1
|
Wu Z, Zohner CM, Zhou Y, Crowther TW, Wang H, Wang Y, Peñuelas J, Gong Y, Zhang J, Zou Y, Van den Hoogen J, Fu YH. Tree species composition governs urban phenological responses to warming. Nat Commun 2025; 16:3696. [PMID: 40251170 PMCID: PMC12008182 DOI: 10.1038/s41467-025-58927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Urban environments are typically warmer than surrounding rural areas, providing a unique setting for studying phenological responses to climate warming. Phenological differences between urban and rural trees are driven by local climate and species composition. Yet, the extent to which species composition influences phenological responses to urbanization remains poorly understood. To address this, we combine manipulative experiments, satellite-derived phenology data, and georeferenced tree occurrence records. Our findings show that, across Northern Hemisphere cities, differences in the temperature sensitivity of spring phenology between urban and rural areas are largely driven by urban-rural variation in species composition, surpassing the effects of preseason temperature. This pattern is particularly pronounced in Asian cities, where urban areas exhibit 0.74 ± 0.24 days/°C higher temperature sensitivity than rural areas. In-depth analyses using experiments and high-resolution satellite imagery from Beijing further demonstrate species-specific phenological responses to urbanization, with urban-dominant species exhibiting higher temperature sensitivity in urban environments compared to rural ones. These findings show that both interspecific variation in temperature sensitivity and species-specific responses to urbanization contribute to the pronounced impact of species composition on urban-rural phenological patterns. Our study underscores the importance of considering species composition when studying phenological responses to climate warming, especially in urban contexts.
Collapse
Affiliation(s)
- Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Yuyu Zhou
- Department of Geography and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hongzhou Wang
- School of National Safety and Emergency Management, Beijing Normal University, Beijing, 100875, China
| | - Yiming Wang
- USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD, USA
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Yufeng Gong
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yibiao Zou
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Johan Van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
- School of National Safety and Emergency Management, Beijing Normal University, Beijing, 100875, China.
- Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Li B, Wang R, Chen JM. Responses of phenology to preseason drought and soil temperature for different land cover types on the Mongolian Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171895. [PMID: 38531448 DOI: 10.1016/j.scitotenv.2024.171895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Drought and heat caused major disturbance in nature by interfering with plant phenology, and can also alter the vulnerability and resilience of terrestrial ecosystems. Existing research on the Mongolian Plateau has primarily focused on studying the response of the start (SOS) and end (EOS) of the growing season to drought and heat variations. However, there is still a lack of comprehensive understanding regarding the coupled effects of drought and heat on phenology across different land cover types. In this study, we retrieved SOS and EOS based on 34-year (1982-2015) normalized difference vegetation index (NDVI) dataset from Global Inventory Modeling and Mapping Studies (GIMMS). Results showed that grasslands and the Gobi-Desert show rapid advancement in SOS, and forests presented the slowest advancement in SOS, but SOS in croplands were delayed. EOS across four land cover types advanced, with the Gobi-Desert showed the highest rate of advancement and forests the lowest. Using the Palmer Drought Severity Index (PDSI) and soil temperature as the indicators of drought and thermal conditions, the responses of SOS and EOS to these two climate variables were evaluated. The advanced SOS driven by lower drought severity was detected in forests, grasslands, croplands and the Gobi-Desert. The dominant response of EOS to drought severity was positive in croplands, grasslands and forests, except for the Gobi-Desert, where drought severity had negative effects on EOS. Compared with the daily average soil temperature (STmean), the daily maximum soil temperature (STmax, daytime), and the daily minimum soil temperature (STmin, nighttime), the daily diurnal soil temperature range (DSTR, where DSTR = STmax - STmin) between night and day were the most suitable indicators for assessing the response of SOS and EOS to soil temperature. Strong negative correlation between SOS and the preseason DSTR was pronounced in all land cover types on the Mongolian Plateau. However, EOS was negatively correlated with the preseason DSTR only in the Gobi-Desert. Last but not least, normalized sensitivity assessments reveal that the negative impacts of DSTR on SOS and EOS were the main controlling factors on the Mongolian Plateau phenology, followed by the couple negative effects of drought severity and DSTR.
