1
|
Song C, Zhang L, Jia Y, Wu D. Phylogenetic relatedness and plant traits influenced flowering phenology change patterns in natural habitats in China (2003-2021). BMC PLANT BIOLOGY 2025; 25:654. [PMID: 40382560 PMCID: PMC12085019 DOI: 10.1186/s12870-025-06572-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Phenology research has provided important insights on the influence of climate change on ecosystems. Investigation of spatial and interspecific difference can help us to better understand the phenology change pattern. In this study, observational data for 190 species collected from 2003 to 2021 at eight ecological stations in China were assessed via linear regression to detect trends in first flowering date (FFD), air temperature, and precipitation. We then examined the relationship between FFD change patterns, air temperature and precipitation through redundancy analysis, calculated the relative importance of phylogenetic relatedness, climate change, site conditions and plant traits in explaining variations in FFD change intensity using boosted regression tree method. RESULTS We found that (1) FFDs of nearly 40% of the observed species changed significantly (p < 0.05), with species showing advanced and delayed FFDs accounting for half. (2) Air temperature increased at most stations, particularly in spring and summer, while precipitation decreased in humid and subhumid temperate zones and increased during most seasons in arid temperate and subtropical zones. (3) Spatial differences were observed in FFD trends. At stations in Northeast, North, and Southwest China, which are regions with increased temperature, the percentage of species with advanced FFD was higher than that of species with delayed FFD, with the mean trend ranging from - 2.4 to - 6.5 d decade- 1. Conversely, at stations distributed in Northwest and South China, which are regions with increased precipitation, the percentage of species with advanced FFD was lower than that of species with delayed FFD, with the mean trend ranging from 1.3 to 7.1 d decade- 1. (4) Air temperature and precipitation had a stronger influence on FFD change in the temperate zone than in the subtropical zone. Climate factors with the greatest influence on FFD change patterns varied with the observation site. Interspecific variations in FFD change intensity were mostly explained by phylogenetic relatedness, although plant traits, site conditions, and climate change also had a certain effect. CONCLUSIONS Our research found that the first flowering phenology of large percent of the observed plants changed significantly from 2003 to 2021, showing spatial and interspecific differences across observation sites. Our research also demonstrated the importance of plant phylogeny on interspecific differences in phenological changes, plant traits such as growth form, plant height, and flowering time influence flowering phenology to a certain extent. These findings will help us to better understand phenological responses to climate change on a national scale, and help us better predict the response of various plants to climate change in the future.
Collapse
Affiliation(s)
- Chuangye Song
- Key laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Lin Zhang
- Key laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuan Jia
- Key laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Dongxiu Wu
- Key laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Farnitano MC, Karoly K, Sweigart AL. Fluctuating reproductive isolation and stable ancestry structure in a fine-scaled mosaic of hybridizing Mimulus monkeyflowers. PLoS Genet 2025; 21:e1011624. [PMID: 40163522 PMCID: PMC11978108 DOI: 10.1371/journal.pgen.1011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/08/2025] [Accepted: 02/16/2025] [Indexed: 04/02/2025] Open
Abstract
Hybridization among taxa impacts a variety of evolutionary processes from adaptation to extinction. We seek to understand both patterns of hybridization across taxa and the evolutionary and ecological forces driving those patterns. To this end, we use whole-genome low-coverage sequencing of 458 wild-grown and 1565 offspring individuals to characterize the structure, stability, and mating dynamics of admixed populations of Mimulus guttatus and Mimulus nasutus across a decade of sampling. In three streams, admixed genomes are common and a M. nasutus organellar haplotype is fixed in M. guttatus, but new hybridization events are rare. Admixture is strongly unidirectional, but each stream has a unique distribution of ancestry proportions. In one stream, three distinct cohorts of admixed ancestry are spatially structured at ~20-50m resolution and stable across years. Mating system provides almost complete isolation of M. nasutus from both M. guttatus and admixed cohorts, and is a partial barrier between admixed and M. guttatus cohorts. Isolation due to phenology is near-complete between M. guttatus and M. nasutus. Phenological isolation is a strong barrier in some years between admixed and M. guttatus cohorts, but a much weaker barrier in other years, providing a potential bridge for gene flow. These fluctuations are associated with differences in water availability across years, supporting a role for climate in mediating the strength of reproductive isolation. Together, mating system and phenology accurately predict fluctuations in assortative mating across years, which we estimate directly using paired maternal and offspring genotypes. Climate-driven fluctuations in reproductive isolation may promote the longer-term stability of a complex mosaic of hybrid ancestry, preventing either complete isolation or complete collapse of species barriers.
Collapse
Affiliation(s)
- Matthew C. Farnitano
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Keith Karoly
- Department of Biology, Reed College, Portland, Oregon, United States of America
| | - Andrea L. Sweigart
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
3
|
Pareja-Bonilla D, Arista M, Morellato LPC, Ortiz PL. Better soon than never: climate change induces strong phenological reassembly in the flowering of a Mediterranean shrub community. ANNALS OF BOTANY 2025; 135:239-254. [PMID: 38099507 PMCID: PMC11805945 DOI: 10.1093/aob/mcad193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS Flowering is a key process in the life cycle of a plant. Climate change is shifting flowering phenologies in the Northern Hemisphere, but studies with long data series at the community level are scarce, especially those considering the consequences of phenological changes for emerging ecological interactions. In the Mediterranean region, the effects of climate change are stronger than the global average and there is an urgent need to understand how biodiversity will be affected in this area. METHODS In this study, we investigated how the entire flowering phenology of a community comprising 51 perennial species from the south of the Iberian Peninsula changed from the decade of the 1980s to the 2020s. Furthermore, we have analysed the consequences of these changes for flowering order and co-flowering patterns. KEY RESULTS We have found that the flowering phenology of the community has advanced by ~20 days, which is coherent with the increasing temperatures related to climate change. Individual species have generally advanced their entire flowering phenology (start and end) and increased their flowering duration. The early flowering has resulted in a re-organization of the flowering order of the community and generated new co-flowering assemblages of species, with a slight trend towards an increase of shared flowering time among species. CONCLUSIONS The advanced flowering phenology and changes in flowering duration reported here were of unprecedented magnitude, showcasing the extreme effects of climate change on Mediterranean ecosystems. Furthermore, the effects were not similar among species, which could be attributed to differences in sensitivities of environmental cues for flowering. One consequence of these changes in flowering times is ecological mismatches, indicated by changes in the flowering order and co-flowering between decades. This new scenario might lead to new competitive or facilitative interactions and to the loss or gain of pollinators.
Collapse
Affiliation(s)
- Daniel Pareja-Bonilla
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Leonor Patrícia Cerdeira Morellato
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, UNESP - São Paulo State University, Biosciences Institute, São Paulo, Rio Claro, Brazil
| | - Pedro Luis Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Zhou Z, Feng H, Ma G, Ru J, Wang H, Feng J, Wan S. Seasonal and vertical patterns of water availability and variability determine plant reproductive phenology. ANNALS OF BOTANY 2025; 135:211-222. [PMID: 39166296 PMCID: PMC11805934 DOI: 10.1093/aob/mcae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND AND AIMS Changing precipitation regimes can influence terrestrial plants and ecosystems. However, plant phenological responses to changing temporal patterns of precipitation and the underlying mechanisms are largely unclear. This study was conducted to explore the effects of seasonal precipitation redistribution on plant reproductive phenology in a temperate steppe. METHODS A field experiment was undertaken with control (C), advanced (AP) and delayed (DP) growing-season precipitation peaks and the combination of AP and DP (ADP). Seven dominant plant species were selected and divided into two functional groups (early- vs. middle-flowering species, shallow- vs. deep-rooted species) to monitor reproductive phenology, including budding, flowering and fruiting dates and the reproductive duration for four growing seasons, 2015-2017 and 2022. KEY RESULTS The AP, but not DP treatment advanced the phenological (i.e. budding, flowering and fruiting) dates and lengthened the reproductive duration across the four growing seasons and seven monitored species. In addition, the phenological responses showed divergent patterns among different plant functional groups, which could be attributed to shifts in soil moisture and its variability in different months and soil depths. Moreover, species with lengthened reproductive duration increased phenological overlap with other species, which could have a negative impact on their dominance under the AP treatment. CONCLUSIONS Our findings reveal that changing precipitation seasonality could have considerable impacts on plant phenology by affecting soil water availability and variability. Incorporating these two factors simultaneously in the phenology models will help us to understand the response of plant phenology under intensified changing precipitation scenarios. In addition, the observations of decreased dominance for the species with lengthened reproductive duration suggest that changing reproductive phenology can have a potential to affect community composition in grasslands under global change.
Collapse
Affiliation(s)
- Zhenxing Zhou
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hanlin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Gaigai Ma
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyi Ru
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Haidao Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Jiayin Feng
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
5
|
Van Dyke MN, Kraft NJB. Changes in flowering phenology with altered rainfall and the potential community impacts in an annual grassland. AMERICAN JOURNAL OF BOTANY 2025; 112:e70000. [PMID: 39907183 DOI: 10.1002/ajb2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 02/06/2025]
Abstract
PREMISE Shifts in the timing of life history events, or phenology, have been recorded across many taxa and biomes in response to global change. These phenological changes are often studied in a single species context, but considering the community context is essential for anticipating the cascading effects on biotic interactions that are likely to occur. Focusing on an annual grassland plant community, we examined how experimental changes in precipitation affect flowering phenology in a community context and explore the implications of these shifts for competitive interactions and species coexistence. METHODS We experimentally manipulated rainfall with rainout shelters and recorded detailed flowering phenology data for seven annual species including two grasses and five forbs. We assessed how their first and peak flowering days were affected by changes in rainfall and explored how flowering overlap between competing species changed. RESULTS Changes in rainfall shifted flowering phenology of some species, but sensitivity differed among neighboring species. Four of the seven species studied started and/or peaked flowering earlier in response to reduced water availability. The idiosyncratic shifts in flowering phenology have the potential to alter existing temporal dynamics that may be maintaining coexistence, such as temporal separation of resource-use among neighbors. CONCLUSIONS Our results show how species-specific phenological consequences of global change can impact community dynamics and competition between neighboring plants and warrant future research.
