1
|
Tanney JB, Kemler M, Vivas M, Wingfield MJ, Slippers B. Silent invaders: the hidden threat of asymptomatic phytobiomes to forest biosecurity. THE NEW PHYTOLOGIST 2025. [PMID: 40400211 DOI: 10.1111/nph.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/12/2025] [Indexed: 05/23/2025]
Abstract
Populations of diverse, unknown, and potentially pathogenic fungi and fungus-like organisms are continuously introduced into new locations via asymptomatic infections (e.g. as endophytes or latent pathogens) within internationally traded live plants. Interactions between these asymptomatic fungi and novel recipient host trees can be unpredictable, and urban introductions may act as bridgeheads into natural and managed forests. Historical examples of novel, highly destructive forest tree diseases highlight the potential threat of this pathway. As the trade in live plants continues to expand, the likelihood of high-impact incursions increases. This has led to calls for more proactive management, including more stringent treatment and regulatory standards, and even the phasing out of trade in plants determined to be an untenable risk to forest ecosystems. In this review, we discuss how biosecurity systems should consider advances in understanding the diversity and ecology of phytobiomes associated with asymptomatic plants and what measures can be considered to reduce this threat to global forest health.
Collapse
Affiliation(s)
- Joey B Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Rd W, Victoria, BC, V8Z 1M5, Canada
| | - Martin Kemler
- Organismic Botany and Mycology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Maria Vivas
- Institute for Dehesa Research (INDEHESA), University of Extremadura, Calle Virgen del Puerto, 10600, Plasencia, Spain
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lunnon Rd, Pretoria, 0002, South Africa
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lunnon Rd, Pretoria, 0002, South Africa
| |
Collapse
|
2
|
Oostlander AG, Fleißner A, Slippers B. Advancing forest pathology: the need for community-driven molecular experimental model systems. THE NEW PHYTOLOGIST 2025. [PMID: 40350752 DOI: 10.1111/nph.70205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
Forests world-wide are under escalating threat from emerging and invasive fungal and oomycete pathogens, driven by globalization and shifting climate dynamics. Effective strategies to manage the current scale and rate of changes in forest health remain hindered by our limited ability to study the underlying mechanisms of pathogen-host and pathogen-microbiome interactions, especially at a molecular and cellular level, compared to general plant pathology, where experimental and model systems exist. Such models facilitate the integration of diverse methodologies from a broader base of the research community, allowing for a more holistic and deeper examination of complex research questions. Here, we propose a framework for the development of such model systems also for forest pathology. This goal is more feasible than ever, thanks to rapid technological advancements, increasing open data availability and a globally interconnected research community. These factors create a unique opportunity to integrate ecosystem-focused research in forest pathology with a unified model organism strategy. Achieving this goal will require a dedicated community effort in the coming years, as such model systems are not discovered but built.
Collapse
Affiliation(s)
- Anne G Oostlander
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - André Fleißner
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
3
|
Kharel A, Ziemann M, Rookes J, Cahill D. Modulation of key sterol-related genes of Nicotiana benthamiana by phosphite treatment during infection with Phytophthora cinnamomi. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24251. [PMID: 40373186 DOI: 10.1071/fp24251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/30/2025] [Indexed: 05/17/2025]
Abstract
Phytophthora cinnamomi is a globally destructive pathogen causing disease in over 5000 plant species. As sterol auxotrophs, Phytophthora species rely on host-derived phytosterols for reproduction, yet the effects of pathogen infection on plant sterol biosynthesis remains unclear. We utilised a soil-free plant growth system to analyze the impacts of P. cinnamomi on Nicotiana benthamiana roots, a new model for studying P. cinnamomi -plant root interactions. Our results show that P. cinnamomi successfully infected all ecotypes tested, but infection was inhibited by the systemic chemical, phosphite. While phosphite is traditionally associated with the activation of plant defence mechanisms, we show that phosphite also modulates plant immune receptors and phytosterol biosynthesis. qPCR analyses revealed a two-fold upregulation of the N. benthamiana elicitin receptor, Responsive to Elicitins (REL ), and its co-receptor, suppressor of BIR1-1 (SOBIR ) during P. cinnamomi infection when compared with infected, phosphite-treated plants. Furthermore, key genes related to plant sterol biosynthesis were upregulated in their expression during pathogen infection but were suppressed in phosphite-treated and infected plants. Notably, the cytochrome P450 family 710 (CYP710A ) gene encoding a C22-sterol desaturase, involved in stigmasterol production, a phytosterol known to be linked to plant susceptibility to pathogens, was downregulated in phosphite-treated plants, independent of infection status. These findings reveal novel insights into the role of phosphite in modulating plant immune responses and sterol metabolism, with potential in managing diseases caused by P. cinnamomi .
Collapse
Affiliation(s)
- Aayushree Kharel
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Geelong, Vic 3216, Australia
| | - Mark Ziemann
- Burnet Institute, Melbourne, Vic 3004, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Geelong, Vic 3216, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Geelong, Vic 3216, Australia
| |
Collapse
|
4
|
Botella L, Hejna O, Kudláček T, Kovačiková K, Rost M, Forgia M, Raco M, Milenković I, Corcobado T, Maia C, Scanu B, Drenth A, Guest DI, Liew ECY, Chi NM, Thu PQ, Chang TT, Fu CH, Kageyama K, Hieno A, Masuja H, Uematsu S, Durán Á, Tarigan M, Junaid M, Nasri N, Sanfuentes E, Čurn V, Webber JF, Brasier CM, Jung MH, Jung T. The virome of the panglobal, wide host-range plant pathogen Phytophthora cinnamomi: phylogeography and evolutionary insights. Virus Evol 2025; 11:veaf020. [PMID: 40352162 PMCID: PMC12063590 DOI: 10.1093/ve/veaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/13/2025] [Accepted: 03/27/2025] [Indexed: 05/14/2025] Open
Abstract
Phytophthora cinnamomi stands out as one of the most devastating plant pathogens worldwide, rapidly expanding its range and impacting a wide range of host species. In this study, we investigated the virome of P. cinnamomi across 222 isolates from Africa, Asia, Europe, Oceania, and the Americas using stranded total RNA sequencing, reverse transcription polymerase chain reaction screening, and Sanger sequencing of selected isolates. Our analysis revealed that virus infections were prevalent across all sampled populations, including RNA viruses associated with the orders Ghabrivirales, Martellivirales, and Tolivirales, and the classes Amabiliviricetes, Bunyaviricetes, and the recently proposed Orpoviricetes. Viruses were mainly found in East and Southeast Asian populations, within the geographic origin of P. cinnamomi but have also spread to new regions where the pathogen has emerged as a clonal destructive pathogen. Among the identified viruses, eight species, including two bunya-like viruses, one narna-like virus, and five ormycoviruses, exhibit a global distribution with some genetic divergence between continents. The interaction between P. cinnamomi and its virome indicates a dynamic coevolution across diverse geographic regions. Indonesia is indicated to be the viral epicentre of P. cinnamomi, with the highest intra- and interspecies diversity of viruses. Viral diversity is significantly enhanced in regions where sexual recombination of P. cinnamomi occurs, while regions with predominantly asexual reproduction harbour fewer viral species. Interestingly, only the partially self-fertile mating type (MAT) A2, associated with the global pandemic, facilitates the spread of viruses across different biogeographic regions, whereas viruses are absent in the self-sterile MAT A1 in its areas of introduction like Australia and South Africa. Intriguingly, the presence of a plant tombusvirus suggests a potential cross-kingdom infection among Chilean isolates and a plant host. This study sheds further light on the geographical origin of P. cinnamomi from a novel virome perspective.
Collapse
Affiliation(s)
- Leticia Botella
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
| | - Ondřej Hejna
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice 370 05, Czech Republic
| | - Tomáš Kudláček
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
- Institute for Mathematics and Computer Science & Center for Functional Genomics of Microbes, University of Greifswald, Walther-Rathenau-Straße 47, Greifswald 17489, Germany
| | - Kateřina Kovačiková
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
| | - Michael Rost
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice 370 05, Czech Republic
| | - Marco Forgia
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73 - 10135, Torino 10135, Italy
| | - Milica Raco
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
| | - Ivan Milenković
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice 370 05, Czech Republic
| | - Tamara Corcobado
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice 370 05, Czech Republic
| | - Cristiana Maia
- Centre of Marine Sciences (CCMAR), University of Algarve, Gambelas Campus 8005-139, Faro 8005-139, Portugal
| | - Bruno Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, Sassari 07100, Italy
| | - André Drenth
- Centre for Horticultural Science, The University of Queensland, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Brisbane, Qld 4001, Australia
| | - David I Guest
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Edward C Y Liew
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW 2006, Australia
| | - Nguyen Minh Chi
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Road, Hanoi 10000, Vietnam
| | - Pham Quang Thu
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, 46 Duc Thang Road, Hanoi 10000, Vietnam
| | - Tun-Tschu Chang
- Forest Protection Division, Taiwan Forestry Research Institute, No. 53, Nanhai Rd, Taipei, Taiwan
| | - Chuen-Hsu Fu
- Forest Protection Division, Taiwan Forestry Research Institute, No. 53, Nanhai Rd, Taipei, Taiwan
| | - Koji Kageyama
- Center for Environmental and Societal Sustainability, Gifu University, Gifu 501-1193, Japan
| | - Ayaka Hieno
- Center for Environmental and Societal Sustainability, Gifu University, Gifu 501-1193, Japan
| | - Hayato Masuja
- Forestry and Forest Products Research Institute (FFPRI), Ibaraki, Tsukuba, IB 305-8687, Japan
| | - Seiji Uematsu
- Department of Bioregulation and Biointeraction, Laboratory of Molecular and Cellular Biology, Tokyo University of Agriculture and Technology, Fuchu, TK 183-8509, Japan
| | - Álvaro Durán
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), Kabupaten Pelalawan, Pangkalan Kerinci, RI 28300, Indonesia
| | - Marthin Tarigan
- Fiber Research and Development, Asia Pacific Resources International Limited (APRIL), Kabupaten Pelalawan, Pangkalan Kerinci, RI 28300, Indonesia
| | - Muhammad Junaid
- Department of Plant Pest and Disease, Faculty of Agriculture, Hasanuddin University, Jalan Perintis Kemerdekaan Km. 10, Makassar, SN 90245, Indonesia
| | - Nasri Nasri
- Faculty of Forestry, Hasanuddin University, Jalan Perintis Kemerdekaan km.10, Makassar, SN 90245, Indonesia
| | - Eugenio Sanfuentes
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Barrio Universitario s/n, Concepción 4030000, Chile
| | - Vladislav Čurn
- Department of Genetics and Agrobiotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Na Sádkách 1780, České Budějovice 370 05, Czech Republic
| | - Joan F Webber
- Forest Research, Alice Holt Lodge, GU10 4LH, Farnham, Surrey, United Kingdom
| | - Clive M Brasier
- Forest Research, Alice Holt Lodge, GU10 4LH, Farnham, Surrey, United Kingdom
| | - Marília Horta Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, Brno 613 00, Czech Republic
| |
Collapse
|
5
|
Dort EN, Feau N, Hamelin RC. Novel application of ribonucleoprotein-mediated CRISPR-Cas9 gene editing in plant pathogenic oomycete species. Microbiol Spectr 2025; 13:e0301224. [PMID: 40014012 PMCID: PMC11960053 DOI: 10.1128/spectrum.03012-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
CRISPR-Cas9 gene editing has become an important tool for the study of plant pathogens, allowing researchers to functionally characterize specific genes involved in phytopathogenicity, virulence, and fungicide resistance. Protocols for CRISPR-Cas9 gene editing have already been developed for Phytophthoras, an important group of oomycete plant pathogens; however, these efforts have exclusively focused on agricultural pathosystems, with research lacking for forest pathosystems. We sought to develop CRISPR-Cas9 gene editing in two forest pathogenic Phytophthoras, Phytophthora cactorum and P. ramorum, using a plasmid-ribonucleoprotein (RNP) co-transformation approach. Our gene target in both species was the ortholog of PcORP1, which encodes an oxysterol-binding protein that is the target of the fungicide oxathiapiprolin in the agricultural pathogen P. capsici. We delivered liposome complexes, each containing plasmid DNA and CRISPR-Cas9 RNPs, to Phytophthora protoplasts using a polyethylene glycol-mediated transformation protocol. We obtained two ORP1 mutants in P. cactorum but were unable to obtain any mutants in P. ramorum. The two P. cactorum mutants exhibited decreased resistance to oxathiapiprolin, as measured by their radial growth relative to wild-type cultures on oxathiapiprolin-supplemented medium. Our results demonstrate the potential for RNP-mediated CRISPR-Cas9 gene editing in P. cactorum and provide a foundation for future optimization of our protocol in other forest pathogenic Phytophthora species.IMPORTANCECRISPR-Cas9 gene editing has become a valuable tool for characterizing the genetics driving virulence and pathogenicity in plant pathogens. CRISPR-Cas9 protocols are now well-established in several Phytophthora species, an oomycete genus with significant economic and ecological impact globally. These protocols, however, have been developed for agricultural Phytophthora pathogens only; CRISPR-Cas9 systems have not yet been developed for any forest pathogenic Phytophthoras. In this study, we sought to establish CRISPR-Cas9 gene editing in two forest Phytophthora pathogens that cause widespread tree mortality: P. cactorum and P. ramorum. We successfully obtained gene mutations in P. cactorum and demonstrated a decrease in fungicide resistance, a trait that could impact the pathogen's ability to cause disease. However, the same protocol did not yield any mutants in P. ramorum. The results of our study will serve as a baseline for the development of CRISPR-Cas9 gene editing in forest Phytophthoras and other oomycetes.
