen, and resonance Raman spectroscopy (RRS) potentially offer novel rapid, label-free detection of molecular and morphological features that characterize cancerous breast tissue at subcellular resolution. In this study, we first applied MR methods to measure the whole-tumor characteristics of metastatic TNBC (4T1) and nonmetastatic estrogen receptor positive breast cancer (67NR) models, including tumor lactate concentration and vascularity. Subsequently, we employed for the first time in vivo SHG imaging of collagen and ex vivo RRS of biomolecules to detect different microenvironmental features of these two tumor models. We achieved high sensitivity and accuracy for discrimination between these two cancer types by quantitative morphometric analysis and nonnegative matrix factorization along with support vector machine. Our study proposes a new method to combine SHG and RRS together as a promising novel photonic and optical method for early detection of TNBC.
Collapse
Affiliation(s)
- Ethan Bendau
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Jason Smith
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Lin Zhang
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Natalia Kruchevsky
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Binlin Wu
- Physics Department, CSCU Center for Nanotechnology, Southern Connecticut State University, New Haven, Connecticut
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medical Physics and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, Cornell University, New York, New York
| | - Robert Alfano
- Institute for Ultrafast Spectroscopy and Lasers, The City College of New York, New York, New York
| | - Lingyan Shi
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
37
|
Recent Advances and the Potential for Clinical Use of Autofluorescence Detection of Extra-Ophthalmic Tissues. Molecules 2020; 25:molecules25092095. [PMID: 32365790 PMCID: PMC7248908 DOI: 10.3390/molecules25092095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The autofluorescence (AF) characteristics of endogenous fluorophores allow the label-free assessment and visualization of cells and tissues of the human body. While AF imaging (AFI) is well-established in ophthalmology, its clinical applications are steadily expanding to other disciplines. This review summarizes clinical advances of AF techniques published during the past decade. A systematic search of the MEDLINE database and Cochrane Library databases was performed to identify clinical AF studies in extra-ophthalmic tissues. In total, 1097 articles were identified, of which 113 from internal medicine, surgery, oral medicine, and dermatology were reviewed. While comparable technological standards exist in diabetology and cardiology, in all other disciplines, comparability between studies is limited due to the number of differing AF techniques and non-standardized imaging and data analysis. Clear evidence was found for skin AF as a surrogate for blood glucose homeostasis or cardiovascular risk grading. In thyroid surgery, foremost, less experienced surgeons may benefit from the AF-guided intraoperative separation of parathyroid from thyroid tissue. There is a growing interest in AF techniques in clinical disciplines, and promising advances have been made during the past decade. However, further research and development are mandatory to overcome the existing limitations and to maximize the clinical benefits.
Collapse
|
38
|
Semenov AN, Yakimov BP, Rubekina AA, Gorin DA, Drachev VP, Zarubin MP, Velikanov AN, Lademann J, Fadeev VV, Priezzhev AV, Darvin ME, Shirshin EA. The Oxidation-Induced Autofluorescence Hypothesis: Red Edge Excitation and Implications for Metabolic Imaging. Molecules 2020; 25:E1863. [PMID: 32316642 PMCID: PMC7221974 DOI: 10.3390/molecules25081863] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous autofluorescence of biological tissues is an important source of information for biomedical diagnostics. Despite the molecular complexity of biological tissues, the list of commonly known fluorophores is strictly limited. Still, the question of molecular sources of the red and near-infrared excited autofluorescence remains open. In this work we demonstrated that the oxidation products of organic components (lipids, proteins, amino acids, etc.) can serve as the molecular source of such red and near-infrared excited autofluorescence. Using model solutions and cell systems (human keratinocytes) under oxidative stress induced by UV irradiation we demonstrated that oxidation products can contribute significantly to the autofluorescence signal of biological systems in the entire visible range of the spectrum, even at the emission and excitation wavelengths higher than 650 nm. The obtained results suggest the principal possibility to explain the red fluorescence excitation in a large class of biosystems-aggregates of proteins and peptides, cells and tissues-by the impact of oxidation products, since oxidation products are inevitably presented in the tissue. The observed fluorescence signal with broad excitation originated from oxidation products may also lead to the alteration of metabolic imaging results and has to be taken into account.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Boris P. Yakimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Anna A. Rubekina
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Dmitry A. Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st., Building 3, Moscow 121205, Russia; (D.A.G.); (V.P.D.)
| | - Vladimir P. Drachev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st., Building 3, Moscow 121205, Russia; (D.A.G.); (V.P.D.)
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Mikhail P. Zarubin
- International Intergovernmental Organization Joint Institute for Nuclear Research 6 Joliot-Curie St., Dubna, Moscow 141980, Russia;
| | - Alexander N. Velikanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119234, Russia;
| | - Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité–Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.L.); (M.E.D.)
| | - Victor V. Fadeev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Alexander V. Priezzhev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Maxim E. Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité–Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.L.); (M.E.D.)