Collapse
Affiliation(s)
- Mary N Van Dyke
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nathan J B Kraft
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Austin MW, Smith AB, Olsen KM, Hoch PC, Krakos KN, Schmocker SP, Miller-Struttmann NE. Climate change increases flowering duration, driving phenological reassembly and elevated co-flowering richness. THE NEW PHYTOLOGIST 2024; 243:2486-2500. [PMID: 39049577 DOI: 10.1111/nph.19994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Changes to flowering phenology are a key response of plants to climate change. However, we know little about how these changes alter temporal patterns of reproductive overlap (i.e. phenological reassembly). We combined long-term field (1937-2012) and herbarium records (1850-2017) of 68 species in a flowering plant community in central North America and used a novel application of Bayesian quantile regression to estimate changes to flowering season length, altered richness and composition of co-flowering assemblages, and whether phenological shifts exhibit seasonal trends. Across the past century, phenological shifts increased species' flowering durations by 11.5 d on average, which resulted in 94% of species experiencing greater flowering overlap at the community level. Increases to co-flowering were particularly pronounced in autumn, driven by a greater tendency of late season species to shift the ending of flowering later and to increase flowering duration. Our results demonstrate that species-level phenological shifts can result in considerable phenological reassembly and highlight changes to flowering duration as a prominent, yet underappreciated, effect of climate change. The emergence of an autumn co-flowering mode emphasizes that these effects may be season-dependent.
Collapse
Affiliation(s)
- Matthew W Austin
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
- Living Earth Collaborative, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Adam B Smith
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kenneth M Olsen
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Peter C Hoch
- Herbarium, Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Kyra N Krakos
- Department of Biology, Maryville University in Saint Louis, St Louis, MO, 63141, USA
- Missouri Botanical Garden, St Louis, MO, 63110, USA
| | - Stefani P Schmocker
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Biological Sciences, Kent State University, Kent, OH, 44240, USA
| | - Nicole E Miller-Struttmann
- Missouri Botanical Garden, St Louis, MO, 63110, USA
- Department of Natural Sciences and Mathematics, Webster University, St Louis, MO, 63119, USA
| |
Collapse
|
7
|
Kotilainen A, Mattila ALK, Møller C, Koivusaari S, Hyvärinen M, Hällfors MH. Higher thermal plasticity in flowering phenology increases flowering output. Ecol Evol 2024; 14:e11657. [PMID: 38952655 PMCID: PMC11216813 DOI: 10.1002/ece3.11657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Ongoing climate change poses an increasing threat to biodiversity. To avoid decline or extinction, species need to either adjust or adapt to new environmental conditions or track their climatic niches across space. In sessile organisms such as plants, phenotypic plasticity can help maintain fitness in variable and even novel environmental conditions and is therefore likely to play an important role in allowing them to survive climate change, particularly in the short term. Understanding a species' response to rising temperature is crucial for planning well-targeted and cost-effective conservation measures. We sampled seeds of three Hypericum species (H. maculatum, H. montanum, and H. perforatum), from a total of 23 populations originating from different parts of their native distribution areas in Europe. We grew them under four different temperature regimes in a greenhouse to simulate current and predicted future climatic conditions in the distribution areas. We measured flowering start, flower count, and subsequent seed weight, allowing us to study variations in the thermal plasticity of flowering phenology and its relation to fitness. Our results show that individuals flowered earlier with increasing temperature, while the degree of phenological plasticity varied among species. More specifically, the plasticity of H. maculatum varied depending on population origin, with individuals from the leading range edge being less plastic. Importantly, we show a positive relationship between higher plasticity and increased flower production, indicating adaptive phenological plasticity. The observed connection between plasticity and fitness supports the idea that plasticity may be adaptive. This study underlines the need for information on plasticity for predicting species' potential to thrive under global change and the need for studies on whether higher phenotypic plasticity is currently being selected as natural populations experience a rapidly changing climate.
Collapse
Affiliation(s)
- Aino Kotilainen
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Anniina L. K. Mattila
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Charlotte Møller
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Susanna Koivusaari
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
- Nature Solutions UnitFinnish Environment Institute (Syke)HelsinkiFinland
| | - Marko‐Tapio Hyvärinen
- Botany and Mycology Unit, Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | - Maria H. Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
8
|
Du Y, Zhang R, Tang X, Wang X, Mao L, Chen G, Lai J, Ma K. The mid-domain effect in flowering phenology. PLANT DIVERSITY 2024; 46:502-509. [PMID: 39280973 PMCID: PMC11390702 DOI: 10.1016/j.pld.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024]
Abstract
The timing of flowering is an important driver of species distribution and community assembly patterns. However, we still have much to learn about the factors that shape flowering diversity (i.e., number of species flowering per period) in plant communities. One potential explanation of flowering diversity is the mid-domain effect, which states that geometric constraints on species ranges within a bounded domain (space or time) will yield a mid-domain peak in diversity regardless of ecological factors. Here, we determine whether the mid-domain effect explains peak flowering time (i.e., when most species of communities are flowering) across China. We used phenological data of 16,267 herbaceous and woody species from the provincial Flora in China and species distribution data from the Chinese Vascular Plant Distribution Database to determine relationships between the observed number of species flowering and the number of species flowering as predicted by the mid-domain effect model, as well as between three climatic variables (mean minimum monthly temperature, mean monthly precipitation, and mean monthly sunshine duration). We found that the mid-domain effect explained a significant proportion of the temporal variation in flowering diversity across all species in China. Further, the mid-domain effect explained a greater proportion of variance in flowering diversity at higher latitudes than at lower latitudes. The patterns of flowering diversity for both herbaceous and woody species were related to both the mid-domain effect and environmental variables. Our findings indicate that including geometric constraints in conjunction with abiotic and biotic predictors will improve predictions of flowering diversity patterns.
Collapse
Affiliation(s)
- Yanjun Du
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, China
| | - Rongchen Zhang
- HNU-ASU Joint International Tourism College, Hainan University, Haikou 570228, China
| | - Xinran Tang
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, China
| | - Xinyang Wang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Lingfeng Mao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Guoke Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jiangshan Lai
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
9
|
Sianta SA, Moeller DA, Brandvain Y. The extent of introgression between incipient Clarkia species is determined by temporal environmental variation and mating system. Proc Natl Acad Sci U S A 2024; 121:e2316008121. [PMID: 38466849 PMCID: PMC10963018 DOI: 10.1073/pnas.2316008121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Introgression is pervasive across the tree of life but varies across taxa, geography, and genomic regions. However, the factors modulating this variation and how they may be affected by global change are not well understood. Here, we used 200 genomes and a 15-y site-specific environmental dataset to investigate the effects of environmental variation and mating system divergence on the magnitude of introgression between a recently diverged outcrosser-selfer pair of annual plants in the genus Clarkia. These sister taxa diverged very recently and subsequently came into secondary sympatry where they form replicated contact zones. Consistent with observations of other outcrosser-selfer pairs, we found that introgression was asymmetric between taxa, with substantially more introgression from the selfer to the outcrosser. This asymmetry was caused by a bias in the direction of initial F1 hybrid formation and subsequent backcrossing. We also found extensive variation in the outcrosser's admixture proportion among contact zones, which was predicted nearly entirely by interannual variance in spring precipitation. Greater fluctuations in spring precipitation resulted in higher admixture proportions, likely mediated by the effects of spring precipitation on the expression of traits that determine premating reproductive isolation. Climate-driven hybridization dynamics may be particularly affected by global change, potentially reshaping species boundaries and adaptation to novel environments.
Collapse
Affiliation(s)
- Shelley A. Sianta
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - David A. Moeller
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| |
Collapse
|
10
|
Rondinel-Mendoza KV, Lorite J, Marín-Rodulfo M, Cañadas EM. Tracking Phenological Changes over 183 Years in Endemic Species of a Mediterranean Mountain (Sierra Nevada, SE Spain) Using Herbarium Specimens. PLANTS (BASEL, SWITZERLAND) 2024; 13:522. [PMID: 38498521 PMCID: PMC10892450 DOI: 10.3390/plants13040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Phenological studies have a crucial role in the global change context. The Mediterranean basin constitutes a key study site since strong climate change impacts are expected, particularly in mountain areas such as Sierra Nevada, where we focus. Specifically, we delve into phenological changes in endemic vascular plants over time by analysing data at three scales: entire massif, altitudinal ranges, and particular species, seeking to contribute to stopping biodiversity loss. For this, we analysed 5262 samples of 2129 herbarium sheets from Sierra Nevada, dated from 1837 to 2019, including reproductive structure, complete collection date, and precise location. We found a generalized advancement in phenology at all scales, and particularly in flowering onset and flowering peak. Thus, plants flower on average 11 days earlier now than before the 1970s. Although similar trends have been confirmed for many territories and species, we address plants that have been studied little in the past regarding biotypes and distribution, and which are relevant for conservation. Thus, we analysed phenological changes in endemic plants, mostly threatened, from a crucial hotspot within the Mediterranean hotspot, which is particularly vulnerable to global warming. Our results highlight the urgency of phenological studies by species and of including ecological interactions and effects on their life cycles.