Collapse
Affiliation(s)
- Erika N. Dort
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicolas Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia, Canada
| | - Richard C. Hamelin
- Department of Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Quebec, Canada
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
6
|
Clement WJJ, Kalpana K, Aiyanathan KEA, Ramakrishnan M, Kandan A, Manonmani K, Yesuraja I, Sabarinathan KG, Mini ML, Shanthi M, Rajangam J, Punitha A. Exploring the Perilous Nature of Phytophthora: Insights into Its Biology, Host Range, Detection, and Integrated Management Strategies in the Fields of Spices and Plantation Crops. THE PLANT PATHOLOGY JOURNAL 2025; 41:121-139. [PMID: 40211618 PMCID: PMC11986356 DOI: 10.5423/ppj.rw.07.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 04/14/2025]
Abstract
The horticultural crops, including spices and plantation crops, are known for their enormous benefits, contributing to the country's economy. However, Phytophthora, a genus of Oomycetes class, poses a threat to spice and plantation crops by infecting and damaging them, resulting in yield losses, economic hardship for farmers, and food security concerns, thereby threatening the sustainability of spice and plantation crops. Moreover, Phytophthora has greater adaptation systems in varying environmental conditions. Therefore, eradicating or controlling Phytophthora is a highly challenging process due to the longevity of its infective propagules in soil. Early detection and curative measures would be more effective in managing this destructive pathogen. Additionally, molecular detection using innovative methods such as polymerase chain reaction, reverse transcription polymerase chain reaction, recombinase polymerase amplification, and loop-mediated isothermal amplification would offer reliable and rapid detection. Furthermore, integrated disease management strategies, combining cultural, physical, chemical, and biological methods, would prove highly beneficial in managing Phytophthora infections in spices and plantation crops. This review provides a comprehensive overview of the diversity, symptomatology, pathogenicity, and impact of Phytophthora diseases on prominent spice and plantation crops. Finally, our review explores the current disease reduction strategies and suggests future research directions to address the threat posed by Phytophthora to spices and plantation crops.
Collapse
Affiliation(s)
| | - Krishnan Kalpana
- Department of Plant Protection, Horticultural College and Research Institute, TNAU Periyakulam, Tamil Nadu 625104, India
| | | | | | - Aravindaram Kandan
- Division of Germplasm Conservation and Utilization, ICAR-NBAIR, Bengaluru, Karnataka 560024, India
| | - Karunakaran Manonmani
- Department of Plant Pathology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | - Iruthayarajan Yesuraja
- Department of Plant Pathology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | | | - Madhavan Lysal Mini
- Department of Biotechnology, Agricultural College and Research Institute, TNAU Madurai, Tamil Nadu 625104, India
| | - Mookiah Shanthi
- Centre for Plant Protection Studies, TNAU, Coimbatore, Tamil Nadu 641003, India
| | - Jacop Rajangam
- Department of Horticulture, Horticultural College and Research Institute, TNAU, Periyakulam, Tamil Nadu 625601, India
| | - Ayyar Punitha
- Rice Research Station, TNAU, Tirur, Tamil Nadu 604102, India
| |
Collapse
|
7
|
Ku YS, Cheng SS, Luk CY, Leung HS, Chan TY, Lam HM. Deciphering metabolite signalling between plant roots and soil pathogens to design resistance. BMC PLANT BIOLOGY 2025; 25:308. [PMID: 40069627 PMCID: PMC11895165 DOI: 10.1186/s12870-025-06321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Metabolites are important signaling molecules mediating plant-microbe interaction in soil. Plant root exudates are composed of primary metabolites, secondary metabolites, and macro-molecules such as organic acids. Certain organic acids in root exudates can attract pathogenic microbes in soil and promote infection. Meanwhile, secretions from soil microbes can also alter the compositions of root exudates and enhance the pathogenicity towards the target host plant. Examples of toxins in microbial secretions include polyketides and thaxtomins. The pathogenicity of plant microbes is mediated by the dynamic exchange of metabolites between the pathogen and the host plant. By deciphering this metabolite-mediated infection process, targeted strategies can be developed to promote plant resistance to soil pathogens. Examples of the strategies include the manipulation of root exudate composition and the blocking of metabolite signals that promote microbial infection. Other possibilities include minimizing the harmfulness of pathogenic microbial secretions to plants by habituating the plants to the toxin, genetically engineering plants to enhance their pathogen resistance, and treating plants with beneficial hormones and microbes. In this review, we summarized the current understanding of root exudates and soil microbe secretions that promote infection. We also discussed the strategies for promoting pathogen resistance in plants by focusing on the metabolite signaling between plants and pathogenic soil microbes.
Collapse
Affiliation(s)
- Yee-Shan Ku
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China.
| | - Sau-Shan Cheng
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ching-Yee Luk
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Sze Leung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz-Yan Chan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Soto-Plancarte A, Díaz-Celaya M, Rodríguez-Alvarado G, Fernández-Pavía YL, Silva-Rojas HV, Pedraza-Santos ME, Salgado-Garciglia R, Bourret TB, Fernández-Pavía SP. The Heterogeneity of Ornamental Plants in Nurseries Increases the Chance of Finding New Hosts for Phytophthora. J Fungi (Basel) 2025; 11:187. [PMID: 40137225 PMCID: PMC11943281 DOI: 10.3390/jof11030187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
The production of ornamental plants in Mexico represents a job-generating activity that has grown in recent years; however, it is adversely affected by phytosanitary issues, notably those induced by Phytophthora. Studies of Phytophthora in ornamental nurseries are scarce in Mexico. The aim in this study was to identify Phytophthora species from selected ornamental plant nurseries in Mexico as potential new hosts. Samples of 13 genera diseased plant tissue and soil were collected from eight nurseries in Mexico during 2009-2010. Based on morphology and sequences of ITS rDNA, the 19 isolates obtained were identified as P. cactorum, P. capsici, P. cinnamomi, P. drechsleri, P. kelmanii, P. nicotianae, and P. tropicalis. Additional loci were sequenced to support species determinations within the P. capsici species complex; some of these isolates could not be confirmed as belonging to any described species, and one appeared to be an interspecific hybrid. This is the first report of P. kelmanii in Mexico; this is noteworthy due to being a broad host range, similar to most of the other species encountered. Evidence of nursery-grown plants serving as a Phytophthora vector to a home garden has been reported for the first time in Mexico. Cestrum nocturnum and Solanum ovigerum are new hosts for Phytophthora worldwide.
Collapse
Affiliation(s)
- Alejandro Soto-Plancarte
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), km 9.5 Carr. Morelia-Zinapécuaro, Tarímbaro 58880, Michoacán, Mexico; (A.S.-P.); (M.D.-C.); (G.R.-A.)
| | - Marlene Díaz-Celaya
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), km 9.5 Carr. Morelia-Zinapécuaro, Tarímbaro 58880, Michoacán, Mexico; (A.S.-P.); (M.D.-C.); (G.R.-A.)
| | - Gerardo Rodríguez-Alvarado
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), km 9.5 Carr. Morelia-Zinapécuaro, Tarímbaro 58880, Michoacán, Mexico; (A.S.-P.); (M.D.-C.); (G.R.-A.)
| | - Yolanda Leticia Fernández-Pavía
- Programa de Edafología-Nutrición Vegetal, Colegio de Postgraduados, Campus Montecillo, km 36.5 Carr. México-Texcoco, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Hilda Victoria Silva-Rojas
- Producción de Semillas, Colegio de Postgraduados, Campus Montecillo, km 36.5 Carr. México-Texcoco, Montecillo, Texcoco 56264, Estado de México, Mexico;
| | - Martha Elena Pedraza-Santos
- Facultad de Agrobiología, Universidad Michoacana de San Nicolás de Hidalgo, Paseo Lázaro Cárdenas esq. Berlín, Colonia Viveros, Uruapan 60090, Michoacán, Mexico;
| | - Rafael Salgado-Garciglia
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-3, Ciudad Universitaria, Morelia 58060, Michoacán, Mexico;
| | - Tyler Baldwin Bourret
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture-Agricultural Research Service, 10300 Baltimore Ave, Beltsville, MD 20705, USA;
| | - Sylvia Patricia Fernández-Pavía
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), km 9.5 Carr. Morelia-Zinapécuaro, Tarímbaro 58880, Michoacán, Mexico; (A.S.-P.); (M.D.-C.); (G.R.-A.)
| |
Collapse
|
9
|
Salinas A, Montenegro I, Olguín Y, Riquelme N, Castillo-Novales D, Larach A, Alvarado L, Bravo G, Madrid A, Álvaro JE, Besoain X. Antioomycete Nanoformulation for Biocontrol of English Walnut Crown and Root Rot Caused by Phytophthora cinnamomi. PLANTS (BASEL, SWITZERLAND) 2025; 14:257. [PMID: 39861610 PMCID: PMC11768349 DOI: 10.3390/plants14020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
In Chile and worldwide, walnut (Juglans regia L.) production faces significant losses due to crown and root rot caused by the phytopathogen Phytophthora cinnamomi. Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control P. cinnamomi in walnut crops. The methodology included an in vitro test to determine the effective inhibitory concentrations of three nanoemulsions (N80, N90, and N100) on the mycelial growth of the phytopathogen, a test on walnut plants under controlled conditions, and two field tests using concentrations between 300 and 500 ppm. The in vitro results showed that the nanoemulsions could inhibit 90% of mycelial growth at 80 to 100 ppm concentrations. In the field, the N90 nanoemulsion at 500 ppm significantly reduced disease symptoms preventively and post-inoculation, compared with the control. This research is the first to study the use of nanoemulsions from native Chilean plants to control P. cinnamomi, showing potential to reduce the use of synthetic fungicides, contributing to safer and more ecological phytosanitary management.
Collapse
Affiliation(s)
- Aldo Salinas
- Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.S.); (N.R.); (D.C.-N.); (A.L.); (L.A.); (J.E.Á.)
| | - Iván Montenegro
- Center of Interdisciplinary Biomedical and Engineering Research for Health (MEDING), Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile;
| | - Yusser Olguín
- Departamento de Química y Medio Ambiente, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 390123, Chile
| | - Natalia Riquelme
- Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.S.); (N.R.); (D.C.-N.); (A.L.); (L.A.); (J.E.Á.)
| | - Diyanira Castillo-Novales
- Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.S.); (N.R.); (D.C.-N.); (A.L.); (L.A.); (J.E.Á.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile;
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
| | - Alejandra Larach
- Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.S.); (N.R.); (D.C.-N.); (A.L.); (L.A.); (J.E.Á.)
| | - Laureano Alvarado
- Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.S.); (N.R.); (D.C.-N.); (A.L.); (L.A.); (J.E.Á.)
| | - Guillermo Bravo
- Center of Interdisciplinary Biomedical and Engineering Research for Health (MEDING), Escuela de Obstetricia y Puericultura, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile;
| | - Alejandro Madrid
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile;
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2360004, Chile
| | - Juan E. Álvaro
- Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.S.); (N.R.); (D.C.-N.); (A.L.); (L.A.); (J.E.Á.)
| | - Ximena Besoain
- Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile; (A.S.); (N.R.); (D.C.-N.); (A.L.); (L.A.); (J.E.Á.)
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
10
|
Sivaprakasam N, Vaithiyanathan S, Gandhi K, Narayanan S, Kavitha PS, Rajasekaran R, Muthurajan R. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res Microbiol 2024; 175:104217. [PMID: 38857835 DOI: 10.1016/j.resmic.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Phytophthora species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics approaches is essential for assessing the dynamics of PGPM and Phytophthora species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and Phytophthora sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.