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia
| |
Collapse
|
39
|
Croce AC, Ferrigno A, Berardo C, Bottiroli G, Vairetti M, Di Pasqua LG. Spectrofluorometric Analysis of Autofluorescing Components of Crude Serum from a Rat Liver Model of Ischemia and Reperfusion. Molecules 2020; 25:molecules25061327. [PMID: 32183261 PMCID: PMC7144569 DOI: 10.3390/molecules25061327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Autofluorescence (AF) of crude serum was investigated with reference to the potential of its intrinsic AF biomarkers for the noninvasive diagnosis of liver injury. Spectral parameters of pure compounds representing retinol (vitamin A) and fluorescing free fatty acids were characterized by spectrofluorometry, to assess spectral parameters for the subsequent AF analysis of serum, collected from rats undergoing liver ischemia/reperfusion (I/R). Differences in AF spectral profiles detected between control and I/R were due to the increase in the AF components representing fatty acids in I/R serum samples. No significant changes occurred for retinol levels, consistently with the literature reporting that constant retinol levels are commonly observed in the blood, except for malnutrition or chronic severe liver disease. Conversely, fatty acids, in particular arachidonic and linoleic acid and their derivatives, act as modulating agents in inflammation, representing both a protective and damaging response to stress stimuli. The biometabolic and pathophysiological meaning of serum components and the possibility of their direct detection by AF spectrofluorometry open up interesting perspectives for the development of AF serum analysis, as a direct, cost effective, supportive tool to assess liver injury and related systemic metabolic alterations, for applications in experimental biomedicine and foreseen translation to the clinics.
Collapse
Affiliation(s)
- Anna C. Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy;
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-986-428
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Giovanni Bottiroli
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy;
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Laura G. Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| |
Collapse
|
40
|
Endogenous Fluorescence Dissimilarity Assessment of Four Potential Biomarkers of Early Liver Fibrosis by Preservation Media Effect. J Fluoresc 2020; 30:249-257. [DOI: 10.1007/s10895-019-02484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
|
41
|
Leung VWY, Pilon SJ, Fiset PO, Sandal S. A case report on lipofuscin deposition in a graft biopsy two years after kidney transplantation: an insignificant bystander or a pathogenic benefactor? BMC Nephrol 2019; 20:376. [PMID: 31623557 PMCID: PMC6798339 DOI: 10.1186/s12882-019-1569-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Lipofuscin deposition is a characteristic manifestation of aging. There is very limited literature in humans and in animals describing these deposits in native kidneys. Overall, it is thought to be non-pathogenic and successful transplants from a donor with lipofuscin deposits have been reported. We present the case of a patient who underwent a kidney transplant and a for-cause biopsy post-transplantation incidentally revealed lipofuscin deposition. Case presentation A 48-year old gentleman with a past medical history of diabetes, hypertension, coronary artery disease, and ischemic and then hemorrhagic cardiovascular accident underwent a successful kidney transplant. His donor was an expanded criteria donor with no major past medical history. Post-transplant course was complicated by delayed graft function requiring one dialysis treatment for hyperkalemia. After that he had an uneventful course and achieved a baseline creatinine of 1.2 mg/dL, with no proteinuria. On a routine 19-month follow-up he was noted to have proteinuria and an antibody against the major-histocompatibility-complex class I-related chain A. A graft biopsy revealed acute antibody-mediated rejection and impressive lipofuscin deposition. He was subsequently treated with an antibody-mediated rejection protocol that included high dose steroids, Rituximab, plasmapheresis, and intravenous immunoglobulin, but responded poorly to this regimen. A 6-month follow up biopsy continued to show lipofuscin deposition, with similar microvascular injury scores and 12-months later his creatinine remained stable but his proteinuria worsened. Patient was struggling with recurrent infectious episodes requiring hospitalizations and thus no further diagnostic or therapeutic treatments were pursued. Conclusions Lipofuscin deposition has been reported in solid organ transplants but the significance and cause are not well understood. Several physiologic and some pathologic causes to these deposits have been reported including age, diabetes, medications and a genetic syndrome. We propose that immunologic causes such as rejection in the presence of other risk factors could potentiate the oxidative stress leading to excessive lipofuscin deposition in kidney transplants. In the case of our patient, we conclude that these deposits were likely recipient-derived, and postulate that the cumulative burden of inflammation from rejection, and underlying medical conditions led to increased lipofuscin deposition. We speculate them to be an innocent bystander.