Collapse
Affiliation(s)
- Katy V. Rondinel-Mendoza
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Juan Lorite
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
- Interuniversity Institute for Earth System Research, University of Granada, 18071 Granada, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Eva M. Cañadas
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| |
Collapse
|
11
|
Jahn LV, Carrino-Kyker SR, Burke DJ. Interannual variation in spring weather conditions as a driver of spring wildflower coverage: a 15-year perspective from an old-growth temperate forest. AOB PLANTS 2023; 15:plad078. [PMID: 38111607 PMCID: PMC10727473 DOI: 10.1093/aobpla/plad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/20/2023]
Abstract
Spring ephemerals are wildflowers found in temperate deciduous forests that typically display aboveground shoots for a period of 2 months or less. Early spring, before the canopy leaves out, marks the beginning of the aboveground growth period where ephemerals acquire nutrients and resources via aboveground tissues. Several studies have shown that spring ephemeral reproduction is affected by spring temperature, but few have looked at how weather conditions of the current and previous seasons, including precipitation and temperature, influence aboveground growth. Here, we examine the response of a spring ephemeral community in a temperate hardwood forest to weather conditions during their current and previous growing seasons. For 15 years we estimated percent cover of each species within our community. We highlighted five dominant spring ephemerals within this community: wild leek (Allium tricoccum), cutleaf toothwort (Cardamine concatenata), spring beauty (Claytonia virginica), squirrel corn (Dicentra canadensis) and trout lily (Erythronium americanum). We compared changes in cover on both a community and species level from 1 year to the next with average precipitation and temperature of the year of measurement as well as the year prior. We found precipitation and temperature influence a change in cover at the community and species level, but the strength of that influence varies by species. There were few significant correlations between plant cover in the current year and temperature and precipitation in the 30 days preceding measurement. However, we found significant correlations between plant cover and precipitation and temperature during the previous spring; precipitation and cover change were positively correlated, whereas temperature and cover change were negatively correlated. Overall, cooler, wetter springs lead to an increase in aboveground cover the next year. Learning how individual species within a forest plant community respond to weather conditions is a crucial part of understanding how plant communities will respond to climate change.
Collapse
Affiliation(s)
- Lydia V Jahn
- The Holden Arboretum, 9500 Sperry Road, Kirtland OH, USA
| | | | - David J Burke
- The Holden Arboretum, 9500 Sperry Road, Kirtland OH, USA
| |
Collapse
|
12
|
Park DS, Xie Y, Ellison AM, Lyra GM, Davis CC. Complex climate-mediated effects of urbanization on plant reproductive phenology and frost risk. THE NEW PHYTOLOGIST 2023; 239:2153-2165. [PMID: 36942966 DOI: 10.1111/nph.18893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited. Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering). Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions. Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Yingying Xie
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47906, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, 47906, USA
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, 41099, USA
| | - Aaron M Ellison
- Harvard University Herbaria, Harvard University, Cambridge, MA, 02135, USA
- Sound Solutions for Sustainable Science, Boston, MA, 02135, USA
| | - Goia M Lyra
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
- Programa de Pós Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
13
|
Faidiga AS, Oliver MG, Budke JM, Kalisz S. Shifts in flowering phenology in response to spring temperatures in eastern Tennessee. AMERICAN JOURNAL OF BOTANY 2023; 110:e16203. [PMID: 37327370 DOI: 10.1002/ajb2.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
PREMISE Plant phenological shifts are among the clearest indicators of the effects of climate change. In North America, numerous studies in the northeastern United States have demonstrated earlier spring flowering compared to historical records. However, few studies have examined phenological shifts in the southeastern United States, a highly biodiverse region of North America characterized by dramatic variations in abiotic conditions over small geographic areas. METHODS We examined 1000+ digitized herbarium records along with location-specific temperature data to analyze phenological shifts of 14 spring-flowering species in two adjacent ecoregions in eastern Tennessee. RESULTS Spring-flowering plant communities in the Blue Ridge and the Ridge and Valley ecoregions differed in their sensitivity to temperature; plants in the Ridge and Valley flower 0.73 days earlier/°C on average compared to 1.09 days/°C for plants in the Blue Ridge. Additionally, for the majority of species in both ecoregions, flowering is sensitive to spring temperature; i.e., in warmer years, most species flowered earlier. Despite this sensitivity, we did not find support for community-level shifts in flowering within eastern Tennessee in recent decades, likely because increases in annual temperature in the southeast are driven primarily by warming summer (rather than spring) temperatures. CONCLUSIONS These results highlight the importance of including ecoregion as a predictor in phenological models for capturing variation in sensitivity among populations and suggest that even small shifts in temperature can have dramatic effects on phenology in response to climate in the southeastern United States.
Collapse
Affiliation(s)
- Alexandra S Faidiga
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Margaret G Oliver
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- University of Tennessee Herbarium (TENN), University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica M Budke
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- University of Tennessee Herbarium (TENN), University of Tennessee, Knoxville, TN, 37996, USA
| | - Susan Kalisz
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
14
|
Mazer SJ, Hunter DJ, Hove AA, Dudley LS. Context-dependent concordance between physiological divergence and phenotypic selection in sister taxa with contrasting phenology and mating systems. AMERICAN JOURNAL OF BOTANY 2022; 109:1757-1779. [PMID: 35652277 DOI: 10.1002/ajb2.16016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
PREMISE The study of phenotypic divergence of, and selection on, functional traits in closely related taxa provides the opportunity to detect the role of natural selection in driving diversification. If the strength or direction of selection in field populations differs between taxa in a pattern that is consistent with the phenotypic difference between them, then natural selection reinforces the divergence. Few studies have sought evidence for such concordance for physiological traits. METHODS Herbarium specimen records were used to detect phenological differences between sister taxa independent of the effects on flowering time of long-term variation in the climate across collection sites. In the field, physiological divergence in photosynthetic rate, transpiration rate, and instantaneous water-use efficiency were recorded during vegetative growth and flowering in 13 field populations of two taxon pairs of Clarkia, each comprising a self-pollinating and a outcrossing taxon. RESULTS Historically, each selfing taxon flowered earlier than its outcrossing sister taxon, independent of the effects of local long-term climatic conditions. Sister taxa differed in all focal traits, but the degree and (in one case) the direction of divergence depended on life stage. In general, self-pollinating taxa had higher gas exchange rates, consistent with their earlier maturation. In 6 of 18 comparisons, patterns of selection were concordant with the phenotypic divergence (or lack thereof) between sister taxa. CONCLUSIONS Patterns of selection on physiological traits measured in heterogeneous conditions do not reliably reflect divergence between sister taxa, underscoring the need for replicated studies of the direction of selection within and among taxa.
Collapse
Affiliation(s)
- Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - David J Hunter
- Department of Mathematics and Computer Science, Westmont College, Santa Barbara, CA, 93108
| | - Alisa A Hove
- Biology Department, Warren Wilson College, P.O. Box 9000, Asheville, NC, 28815, USA
| | - Leah S Dudley
- Department of Biological and Environmental Sciences, East Central University, Ada, OK, 74820, USA
| |
Collapse
|
15
|
Willems FM, Scheepens JF, Bossdorf O. Forest wildflowers bloom earlier as Europe warms: lessons from herbaria and spatial modelling. THE NEW PHYTOLOGIST 2022; 235:52-65. [PMID: 35478407 DOI: 10.1111/nph.18124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Today plants often flower earlier due to climate warming. Herbarium specimens are excellent witnesses of such long-term changes. However, the magnitude of phenological shifts may vary geographically, and the data are often clustered. Therefore, large-scale analyses of herbarium data are prone to pseudoreplication and geographical biases. We studied over 6000 herbarium specimens of 20 spring-flowering forest understory herbs from Europe to understand how their phenology had changed during the last century. We estimated phenology trends with or without taking spatial autocorrelation into account. On average plants now flowered over 6 d earlier than at the beginning of the last century. These changes were strongly associated with warmer spring temperatures. Flowering time advanced 3.6 d per 1°C warming. Spatial modelling showed that, in some parts of Europe, plants flowered earlier or later than expected. Without accounting for this, the estimates of phenological shifts were biased and model fits were poor. Our study indicates that forest wildflowers in Europe strongly advanced their phenology in response to climate change. However, these phenological shifts differ geographically. This shows that it is crucial to combine the analysis of herbarium data with spatial modelling when testing for long-term phenology trends across large spatial scales.