Collapse
Affiliation(s)
- Navarasu Sivaprakasam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Karthikeyan Gandhi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Swarnakumari Narayanan
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P S Kavitha
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
11
|
Kharel A, Rookes J, Ziemann M, Cahill D. Viable protoplast isolation, organelle visualization and transformation of the globally distributed plant pathogen Phytophthora cinnamomi. PROTOPLASMA 2024; 261:1073-1092. [PMID: 38702562 PMCID: PMC11358197 DOI: 10.1007/s00709-024-01953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Phytophthora cinnamomi is an oomycete plant pathogen with a host range of almost 5000 plant species worldwide and therefore poses a serious threat to biodiversity. Omics technology has provided significant progress in our understanding of oomycete biology, however, transformation studies of Phytophthora for gene functionalisation are still in their infancy. Only a limited number of Phytophthora species have been successfully transformed and gene edited to elucidate the role of particular genes. There is a need to escalate our efforts to understand molecular processes, gene regulation and infection mechanisms of the pathogen to enable us to develop new disease management strategies. The primary obstacle hindering the advancement of transformation studies in Phytophthora is their challenging and unique nature, coupled with our limited comprehension of why they remain such an intractable system to work with. In this study, we have identified some of the key factors associated with the recalcitrant nature of P. cinnamomi. We have incorporated fluorescence microscopy and flow cytometry along with the organelle-specific dyes, fluorescein diacetate, Hoechst 33342 and MitoTracker™ Red CMXRos, to assess P. cinnamomi-derived protoplast populations. This approach has also provided valuable insights into the broader cell biology of Phytophthora. Furthermore, we have optimized the crucial steps that allow transformation of P. cinnamomi and have generated transformed isolates that express a cyan fluorescent protein, with a transformation efficiency of 19.5%. We therefore provide a platform for these methodologies to be applied for the transformation of other Phytophthora species and pave the way for future gene functionalisation studies.
Collapse
Affiliation(s)
- Aayushree Kharel
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - James Rookes
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
- Burnet Institute, Melbourne, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
12
|
He H, Xu T, Cao F, Xu Y, Dai T, Liu T. PcAvh87, a virulence essential RxLR effector of Phytophthora cinnamomi suppresses host defense and induces cell death in plant nucleus. Microbiol Res 2024; 286:127789. [PMID: 38870619 DOI: 10.1016/j.micres.2024.127789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Plants have developed intricate immune mechanisms to impede Phytophthora colonization. In response, Phytophthora secretes RxLR effector proteins that disrupt plant defense and promote infection. The specific molecular interactions through which Phytophthora RxLR effectors undermine plant immunity, however, remain inadequately defined. In this study, we delineate the role of the nuclear-localized RxLR effector PcAvh87, which is pivotal for the full virulence of Phytophthora cinnamomi. Gene expression analysis indicates that PcAvh87 expression is significantly upregulated during the initial infection stages, interacting with the immune responses triggered by the elicitin protein INF1 and pro-apoptotic protein BAX. Utilizing PEG/CaCl2-mediated protoplast transformation and CRISPR/Cas9-mediated gene editing, we generated PcAvh87 knockout mutants, which demonstrated compromised hyphal growth, sporangium development, and zoospore release, along with a marked reduction in pathogenicity. This underscores PcAvh87's crucial role as a virulence determinant. Notably, PcAvh87, conserved across the Phytophthora genus, was found to modulate the activity of plant immune protein 113, thereby attenuating plant immune responses. This implies that the PcAvh87-mediated regulatory mechanism could be a common strategy in Phytophthora species to manipulate plant immunity. Our findings highlight the multifaceted roles of PcAvh87 in promoting P. cinnamomi infection, including its involvement in sporangia production, mycelial growth, and the targeting of plant immune proteins to enhance pathogen virulence.
Collapse
Affiliation(s)
- Haibin He
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingyan Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yue Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Tingli Liu
- School of Food Science, Nanjing Xiaozhuang University, 3601 Hongjin Avenue, Nanjing 211171, China.
| |
Collapse
|
13
|
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Fatima N, Shahbaz M, Akram M, Sathiya Seelan JS, Ali A, Ahmad S. Deciphering fungicide resistance in Phytophthora: mechanisms, prevalence, and sustainable management approaches. World J Microbiol Biotechnol 2024; 40:302. [PMID: 39150639 DOI: 10.1007/s11274-024-04108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ahmad
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Noor Fatima
- Department of Botany, Lahore College for Women University, Lahore, 44444, Punjab, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Muhammad Akram
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Amjad Ali
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, 58140, Sivas, Turkey
| | - Salman Ahmad
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| |
Collapse
|
14
|
Shands AC, Xu G, Belisle RJ, Seifbarghi S, Jackson N, Bombarely A, Cano LM, Manosalva PM. Genomic and transcriptomic analyses of Phytophthora cinnamomi reveal complex genome architecture, expansion of pathogenicity factors, and host-dependent gene expression profiles. Front Microbiol 2024; 15:1341803. [PMID: 39211322 PMCID: PMC11357935 DOI: 10.3389/fmicb.2024.1341803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Phytophthora cinnamomi is a hemibiotrophic oomycete causing Phytophthora root rot in over 5,000 plant species, threatening natural ecosystems, forestry, and agriculture. Genomic studies of P. cinnamomi are limited compared to other Phytophthora spp. despite the importance of this destructive and highly invasive pathogen. The genome of two genetically and phenotypically distinct P. cinnamomi isolates collected from avocado orchards in California were sequenced using PacBio and Illumina sequencing. Genome sizes were estimated by flow cytometry and assembled de novo to 140-141 Mb genomes with 21,111-21,402 gene models. Genome analyses revealed that both isolates exhibited complex heterozygous genomes fitting the two-speed genome model. The more virulent isolate encodes a larger secretome and more RXLR effectors when compared to the less virulent isolate. Transcriptome analysis after P. cinnamomi infection in Arabidopsis thaliana, Nicotiana benthamiana, and Persea americana de Mill (avocado) showed that this pathogen deploys common gene repertoires in all hosts and host-specific subsets, especially among effectors. Overall, our results suggested that clonal P. cinnamomi isolates employ similar strategies as other Phytophthora spp. to increase phenotypic diversity (e.g., polyploidization, gene duplications, and a bipartite genome architecture) to cope with environmental changes. Our study also provides insights into common and host-specific P. cinnamomi infection strategies and may serve as a method for narrowing and selecting key candidate effectors for functional studies to determine their contributions to plant resistance or susceptibility.
Collapse
Affiliation(s)
- Aidan C. Shands
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Guangyuan Xu
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Rodger J. Belisle
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Shirin Seifbarghi
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Natasha Jackson
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valéncia, Valencia, Spain
| | - Liliana M. Cano
- Department of Plant Pathology, Indian River Research and Education Center (IRREC), Institute of Food and Agricultural Sciences (IFAS), University of Florida, Fort Pierce, FL, United States
| | - Patricia M. Manosalva
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
15
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Mendoza-Mendoza A, Esquivel-Naranjo EU, Soth S, Whelan H, Alizadeh H, Echaide-Aquino JF, Kandula D, Hampton JG. Uncovering the multifaceted properties of 6-pentyl-alpha-pyrone for control of plant pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1420068. [PMID: 38957597 PMCID: PMC11217547 DOI: 10.3389/fpls.2024.1420068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Some volatile organic compounds (VOCs) produced by microorganisms have the ability to inhibit the growth and development of plant pathogens, induce the activation of plant defenses, and promote plant growth. Among them, 6-pentyl-alpha-pyrone (6-PP), a ketone produced by Trichoderma fungi, has emerged as a focal point of interest. 6-PP has been isolated and characterized from thirteen Trichoderma species and is the main VOC produced, often accounting for >50% of the total VOCs emitted. This review examines abiotic and biotic interactions regulating the production of 6-PP by Trichoderma, and the known effects of 6-PP on plant pathogens through direct and indirect mechanisms including induced systemic resistance. While there are many reports of 6-PP activity against plant pathogens, the vast majority have been from laboratory studies involving only 6-PP and the pathogen, rather than glasshouse or field studies including a host plant in the system. Biopesticides based on 6-PP may well provide an eco-friendly, sustainable management tool for future agricultural production. However, before this can happen, challenges including demonstrating disease control efficacy in the field, developing efficient delivery systems, and determining cost-effective application rates must be overcome before 6-PP's potential for pathogen control can be turned into reality.
Collapse
Affiliation(s)
| | - Edgardo Ulises Esquivel-Naranjo
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
- Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - Sereyboth Soth
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Helen Whelan
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Hossein Alizadeh
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | | | - Diwakar Kandula
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - John G. Hampton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
17
|
Andronis CE, Jacques S, Lopez-Ruiz FJ, Lipscombe R, Tan KC. Proteomic analysis revealed that the oomyceticide phosphite exhibits multi-modal action in an oomycete pathosystem. J Proteomics 2024; 301:105181. [PMID: 38670258 DOI: 10.1016/j.jprot.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Phytopathogenic oomycetes constitute some of the most devastating plant pathogens and cause significant crop and horticultural yield and economic losses. The phytopathogen Phytophthora cinnamomi causes dieback disease in native vegetation and several crops. The most commonly used chemical to control P. cinnamomi is the oomyceticide phosphite. Despite its widespread use, the mode of action of phosphite is not well understood and it is unclear whether it targets the pathogen, the host, or both. Resistance to phosphite is emerging in P. cinnamomi isolates and other oomycete phytopathogens. The mode of action of phosphite on phosphite-sensitive and resistant isolates of the pathogen and through a model host was investigated using label-free quantitative proteomics. In vitro treatment of sensitive P. cinnamomi isolates with phosphite hinders growth by interfering with metabolism, signalling and gene expression; traits that are not observed in the resistant isolate. When the model host Lupinus angustifolius was treated with phosphite, proteins associated with photosynthesis, carbon fixation and lipid metabolism in the host were enriched. Increased production of defence-related proteins was also observed in the plant. We hypothesise the multi-modal action of phosphite and present two models constructed using comparative proteomics that demonstrate mechanisms of pathogen and host responses to phosphite. SIGNIFICANCE: Phytophthora cinnamomi is a significant phytopathogenic oomycete that causes root rot (dieback) in a number of horticultural crops and a vast range of native vegetation. Historically, areas infected with phosphite have been treated with the oomyceticide phosphite despite its unknown mode of action. Additionally, overuse of phosphite has driven the emergence of phosphite-resistant isolates of the pathogen. We conducted a comparative proteomic study of a sensitive and resistant isolate of P. cinnamomi in response to treatment with phosphite, and the response of a model host, Lupinus angustifolius, to phosphite and its implications on infection. The present study has allowed for a deeper understanding of the bimodal action of phosphite, suggested potential biochemical factors contributing to chemical resistance in P. cinnamomi, and unveiled possible drivers of phosphite-induced host plant immunity to the pathogen.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia; Proteomics International, Nedlands, WA, Australia.
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
18
|
Del Castillo-González L, Soudani S, De La Cruz-Gómez N, Manzanera JA, Berrocal-Lobo M. An improved method to study Phytophthora cinnamomi Rands zoospores interactions with host. BMC PLANT BIOLOGY 2024; 24:508. [PMID: 38844843 PMCID: PMC11154991 DOI: 10.1186/s12870-024-05205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Phytophthora cinnamomi Rands is a highly prevalent phytopathogen worldwide, ranking among the top ten in terms of distribution. It inflicts crown rot, canker, and root rot on numerous plant species, significantly impacting the biodiversity of both flora and fauna within affected environments. With a host range spanning over 5,000 species, including important plants like Quercus suber, Quercus ilex, Castanea sativa, and commercially significant crops such as avocado (Persea americana), maize (Zea mays), and tomato (Solanum lycopersicum), Phytophthora cinnamomi poses a substantial threat to agriculture and ecosystems. The efficient dissemination of the oomycete relies on its short-lived asexually motile zoospores, which depend on water currents to infect host roots. However, managing these zoospores in the laboratory has long been challenging due to the complexity of the life cycle. Current protocols involve intricate procedures, including alternating cycles of growth, drought, and flooding. Unfortunately, these artificial conditions often result in a rapid decline in virulence, necessitating additional steps to maintain infectivity during cultivation. In our research, we sought to address this challenge by investigating zoospore survival under various conditions. Our goal was to develop a stable stock of zoospores that is both easily deployable and highly infective. Through direct freezing in liquid nitrogen, we have successfully preserved their virulence. This breakthrough eliminates the need for repeated culture transfers, simplifying the process of plant inoculation. Moreover, it enables more comprehensive studies of Phytophthora cinnamomi and its interactions with host plants.
Collapse
Affiliation(s)
- Lucía Del Castillo-González
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), ETSIMontes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Serine Soudani
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), ETSIMontes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Noelia De La Cruz-Gómez
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), ETSIMontes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - José Antonio Manzanera
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), ETSIMontes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, 28040, Spain
| | - Marta Berrocal-Lobo
- Centro para la Biodiversidad y Desarrollo Sostenible (CBDS), ETSIMontes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, 28040, Spain.
| |
Collapse
|
19
|
Ghimire B, Gogoi A, Poudel M, Stensvand A, Brurberg MB. Transcriptome analysis of Phytophthora cactorum infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1379970. [PMID: 38855473 PMCID: PMC11157022 DOI: 10.3389/fpls.2024.1379970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.