Collapse
Affiliation(s)
- Bing Li
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China
| | - Rong Wang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China.
| | - Jing M Chen
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China; Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fuzhou, Fujian Province, China.
| |
Collapse
|
3
|
Lorer E, Verheyen K, Blondeel H, De Pauw K, Sanczuk P, De Frenne P, Landuyt D. Forest understorey flowering phenology responses to experimental warming and illumination. THE NEW PHYTOLOGIST 2024; 241:1476-1491. [PMID: 38031641 DOI: 10.1111/nph.19425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Species are altering their phenology to track warming temperatures. In forests, understorey plants experience tree canopy shading resulting in light and temperature conditions, which strongly deviate from open habitats. Yet, little is known about understorey phenology responses to forest microclimates. We recorded flowering onset, peak, end and duration of 10 temperate forest understorey plant species in two mesocosm experiments to understand how phenology is affected by sub-canopy warming and how this response is modulated by illumination, which is related to canopy change. Furthermore, we investigated whether phenological sensitivities can be explained by species' characteristics, such as thermal niche. We found a mean advance of flowering onset of 7.1 d per 1°C warming, more than previously reported in studies not accounting for microclimatic buffering. Warm-adapted species exhibited greater advances. Temperature sensitivity did not differ between early- and later-flowering species. Experimental illumination did not significantly affect species' phenological temperature sensitivities, but slightly delayed flowering phenology independent from warming. Our study suggests that integrating sub-canopy temperature and light availability will help us better understand future understorey phenology responses. Climate warming together with intensifying canopy disturbances will continue to drive phenological shifts and potentially disrupt understorey communities, thereby affecting forest biodiversity and functioning.
Collapse
Affiliation(s)
- Eline Lorer
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Melle-Gontrode, Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Melle-Gontrode, Belgium
| | - Haben Blondeel
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Melle-Gontrode, Belgium
| | - Karen De Pauw
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Melle-Gontrode, Belgium
| | - Pieter Sanczuk
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Melle-Gontrode, Belgium
| | - Pieter De Frenne
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Melle-Gontrode, Belgium
| | - Dries Landuyt
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Melle-Gontrode, Belgium
| |
Collapse
|
4
|
Zhang Q, Zhao H, Cheng W, Cong N, Wang X, Liang H, Li X. Increased productivity of temperate vegetation in the preceding year drives early spring phenology in the subsequent year in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166676. [PMID: 37673244 DOI: 10.1016/j.scitotenv.2023.166676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Under global warming, rising temperature have advanced spring phenology in recent decades. However, the internal physiological mechanisms driving changes in spring phenology still remain poorly understood. Here, we investigated the effects of temperate vegetation gross primary productivity (GPP) during the preceding year on spring phenology of the subsequent year based on the start of growing season (SOS) extracted from NDVI datasets between 1982 and 2015. We found that the preceding year's GPP had an effect on the subsequent year's SOS, equivalent to 33 %-50 % of effect of the preseason's mean temperature. Specifically, in the temperate and semi-humid or humid conditions, the preceding year's GPP had a stronger effect on SOS than in boreal or semi-arid conditions. In addition, the SOS of the dwarf vegetation, with less transport pressure and higher carbon concentrations, was more sensitive to the preceding year's GPP than that of tall forests. We found the effects of the preceding year's GPP on SOS varied with space and vegetation types. Therefore, the physiological mechanism should be considered in future spring phenology model separately according to space and vegetation types, to improve the accuracy of future phenology and then global carbon sequestration predictions.