Collapse
Affiliation(s)
- Franziska M Willems
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, 72076, Tübingen, Germany
- Conservation Biology, Department of Biology, University of Marburg, 35032, Marburg, Germany
| | - J F Scheepens
- Plant Evolutionary Ecology, Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
16
|
Hassan T, Hamid M, Wani SA, Malik AH, Waza SA, Khuroo AA. Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: Supplementing decadal field records with historical and experimental evidences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148811. [PMID: 34246140 DOI: 10.1016/j.scitotenv.2021.148811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
In an age of anthropocene, shifting plant phenology is one of the most striking biological indicators of global environmental change. Majority of the studies reporting shifts in plant phenology are available from the North America and Europe and largely scarce from the developing world, including the Himalaya; and studies integrating multiple methodological approaches to investigate the climate-driven phenological shifts are too rare. Here, we report the shifts in spring flowering phenology of model plant species, Sternbergia vernalis in response to the changing climate in Kashmir Himalaya, by integrating decadal field observational records with long-term herbarium and dated-photograph data, and supported with experimental evidences. Our results revealed a significant increasing trend of 0.038, 0.016 and 0.023 °C/year in the annual mean maximum temperature (Tmax), mean minimum temperature (Tmin) and diurnal temperature range (DTR) respectively; but an insignificant decreasing trend in annual precipitation of -1.24 mm/year over the last four decades (1980-2019) in this Himalayan region. The flowering phenology of S. vernalis has significantly advanced by 11.8 days/°C and 27.8 days/°C increase in Tmax and Tmin respectively, indicating that the climate warming has led to substantial shifts in flowering phenology of the model plant species. We also observed a strong association of seasonal Tmax (December-February) and DTR on the early onset of spring flowering, however precipitation had no significant effect on the timing of flowering. The greenhouse experiment results further supported a significant effect of temperature in triggering the phenological shifts, wherein the model plant grown under different temperature treatments flowered 9-20 days earlier compared to the control. Our study showcases the integrated use of multiple methodological approaches for unravelling the long-term phenological shifts in response to climate change, and contributes in filling the knowledge gaps in the phenological research from the developing world in general and the Himalaya in particular.
Collapse
Affiliation(s)
- Tabasum Hassan
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Sajad A Wani
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Akhtar H Malik
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India
| | - Showkat A Waza
- Mountain Crop Research Station (Sagam), SKUAST Kashmir, Anantnag 192 124, J&K, India
| | - Anzar A Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar 190 006, J&K, India.
| |
Collapse
|
17
|
Love NLR, Mazer SJ. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range. AMERICAN JOURNAL OF BOTANY 2021; 108:1873-1888. [PMID: 34642935 DOI: 10.1002/ajb2.1748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Forecasting how species will respond phenologically to future changes in climate is a major challenge. Many studies have focused on estimating species- and community-wide phenological sensitivities to climate to make such predictions, but sensitivities may vary within species, which could result in divergent phenological responses to climate change. METHODS We used 743 herbarium specimens of the mountain jewelflower (Streptanthus tortuosus, Brassicaceae) collected over 112 years to investigate whether individuals sampled from relatively warm vs. cool regions differ in their sensitivity to climate and whether this difference has resulted in divergent phenological shifts in response to climate warming. RESULTS During the past century, individuals sampled from warm regions exhibited a 20-day advancement in flowering date; individuals in cool regions showed no evidence of a shift. We evaluated two potential drivers of these divergent responses: differences between regions in (1) the degree of phenological sensitivity to climate and (2) the magnitude of climate change experienced by plants, or (3) both. Plants sampled from warm regions were more sensitive to temperature-related variables and were subjected to a greater degree of climate warming than those from cool regions; thus our results suggest that the greater temporal shift in flowering date in warm regions is driven by both of these factors. CONCLUSIONS Our results are among the first to demonstrate that species exhibited intraspecific variation in sensitivity to climate and that this variation can contribute to divergent responses to climate change. Future studies attempting to forecast temporal shifts in phenology should consider intraspecific variation.
Collapse
Affiliation(s)
- Natalie L R Love
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Biological Sciences Department, California Polytechnic State University, 1 Grand Ave., San Luis Obispo, CA, 93407, USA
| | - Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
18
|
López-Goldar X, Agrawal AA. Ecological Interactions, Environmental Gradients, and Gene Flow in Local Adaptation. TRENDS IN PLANT SCIENCE 2021; 26:796-809. [PMID: 33865704 DOI: 10.1016/j.tplants.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Despite long-standing interest in local adaptation of plants to their biotic and abiotic environment, existing theory, and many case studies, little work to date has addressed within-species evolution of concerted strategies and how these might contrast with patterns across species. Here we consider the interactions between pollinators, herbivores, and resource availability in shaping plant local adaptation, how these interactions impact plant phenotypes and gene flow, and the conditions where multiple traits align along major environmental gradients such as latitude and elevation. Continued work in emerging model systems will benefit from the melding of classic experimental approaches with novel population genetic analyses to reveal patterns and processes in plant local adaptation.
Collapse
Affiliation(s)
- Xosé López-Goldar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA.
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
19
|
Willems FM, Scheepens JF, Ammer C, Block S, Bucharova A, Schall P, Sehrt M, Bossdorf O. Spring understory herbs flower later in intensively managed forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02332. [PMID: 33765327 DOI: 10.1002/eap.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Many organisms respond to anthropogenic environmental change through shifts in their phenology. In plants, flowering is largely driven by temperature, and therefore affected by climate change. However, on smaller scales climatic conditions are also influenced by other factors, including habitat structure. A group of plants with a particularly distinct phenology are the understory herbs in temperate European forests. In these forests, management alters tree species composition (often replacing deciduous with coniferous species) and homogenizes stand structure, and as a consequence changes light conditions and microclimate. Forest management should thus also affect the phenology of understory herbs. To test this, we recorded the flowering phenology of 16 early-flowering herbs on 100 forest plots varying in management intensity, from near-natural to intensely managed forests, in central and southern Germany. We found that in forest stands with a high management intensity, such as Norway spruce plantations, the plants flowered on average about 2 weeks later than in unmanaged forests. This was largely because management also affected microclimate (e.g., spring temperatures of 5.9°C in managed coniferous, 6.7 in managed deciduous, and 7.0°C in unmanaged deciduous plots), which in turn affected phenology, with plants flowering later on colder and moister forest stands (+4.5 d per -1°C and 2.7 d per 10% humidity increase). Among forest characteristics, the percentage of conifers had the greatest influence on microclimate, but also the age, overall crown projection area, structural complexity and spatial distribution of the forest stands. Our study indicates that forest management alters plant phenology, with potential far-reaching consequences for the ecology and evolution of understorey communities. More generally, our study demonstrates that besides climate change other drivers of environmental change, too, can influence the phenology of organisms.
Collapse
Affiliation(s)
- Franziska M Willems
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - J F Scheepens
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt, Germany
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Svenja Block
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Anna Bucharova
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Biodiversity and Ecosystem Research Group, Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Melissa Sehrt
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Liu F, Gao C, Chen M, Tang G, Sun Y, Li K. The impacts of flowering phenology on the reproductive success of the narrow endemic Nouelia insignis Franch. (Asteraceae). Ecol Evol 2021; 11:9396-9409. [PMID: 34306630 PMCID: PMC8293708 DOI: 10.1002/ece3.7747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/12/2022] Open
Abstract
Nouelia insignis Franch. (Asteraceae) is a short, narrow endemic and endangered tree, growing with a natural population in the dry and hot valley of the Jinsha River in the southwest area of China. In this work, flowering phenology (time and duration), floral biology, visit frequency and behavior of pollinators, and pollination characteristics were studied based on investigation in the field and analysis in the laboratory with the help of a stereomicroscope, and the relationship between seed setting rate and reproductive traits, as well as the relationship between flowering time and rainfall before flowering, was tested using the method of general linear regression model. The results showed that natural population of N. insignis exhibited high flowering synchrony with relatively stable flowering duration, and the flowering time fluctuated greatly depending on the rainfall 5 months before flowering. The pollination of N. insignis required pollinators, and insect activities played a very important role in the pollination process. However, lack of the pollinators was not a limitation for reproductive fitness in N. insignis, although the number of pollinators was small and the frequency of visits was low. In addition, no pollen limitation was found during pollination. The average seed setting rate of N. insignis in the natural condition was only 1.52%-3.73%, and it was generally affected by changes in flowering phenology between years and had a higher seed set in early flowering year. The annual variation of seed set might be related to the annual variations of stamen and pistil functions, such as changes of pollen viability and stigma receptivity, which were closely related to flowering time. The results of this study are of value for further conservation actions on natural population of this threatened endemic plant.
Collapse
Affiliation(s)
- FangYan Liu
- Research Institute of Resources InsectsChinese Academy of ForestryKunmingChina
- Desert Ecosystem Research Station in Yuanmou County of Yunnan ProvinceState Forestry Administration of ChinaYuanmouChina
| | - ChengJie Gao
- Research Institute of Resources InsectsChinese Academy of ForestryKunmingChina
- Desert Ecosystem Research Station in Yuanmou County of Yunnan ProvinceState Forestry Administration of ChinaYuanmouChina
| | - Min Chen
- College of Life ScienceSouthwest Forestry UniversityKunmingChina
| | - GuoYong Tang
- Research Institute of Resources InsectsChinese Academy of ForestryKunmingChina
- Desert Ecosystem Research Station in Yuanmou County of Yunnan ProvinceState Forestry Administration of ChinaYuanmouChina
| | - Yongyu Sun
- Research Institute of Resources InsectsChinese Academy of ForestryKunmingChina
- Desert Ecosystem Research Station in Yuanmou County of Yunnan ProvinceState Forestry Administration of ChinaYuanmouChina
| | - Kun Li
- Research Institute of Resources InsectsChinese Academy of ForestryKunmingChina
- Desert Ecosystem Research Station in Yuanmou County of Yunnan ProvinceState Forestry Administration of ChinaYuanmouChina
| |
Collapse
|
21
|
Zettlemoyer MA, Renaldi K, Muzyka MD, Lau JA. Extirpated prairie species demonstrate more variable phenological responses to warming than extant congeners. AMERICAN JOURNAL OF BOTANY 2021; 108:958-970. [PMID: 34133754 DOI: 10.1002/ajb2.1684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
PREMISE Shifting phenology in response to climate is one mechanism that can promote population persistence and geographic spread; therefore, species with limited ability to phenologically track changing environmental conditions may be more susceptible to population declines. Alternatively, apparently nonresponding species may demonstrate divergent responses to multiple environmental conditions experienced across seasons. METHODS Capitalizing on herbarium records from across the midwestern United States and on detailed botanical surveys documenting local extinctions over the past century, we investigated whether extirpated and extant taxa differ in their phenological responses to temperature and precipitation during winter and spring (during flowering and the growing season before flowering) or in the magnitude of their flowering time shift over the past century. RESULTS Although warmer temperatures across seasons advanced flowering, extirpated and extant species differed in the magnitude of their phenological responses to winter and spring warming. Extirpated species demonstrated inconsistent phenological responses to warmer spring temperatures, whereas extant species consistently advanced flowering in response to warmer spring temperatures. In contrast, extirpated species advanced flowering more than extant species in response to warmer winter temperatures. Greater spring precipitation tended to delay flowering for both extirpated and extant taxa. Finally, both extirpated and extant taxa delayed flowering over time. CONCLUSIONS This study highlights the importance of understanding phenological responses to seasonal warming and indicates that extirpated species may demonstrate more variable phenological responses to temperature than extant congeners, a finding consistent with the hypothesis that appropriate phenological responses may reduce species' likelihood of extinction.