Collapse
Affiliation(s)
- Bikal Ghimire
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Mandeep Poudel
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
20
|
Midgley KA, van den Berg N, Backer R, Swart V. Identification of Phytophthora cinnamomi CRN effectors and their roles in manipulating cell death during Persea americana infection. BMC Genomics 2024; 25:435. [PMID: 38698341 PMCID: PMC11064341 DOI: 10.1186/s12864-024-10358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
The oomycete Phytophthora cinnamomi is a devastating plant pathogen with a notably broad host range. It is the causal agent of Phytophthora root rot (PRR), arguably the most economically important yield-limiting disease in Persea americana (avocado). Despite this, our understanding of the mechanisms P. cinnamomi employs to infect and successfully colonize avocado remains limited, particularly regarding the pathogen's ability to maintain its biotrophic and necrotrophic lifestyles during infection. The pathogen utilises a large repertoire of effector proteins which function in facilitating and establishing disease in susceptible host plants. Crinkling and necrosis effectors (CRN/Crinklers) are suspected to manipulate cell death to aid in maintenance of the pathogens biotrophic and necrotrophic lifestyles during different stages of infection. The current study identified 25 P. cinnamomi CRN effectors from the GKB4 genome using an HMM profile and assigned putative function to them as either cell death inducers or suppressors. Function was assigned to 10 PcinCRNs by analysing their RNA-seq expression profiles, relatedness to other functionally characterised Phytophthora CRNs and tertiary protein predictions. The full-length coding sequences for these PcinCRNs were confirmed by Sanger sequencing, six of which were found to have two divergent alleles. The presence of alleles indicates that the proteins encoded may perform contradicting functions in cell death manipulation, or function in different host plant species. Overall, this study provides a foundation for future research on P. cinnamomi infection and cell death manipulation mechanisms.
Collapse
Affiliation(s)
- Kayla A Midgley
- Hans Merensky Chair in Avocado Research, Department of Biochemistry; Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Department of Biochemistry; Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| | - Robert Backer
- Hans Merensky Chair in Avocado Research, Department of Biochemistry; Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Department of Biochemistry; Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
21
|
Gille CE, Finnegan PM, Hayes PE, Ranathunge K, Burgess TI, de Tombeur F, Migliorini D, Dallongeville P, Glauser G, Lambers H. Facilitative and competitive interactions between mycorrhizal and nonmycorrhizal plants in an extremely phosphorus-impoverished environment: role of ectomycorrhizal fungi and native oomycete pathogens in shaping species coexistence. THE NEW PHYTOLOGIST 2024; 242:1630-1644. [PMID: 38105548 DOI: 10.1111/nph.19489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Nonmycorrhizal cluster root-forming species enhance the phosphorus (P) acquisition of mycorrhizal neighbours in P-impoverished megadiverse systems. However, whether mycorrhizal plants facilitate the defence of nonmycorrhizal plants against soil-borne pathogens, in return and via their symbiosis, remains unknown. We characterised growth and defence-related compounds in Banksia menziesii (nonmycorrhizal) and Eucalyptus todtiana (ectomycorrhizal, ECM) seedlings grown either in monoculture or mixture in a multifactorial glasshouse experiment involving ECM fungi and native oomycete pathogens. Roots of B. menziesii had higher levels of phytohormones (salicylic and jasmonic acids, jasmonoyl-isoleucine and 12-oxo-phytodienoic acid) than E. todtiana which further activated a salicylic acid-mediated defence response in roots of B. menziesii, but only in the presence of ECM fungi. We also found that B. menziesii induced a shift in the defence strategy of E. todtiana, from defence-related secondary metabolites (phenolic and flavonoid) towards induced phytohormone response pathways. We conclude that ECM fungi play a vital role in the interactions between mycorrhizal and nonmycorrhizal plants in a severely P-impoverished environment, by introducing a competitive component within the facilitation interaction between the two plant species with contrasting nutrient-acquisition strategies. This study sheds light on the interplay between beneficial and detrimental soil microbes that shape plant-plant interaction in severely nutrient-impoverished ecosystems.
Collapse
Affiliation(s)
- Clément E Gille
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick M Finnegan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Patrick E Hayes
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Kosala Ranathunge
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Treena I Burgess
- Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Félix de Tombeur
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- CEFE, CNRS, EPHE, IRD, University of Montpellier, 34000, Montpellier, France
| | - Duccio Migliorini
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
- National Research Council, Institute for Sustainable Plant Protection, Sesto Fiorentino, Florence, 50019, Italy
| | - Paul Dallongeville
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
22
|
Sherwood P, Nordström I, Woodward S, Bohman B, Cleary M. Detecting Pathogenic Phytophthora Species Using Volatile Organic Compounds. Molecules 2024; 29:1749. [PMID: 38675569 PMCID: PMC11052055 DOI: 10.3390/molecules29081749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
There are several highly damaging Phytophthora species pathogenic to forest trees, many of which have been spread beyond their native range by the international trade of live plants and infested materials. Such introductions can be reduced through the development of better tools capable of the early, rapid, and high-throughput detection of contaminated plants. This study utilized a volatilomics approach (solid-phase microextraction coupled to gas chromatography-mass spectrometry) to differentiate between several Phytophthora species in culture and discriminate between healthy and Phytophthora-inoculated European beech and pedunculate oak trees. We tentatively identified 14 compounds that could differentiate eight Phytophthora species from each other in vitro. All of the Phytophthora species examined, except Phytophthora cambivora, uniquely produced at least one compound not observed in the other species; however, most detected compounds were shared between multiple species. Phytophthora polonica had the most unique compounds and was the least similar of all the species examined. The inoculated seedlings had qualitatively different volatile profiles and could be distinguished from the healthy controls by the presence of isokaurene, anisole, and a mix of three unknown compounds. This study supports the notion that volatiles are suitable for screening plant material, detecting tree pathogens, and differentiating between healthy and diseased material.
Collapse
Affiliation(s)
- Patrick Sherwood
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden; (I.N.); (M.C.)
| | - Ida Nordström
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden; (I.N.); (M.C.)
| | - Steve Woodward
- Department of Plant and Soil Science, School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU, UK;
| | - Björn Bohman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden;
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden; (I.N.); (M.C.)
| |
Collapse
|
23
|
Solórzano-Acosta R, Toro M, Zúñiga-Dávila D. Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Persea americana Seedlings Infected with Phytophthora cinnamomi. Microorganisms 2024; 12:721. [PMID: 38674665 PMCID: PMC11052105 DOI: 10.3390/microorganisms12040721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Avocado is one of the most in-demand fruits worldwide and the trend towards its sustainable production, regulated by international standards, is increasing. One of the most economically important diseases is root rot, caused by Phythopthora cinnamomi. Regarding this problem, antagonistic microorganism use is an interesting alternative due to their phytopathogen control efficiency. Therefore, the interaction of arbuscular mycorrhizal fungi of the phylum Glomeromycota, native to the Peruvian coast (GWI) and jungle (GFI), and avocado rhizospheric bacteria, Bacillus subtilis and Pseudomonas putida, was evaluated in terms of their biocontrol capacity against P. cinnamomi in the "Zutano" variety of avocado plants. The results showed that the GWI and Bacillus subtilis combination increased the root exploration surface by 466.36%. P. putida increased aerial biomass by 360.44% and B. subtilis increased root biomass by 433.85%. Likewise, P. putida rhizobacteria showed the highest nitrogen (24.60 mg ∙ g-1 DM) and sulfur (2.60 mg ∙ g-1 DM) concentrations at a foliar level. The combination of GWI and Bacillus subtilis was the treatment that presented the highest calcium (16.00 mg ∙ g-1 DM) and magnesium (8.80 mg ∙ g-1 DM) concentrations. The microorganisms' multifunctionality reduced disease severity by 85 to 90% due to the interaction between mycorrhizae and rhizobacteria. In conclusion, the use of growth promoting microorganisms that are antagonistic to P. cinnamomi represents a potential strategy for sustainable management of avocado cultivation.
Collapse
Affiliation(s)
- Richard Solórzano-Acosta
- Centro Experimental La Molina, Dirección de Supervisión y Monitoreo en las Estaciones Experimentales Agrarias, Instituto Nacional de Innovación Agraria (INIA), Av. La Molina N° 1981, Lima 15024, Peru
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| | - Marcia Toro
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
- Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041-A, Venezuela
| | - Doris Zúñiga-Dávila
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru;
| |
Collapse
|
24
|
Fick A, Swart V, Bombarely A, van den Berg N. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13453. [PMID: 38590150 PMCID: PMC11002358 DOI: 10.1111/mpp.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Plant cells undergo extensive transcriptional reprogramming following pathogen infection, with these reprogramming patterns becoming more complex when pathogens, such as hemibiotrophs, exhibit different lifestyles. These transcriptional changes are often orchestrated by MYB, WRKY and AP2/ERF transcription factors (TFs), which modulate both growth and defence-related gene expression. Transcriptional analysis of defence-related genes in avocado (Persea americana) infected with Phytophthora cinnamomi indicated differential immune response activation when comparing a partially resistant and susceptible rootstock. This study identified 226 MYB, 82 WRKY, and 174 AP2/ERF TF-encoding genes in avocado, using a genome-wide approach. Phylogenetic analysis revealed substantial sequence conservation within TF groups underscoring their functional significance. RNA-sequencing analysis in a partially resistant and susceptible avocado rootstock infected with P. cinnamomi was indicative of an immune response switch occurring in either rootstock after 24 and 6 h post-inoculation, respectively. Different clusters of co-expressed TF genes were observed at these times, suggesting the activation of necrotroph-related immune responses at varying intervals between the two rootstocks. This study aids our understanding of avocado immune response activation following P. cinnamomi infection, and the role of the TFs therein, elucidating the transcriptional reprogramming disparities between partially resistant and susceptible rootstocks.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València (IBMCP‐CSIC‐UPV)ValenciaSpain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
25
|
Jolliffe JB, Dann EK, van der Rijst M, Masikane SL, Novela P, Mohale P, McLeod A. Effect of Sampling Time, Quantification Method, and Tree Sample Pooling on Phytophthora cinnamomi Root Quantities in South African Avocado Orchards. PLANT DISEASE 2024; 108:725-736. [PMID: 37807091 DOI: 10.1094/pdis-07-23-1457-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Phytophthora cinnamomi is a destructive soilborne pathogen causing Phytophthora root rot on avocados worldwide. Little is known about the effect of root sampling time, root quantification method (quantitative real-time PCR [qPCR] versus baiting), and tree sample pooling strategies on the quantification of the pathogen in roots in avocado orchard trees. This was investigated in six avocado orchards in two climatically different production regions (Mooketsi and Letaba) in the Limpopo Province, South Africa, over a 2-year period. Two different tree sample pooling strategies, consisting of either a four-pooled group (four groups each containing five pooled trees) or a single-pooled group (20 trees pooled) per 1 ha, were both shown to be suitable for quantifying P. cinnamomi in tree roots using qPCR or root baiting. P. cinnamomi root quantities from the two tree sample pooling strategies were significantly correlated for both quantification methods. Both quantification methods were suitable for quantifying the pathogen in roots, although qPCR was superior to root baiting at identifying significant differences in P. cinnamomi quantities among root sampling time points. The effect of sampling time was dependent on the investigated year. In 2017, root quantities, which were only evaluated using qPCR, did not reveal a consistent trend of a specific sampling time yielding the highest root quantities for most of the orchards. However, five of the orchards in 2018, based on the qPCR analyses, contained significantly higher P. cinnamomi root quantities in May (late autumn) than in March (early autumn), August (late winter), and October/November (late spring). In 2018, P. cinnamomi root DNA quantities were significantly positively correlated with the number of soil temperature hours at 20 to 24 and 20 to 29°C 2 months preceding the root sampling dates and negatively correlated with the number of hours at 15 to 19°C 2 months preceding root sampling. Our study has identified P. cinnamomi root quantification methods and tree sample pooling strategies, which will be useful for understanding the biology of the pathogen and when disease management strategies should be in place.