Collapse
Affiliation(s)
- Qi Zhang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Hongfang Zhao
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Wanying Cheng
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Nan Cong
- Lhasa Plateau Ecosystem Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuhui Wang
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100091, China
| | - Hangqi Liang
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xia Li
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| |
Collapse
|
5
|
Chen H, Zhao J, Zhang H, Zhang Z, Guo X, Wang M. Detection and attribution of the start of the growing season changes in the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166607. [PMID: 37643705 DOI: 10.1016/j.scitotenv.2023.166607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Global climate change has led to significant changes in land surface phenology. At present, research on the factors influencing the start of the growing season (SOS) mainly focuses on single factor effects, such as temperature and precipitation, ignoring the combined action of multiple factors. The impact of multiple factors on the spatial and temporal patterns of the SOS in the Northern Hemisphere is not clear, and it is necessary to combine multiple factors to quantify the degrees of influence of different factors on the SOS. Based on the GIMMS3g NDVI dataset, CRU climate data and other factor data, we used geographic detector model, random forest regression model, multiple linear regression, partial correlation analysis and Sen + Mann-Kendall trend analysis to explore the variation of the SOS in the Northern Hemisphere to reveal the main driving factors and impact threshold of 17 influencing factors on the SOS. The results showed that (1) during the past 34 years (1982-2015), the SOS in Europe and Asia mainly showed an advancing trend, whereas the SOS in North America mainly showed a delaying trend. (2) The SOS was mainly controlled by frost frequency, temperature and humidity. Increasing frost frequency inhibited the advancement of the SOS, and increasing temperature and humidity promoted the advancement of the SOS. (3) There were thresholds for the influences of the driving factors on the SOS. Outside the threshold ranges, the response mechanism of the SOS to driving factors changed. The results are important for understanding the response of the SOS to global climate change.
Collapse
Affiliation(s)
- Haihua Chen
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Jianjun Zhao
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Hongyan Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhengxiang Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoyi Guo
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| | - Meiyu Wang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Liu Z, Zhou Y, Feng Z. Response of vegetation phenology to urbanization in urban agglomeration areas: A dynamic urban-rural gradient perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161109. [PMID: 36566859 DOI: 10.1016/j.scitotenv.2022.161109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Being an important theme in global warming, the response of vegetation phenology to urbanization has become an increasing concern at both the local and global levels. Previous studies have focused on spatial or temporal responses across urban-rural gradients; thus, the influence of urbanization on vegetation phenology along the dynamic urbanization gradient has not been well quantified. In this study, we comprehensively analyzed the response of vegetation phenology to urbanization in the Guangdong-Hong Kong-Macao Greater Bay Area (GHM-GBA) from a dynamic urban-rural gradient perspective. The results show that the response of vegetation phenology to urbanization level has a distinct spatiotemporal difference across the urban-rural gradient. Compared to rural areas, the change rate of advancements in the start-of-season (SOS) in urban domains was 1.16 DOY/year and that of the end-of-season (EOS) was 0.63 days/year from 2001 to 2020. In the GHM-GBA region, 61.03 % of the remote sensing pixels showed an advancing trend for SOS and 55.75 % for EOS. Urbanization advanced the SOS and EOS but did not extend the growing season length, and the SOS and EOS were advanced by 7 and 6 days along the urban-to-rural gradient, respectively. For every 10 % increase in urbanization levels, the SOS and EOS advanced by 1.085 and 1.091 days across the urban-rural gradient, respectively; the spring land surface temperature (LST) advanced the SOS at a rate of 1.71 days/°C, while the autumn LST advanced the EOS at a rate of 1.88 days/°C. The phenological shift in the urban-rural gradient was more significant than that over time, which was mainly because of land surface warming under different urbanization levels. These quantitative findings are of great importance for understanding the complicated impacts of urbanization on vegetation phenology and for developing models to predict vegetation phenological changes under future urbanization.
Collapse
Affiliation(s)
- Zhenhuan Liu
- School of Geography and Planning, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510275, China.
| | - Yi Zhou
- School of Geography and Planning, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510275, China
| | - Zhitao Feng
- School of Geography and Planning, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510275, China
| |
Collapse
|
7
|
Belitz MW, Larsen EA, Shirey V, Li D, Guralnick RP. Phenological research based on natural history collections: practical guidelines and a Lepidopteran case study. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Michael W. Belitz
- Florida Museum of Natural History University of Florida Gainesville FL USA
| | - Elise A. Larsen
- Department of Biology Georgetown University Washington DC USA
| | - Vaughn Shirey
- Department of Biology Georgetown University Washington DC USA
| | - Daijiang Li
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
- Center for Computation & Technology Louisiana State University Baton Rouge LA USA
| | | |
Collapse
|
8
|
Peaucelle M, Peñuelas J, Verbeeck H. Accurate phenology analyses require bud traits and energy budgets. NATURE PLANTS 2022; 8:915-922. [PMID: 35953710 DOI: 10.1038/s41477-022-01209-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Spring phenology is mainly driven by temperature in extratropical ecosystems. Recent evidence highlighted the key role of micrometeorology and bud temperature on delaying or advancing leaf unfolding. Yet, phenology studies, either using ground-based or remote sensing observations, always substitute plant tissue temperature by air temperature. In fact, temperatures differ substantially between plant tissues and the air because plants absorb and lose energy. Here, we build on recent observations and well-established energy balance theories to discuss how solar radiation, wind and bud traits might affect our interpretation of spring phenology sensitivity to warming. We show that air temperature might be an imprecise and biased predictor of bud temperature. Better characterizing the plants' phenological response to warming will require new observations of bud traits and temperature for accurately quantifying their energy budget. As consistent micrometeorology datasets are still scarce, new approaches coupling energy budget modelling and plant traits could help to improve phenology analyses across scales.