Collapse
Affiliation(s)
- Meredith A Zettlemoyer
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602-5004, USA
| | | | | | - Jennifer A Lau
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, 49060-9505, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824-6406, USA
- Department of Biology, Indiana University, Bloomington, IN, 47405-7005, USA
| |
Collapse
|
22
|
Kwembeya EG. Tracking biological footprints of climate change using flowering phenology of the geophytes: Pancratium tenuifolium and Scadoxus multiflorus. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:577-586. [PMID: 33409646 DOI: 10.1007/s00484-020-02052-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Drought-adapted geophytes are responding to the effects of climate change in arid and semi-arid environments. In this study, herbarium and historical rainfall data were used to examine the impact of rainfall changes on flowering trends of Pancratium tenuifolium Hochst. ex A.Rich and Scadoxus multiflorus (Martyn) Raf. subsp. multiflorus. Flowering was delayed by approximately 7 days per decade for P. tenuifolium during the period 1930 to 2018 and by approximately 14 days per decade for S. multiflorus subsp. multiflorus during the period 1924 to 2008. Scadoxus multiflorus subsp. multiflorus delayed the day of flowering by approximately 0.3 days per millimetre increase of rainfall, with Pancratium tenuifolium showing a non-significant response to summer rainfall during the same period. Overall, a linear mixed-effects model revealed that the day of flowering was delayed by approximately 8 days per degree rise in latitude and advanced by approximately 9 days per degree rise in longitude. Additionally, summer rainfall had significant effects on the day of flowering with a 1-mm increase in summer rainfall delaying the day of flowering by approximately 0.16 days. These changes in flowering times may ultimately alter the distribution of geophytes in Namibia.
Collapse
Affiliation(s)
- Ezekeil G Kwembeya
- Department of Biological Sciences, University of Namibia, Windhoek, Namibia.
| |
Collapse
|
23
|
Everingham SE, Offord CA, Sabot MEB, Moles AT. Time-traveling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology 2020; 102:e03272. [PMID: 33336401 DOI: 10.1002/ecy.3272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/29/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
Studies assessing the biological impacts of climate change typically rely on long-term, historic data to measure trait responses to climate through time. Here, we overcame the problem of absent historical data by using resurrected seeds to capture historic plant-trait data for a number of plant regeneration and growth traits. We collected seed and seedling trait measurements from resurrected historic seeds and compared these with modern seed and seedling traits collected from the same species in the same geographic location. We found a total of 43 species from southeastern Australia for which modern/historic seed pairs could be located. These species were located in a range of regions that have undergone different amounts of climate change across a range of temperature, precipitation, and extreme measures of climate. There was a correlation between the amount of change in climate metrics, and the amount of change in plant traits. Using stepwise model selection, we found that for all regeneration and growth trait changes (except change in stem density), the most accurate model selected at least two measures of climate change. Changes in extreme measures of climate, such as heat-wave duration and changes in climate variability, were more strongly related to changes in regeneration and growth traits than changes in mean climate metrics. Across our species, for every 5% increase in temperature variability, there was a threefold increase in the probability of seed viability and seed germination success. An increase of 1 d in the maximum duration of dry spells through time led to a 1.5-fold decrease in seed viability and seeds became 30% flatter/thinner. Regions where the maximum heat-wave duration had increased by 10 d saw a 1.35-cm decrease in seedling height and a 1.04-g decrease in seedling biomass. Rapid responses in plant traits to changes in climate may be possible; however, it is not clear whether these changes will be fast enough for plants to keep pace with future climate change.
Collapse
Affiliation(s)
- Susan E Everingham
- School of Biological Earth and Environmental Sciences, Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia.,The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden, Mount Annan, New South Wales, 2567, Australia
| | - Catherine A Offord
- The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden, Mount Annan, New South Wales, 2567, Australia
| | - Manon E B Sabot
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Angela T Moles
- School of Biological Earth and Environmental Sciences, Evolution and Ecology Research Centre, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
24
|
Prediction of Plant Phenological Shift under Climate Change in South Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12219276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Information on the phenological shift of plants can be used to detect climate change and predict changes in the ecosystem. In this study, the changes in first flowering dates (FFDs) of the plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), cherry tree (Prunus yedoensis), and peach tree (Prunus persica) in Korea during 1920–2019 were investigated. In addition, the changes in the climatic factors (temperature and precipitation) and their relationship with the FFDs were analyzed. The changes in the temperature and precipitation during the January–February–March period and the phenological shifts of all research species during 1920–2019 indicate that warm and dry spring weather advances the FFDs. Moreover, the temperature has a greater impact on this phenological shift than precipitation. Earlier flowering species are more likely to advance their FFDs than later flowering species. Hence, the temporal asynchrony among plant species will become worse with climate change. In addition, the FFDs in 2100 were predicted based on representative concentration pathway (RCP) scenarios. The difference between the predicted FFDs of the RCP 4.5 and RCP 6.0 for 2100 was significant; the effectiveness of greenhouse gas policies will presumably determine the degree of the plant phenological shift in the future. Furthermore, we presented the predicted FFDs for 2100.
Collapse
|
25
|
Song Z, Fu YH, Du Y, Li L, Ouyang X, Ye W, Huang Z. Flowering phenology of a widespread perennial herb shows contrasting responses to global warming between humid and non‐humid regions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhuqiu Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- University of Chinese Academy of Sciences Beijing China
| | - Yongshuo H. Fu
- College of Water Sciences Beijing Normal University Beijing China
| | - Yanjun Du
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education) College of Forestry Hainan University Haikou China
| | - Lin Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Xuejun Ouyang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Wanhui Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| | - Zhongliang Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization South China Botanical Garden Chinese Academy of Sciences Guangzhou China
| |
Collapse
|
26
|
Kopp CW, Neto-Bradley BM, Lipsen LPJ, Sandhar J, Smith S. Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:873-880. [PMID: 32112132 DOI: 10.1007/s00484-020-01877-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/26/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Anthropogenic warming's effects on phenology across environmental and temporal gradients are well recognized. Long-term phenological monitoring data are often limited in duration and geographic scope, but recent efforts to digitize herbaria collections make it possible to reliably reconstruct historic flowering phenology across broad geographic scales and multiple species, lending to an increased understanding of community response to climate change. In this study, we examined collection dates (1901 to 2015) of 8540 flowering specimens from 39 native species in the Pacific Northwest (PNW) region of North America. We hypothesized that flowering phenology would be sensitive to temperature but that sensitivity would vary depending on blooming season and geographic range position. As expected, we found that early-season bloomers are more sensitive to temperature than later-season bloomers. Sensitivity to temperature was significantly greater at low elevations and in the maritime (western) portion of the PNW than at higher elevations and in the eastern interior, respectively. The elevational and longitudinal effects on flowering sensitivity reflect spring "arriving" earlier at low elevations and in the maritime portion of the PNW. These results demonstrate that phenological responses to warming vary substantially across climatically diverse regions, warranting careful and nuanced consideration of climate warming's effects on plant phenology.