Collapse
Affiliation(s)
- Jenna B Jolliffe
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elizabeth K Dann
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Australia
| | | | - Siyethemba L Masikane
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | | | - Adéle McLeod
- Department of Plant Pathology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
26
|
Hernández-Lao T, Tienda-Parrilla M, Labella-Ortega M, Guerrero-Sánchez VM, Rey MD, Jorrín-Novo JV, Castillejo-Sánchez MÁ. Proteomic and Metabolomic Analysis of the Quercus ilex-Phytophthora cinnamomi Pathosystem Reveals a Population-Specific Response, Independent of Co-Occurrence of Drought. Biomolecules 2024; 14:160. [PMID: 38397397 PMCID: PMC10887186 DOI: 10.3390/biom14020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Holm oak (Quercus ilex) is considered to be one of the major structural elements of Mediterranean forests and the agrosilvopastoral Spanish "dehesa", making it an outstanding example of ecological and socioeconomic sustainability in forest ecosystems. The exotic Phytophthora cinnamomi is one of the most aggressive pathogens of woody species and, together with drought, is considered to be one of the main drivers of holm oak decline. The effect of and response to P. cinnamomi inoculation were studied in the offspring of mother trees from two Andalusian populations, Cordoba and Huelva. At the two locations, acorns collected from both symptomatic (damaged) and asymptomatic (apparently healthy) trees were sampled. Damage symptoms, mortality, and chlorophyll fluorescence were evaluated in seedlings inoculated under humid and drought conditions. The effect and response depended on the population and were more apparent in Huelva than in Cordoba. An integrated proteomic and metabolomic analysis revealed the involvement of different metabolic pathways in response to the pathogen in both populations, including amino acid metabolism pathways in Huelva, and terpenoid and flavonoid biosynthesis in Cordoba. However, no differential response was observed between seedlings inoculated under humid and drought conditions. A protective mechanism of the photosynthetic apparatus was activated in response to defective photosynthetic activity in inoculated plants, which seemed to be more efficient in the Cordoba population. In addition, enzymes and metabolites of the phenylpropanoid and flavonoid biosynthesis pathways may have conferred higher resistance in the Cordoba population. Some enzymes are proposed as markers of resilience, among which glyoxalase I, glutathione reductase, thioredoxin reductase, and cinnamyl alcohol dehydrogenase are candidates.
Collapse
Affiliation(s)
| | | | | | | | | | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain; (T.H.-L.); (M.T.-P.); (M.L.-O.); (V.M.G.-S.); (M.-D.R.)
| | - María Ángeles Castillejo-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain; (T.H.-L.); (M.T.-P.); (M.L.-O.); (V.M.G.-S.); (M.-D.R.)
| |
Collapse
|
27
|
Backer R, Naidoo S, van den Berg N. The expression of the NPR1-dependent defense response pathway genes in Persea americana (Mill.) following infection with Phytophthora cinnamomi. BMC PLANT BIOLOGY 2023; 23:548. [PMID: 37936068 PMCID: PMC10631175 DOI: 10.1186/s12870-023-04541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023]
Abstract
A plant's defense against pathogens involves an extensive set of phytohormone regulated defense signaling pathways. The salicylic acid (SA)-signaling pathway is one of the most well-studied in plant defense. The bulk of SA-related defense gene expression and the subsequent establishment of systemic acquired resistance (SAR) is dependent on the nonexpressor of pathogenesis-related genes 1 (NPR1). Therefore, understanding the NPR1 pathway and all its associations has the potential to provide valuable insights into defense against pathogens. The causal agent of Phytophthora root rot (PRR), Phytophthora cinnamomi, is of particular importance to the avocado (Persea americana) industry, which encounters considerable economic losses on account of this pathogen each year. Furthermore, P. cinnamomi is a hemibiotrophic pathogen, suggesting that the SA-signaling pathway plays an essential role in the initial defense response. Therefore, the NPR1 pathway which regulates downstream SA-induced gene expression would be instrumental in defense against P. cinnamomi. Thus, we identified 92 NPR1 pathway-associated orthologs from the P. americana West Indian pure accession genome and interrogated their expression following P. cinnamomi inoculation, using RNA-sequencing data. In total, 64 and 51 NPR1 pathway-associated genes were temporally regulated in the partially resistant (Dusa®) and susceptible (R0.12) P. americana rootstocks, respectively. Furthermore, 42 NPR1 pathway-associated genes were differentially regulated when comparing Dusa® to R0.12. Although this study suggests that SAR was established successfully in both rootstocks, the evidence presented indicated that Dusa® suppressed SA-signaling more effectively following the induction of SAR. Additionally, contrary to Dusa®, data from R0.12 suggested a substantial lack of SA- and NPR1-related defense gene expression during some of the earliest time-points following P. cinnamomi inoculation. This study represents the most comprehensive investigation of the SA-induced, NPR1-dependent pathway in P. americana to date. Lastly, this work provides novel insights into the likely mechanisms governing P. cinnamomi resistance in P. americana.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa.
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
28
|
Ghimire B, Avin FA, Waliullah S, Ali E, Baysal-Gurel F. Real-Time and Rapid Detection of Phytopythium vexans Using Loop-Mediated Isothermal Amplification Assay. PLANT DISEASE 2023; 107:3394-3402. [PMID: 37018213 DOI: 10.1094/pdis-08-22-1944-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Phytopythium vexans (de Bary) Abad, de Cock, Bala, Robideau, A. M. Lodhi & Levesque is an important waterborne and soil-inhabiting oomycete pathogen causing root and crown rot of various plants including certain woody ornamentals, fruit, and forest trees. Early and accurate detection of Phytopythium in the nursery production system is critical, as this pathogen is quickly transported to neighboring healthy plants through the irrigation system. Conventional methods for the detection of this pathogen are tedious, frequently inconclusive, and costly. Hence, a specific, sensitive, and rapid molecular diagnostic method is required to overcome the limitations of traditional identification. In the current study, loop-mediated isothermal amplification (LAMP) for DNA amplification was developed for the identification of P. vexans. It was evaluated using real-time and colorimetric assays. Several sets of LAMP primers were designed and screened, but PVLSU2 was found to be specific to P. vexans as it did not amplify other closely related oomycetes, fungi, and bacteria. Moreover, the developed assays were sensitive enough to amplify DNA up to 102 fg per reaction. The real-time LAMP assay was more sensitive than traditional PCR and culture-based methods to detect infected plant samples. In addition, both LAMP assays detected as few as 100 zoospores suspended in 100 ml water. These LAMP assays are anticipated to save time in P. vexans detection by disease diagnostic laboratories and research institutions and enable early preparedness in the event of disease outbreaks.
Collapse
Affiliation(s)
- Bhawana Ghimire
- Otis L. Floyd Nursery Research Center, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, McMinnville, TN
| | - Farhat A Avin
- Otis L. Floyd Nursery Research Center, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, McMinnville, TN
| | - Sumyya Waliullah
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Tifton, GA
| | - Emran Ali
- Department of Food and Agriculture, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH
| | - Fulya Baysal-Gurel
- Otis L. Floyd Nursery Research Center, Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, McMinnville, TN
| |
Collapse
|
29
|
Alderotti F, Verdiani E. God save the queen! How and why the dominant evergreen species of the Mediterranean Basin is declining? AOB PLANTS 2023; 15:plad051. [PMID: 37899973 PMCID: PMC10601391 DOI: 10.1093/aobpla/plad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/28/2023] [Indexed: 10/31/2023]
Abstract
Quercus ilex may be considered the queen tree of the Mediterranean Basin, dominating coastal forest areas up to 2000 m above sea level at some sites. However, an increase in holm oak decline has been observed in the last decade. In this review, we analysed the current literature to answer the following questions: what are the traits that allow holm oak to thrive in the Mediterranean environment, and what are the main factors that are currently weakening this species? In this framework, we attempt to answer these questions by proposing a triangle as a graphical summary. The first vertex focuses on the main morpho-anatomical, biochemical and physiological traits that allow holm oak to dominate Mediterranean forests. The other two vertices consider abiotic and biotic stressors that are closely related to holm oak decline. Here, we discuss the current evidence of holm oak responses to abiotic and biotic stresses and propose a possible solution to its decline through adequate forest management choices, thus allowing the species to maintain its ecological domain.
Collapse
Affiliation(s)
- Francesca Alderotti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Erika Verdiani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
30
|
Fletcher K, Michelmore R. Genome-Enabled Insights into Downy Mildew Biology and Evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:165-183. [PMID: 37268005 DOI: 10.1146/annurev-phyto-021622-103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oomycetes that cause downy mildew diseases are highly specialized, obligately biotrophic phytopathogens that can have major impacts on agriculture and natural ecosystems. Deciphering the genome sequence of these organisms provides foundational tools to study and deploy control strategies against downy mildew pathogens (DMPs). The recent telomere-to-telomere genome assembly of the DMP Peronospora effusa revealed high levels of synteny with distantly related DMPs, higher than expected repeat content, and previously undescribed architectures. This provides a road map for generating similar high-quality genome assemblies for other oomycetes. This review discusses biological insights made using this and other assemblies, including ancestral chromosome architecture, modes of sexual and asexual variation, the occurrence of heterokaryosis, candidate gene identification, functional validation, and population dynamics. We also discuss future avenues of research likely to be fruitful in studies of DMPs and highlight resources necessary for advancing our understanding and ability to forecast and control disease outbreaks.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, University of California, Davis, California, USA
| | - Richard Michelmore
- The Genome Center, University of California, Davis, California, USA
- Department of Plant Sciences; Department of Molecular and Cellular Biology; Department of Medical Microbiology and Immunology, University of California, Davis, California, USA;
| |
Collapse
|
31
|
Fernández-Calleja L, García-Domínguez M, Redondo BI, Martín JLG, Villar CJ, Lombó F. Isolation of two triterpenoids from Phlomis purpurea, one of them with anti-oomycete activity against Phytophthora cinnamomi, and insights into its biosynthetic pathway. FRONTIERS IN PLANT SCIENCE 2023; 14:1180808. [PMID: 37692445 PMCID: PMC10485375 DOI: 10.3389/fpls.2023.1180808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Phytophthora cinnamomi is an important plant pathogen responsible for dieback diseases in plant genera including Quercus, Fagus, Castanea, Eucalyptus, and Pinus, among others, all over the world. P. cinnamomi infection exerts tremendous ecological and economic losses. Several strategies have been developed to combat this pathogenic oomycete, including the search for novel anti-oomycete compounds. In this work, a Mediterranean vascular plant, Phlomis purpurea, has been screened for secondary bioactivity against this pathogen. The genus Phlomis includes a group of herbaceous plants and shrubs described as producers of many different bioactive compounds, including several triterpenoids. Triterpenoids are well-known molecules synthesized by plants and microorganisms with potent antioxidant, antitumoral, and antimicrobial activities. We have isolated by HPLC-DAD and characterized by HPLC-MS and NMR two nortriterpenoid compounds (phlomispentaol A and phlomispurtetraolone) from the root extracts of P. purpurea. One of them (phlomispentaol A) is active against the plant pathogenic oomycete P. cinnamomi (based on in vitro inhibition bioassays). Based on their chemical structure and their relationship to other plant triterpenoids, oleanolic acid is proposed to be the common precursor for these molecules. The anti-oomycete activity shown by phlomispentaol A represents a promising alternative to counteract the worldwide-scale damage caused to forest ecosystems by this pathogen.
Collapse
Affiliation(s)
- L. Fernández-Calleja
- Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - M. García-Domínguez
- Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - B. Isabel Redondo
- Department Animal Science, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - J. L. Gómez Martín
- Research and Development Department, Campojerez SL, Jerez de los Caballeros, Badajoz, Spain
| | - C. J. Villar
- Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - F. Lombó
- Research Unit “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
32
|
Pascoal-Ferreira P, Chahed A, Costa R, Branco I, Choupina A. Use of iRNA in the post-transcriptional gene silencing of necrosis-inducing Phytophthora protein 1(NPP1) in Phytophthora cinnamomi. Mol Biol Rep 2023; 50:6493-6504. [PMID: 37326749 PMCID: PMC10374718 DOI: 10.1007/s11033-023-08562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Phytophthora cinnamomi is an Oomycetes associated with soil, this Oomycete is one of the most destructive species of Phytophthora, being responsible for the decline of more than 5000 ornamental, forest, or fruit plants. It can secrete a class of protein NPP1 (Phytophthora necrosis inducing protein 1), responsible for inducing necrosis in leaves and roots of plants, leading to their death. OBJECTIVE This work will report the characterization of the Phytophthora cinnamomi NPP1 gene responsible for the infection of Castanea sativa roots and will characterize the mechanisms of interaction between Phytophthora cinnamomi and Castanea sativa, by gene silencing NPP1 from Phytophthora cinnamomi mediated by RNAi. METHODS AND RESULTS For silencing a part of the coding region of the NPP1 gene, was placed in the sense and antisense directions between an intron and ligated to the integrative vector pTH210. Cassette integration was confirmed by PCR and sequencing on the hygromycin-resistant Phytophthora cinnamomi transformants. Transformants obtained with the silenced gene was used to infect Castanea sativa. CONCLUSIONS Plants infected with these transformants showed a great reduction in disease symptoms, confirming iRNA as a potential alternative biological tool in the study of molecular factors, and in the control and management of Phytophthora cinnamomi.