Collapse
Affiliation(s)
- Vivian W Y Leung
- Faculty of Medicine, McGill University, 1001 boul Decarie, Montreal, Quebec, H4A 3J1, Canada
| | - Sarah-Jeanne Pilon
- Department of Pathology, McGill University Health Centre, 1001 boul Decarie, Montreal, Quebec, H4A 3J1, Canada
| | - Pierre O Fiset
- Department of Pathology, McGill University Health Centre, 1001 boul Decarie, Montreal, Quebec, H4A 3J1, Canada
| | - Shaifali Sandal
- Division of Nephrology, Department of Medicine, McGill University Health Centre, 1001 boul Decarie, Montreal, Quebec, H4A 3J1, Canada. .,Research Institute of the McGill University Health Centre, 1001 boul Decariel, Montrea, Quebec, H4A 3J1, Canada. .,Royal Victoria Hospital Glen Site, D05-7176, 1001 boul Decarie, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
42
|
Valor A, Arista Romeu EJ, Escobedo G, Campos-Espinosa A, Romero-Bello II, Moreno-González J, Fabila Bustos DA, Stolik S, de la Rosa Vázquez JM, Guzmán C. Study of Methionine Choline Deficient Diet-Induced Steatosis in Mice Using Endogenous Fluorescence Spectroscopy. Molecules 2019; 24:molecules24173150. [PMID: 31470620 PMCID: PMC6749569 DOI: 10.3390/molecules24173150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 01/03/2023] Open
Abstract
Non-alcoholic fatty liver disease is a highly prevalent condition worldwide that increases the risk to develop liver fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, it is imperative to develop novel diagnostic tools that together with liver biopsy help to differentiate mild and advanced degrees of steatosis. Ex-vivo liver samples were collected from mice fed a methionine-choline deficient diet for two or eight weeks, and from a control group. The degree of hepatic steatosis was histologically evaluated, and fat content was assessed by Oil-Red O staining. On the other hand, fluorescence spectroscopy was used for the assessment of the steatosis progression. Fluorescence spectra were recorded at excitation wavelengths of 330, 365, 385, 405, and 415 nm by establishing surface contact of the fiber optic probe with the liver specimens. A multi-variate statistical approach based on principal component analysis followed by quadratic discriminant analysis was applied to spectral data to obtain classifiers able to distinguish mild and moderate stages of steatosis at the different excitation wavelengths. Receiver Operating Characteristic (ROC) curves were computed to compare classifier’s performances for each one of the five excitation wavelengths and steatosis stages. Optimal sensitivity and specificity were calculated from the corresponding ROC curves using the Youden index. Intensity in the endogenous fluorescence spectra at the given wavelengths progressively increased according to the time of exposure to diet. The area under the curve of the spectra was able to discriminate control liver samples from those with steatosis and differentiate among the time of exposure to the diet for most of the used excitation wavelengths. High specificities and sensitivities were obtained for every case; however, fluorescence spectra obtained by exciting with 405 nm yielded the best results distinguishing between the mentioned classes with a total classification error of 1.5% and optimal sensitivities and specificities better than 98.6% and 99.3%, respectively.
Collapse
Affiliation(s)
- Alma Valor
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Eduardo J Arista Romeu
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | - Galileo Escobedo
- Laboratorio de Proteómica, Dirección de Investigación, Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Adriana Campos-Espinosa
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Ivette Irais Romero-Bello
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Javier Moreno-González
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico
| | - Diego A Fabila Bustos
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
- Laboratorio de Espectroscopia, UPIIH, Instituto Politécnico Nacional, Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42162, Mexico
| | - Suren Stolik
- Laboratorio de Biofotónica, ESIME Zac, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico
| | | | - Carolina Guzmán
- Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de Mexico/Hospital General de Mexico "Dr. Eduardo Liceaga", Ciudad de Mexico 06720, Mexico.
| |
Collapse
|
43
|
Serum and Hepatic Autofluorescence as a Real-Time Diagnostic Tool for Early Cholestasis Assessment. Int J Mol Sci 2018; 19:ijms19092634. [PMID: 30189659 PMCID: PMC6165295 DOI: 10.3390/ijms19092634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
While it is well established that various factors can impair the production and flow of bile and lead to cholestatic disease in hepatic and extrahepatic sites, an enhanced assessment of the biomarkers of the underlying pathophysiological mechanisms is still needed to improve early diagnosis and therapeutic strategies. Hence, we investigated fluorescing endogenous biomolecules as possible intrinsic biomarkers of molecular and cellular changes in cholestasis. Spectroscopic autofluorescence (AF) analysis was performed using a fiber optic probe (366 nm excitation), under living conditions and in serum, on the livers of male Wistar rats submitted to bile duct ligation (BDL, 24, 48, and 72 h). Biomarkers of liver injury were assayed biochemically. In the serum, AF analysis distinctly detected increased bilirubin at 24 h BDL. A continuous, significant increase in red-fluorescing porphyrin derivatives indicated the subversion of heme metabolism, consistent with an almost twofold increase in the serum iron at 72 h BDL. In the liver, changes in the AF of NAD(P)H and flavins, as well as lipopigments, indicated the impairment of mitochondrial functionality, oxidative stress, and the accumulation of oxidative products. A serum/hepatic AF profile can be thus proposed as a supportive diagnostic tool for the in situ, real-time study of bio-metabolic alterations in bile duct ligation (BDL) in experimental hepatology, with the potential to eventually translate to clinical diagnosis.
Collapse
|