Collapse
Affiliation(s)
- Christopher W Kopp
- Department of Botany, The University of British Columbia, 3200-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
| | - Barbara M Neto-Bradley
- Department of Botany, The University of British Columbia, 3200-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Linda P J Lipsen
- Department of Botany, The University of British Columbia, 3200-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Jas Sandhar
- Department of Biology, The University of British Columbia, 2604-2146 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Siena Smith
- Department of Biology, The University of British Columbia, 2604-2146 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
27
|
Al Borki AES, Alzerbi AK, Kabiel HF, Hegazy AK. ‘Variations in phenological and functional traits in
Thapsia garganica
populations in Al Jebel Al Akhdar, Libya’. Afr J Ecol 2020. [DOI: 10.1111/aje.12734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Hanan F. Kabiel
- Department of Botany and Microbiology Faculty of Science Cairo University Giza Egypt
| | - Ahmad K. Hegazy
- Department of Botany and Microbiology Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
28
|
Yost JM, Pearson KD, Alexander J, Gilbert E, Hains LA, Barry T, Bencie R, Bowler P, Carter B, Crowe RE, Dean E, Der J, Fisher A, Fisher K, Flores-Renteria L, Guilliams CM, Hatfield C, Hendrickson L, Huggins T, Janeway L, Lay C, Litt A, Markos S, Mazer SJ, McCamish D, McDade L, Mesler M, Mishler B, Nazaire M, Rebman J, Rosengreen L, Rundel PW, Potter D, Sanders A, Seltmann KC, Simpson MG, Wahlert GA, Waselkov K, Williams K, Wilson PS. THE CALIFORNIA PHENOLOGY COLLECTIONS NETWORK: USING DIGITAL IMAGES TO INVESTIGATE PHENOLOGICAL CHANGE IN A BIODIVERSITY HOTSPOT. ACTA ACUST UNITED AC 2020. [DOI: 10.3120/0024-9637-66.4.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jenn M. Yost
- Robert F. Hoover Herbarium, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401
| | - Katelin D. Pearson
- Robert F. Hoover Herbarium, Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407-0401
| | - Jason Alexander
- University and Jepson Herbaria, University of California, Berkeley, CA 94720
| | - Edward Gilbert
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | - Teri Barry
- UC Davis Center for Plant Diversity, Plant Sciences M.S. 7, One Shields Ave., Davis, CA 95616
| | - Robin Bencie
- Vascular Plant Herbarium, Humboldt State University, Arcata, CA 95521
| | - Peter Bowler
- UCI Arboretum and Herbarium, University of California, Irvine, CA 92697
| | - Benjamin Carter
- Carl W. Sharsmith Herbarium and Department of Biological Sciences, San Jose State University, San Jose, CA 95192
| | - Rebecca E. Crowe
- UCI Arboretum and Herbarium, University of California, Irvine, CA 92697
| | - Ellen Dean
- UC Davis Center for Plant Diversity, Plant Sciences M.S. 7, One Shields Ave., Davis, CA 95616
| | - Joshua Der
- Department of Biological Science, California State University, Fullerton, CA 92834
| | - Amanda Fisher
- Department of Biological Sciences, Long Beach State University, Long Beach, CA 90840
| | - Kirsten Fisher
- CSLA Herbarium, California State University, Los Angeles, Los Angeles, CA 90032
| | | | - C. Matt Guilliams
- Clifton Smith Herbarium, Santa Barbara Botanic Garden, Santa Barbara, CA 93105
| | - Colleen Hatfield
- Chico State Herbarium, Department of Biological Sciences, California State University, Chico, CA 95929
| | - Larry Hendrickson
- Colorado Desert District, California Department of Parks and Recreation, Borrego Springs, CA 92004
| | - Tom Huggins
- UCLA Herbarium, University of California, Los Angeles, CA 90095
| | - Lawrence Janeway
- Chico State Herbarium, Department of Biological Sciences, California State University, Chico, CA 95929
| | - Christopher Lay
- Norris Center for Natural History, University of California, Santa Cruz, CA 95064
| | - Amy Litt
- Department of Botany & Plant Sciences, University of California, Riverside, CA 92521
| | - Staci Markos
- University and Jepson Herbaria, University of California, Berkeley, CA 94720
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106
| | - Danny McCamish
- Colorado Desert District, California Department of Parks and Recreation, Borrego Springs, CA 92004
| | | | - Michael Mesler
- Vascular Plant Herbarium, Humboldt State University, Arcata, CA 95521
| | - Brent Mishler
- University and Jepson Herbaria, University of California, Berkeley, CA 94720
| | - Mare Nazaire
- Rancho Santa Ana Botanic Garden, Claremont, CA 91711
| | - Jon Rebman
- SD Herbarium, San Diego Natural History Museum, San Diego, CA 92101
| | - Lars Rosengreen
- Carl W. Sharsmith Herbarium and Department of Biological Sciences, San Jose State University, San Jose, CA 95192
| | - Philip W. Rundel
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095
| | - Dan Potter
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Andrew Sanders
- Herbarium, Department of Botany & Plant Sciences, University of California Riverside, CA 92521
| | - Katja C. Seltmann
- Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA 93106
| | | | - Gregory A. Wahlert
- Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA 93106
| | | | - Kimberlyn Williams
- Biology Department, California State University San Bernardino, San Bernardino, CA 92407
| | - Paul S. Wilson
- Department of Biology, California State University, Northridge, CA 91330
| |
Collapse
|
29
|
Berg CS, Brown JL, Weber JJ. An examination of climate-driven flowering-time shifts at large spatial scales over 153 years in a common weedy annual. AMERICAN JOURNAL OF BOTANY 2019; 106:1435-1443. [PMID: 31675107 DOI: 10.1002/ajb2.1381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Understanding species' responses to climate change is a critical challenge facing biologists today. Though many species are widespread, few studies of climate-driven shifts in flowering time have examined large continuous spatial scales for individual species. And even fewer studies have examined these shifts at time scales greater than a few decades. METHODS We used digitized herbarium specimens and PRISM climate data to produce the spatially and temporally broadest-scale study of flowering time in a single species to date, spanning the contiguous United States and 153 years (1863-2016) for a widespread weedy annual, Triodanis perfoliata (Campanulaceae). We examined factors driving phenological shifts as well as the roles of geographic and temporal scale in understanding these trends. RESULTS Year was a significant factor in both geospatial and climatic analyses, revealing that flowering time has advanced by ~9 days over the past ~150 years. We found that temperature as well as vapor pressure deficit, an understudied climatic parameter associated with evapotranspiration and water stress, were strongly associated with peak flowering. We also examined how sampling at different spatiotemporal scales influences the power to detect flowering-time shifts, finding that relatively large spatial and temporal scales are ideal for detecting flowering-time shifts in this widespread species. CONCLUSIONS Our results emphasize the importance of understanding the interplay of geospatial factors at different scales to examine how species respond to climate change.
Collapse
Affiliation(s)
- Colette S Berg
- Division of Biological Sciences, University of Montana, Missoula, Montana, 59812, USA
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, 63701, USA
| | - Jason L Brown
- Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA
| | - Jennifer J Weber
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, 63701, USA
| |
Collapse
|
30
|
Li Y, Zhang X, Fang Y. Landscape Features and Climatic Forces Shape the Genetic Structure and Evolutionary History of an Oak Species ( Quercus chenii) in East China. FRONTIERS IN PLANT SCIENCE 2019; 10:1060. [PMID: 31552065 PMCID: PMC6734190 DOI: 10.3389/fpls.2019.01060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Major topographic features facilitate intraspecific divergence through geographic isolation. This process may be enhanced by environmental isolation along climatic gradients, but also may be reduced by range shifts under rapid climatic changes. In this study, we examined how topography and climate have interacted over time and space to influence the genetic structure and evolutionary history of Quercus chenii, a deciduous oak species representative of the East China flora. Based on the nuclear microsatellite variation at 14 loci, we identified multiple genetic boundaries that were well associated with persistent landscape barriers of East China. Redundancy analysis indicated that both geography and climate explained similar amounts of intraspecific variation. Ecological differences along altitudinal gradients may have driven the divergence between highlands and lowlands. However, range expansions during the Last Interglacial as inferred from approximate Bayesian computation (ABC) may have increased the genetic diversity and eliminated the differentiation of lowland populations via admixture. Chloroplast (cp) DNA analysis of four intergenic spacers (2,866 bp in length) identified a total of 18 haplotypes, 15 of which were private to a single population, probably a result of long-term isolation among multiple montane habitats. A time-calibrated phylogeny suggested that palaeoclimatic changes of the Miocene underlay the lineage divergence of three major clades. In combination with ecological niche modeling (ENM), we concluded that mountainous areas with higher climatic stability are more likely to be glacial refugia that preserved higher phylogenetic diversity, while plains and basins may have acted as dispersal corridors for the post-glacial south-to-north migration. Our findings provide compelling evidence that both topography and climate have shaped the pattern of genetic variation of Q. chenii. Mountains as barriers facilitated differentiation through both geographic and environmental isolation, whereas lowlands as corridors increased the population connectivity especially when the species experienced range expansions.
Collapse
Affiliation(s)
- Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| | - Xingwang Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
The changing flowering phenology of Crinum lilies in arid and semi-arid regions: implications for phenological responses to climate change. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00329-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Love NLR, Park IW, Mazer SJ. A new phenological metric for use in pheno-climatic models: A case study using herbarium specimens of Streptanthus tortuosus. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11276. [PMID: 31346508 PMCID: PMC6636619 DOI: 10.1002/aps3.11276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/17/2019] [Indexed: 05/13/2023]
Abstract
PREMISE Herbarium specimens have been used to detect climate-induced shifts in flowering time by using the day of year of collection (DOY) as a proxy for first or peak flowering date. Variation among herbarium sheets in their phenological status, however, undermines the assumption that DOY accurately represents any particular phenophase. Ignoring this variation can reduce the explanatory power of pheno-climatic models (PCMs) designed to predict the effects of climate on flowering date. METHODS Here we present a protocol for the phenological scoring of imaged herbarium specimens using an ImageJ plugin, and we introduce a quantitative metric of a specimen's phenological status, the phenological index (PI), which we use in PCMs to control for phenological variation among specimens of Streptanthus tortuosus (Brassicaceeae) when testing for the effects of climate on DOY. We demonstrate that including PI as an independent variable improves model fit. RESULTS Including PI in PCMs increased the model R 2 relative to PCMs that excluded PI; regression coefficients for climatic parameters, however, remained constant. DISCUSSION Our protocol provides a simple, quantitative phenological metric for any observed plant. Including PI in PCMs increases R 2 and enables predictions of the DOY of any phenophase under any specified climatic conditions.