Collapse
Affiliation(s)
- Patrick Pascoal-Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Abdessalem Chahed
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratory for Research on Genetics Biodiversity and Bioresources Valuation of (LR11ES41), ISBM, University of Monastir, 5000, Monastir, Tunisia
| | - Rodrigo Costa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Iuliia Branco
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Altino Choupina
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
33
|
Cuervo L, Álvarez-García S, Salas JA, Méndez C, Olano C, Malmierca MG. The Volatile Organic Compounds of Streptomyces spp.: An In-Depth Analysis of Their Antifungal Properties. Microorganisms 2023; 11:1820. [PMID: 37512992 PMCID: PMC10384482 DOI: 10.3390/microorganisms11071820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The study of volatile organic compounds (VOCs) has expanded because of the growing need to search for new bioactive compounds that could be used as therapeutic alternatives. These small molecules serve as signals to establish interactions with other nearby organisms in the environment. In this work, we evaluated the antifungal effect of VOCs produced by different Streptomyces spp. This study was performed using VOC chamber devices that allow for the free exchange of VOCs without physical contact between microorganisms or the diffusible compounds they produce. Antifungal activity was tested against Escovopsis weberi, a fungal pathogen that affects ant nest stability, and the results showed that Streptomyces spp. CS014, CS057, CS131, CS147, CS159, CS207, and CS227 inhibit or reduce the fungal growth with their emitted VOCs. A GS-MS analysis of volatiles produced and captured by activated charcoal suggested that these Streptomyces strains synthesize several antifungal VOCs, many of them produced because of the presence of E. weberi, with the accumulation of various VOCs determining the growth inhibition effect.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Samuel Álvarez-García
- Plant Physiology Area, Engineering and Agricultural Sciences Department, Universidad de León, 24009 León, Spain
| | - José A Salas
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, 33006 Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006 Oviedo, Spain
- Health Research Institute of Asturias (ISPA), Av. del Hospital Universitario, s/n, 33011 Oviedo, Spain
| |
Collapse
|
34
|
Yang LN, Ren M, Zhan J. Modeling plant diseases under climate change: evolutionary perspectives. TRENDS IN PLANT SCIENCE 2023; 28:519-526. [PMID: 36593138 DOI: 10.1016/j.tplants.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 05/22/2023]
Abstract
Infectious plant diseases are a major threat to global agricultural productivity, economic development, and ecological integrity. There is widespread concern that these social and natural disasters caused by infectious plant diseases may escalate with climate change and computer modeling offers a unique opportunity to address this concern. Here, we analyze the intrinsic problems associated with current modeling strategies and highlight the need to integrate evolutionary principles into polytrophic, eco-evolutionary frameworks to improve predictions. We particularly discuss how evolutionary shifts in functional trade-offs, relative adaptability between plants and pathogens, ecosystems, and climate preferences induced by climate change may feedback to future plant disease epidemics and how technological advances can facilitate the generation and integration of this relevant knowledge for better modeling predictions.
Collapse
Affiliation(s)
- Li-Na Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
35
|
Liew ECY, Phelan M, McDougall KL. The efficacy of a range of hygiene measures for boot cleaning to protect natural vegetation from Phytophthora cinnamomi. Sci Rep 2023; 13:5825. [PMID: 37037841 PMCID: PMC10086047 DOI: 10.1038/s41598-023-32681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Phytophthora cinnamomi is an oomycete found in the soil and capable of invading the roots of a wide range of host plants globally, potentially killing them and affecting the ecosystems they inhabit. This pathogen is often inadvertently dispersed in natural vegetation on the footwear of humans. A range of equipment is often provided or recommended to be carried for cleaning footwear in places where P. cinnamomi poses a threat to biodiversity. These are typically a brush for mechanically removing soil and/or a disinfectant for killing the pathogen. Despite their widespread use, to our knowledge, the majority of hygiene measures have not been experimentally tested for their efficacy. In the current study, we tested whether two types of brush and the two most widely used disinfectants (70% methylated spirits and benzalkonium chloride) were effective in removing the pathogen from boots. We tested the brushes and disinfectants in two soil types and two moisture levels. All hygiene measures were found to be better than doing nothing, although some were only effective with sandy or dry soils. Benzalkonium chloride was largely ineffective as a spray but highly effective when used in a footbath. Brushing did not improve cleaning when used with 70% methylated spirits. None of the hygiene measures was completely effective for cleaning boots that had been in wet loamy soil. Our findings have important implications for management of this threat because some recommended hygiene practices are not doing what they claim.
Collapse
Affiliation(s)
- Edward C Y Liew
- Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia.
| | - Maureen Phelan
- Centre for Ecosystem Resilience, Australian Institute of Botanical Science, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - Keith L McDougall
- Department of Planning, Industry and Environment, PO Box 733, Queanbeyan, NSW, 2620, Australia
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Bundoora, VIC, 3083, Australia
| |
Collapse
|
36
|
Dorado FJ, Alías JC, Chaves N, Solla A. Warming Scenarios and Phytophthora cinnamomi Infection in Chestnut ( Castanea sativa Mill.). PLANTS (BASEL, SWITZERLAND) 2023; 12:556. [PMID: 36771639 PMCID: PMC9921032 DOI: 10.3390/plants12030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The main threats to chestnut in Europe are climate change and emerging pathogens. Although many works have separately addressed the impacts on chestnut of elevated temperatures and Phytophthora cinnamomi Rands (Pc) infection, none have studied their combined effect. The objectives of this work were to describe the physiology, secondary metabolism and survival of 6-month-old C. sativa seedlings after plants were exposed to ambient temperature, high ambient temperature and heat wave events, and subsequent infection by Pc. Ten days after the warming scenarios, the biochemistry of plant leaves and roots was quantified and the recovery effect assessed. Plant growth and root biomass under high ambient temperature were significantly higher than in plants under ambient temperature and heat wave event. Seven secondary metabolite compounds in leaves and three in roots were altered significantly with temperature. Phenolic compounds typically decreased in response to increased temperature, whereas ellagic acid in roots was significantly more abundant in plants exposed to ambient and high ambient temperature than in plants subjected to heat waves. At recovery, leaf procyanidin and catechin remained downregulated in plants exposed to high ambient temperature. Mortality by Pc was fastest and highest in plants exposed to ambient temperature and lowest in plants under high ambient temperature. Changes in the secondary metabolite profile of plants in response to Pc were dependent on the warming scenarios plants were exposed to, with five compounds in leaves and three in roots showing a significant 'warming scenario' × 'Pc' interaction. The group of trees that best survived Pc infection was characterised by increased quercetin 3-O-glucuronide, 3-feruloylquinic acid, gallic acid ethyl ester and ellagic acid. To the best of our knowledge, this is the first study addressing the combined effects of global warming and Pc infection in chestnut.
Collapse
Affiliation(s)
- F. Javier Dorado
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Avenida Virgen del Puerto 2, Universidad de Extremadura, 10600 Plasencia, Spain
| | - Juan Carlos Alías
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain
| | - Natividad Chaves
- Department of Plant Biology, Ecology and Earth Sciences, Faculty of Science, Universidad de Extremadura, 06080 Badajoz, Spain
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), Avenida Virgen del Puerto 2, Universidad de Extremadura, 10600 Plasencia, Spain
| |
Collapse
|
37
|
Coomber A, Saville A, Carbone I, Ristaino JB. An open-access T-BAS phylogeny for emerging Phytophthora species. PLoS One 2023; 18:e0283540. [PMID: 37011062 PMCID: PMC10069789 DOI: 10.1371/journal.pone.0283540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P. infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Functional Genomics Program, NC State University, Raleigh, North Carolina, United States of America
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Center for Integrated Fungal Research, NC State University, Raleigh, North Carolina, United States of America
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
38
|
Neupane K, Ghimire B, Baysal-Gurel F. Efficacy and Timing of Application of Fungicides, Biofungicides, Host-Plant Defense Inducers, and Fertilizer to Control Phytophthora Root Rot of Flowering Dogwood in Simulated Flooding Conditions in Container Production. PLANT DISEASE 2022; 106:3109-3119. [PMID: 35596248 DOI: 10.1094/pdis-02-22-0437-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytophthora root rot, caused by Phytophthora cinnamomi Rands, is one of the major diseases of flowering dogwood (Cornus florida L.). The severity of root rot disease increases when the plants are exposed to flooding conditions. A study was conducted to determine the efficacy and timing of application of different fungicides, biofungicides, host-plant defense inducers, and fertilizer to manage Phytophthora root rot in month-old seedlings in simulated flooding events for 1, 3, and 7 days. Preventative treatments were drench applied 3 weeks and 1 week before flooding whereas curative treatments were applied 24 h after flooding. Dogwood seedlings were inoculated with P. cinnamomi 3 days before the flooding. Plant height and width were recorded at the beginning and end of the study. At the end of the study, plant total weight and root weight were recorded and disease severity in the root was assessed using a scale of 0 to 100%. Root samples were plated using PARPH-V8 medium to determine the percent recovery of the pathogen. Empress Intrinsic, Pageant Intrinsic, Segovis, and Subdue MAXX, as preventative and curative applications, were able to suppress the disease severity compared with the inoculated control in all flooding durations. All treatments, with the exception of Stargus as a preventative application 3 weeks before flooding and Orkestra Intrinsic as a curative application, were able to suppress the disease severity compared with the inoculated control for a 1-day flooding event. Aliette and ON-Gard were effective in the first trial when applied preventatively at both 1 week and 3 weeks before flooding but not in the second trial. Signature Xtra was effective as a preventative application but not as a curative application. Interface was effective as a curative application but not as a preventative application. The findings of this study will help nursery growers to understand the performance of fungicides, biofungicides, host-plant defense inducers, and fertilizer at different time intervals and repeated applications to manage Phytophthora root rot in flooding conditions.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Agricultural and Environmental Sciences, College of Agriculture, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN
| | - Bhawana Ghimire
- Department of Agricultural and Environmental Sciences, College of Agriculture, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN
| | - Fulya Baysal-Gurel
- Department of Agricultural and Environmental Sciences, College of Agriculture, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN
| |
Collapse
|
39
|
Andronis CE, Jacques S, Lipscombe R, Tan KC. Comparative sub-cellular proteome analyses reveals metabolic differentiation and production of effector-like molecules in the dieback phytopathogen Phytophthora cinnamomi. J Proteomics 2022; 269:104725. [PMID: 36096432 DOI: 10.1016/j.jprot.2022.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Phytopathogenic oomycetes pose a significant threat to global biodiversity and food security. The proteomes of these oomycetes likely contain important factors that contribute to their pathogenic success, making their discovery crucial for elucidating pathogenicity. Phytophthora cinnamomi is a root pathogen that causes dieback in a wide variety of crops and native vegetation world-wide. Virulence proteins produced by P. cinnamomi are not well defined and a large-scale approach to understand the biochemistry of this pathogen has not been documented. Soluble mycelial, zoospore and secreted proteomes were obtained and label-free quantitative proteomics was used to compare the composition of the three sub-proteomes. A total of 4635 proteins were identified, validating 17.7% of the predicted gene set. The mycelia were abundant in transporters for nutrient acquisition, metabolism and cellular proliferation. The zoospores had less metabolic related ontologies but were abundant in energy generating, motility and signalling associated proteins. Virulence-associated proteins were identified in the secretome such as candidate effector and effector-like proteins, which interfere with the host immune system. These include hydrolases, cell wall degrading enzymes, putative necrosis-inducing proteins and elicitins. The secretome elicited a hypersensitive response on the roots of a model host and thus suggests evidence of effector activity. SIGNIFICANCE: Phytophthora cinnamomi is a phytopathogenic oomycete that causes dieback disease in native vegetation and several horticultural crops such as avocado, pineapple and macadamia. Whilst this pathogen has significance world-wide, its pathogenicity and virulence have not been described in depth. We carried out comparative label-free proteomics of the mycelia, zoospores and secretome of P. cinnamomi. This study highlights the differential metabolism and cellular processes between the sub-proteomes. Proteins associated with metabolism, nutrient transport and cellular proliferation were over represented in the mycelia. The zoospores have a specialised proteome showing increased energy generation geared towards motility. Candidate effectors and effector-like secreted proteins were also identified, which can be exploited for genetic resistance. This demonstrates a better understanding of the biology and pathogenicity of P. cinnamomi infection that can subsequently be used to develop effective methods of disease management.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia; Proteomics International, Nedlands, WA, Australia.
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
40
|
Zhang Y, Kong WL, Wu XQ, Li PS. Inhibitory Effects of Phenazine Compounds and Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 Against Phytophthora cinnamomi. PHYTOPATHOLOGY 2022; 112:1867-1876. [PMID: 35263163 DOI: 10.1094/phyto-10-21-0442-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytophthora cinnamomi is an important plant pathogen that is widely distributed worldwide and has caused serious ecological damage and significant economic losses in forests and plantations in many countries. The use of plant growth-promoting rhizobacteria is an effective and environmentally friendly strategy for controlling diseases caused by P. cinnamomi. In this study, we investigated the antagonistic mechanism of Pseudomonas aurantiaca ST-TJ4 against P. cinnamomi through different antagonistic approaches, observations of mycelial morphology, study of mycelial metabolism, and identification of antagonistic substances. The results showed that Pseudomonas aurantiaca ST-TJ4 was able to significantly inhibit mycelial growth, causing mycelial deformation and disrupting internal cell structures. Additionally, pathogen cell membranes were damaged by ST-TJ4, and mycelial cell content synthesis was disrupted. Ultraperformance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry analyses showed that phenazine compounds and 2-undecanone were the main antagonistic components. The ammonia produced by the ST-TJ4 strain also contributed to the inhibition of the growth of P. cinnamomi. In conclusion, our results confirm that Pseudomonas aurantiaca ST-TJ4 can inhibit P. cinnamomi through multiple mechanisms and can be used as a biological control agent for various plant diseases caused by P. cinnamomi.