Collapse
Affiliation(s)
- Marc Peaucelle
- INRAE, Université de Bordeaux, UMR 1391 ISPA, Villenave-d'Ornon, France.
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain
- CREAF, Cerdanyola del Vallès, Barcelona, Spain
| | - Hans Verbeeck
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
New Insight into Genetic Structure and Diversity of Scots Pine (Pinus sylvestris L.) Populations in Lithuania Based on Nuclear, Chloroplast and Mitochondrial DNA Markers. FORESTS 2022. [DOI: 10.3390/f13081179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We studied the genetic differentiation, structure, and diversity of Scots pine populations in Lithuania based on nuclear, chloroplast microsatellite, and mitochondrial DNA markers. We focused on revealing evolutionary history, country-wide geneflow patterns, and structuring among the Scots pine populations. We genotyped 439 Scots pine individuals of mature age from 23 natural Scots pine stands in Lithuania and used the AMOVA and a set of genetic-clustering methods. The among-population differentiation was weak for nuclear microsatellite loci (nSSRs) (FST = 0.005) but much stronger for cpSSRs (PhiST = 0.240). The populations were structured into highland and lowland populations based on cpSSRs and eastern highland versus the rest for nSSRs. We detected two mtDNA mitotypes—the universal type A and northeastern type B, and the latter occurred at a markedly higher frequency in eastern Lithuania. Within-population genetic diversity was higher in large pine-dominated forest tracts in the eastern highlands than in fragmented forests in the western highlands. We concluded that phenology-based genetic networks following the temperature climate gradients have a strong effect on shaping the genetic structure of otherwise rather homogeneous gene pools of Scots pine populations in Lithuania. The possible effects of human interference with forests on genetic diversity of Scots pine populations in Lithuania are discussed.
Collapse
|
10
|
Multiple-Temporal Scale Variations in Nighttime Sap Flow Response to Environmental Factors in Ficus concinna over a Subtropical Megacity, Southern China. FORESTS 2022. [DOI: 10.3390/f13071059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With ongoing climate change and rapid urbanization, the influence of extreme weather conditions on long-term nocturnal sap flow (Qn) dynamics in subtropical urban tree species is poorly understood despite the importance of Qn for the water budgets and development plantation. We continuously measured nighttime sap flow in Ficus concinna over multiple years (2014–2020) in a subtropical megacity, Shenzhen, to explore the environmental controls on Qn and dynamics in plant water consumption at different timescales. Nocturnally, Qn was shown to be positively driven by the air temperature (Ta), vapor pressure deficit (VPD), and canopy conductance (expressed as a ratio of transpiration to VPD), yet negatively regulated by relative humidity (RH). Seasonally, variations in Qn were determined by VPD in fast growth, Ta, T/VPD, and meteoric water input to soils in middle growth, and RH in the terminal growth stages of the trees. Annual mean Qn varied from 2.87 to 6.30 kg d−1 with an interannual mean of 4.39 ± 1.43 kg d−1 (± standard deviation). Interannually, the key regulatory parameters of Qn were found to be Ta, T/VPD, and precipitation (P)-induced-soil moisture content (SMC), which individually explained 69, 63, 83, and 76% of the variation, respectively. The proportion of the nocturnal to the total 24-h sap flow (i.e., Qn/Q24-h × 100) ranged from 0.18 to 17.39%, with an interannual mean of 8.87%. It is suggested that high temperatures could increase transpirational demand and, hence, water losses during the night. Our findings can potentially assist in sustainable water management in subtropical areas and urban planning under increasing urban heat islands expected with future climate change.