Collapse
Affiliation(s)
- Natalie L. Rossington Love
- Department of Ecology, Evolution, and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCalifornia93106USA
| | - Isaac W. Park
- Department of Ecology, Evolution, and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCalifornia93106USA
| | - Susan J. Mazer
- Department of Ecology, Evolution, and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCalifornia93106USA
| |
Collapse
|
33
|
Spriggs EL, Schlutius C, Eaton DA, Park B, Sweeney PW, Edwards EJ, Donoghue MJ. Differences in flowering time maintain species boundaries in a continental radiation of Viburnum. AMERICAN JOURNAL OF BOTANY 2019; 106:833-849. [PMID: 31124135 DOI: 10.1002/ajb2.1292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
PREMISE We take an integrative approach in assessing how introgression and Pleistocene climate fluctuations have shaped the diversification of the core Lentago clade of Viburnum, a group of five interfertile species with broad areas of sympatry. We specifically tested whether flowering time plays a role in maintaining species isolation. METHODS RAD-seq data for 103 individuals were used to infer the species relationships and the genetic structure within each species. Flowering times were compared among species on the basis of historical flowering dates documented by herbarium specimens. RESULTS Within each species, we found a strong relationship between flowering date and latitude, such that southern populations flower earlier than northern ones. In areas of sympatry, the species flower in sequence rather than simultaneously, with flowering dates offset by ≥9 d for all species pairs. In two cases it appears that the offset in flowering times is an incidental consequence of adaptation to differing climates, but in the recently diverged sister species V. prunifolium and V. rufidulum, we find evidence that reinforcement led to reproductive character displacement. Long-term trends suggest that the two northern-most species are flowering earlier in response to recent climate change. CONCLUSIONS We argue that speciation in the Lentago clade has primarily occurred through ecological divergence of allopatric populations, but differences in flowering time were essential to maintain separation of incipient species when they came into secondary contact. This combination of factors may underlie diversification in many other plant clades.
Collapse
Affiliation(s)
- Elizabeth L Spriggs
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Caroline Schlutius
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Deren A Eaton
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | - Brian Park
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
| | - Patrick W Sweeney
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut, 06520, USA
- Division of Botany, Peabody Museum of Natural History, Yale University, P.O. Box 208118, New Haven, Connecticut, 06520, USA
| |
Collapse
|
34
|
McDonough MacKenzie C, Primack RB, Miller‐Rushing AJ. Trails‐as‐transects: phenology monitoring across heterogeneous microclimates in Acadia National Park, Maine. Ecosphere 2019. [DOI: 10.1002/ecs2.2626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Caitlin McDonough MacKenzie
- Climate Change Institute University of Maine Orono Maine 04469 USA
- Department of Biology Boston University Boston Massachusetts 02215 USA
| | | | | |
Collapse
|
35
|
Park IW, Mazer SJ. Overlooked climate parameters best predict flowering onset: Assessing phenological models using the elastic net. GLOBAL CHANGE BIOLOGY 2018; 24:5972-5984. [PMID: 30218548 DOI: 10.1111/gcb.14447] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Determining the manner in which plant species shift their flowering times in response to climatic conditions is essential to understanding and forecasting the impacts of climate change on the world's flora. The limited taxonomic diversity and duration of most phenological datasets, however, have impeded a comprehensive, systematic determination of the best predictors of flowering phenology. Additionally, many studies of the relationship between climate conditions and plant phenology have included only a limited set of climate parameters that are often chosen a priori and may therefore overlook those parameters to which plants are most phenologically sensitive. This study harnesses 894,392 digital herbarium records and 1,959 in situ observations to produce the first assessment of the effects of a large number (25) of climate parameters on the flowering time of a very large number (2,468) of angiosperm taxa throughout North America. In addition, we compare the predictive capacity of phenological models constructed from the collection dates of herbarium specimens vs. repeated in situ observations of individual plants using a regression approach-elastic net regularization-that has not previously been used in phenological modeling, but exhibits several advantages over ordinary least squares and stepwise regression. When herbarium-derived data and in situ phenological observations were used to predict flowering onset, the multivariate models based on each of these data sources had similar predictive capacity (R2 = 0.27). Further, apart from mean maximum temperature (TMAX), the two best predictors of flowering time have not commonly been included in phenological models: the number of frost-free days (NFFD) and the quantity of precipitation as snow (PAS) in the seasons preceding flowering. By vetting these models across an unprecedented number of taxa, this work demonstrates a new approach to phenological modeling.
Collapse
Affiliation(s)
- Isaac W Park
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California
| | - Susan J Mazer
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California
| |
Collapse
|
36
|
Park DS, Breckheimer I, Williams AC, Law E, Ellison AM, Davis CC. Herbarium specimens reveal substantial and unexpected variation in phenological sensitivity across the eastern United States. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170394. [PMID: 30455212 PMCID: PMC6282088 DOI: 10.1098/rstb.2017.0394] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 11/12/2022] Open
Abstract
Phenology is a key biological trait that can determine an organism's survival and provides one of the clearest indicators of the effects of recent climatic change. Long time-series observations of plant phenology collected at continental scales could clarify latitudinal and regional patterns of plant responses and illuminate drivers of that variation, but few such datasets exist. Here, we use the web tool CrowdCurio to crowdsource phenological data from over 7000 herbarium specimens representing 30 diverse flowering plant species distributed across the eastern United States. Our results, spanning 120 years and generated from over 2000 crowdsourcers, illustrate numerous aspects of continental-scale plant reproductive phenology. First, they support prior studies that found plant reproductive phenology significantly advances in response to warming, especially for early-flowering species. Second, they reveal that fruiting in populations from warmer, lower latitudes is significantly more phenologically sensitive to temperature than that for populations from colder, higher-latitude regions. Last, we found that variation in phenological sensitivities to climate within species between regions was of similar magnitude to variation between species. Overall, our results suggest that phenological responses to anthropogenic climate change will be heterogeneous within communities and across regions, with large amounts of regional variability driven by local adaptation, phenotypic plasticity and differences in species assemblages. As millions of imaged herbarium specimens become available online, they will play an increasingly critical role in revealing large-scale patterns within assemblages and across continents that ultimately can improve forecasts of the impacts of climatic change on the structure and function of ecosystems.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Ian Breckheimer
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| | - Alex C Williams
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Edith Law
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Aaron M Ellison
- Harvard Forest, Harvard University, Petersham, MA 01366, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
37
|
Panchen ZA, Johnston MO. Shifts in pollen release envelope differ between genera with non-uniform climate change. AMERICAN JOURNAL OF BOTANY 2018; 105:1568-1576. [PMID: 30216409 DOI: 10.1002/ajb2.1156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Plant phenological responses to climate change now constitute one of the best studied areas of the ecological impacts of climate change. Flowering time responses to climate change of wind-pollinated species have, however, been less well studied. A novel source of flowering time data for wind-pollinated species is allergen monitoring records. METHODS We studied the male flowering time response to climatic variables of two wind-pollinated genera, Betula (Betulaceae) and Populus (Salicaceae), using pollen count records over a 17-year period. KEY RESULTS We found that changes in the pollen release envelope differed between the two genera. Over the study period, the only month with a significant rise in temperature was April, resulting in the duration of pollen release of the April-flowering Populus to shorten and the start and peak of the May-flowering Betula to advance. The quantity of pollen released by Betula has increased and was related to increases in the previous year's August precipitation, while the quantity of pollen released by Populus has not changed and was related to the previous year's summer and autumn temperatures. CONCLUSIONS Our findings suggest that taxa differ in the reproductive consequences of environmental change. Differing shifts in phenology among species may be related to different rates of change in climatic variables in different months of the year. While our study only considers two genera, the results underscore the importance of understanding non-uniform intra-annual variation in climate when studying the ecological implications of climate change.
Collapse
Affiliation(s)
- Zoe A Panchen
- Dalhousie University, 1355 Oxford St., P.O. Box 15000, Halifax, Nova Scotia, Canada, B3H 4R2
| | - Mark O Johnston
- Dalhousie University, 1355 Oxford St., P.O. Box 15000, Halifax, Nova Scotia, Canada, B3H 4R2
| |
Collapse
|
38
|
Meineke EK, Davis CC, Davies TJ. The unrealized potential of herbaria for global change biology. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1307] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Emily K. Meineke
- Department of Organismic and Evolutionary Biology; Harvard University Herbaria; 22 Divinity Avenue Cambridge Massachusetts 02138 USA
- Department of Biology; McGill University; 1205 Dr. Penfield Avenue Montreal Quebec H3A 1B1 Canada
| | - Charles C. Davis
- Department of Organismic and Evolutionary Biology; Harvard University Herbaria; 22 Divinity Avenue Cambridge Massachusetts 02138 USA
| | - T. Jonathan Davies
- Department of Biology; McGill University; 1205 Dr. Penfield Avenue Montreal Quebec H3A 1B1 Canada
| |
Collapse
|
39
|
Wadgymar SM, Ogilvie JE, Inouye DW, Weis AE, Anderson JT. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment. THE NEW PHYTOLOGIST 2018; 218:517-529. [PMID: 29451307 DOI: 10.1111/nph.15029] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/03/2018] [Indexed: 06/08/2023]
Abstract
Climate change has induced pronounced shifts in the reproductive phenology of plants, yet we know little about which environmental factors contribute to interspecific variation in responses and their effects on fitness. We integrate data from a 43 yr record of first flowering for six species in subalpine Colorado meadows with a 3 yr snow manipulation experiment on the perennial forb Boechera stricta (Brassicaceae) from the same site. We analyze shifts in the onset of flowering in relation to environmental drivers known to influence phenology: the timing of snowmelt, the accumulation of growing degree days, and photoperiod. Variation in responses to climate change depended on the sequence in which species flowered, with early-flowering species reproducing faster, at a lower heat sum, and under increasingly disparate photoperiods relative to later-flowering species. Early snow-removal treatments confirm that the timing of snowmelt governs observed trends in flowering phenology of B. stricta and that climate change can reduce the probability of flowering, thereby depressing fitness. Our findings suggest that climate change is decoupling historical combinations of photoperiod and temperature and outpacing phenological changes for our focal species. Accurate predictions of biological responses to climate change require a thorough understanding of the factors driving shifts in phenology.