Collapse
Affiliation(s)
- Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Pu-Sheng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
41
|
Chen Z, Jiao B, Zhou J, He H, Dai T. Rapid detection of Phytophthora cinnamomi based on a new target gene Pcinn13739. Front Cell Infect Microbiol 2022; 12:923700. [PMID: 36093190 PMCID: PMC9452884 DOI: 10.3389/fcimb.2022.923700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Phytophthora cinnamomi causes crown and root wilting in more than 5,000 plant species and represents a significant threat to the health of natural ecosystems and horticultural crops. The early and accurate detection of P. cinnamomi is a fundamental step in disease prevention and appropriate management. In this study, based on public genomic sequence data and bioinformatic analysis of several Phytophthora, Phytopythium, and Pythium species, we have identified a new target gene, Pcinn13739; this allowed us to establish a recombinase polymerase amplification–lateral flow dipstick (RPA-LFD) assay for the detection of P. cinnamomi. Pcinn13739-RPA-LFD assay was highly specific to P. cinnamomi. Test results for 12 isolates of P. cinnamomi were positive, but negative for 50 isolates of 25 kinds of Phytophthora species, 13 isolates of 10 kinds of Phytopythium and Pythium species, 32 isolates of 26 kinds of fungi species, and 11 isolates of two kinds of Bursaphelenchus species. By detecting as little as 10 pg.µl−1 of genomic DNA from P. cinnamomi in a 50-µl reaction, the RPA-LFD assay was 100 times more sensitive than conventional PCR assays. By using RPA-LFD assay, P. cinnamomi was also detected on artificially inoculated fruit from Malus pumila, the leaves of Rhododendron pulchrum, the roots of sterile Lupinus polyphyllus, and the artificially inoculated soil. Results in this study indicated that this sensitive, specific, and rapid RPA-LFD assay has potentially significant applications to diagnosing P. cinnamomi, especially under time- and resource-limited conditions.
Collapse
Affiliation(s)
- Zhenpeng Chen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Binbin Jiao
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai, China
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Jing Zhou
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Haibin He
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- *Correspondence: Tingting Dai,
| |
Collapse
|
42
|
Fernandes P, Colavolpe MB, Serrazina S, Costa RL. European and American chestnuts: An overview of the main threats and control efforts. FRONTIERS IN PLANT SCIENCE 2022; 13:951844. [PMID: 36092400 PMCID: PMC9449730 DOI: 10.3389/fpls.2022.951844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Chestnuts are multipurpose trees significant for the economy and wildlife. These trees are currently found around the globe, demonstrating their genetic adaptation to different environmental conditions. Several biotic and abiotic stresses have challenged these species, contributing to the decline of European chestnut production and the functional extinction of the American chestnut. Several efforts started over the last century to understand the cellular, molecular, and genetic interactions behind all chestnut biotic and abiotic interactions. Most efforts have been toward breeding for the primary diseases, chestnut blight and ink disease caused by the pathogens, Cryphonectria parasitica and Phytophthora cinnamomi, respectively. In Europe and North America, researchers have been using the Asian chestnut species, which co-evolved with the pathogens, to introgress resistance genes into the susceptible species. Breeding woody trees has several limitations which can be mostly related to the long life cycles of these species and the big genome landscapes. Consequently, it takes decades to improve traits of interest, such as resistance to pathogens. Currently, the availability of genome sequences and next-generation sequencing techniques may provide new tools to help overcome most of the problems tree breeding is still facing. This review summarizes European and American chestnut's main biotic stresses and discusses breeding and biotechnological efforts developed over the last decades, having ink disease and chestnut blight as the main focus. Climate change is a rising concern, and in this context, the adaptation of chestnuts to adverse environmental conditions is of extreme importance for chestnut production. Therefore, we also discuss the abiotic challenges on European chestnuts, where the response to abiotic stress at the genetic and molecular level has been explored.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Green-It Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | | | - Susana Serrazina
- BioISI – Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
43
|
Neupane K, Ojha VK, Oliver JB, Addesso KM, Baysal-Gurel F. Integration of Control Strategies to Optimize Management of Ambrosia Beetles (Coleoptera: Curculionidae, Scolytinae) and Phytophthora Root Rot (Peronosporales: Peronosporaceae) in Flowering Dogwoods (Cornalaes: Cornaceae) After Simulated Flooding. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1213-1230. [PMID: 35766626 DOI: 10.1093/jee/toac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 06/15/2023]
Abstract
Ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) and Phytophthora root rot (Peronosporales: Peronosporaceae) cause significant damage to the ornamental industry in the United States. In this study, mefenoxam (fungicide), permethrin (insecticide), and charcoal + kaolin were used in different combinations with Phytophthora cinnamomi (Rands: Peronosporales: Peronosporaceae) inoculated and noninoculated plants to optimize the management of ambrosia beetles and Phytophthora root rot. Treatment applications were performed in two trials on 1 (mefenoxam, drench), 18 (P. cinnamomi inoculation), or 19 (permethrin, spray) days before instigating flood stress or 2 d after flood stress (charcoal + kaolin, spray), respectively. Flooding was maintained for 21 d. Ambrosia beetle attacks and plant growth data were recorded. Tree roots were rated at study end for disease severity and root samples were plated on PARPH-V8 medium to determine the percentage of pathogen recovery. In both trials, the combination of mefenoxam + permethrin treatment had reduced disease severity and ambrosia beetle attacks compared to the inoculated controls. Permethrin-treated trees had shorter galleries compared to controls in trial 1 and no gallery formation in trial 2. In both trials, no differences were observed among the treatments in numbers of galleries with eggs and adults, but mefenoxam + charcoal + kaolin had significantly fewer galleries with larvae among the noninoculated trees compared with the respective control in trial 1. Overall, treatments containing combinations of mefenoxam + permethrin had reduced disease severity and ambrosia beetle attacks.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN, USA
| | - Vivek K Ojha
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN, USA
| | - Jason B Oliver
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN, USA
| | - Karla M Addesso
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN, USA
| | - Fulya Baysal-Gurel
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, 472 Cadillac Lane, McMinnville, TN, USA
| |
Collapse
|
44
|
Chen Q, Bakhshi M, Balci Y, Broders K, Cheewangkoon R, Chen S, Fan X, Gramaje D, Halleen F, Jung MH, Jiang N, Jung T, Májek T, Marincowitz S, Milenković I, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies C, Suhaizan L, Suzuki H, Tian C, Tomšovský M, Úrbez-Torres J, Wang W, Wingfield B, Wingfield M, Yang Q, Yang X, Zare R, Zhao P, Groenewald J, Cai L, Crous P. Genera of phytopathogenic fungi: GOPHY 4. Stud Mycol 2022; 101:417-564. [PMID: 36059898 PMCID: PMC9365048 DOI: 10.3114/sim.2022.101.06] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
This paper is the fourth contribution in the Genera of Phytopathogenic Fungi (GOPHY) series. The series provides morphological descriptions and information about the pathology, distribution, hosts and disease symptoms, as well as DNA barcodes for the taxa covered. Moreover, 12 whole-genome sequences for the type or new species in the treated genera are provided. The fourth paper in the GOPHY series covers 19 genera of phytopathogenic fungi and their relatives, including Ascochyta, Cadophora, Celoporthe, Cercospora, Coleophoma, Cytospora, Dendrostoma, Didymella, Endothia, Heterophaeomoniella, Leptosphaerulina, Melampsora, Nigrospora, Pezicula, Phaeomoniella, Pseudocercospora, Pteridopassalora, Zymoseptoria, and one genus of oomycetes, Phytophthora. This study includes two new genera, 30 new species, five new combinations, and 43 typifications of older names. Taxonomic novelties: New genera: Heterophaeomoniella L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pteridopassalora C. Nakash. & Crous; New species: Ascochyta flava Qian Chen & L. Cai, Cadophora domestica L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora rotunda L. Mostert, R. van der Merwe, Halleen & Gramaje, Cadophora vinacea J.R. Úrbez-Torres, D.T. O'Gorman & Gramaje, Cadophora vivarii L. Mostert, Havenga, Halleen & Gramaje, Celoporthe foliorum H. Suzuki, Marinc. & M.J. Wingf., Cercospora alyssopsidis M. Bakhshi, Zare & Crous, Dendrostoma elaeocarpi C.M. Tian & Q. Yang, Didymella chlamydospora Qian Chen & L. Cai, Didymella gei Qian Chen & L. Cai, Didymella ligulariae Qian Chen & L. Cai, Didymella qilianensis Qian Chen & L. Cai, Didymella uniseptata Qian Chen & L. Cai, Endothia cerciana W. Wang. & S.F. Chen, Leptosphaerulina miscanthi Qian Chen & L. Cai, Nigrospora covidalis M. Raza, Qian Chen & L. Cai, Nigrospora globospora M. Raza, Qian Chen & L. Cai, Nigrospora philosophiae-doctoris M. Raza, Qian Chen & L. Cai, Phytophthora transitoria I. Milenković, T. Májek & T. Jung, Phytophthora panamensis T. Jung, Y. Balci, K. Broders & I. Milenković, Phytophthora variabilis T. Jung, M. Horta Jung & I. Milenković, Pseudocercospora delonicicola C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora farfugii C. Nakash., I. Araki, & Ai Ito, Pseudocercospora hardenbergiae Crous & C. Nakash., Pseudocercospora kenyirana C. Nakash., L. Suhaizan & I. Nurul Faziha, Pseudocercospora perrottetiae Crous, C. Nakash. & C.Y. Chen, Pseudocercospora platyceriicola C. Nakash., Y. Hatt, L. Suhaizan & I. Nurul Faziha, Pseudocercospora stemonicola C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora terengganuensis C. Nakash., Y. Hatt., L. Suhaizan & I. Nurul Faziha, Pseudocercospora xenopunicae Crous & C. Nakash.; New combinations: Heterophaeomoniella pinifoliorum (Hyang B. Lee et al.) L. Mostert, C.F.J. Spies, Halleen & Gramaje, Pseudocercospora pruni-grayanae (Sawada) C. Nakash. & Motohashi., Pseudocercospora togashiana (K. Ito & Tak. Kobay.) C. Nakash. & Tak. Kobay., Pteridopassalora nephrolepidicola (Crous & R.G. Shivas) C. Nakash. & Crous, Pteridopassalora lygodii (Goh & W.H. Hsieh) C. Nakash. & Crous; Typification: Epitypification: Botrytis infestans Mont., Cercospora abeliae Katsuki, Cercospora ceratoniae Pat. & Trab., Cercospora cladrastidis Jacz., Cercospora cryptomeriicola Sawada, Cercospora dalbergiae S.H. Sun, Cercospora ebulicola W. Yamam., Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora ixorana J.M. Yen & Lim, Cercospora liquidambaricola J.M. Yen, Cercospora pancratii Ellis & Everh., Cercospora pini-densiflorae Hori & Nambu, Cercospora profusa Syd. & P. Syd., Cercospora pyracanthae Katsuki, Cercospora horiana Togashi & Katsuki, Cercospora tabernaemontanae Syd. & P. Syd., Cercospora trinidadensis F. Stevens & Solheim, Melampsora laricis-urbanianae Tak. Matsumoto, Melampsora salicis-cupularis Wang, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora angiopteridis Goh & W.H. Hsieh, Pseudocercospora basitruncata Crous, Pseudocercospora boehmeriigena U. Braun, Pseudocercospora coprosmae U. Braun & C.F. Hill, Pseudocercospora cratevicola C. Nakash. & U. Braun, Pseudocercospora cymbidiicola U. Braun & C.F. Hill, Pseudocercospora dodonaeae Boesew., Pseudocercospora euphorbiacearum U. Braun, Pseudocercospora lygodii Goh & W.H. Hsieh, Pseudocercospora metrosideri U. Braun, Pseudocercospora paraexosporioides C. Nakash. & U. Braun, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous, Septogloeum punctatum Wakef.; Neotypification: Cercospora aleuritis I. Miyake; Lectotypification: Cercospora dalbergiae S.H. Sun, Cercospora formosana W. Yamam., Cercospora fukuii W. Yamam., Cercospora glochidionis Sawada, Cercospora profusa Syd. & P. Syd., Melampsora laricis-urbanianae Tak. Matsumoto, Phaeoisariopsis pruni-grayanae Sawada, Pseudocercospora symploci Katsuki & Tak. Kobay. ex U. Braun & Crous. Citation: Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, Chen SF, Fan XL, Gramaje D, Halleen F, Horta Jung M, Jiang N, Jung T, Májek T, Marincowitz S, Milenković T, Mostert L, Nakashima C, Nurul Faziha I, Pan M, Raza M, Scanu B, Spies CFJ, Suhaizan L, Suzuki H, Tian CM, Tomšovský M, Úrbez-Torres JR, Wang W, Wingfield BD, Wingfield MJ, Yang Q, Yang X, Zare R, Zhao P, Groenewald JZ, Cai L, Crous PW (2022). Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101: 417-564. doi: 10.3114/sim.2022.101.06.