Collapse
Affiliation(s)
- Susana M Wadgymar
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Jane E Ogilvie
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - David W Inouye
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Arthur E Weis
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| |
Collapse
|
40
|
Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PLoS One 2018; 13:e0191021. [PMID: 29401494 PMCID: PMC5798772 DOI: 10.1371/journal.pone.0191021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/27/2017] [Indexed: 11/29/2022] Open
Abstract
Recent climate change has had a major impact on biodiversity and has altered the geographical distribution of vascular plant species. This trend is visible globally; however, more local and regional scale research is needed to improve understanding of the patterns of change and to develop appropriate conservation strategies that can minimise cultural, health, and economic losses at finer scales. Here we describe a method to manually geo-reference botanical records from a historical herbarium to track changes in the geographical distributions of plant species in West Cornwall (South West England) using both historical (pre-1900) and contemporary (post-1900) distribution records. We also assess the use of Ellenberg and climate indicator values as markers of responses to climate and environmental change. Using these techniques we detect a loss in 19 plant species, with 6 species losing more than 50% of their previous range. Statistical analysis showed that Ellenberg (light, moisture, nitrogen) and climate indicator values (mean January temperature, mean July temperature and mean precipitation) could be used as environmental change indicators. Significantly higher percentages of area lost were detected in species with lower January temperatures, July temperatures, light, and nitrogen values, as well as higher annual precipitation and moisture values. This study highlights the importance of historical records in examining the changes in plant species’ geographical distributions. We present a method for manual geo-referencing of such records, and demonstrate how using Ellenberg and climate indicator values as environmental and climate change indicators can contribute towards directing appropriate conservation strategies.
Collapse
|
41
|
Yost JM, Sweeney PW, Gilbert E, Nelson G, Guralnick R, Gallinat AS, Ellwood ER, Rossington N, Willis CG, Blum SD, Walls RL, Haston EM, Denslow MW, Zohner CM, Morris AB, Stucky BJ, Carter JR, Baxter DG, Bolmgren K, Denny EG, Dean E, Pearson KD, Davis CC, Mishler BD, Soltis PS, Mazer SJ. Digitization protocol for scoring reproductive phenology from herbarium specimens of seed plants. APPLICATIONS IN PLANT SCIENCES 2018; 6:e1022. [PMID: 29732253 PMCID: PMC5851559 DOI: 10.1002/aps3.1022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 05/13/2023]
Abstract
PREMISE OF THE STUDY Herbarium specimens provide a robust record of historical plant phenology (the timing of seasonal events such as flowering or fruiting). However, the difficulty of aggregating phenological data from specimens arises from a lack of standardized scoring methods and definitions for phenological states across the collections community. METHODS AND RESULTS To address this problem, we report on a consensus reached by an iDigBio working group of curators, researchers, and data standards experts regarding an efficient scoring protocol and a data-sharing protocol for reproductive traits available from herbarium specimens of seed plants. The phenological data sets generated can be shared via Darwin Core Archives using the Extended MeasurementOrFact extension. CONCLUSIONS Our hope is that curators and others interested in collecting phenological trait data from specimens will use the recommendations presented here in current and future scoring efforts. New tools for scoring specimens are reviewed.
Collapse
Affiliation(s)
- Jennifer M. Yost
- Department of Biological SciencesCalifornia Polytechnic State University1 Grand AvenueSan Luis ObispoCalifornia93407USA
| | - Patrick W. Sweeney
- Division of BotanyPeabody Museum of Natural HistoryYale UniversityP.O. Box 208118New HavenConnecticut06520USA
| | - Ed Gilbert
- Arizona State UniversitySchool of Life SciencesP.O. Box 874501TempeArizona85287‐4501USA
| | - Gil Nelson
- iDigBioCollege of Communication and InformationFlorida State UniversityTallahasseeFlorida32306USA
| | - Robert Guralnick
- Florida Museum of Natural History and Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
| | - Amanda S. Gallinat
- Boston UniversityDepartment of Biology5 Cummington MallBostonMassachusets02215USA
| | | | - Natalie Rossington
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia93106‐9620USA
| | - Charles G. Willis
- Department of Organismic and Evolutionary BiologyHarvard University Herbaria22 Divinity AvenueCambridgeMassachusetts02138USA
- University of MinnesotaDepartment of Biology Teaching and Learning515 Delaware Street SEMinneapolisMinnesota55455USA
| | - Stanley D. Blum
- Biodiversity Information Standards (TDWG)1342 34th AvenueSan FranciscoCalifornia94122USA
| | - Ramona L. Walls
- CyVerseUniversity of Arizona1657 East Helen StreetTucsonArizona85721USA
| | - Elspeth M. Haston
- Royal Botanic Garden Edinburgh20a Inverleith RowEdinburghEH3 5LRUnited Kingdom
| | - Michael W. Denslow
- Florida Museum of Natural History and Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
- Department of BiologyAppalachian State UniversityBooneNorth Carolina28608USA
| | - Constantin M. Zohner
- Systematic Botany and MycologyDepartment of BiologyMunich University (LMU)80638MunichGermany
| | - Ashley B. Morris
- Department of BiologyMiddle Tennessee State UniversityMurfreesboroTennessee37138USA
| | - Brian J. Stucky
- Florida Museum of Natural History and Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
| | | | - David G. Baxter
- University and Jepson HerbariaUniversity of California Berkeley1001 Valley Life Sciences BuildingBerkeleyCalifornia94720USA
| | - Kjell Bolmgren
- Swedish University of Agricultural SciencesUnit for Field‐based Forest Research360 30LammhultSweden
| | - Ellen G. Denny
- USA National Phenology NetworkUniversity of ArizonaTucsonArizona85721USA
| | - Ellen Dean
- UC Davis Center for Plant DiversityPlant Sciences M.S. 7, One Shields AvenueDavisCalifornia95616USA
| | - Katelin D. Pearson
- Department of Biological ScienceFlorida State UniversityTallahasseeFlorida32304USA
| | - Charles C. Davis
- Department of Organismic and Evolutionary BiologyHarvard University Herbaria22 Divinity AvenueCambridgeMassachusetts02138USA
| | - Brent D. Mishler
- University and Jepson HerbariaUniversity of California Berkeley1001 Valley Life Sciences BuildingBerkeleyCalifornia94720USA
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCalifornia94720‐2465USA
| | - Pamela S. Soltis
- Florida Museum of Natural History and Biodiversity InstituteUniversity of FloridaGainesvilleFlorida32611USA
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraCalifornia93106‐9620USA
| |
Collapse
|
42
|
Willis CG, Ellwood ER, Primack RB, Davis CC, Pearson KD, Gallinat AS, Yost JM, Nelson G, Mazer SJ, Rossington NL, Sparks TH, Soltis PS. Old Plants, New Tricks: Phenological Research Using Herbarium Specimens. Trends Ecol Evol 2017; 32:531-546. [DOI: 10.1016/j.tree.2017.03.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/07/2017] [Accepted: 03/31/2017] [Indexed: 11/30/2022]
|
43
|
Byers DL. Studying plant-pollinator interactions in a changing climate: A review of approaches. APPLICATIONS IN PLANT SCIENCES 2017; 5:apps.1700012. [PMID: 28690933 PMCID: PMC5499306 DOI: 10.3732/apps.1700012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/13/2017] [Indexed: 05/21/2023]
Abstract
Plant-pollinator interactions are potentially at risk due to climate change. Because of the spatial and temporal variation associated with the effects of climate change and the responses of both actors, research to assess this interaction requires creative approaches. This review focuses on assessments of plants' and pollinators' altered phenology in response to environmental changes, as phenology is one of the key responses. I reviewed research methods with the goal of presenting the wide diversity of available techniques for addressing changes in these interactions. Approaches ranged from use of historical specimens to multisite experimental community studies; while differing in depth of historical information and community interactions, all contribute to assessment of phenology changes. Particularly insightful were those studies that directly assessed the environmental changes across spatial and temporal scales and the responses of plants and pollinators at these scales. Longer-term studies across environmental gradients, potentially with reciprocal transplants, enable an assessment of climate impacts at both scales. While changes in phenology are well studied, the impacts of phenology changes are not. Future research should include approaches to address this gap.
Collapse
Affiliation(s)
- Diane L. Byers
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, Illinois 61790-4120 USA
| |
Collapse
|
44
|
Mason CM, Goolsby EW, Davis KE, Bullock DV, Donovan LA. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers. ANNALS OF BOTANY 2017; 119:1131-1142. [PMID: 28203721 PMCID: PMC5604586 DOI: 10.1093/aob/mcx002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/21/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. METHODS A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). KEY RESULTS Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. CONCLUSIONS Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant fitness and environmental adaptation.
Collapse
Affiliation(s)
- Chase M. Mason
- University of Central Florida, Orlando, FL 32816, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Eric W. Goolsby
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Kaleigh E. Davis
- University of Central Florida, Orlando, FL 32816, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Devon V. Bullock
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A. Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|