Collapse
Affiliation(s)
- Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - M. Bakhshi
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Y. Balci
- USDA-APHIS Plant Protection and Quarantine, 4700 River Road, Riverdale, Maryland, 20737 USA
| | - K.D. Broders
- Smithsonian Tropical Research Institute, Apartado Panamá, República de Panamá
| | - R. Cheewangkoon
- Entomology and Plant Pathology Department, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - S.F. Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - X.L. Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - D. Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV). Consejo Superior de Investigaciones Científicas - Universidad de La Rioja - Gobierno de La Rioja. Ctra. LO-20 Salida 13, 26007 Logroño. Spain
| | - F. Halleen
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
- Plant Protection Division, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenboscvh, 7599, South Africa
| | - M. Horta Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - N. Jiang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - T. Jung
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - T. Májek
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - S. Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - I. Milenković
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - C. Nakashima
- Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - I. Nurul Faziha
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Pan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - B. Scanu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - C.F.J. Spies
- ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - L. Suhaizan
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - H. Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - C.M. Tian
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - M. Tomšovský
- Phytophthora Research Centre, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno, Czech Republic
| | - J.R. Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, British Columbia V0H 1Z0, Canada
| | - W. Wang
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, Guangdong Province, China
| | - B.D. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - M.J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Q. Yang
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - X. Yang
- USDA-ARS, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, Maryland, 21702 USA
- Oak Ridge Institute for Science and Education, ARS Research Participation Program, P.O. Box 117, Oak Ridge, Tennessee, 37831 USA
| | - R. Zare
- Department of Botany, Iranian Research Institute of Plant Protection, P.O. Box 19395-1454, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - P. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
45
|
Engelbrecht J, Duong TA, Paap T, Hubert JM, Hanneman JJ, van den Berg N. Population Genetic Analyses of Phytophthora cinnamomi Reveals Three Lineages and Movement Between Natural Vegetation and Avocado Orchards in South Africa. PHYTOPATHOLOGY 2022; 112:1568-1574. [PMID: 35037471 DOI: 10.1094/phyto-10-21-0414-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytophthora cinnamomi is the causal agent of root rot, canker, and dieback of thousands of plant species around the globe. This oomycete not only causes severe economic losses to forestry and agricultural industries, but also threatens the health of various plants in natural ecosystems. In this study, 380 isolates of P. cinnamomi from four avocado production areas and two regions of natural vegetation in South Africa were investigated using 15 microsatellite markers. These populations were found to have a low level of genetic diversity and consisted of isolates from three lineages. Shared genotypes were detected between isolates from avocado orchards and natural vegetation, indicating the movement of isolates between these areas. The population from the Western Cape natural vegetation had the highest level of genotypic diversity and number of unique alleles, indicating this could be the point of introduction of P. cinnamomi to South Africa. Index of association analysis suggested that five of six populations were under linkage disequilibrium, suggesting a clonal mode of reproduction, whereas genotypes sampled from a recently established avocado orchard in the Western Cape were derived from a randomly recombining population. This study provided novel insights on the genetic diversity and spread of P. cinnamomi in South Africa. It also reported on the predominance of triploidy in natural occurring populations and provided evidence for recombination of P. cinnamomi for the first time. The presence of two dominant genotypes in all avocado production areas in South Africa highlight the importance of considering them in disease management and resistance breeding programs.
Collapse
Affiliation(s)
- Juanita Engelbrecht
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Trudy Paap
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Joseph M Hubert
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Juanita J Hanneman
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
46
|
Qongqo A, Nchu F, Geerts S. Relationship of alien species continues in a foreign land: The case of Phytophthora and Australian Banksia (Proteaceae) in South African Fynbos. Ecol Evol 2022; 12:ECE39100. [PMID: 35845384 PMCID: PMC9280440 DOI: 10.1002/ece3.9100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Fungal invasions only recently started to receive more attention in invasion biology. This is largely attributed to little or non-existent information about these inconspicuous organisms. Most invasion hypotheses focus on factors that increase invasion success; few try to explain why invasions fail. Here we hypothesize that a host-pathogen relationships can limit the invasiveness of an alien plant species in a novel range. To test this, we investigate whether the invasiveness of the Australian genus of Proteaceae, Banksia, in South Africa is determined by the alien and major invasive phytopathogen, Phytophthora cinnamomi. The presence of P. cinnamomi in Banksia root and soil was evaluated using morphological and molecular techniques. Isolates were cultured onto selective media and polymerize chain reactions and internal transcribing spacers were used for identification. Acetone leaf extracts of 11 Banksia spp. were screened for antimicrobial activity against P. cinnamomi, using the minimum inhibitory concentration assay. A total of 3840 Banksia individuals from seven localities were surveyed. Phytophthora cinnamomi was consistently isolated from Banksia species root and soil samples. Out of the 12 Banksia species that were screened for antimicrobial activity, four introduced species, B. burdettii, B. coccinea, Banksia hookeriana, and B. prionotes and the invasive B. integrifolia and B. ericifolia exhibited relatively high antimicrobial activity against P. cinnamomi (strain 696/12). We show that the phytopathogen in the native range has similar impact in the novel range and in doing so may limit invasion success of Banksia species with low antimicrobial activity.
Collapse
Affiliation(s)
- Axola Qongqo
- Centre for Invasion BiologyDepartment of Conservation and Marine SciencesCape Peninsula University of TechnologyCape TownSouth Africa
- South African National Biodiversity InstituteKirstenbosch Research CentreCape TownSouth Africa
| | - Felix Nchu
- Department of Horticultural SciencesCape Peninsula University of TechnologyBellvilleSouth Africa
| | - Sjirk Geerts
- Centre for Invasion BiologyDepartment of Conservation and Marine SciencesCape Peninsula University of TechnologyCape TownSouth Africa
| |
Collapse
|
47
|
Backer R, Engelbrecht J, van den Berg N. Differing Responses to Phytophthora cinnamomi Infection in Susceptible and Partially Resistant Persea americana (Mill.) Rootstocks: A Case for the Role of Receptor-Like Kinases and Apoplastic Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:928176. [PMID: 35837458 PMCID: PMC9274290 DOI: 10.3389/fpls.2022.928176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The hemibiotrophic plant pathogen Phytophthora cinnamomi Rands is the most devastating pathogen of avocado (Persea americana Mill.) and, as such, causes significant annual losses in the industry. Although the molecular basis of P. cinnamomi resistance in avocado and P. cinnamomi virulence determinants have been the subject of recent research, none have yet attempted to compare the transcriptomic responses of both pathogen and host during their interaction. In the current study, the transcriptomes of both avocado and P. cinnamomi were explored by dual RNA sequencing. The basis for partial resistance was sought by the inclusion of both susceptible (R0.12) and partially resistant (Dusa®) rootstocks sampled at early (6, 12 and 24 hours post-inoculation, hpi) and late time-points (120 hpi). Substantial differences were noted in the number of differentially expressed genes found in Dusa® and R0.12, specifically at 12 and 24 hpi. Here, the partially resistant rootstock perpetuated defense responses initiated at 6 hpi, while the susceptible rootstock abruptly reversed course. Instead, gene ontology enrichment confirmed that R0.12 activated pathways related to growth and development, essentially rendering its response at 12 and 24 hpi no different from that of the mock-inoculated controls. As expected, several classes of P. cinnamomi effector genes were differentially expressed in both Dusa® and R0.12. However, their expression differed between rootstocks, indicating that P. cinnamomi might alter the expression of its effector arsenal based on the rootstock. Based on some of the observed differences, several P. cinnamomi effectors were highlighted as potential candidates for further research. Similarly, the receptor-like kinase (RLK) and apoplastic protease coding genes in avocado were investigated, focusing on their potential role in differing rootstock responses. This study suggests that the basis of partial resistance in Dusa® is predicated on its ability to respond appropriately during the early stages following P. cinnamomi inoculation, and that important components of the first line of inducible defense, apoplastic proteases and RLKs, are likely to be important to the observed outcome.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Engelbrecht
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
48
|
Saiz-Fernández I, Đorđević B, Kerchev P, Černý M, Jung T, Berka M, Fu CH, Horta Jung M, Brzobohatý B. Differences in the Proteomic and Metabolomic Response of Quercus suber and Quercus variabilis During the Early Stages of Phytophthora cinnamomi Infection. Front Microbiol 2022; 13:894533. [PMID: 35770156 PMCID: PMC9234522 DOI: 10.3389/fmicb.2022.894533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/11/2022] [Indexed: 12/23/2022] Open
Abstract
Phytophthora cinnamomi Rands is a cosmopolite pathogen of woody plants which during the last couple of centuries has spread all over the world from its center of origin in Southeast Asia. In contrast to Chinese cork oak (Quercus variabilis Blume) forests native to Asia, which are generally healthy despite the presence of the pathogen, the populations of Cork oaks (Quercus suber L.) in Europe have been severely decimated by P. cinnamomi. The present study aims at identifying the differences in the early proteomic and metabolomic response of these two tree species that lead to their differences in susceptibility to P. cinnamomi. By using micropropagated clonal plants, we tried to minimize the plant-to-plant differences in the defense response that is maximized by the high intraspecific genetic variability inherent to the Quercus genus. The evolution on the content of Phytophthora proteins in the roots during the first 36 h after inoculation suggests a slower infection process in Q. variabilis plants. These plants displayed a significant decrease in sugars in the roots, together with a downregulation of proteins related to carbon metabolism. In the leaves, the biggest changes in proteomic profiling were observed 16 h after inoculation, and included increased abundance of peroxidases, superoxide dismutases and glutathione S-transferases in Q. variabilis plants, which probably contributed to decrease its susceptibility to P. cinnamomi.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Biljana Đorđević
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Pavel Kerchev
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Thomas Jung
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Chuen-Hsu Fu
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Marília Horta Jung
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Phytophthora Research Centre, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
49
|
Midgley KA, van den Berg N, Swart V. Unraveling Plant Cell Death during Phytophthora Infection. Microorganisms 2022; 10:microorganisms10061139. [PMID: 35744657 PMCID: PMC9229607 DOI: 10.3390/microorganisms10061139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023] Open
Abstract
Oomycetes form a distinct phylogenetic lineage of fungus-like eukaryotic microorganisms, of which several hundred organisms are considered among the most devastating plant pathogens—especially members of the genus Phytophthora. Phytophthora spp. have a large repertoire of effectors that aid in eliciting a susceptible response in host plants. What is of increasing interest is the involvement of Phytophthora effectors in regulating programed cell death (PCD)—in particular, the hypersensitive response. There have been numerous functional characterization studies, which demonstrate Phytophthora effectors either inducing or suppressing host cell death, which may play a crucial role in Phytophthora’s ability to regulate their hemi-biotrophic lifestyle. Despite several advances in techniques used to identify and characterize Phytophthora effectors, knowledge is still lacking for some important species, including Phytophthora cinnamomi. This review discusses what the term PCD means and the gap in knowledge between pathogenic and developmental forms of PCD in plants. We also discuss the role cell death plays in the virulence of Phytophthora spp. and the effectors that have so far been identified as playing a role in cell death manipulation. Finally, we touch on the different techniques available to study effector functions, such as cell death induction/suppression.
Collapse
|
50
|
Protective Effects of Filtrates and Extracts from Fungal Endophytes on Phytophthora cinnamomi in Lupinus luteus. PLANTS 2022; 11:plants11111455. [PMID: 35684227 PMCID: PMC9182999 DOI: 10.3390/plants11111455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Fungal endophytes have been found to protect their hosts against multiple fungal pathogens. Frequently, the secondary metabolites produced by the endophyte are responsible for antifungal activity. To develop new bio-products that are more environmentally friendly than synthetic pesticides against Phytophthora cinnamomi, a serious pathogen of many plant species, the antifungal activity of filtrates or extracts from four endophytes was evaluated in different in vitro tests and in plants of Lupinus luteus. In the dual culture assays, the filtrate of one of the endophytes (Drechslera biseptata) completely inhibited the mycelial growth of the pathogen. Moreover, it showed a very low minimal inhibitory concentration (MIC). Epicoccum nigrum, an endophyte that also showed high inhibitory activity and a low MIC against P. cinnamomi in those two experiments, provided a clear growth promotion effect when the extracts were applied to L. luteus seedlings. The extract of Fusarium avenaceum also manifested such a promotion effect and was the most effective in reducing the disease severity caused by the pathogen in lupine plants (73% reduction). Results demonstrated the inhibitory activity of the filtrates or extracts of these endophytes against P. cinnamomi. A better insight into the mechanisms involved may be gained by isolating and identifying the metabolites conferring this inhibitory effect against this oomycete pathogen.
Collapse
|