Collapse
|
11
|
Gu H, Qiao Y, Xi Z, Rossi S, Smith NG, Liu J, Chen L. Warming-induced increase in carbon uptake is linked to earlier spring phenology in temperate and boreal forests. Nat Commun 2022; 13:3698. [PMID: 35760820 PMCID: PMC9237039 DOI: 10.1038/s41467-022-31496-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 11/11/2022] Open
Abstract
Under global warming, advances in spring phenology due to rising temperatures have been widely reported. However, the physiological mechanisms underlying the advancement in spring phenology still remain poorly understood. Here, we investigated the effect of temperature during the previous growing season on spring phenology of current year based on the start of season extracted from multiple long-term and large-scale phenological datasets between 1951 and 2018. Our findings indicate that warmer temperatures during previous growing season are linked to earlier spring phenology of current year in temperate and boreal forests. Correspondingly, we observed an earlier spring phenology with the increase in photosynthesis of the previous growing season. These findings suggest that the observed warming-induced earlier spring phenology is driven by increased photosynthetic carbon assimilation in the previous growing season. Therefore, the vital role of warming-induced changes in carbon assimilation should be considered to accurately project spring phenology and carbon cycling in forest ecosystems under future climate warming. The mechanisms underlying plant phenological shifts are debated. Here, based on phenological observations and ecosystem flux and climate data, Gu and colleagues provide evidence that warming-enhanced photosynthesis in a growing season contributes to earlier spring phenology in the following year in temperate and boreal forests.
Collapse
Affiliation(s)
- Hongshuang Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yuxin Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China. .,Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
12
|
Zhu G, Wang X, Xiao J, Zhang K, Wang Y, He H, Li W, Chen H. Daytime and nighttime warming has no opposite effects on vegetation phenology and productivity in the northern hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153386. [PMID: 35093352 DOI: 10.1016/j.scitotenv.2022.153386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Over the past 50 years, global land surface air temperature has been rising at a much higher rate at night than during the day. Understanding plant responses to the asymmetric daytime and nighttime warming in the context of climate change has been a hot topic in global change biology and global ecology. It has been debatable whether the asymmetric warming has opposite effects on vegetation activity (e.g., phenology, productivity). Here we settle the debate by scrutinizing the underpinnings of different statistical methods and revealing how the misuse or improper use of these methods could mischaracterize the effects of asymmetric warming with in situ and satellite observations. The use of the ordinary least square (OLS) methods including both daytime (Tmax) and nighttime (Tmin) temperature in the multiple regression models could overlook the multicollinearity problem and yield the misinterpretations that Tmax and Tmin had opposite effects on spring phenology, autumn phenology, gross primary production (GPP), and normalized difference vegetation index (NDVI). However, when the OLS methods were applied with Tmax and Tmin included in separate models or alternatively the ridge regression (RR) method with properly selected ridge parameter was used, the effects of Tmax and Tmin on vegetation activity were generally in the same direction. The use of the RR method with improperly selected ridge parameter could also mischaracterize the effects of asymmetric warming. Our findings show that daytime and nighttime warming has no opposite effects on vegetation phenology and productivity in the northern hemisphere, and properly dealing with the multicollinearity problem is critical for understanding the effects of asymmetric warming on vegetation activity.
Collapse
Affiliation(s)
- Gaofeng Zhu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, 730000 Lanzhou, China.
| | - Xufeng Wang
- Key Laboratory of Remote Sensing of Gansu Province, Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China.
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA.
| | - Kun Zhang
- National Tibetan Plateau Data Center, Key Laboratory of Tibetan Environmental Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunquan Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Honglin He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences, Beijing 100101, China
| | - Weide Li
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Huiling Chen
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
13
|
Wu Z, Wang S, Fu YH, Gong Y, Lin CF, Zhao YP, Prevéy JS, Zohner C. Spatial Difference of Interactive Effect Between Temperature and Daylength on Ginkgo Budburst. FRONTIERS IN PLANT SCIENCE 2022; 13:887226. [PMID: 35620689 PMCID: PMC9127872 DOI: 10.3389/fpls.2022.887226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Climate warming-induced shifts in spring phenology have substantially affected the structure and function of terrestrial ecosystems and global biogeochemical cycles. Spring phenology is primarily triggered by spring temperature and is also affected by daylength and winter chilling, yet the relative importance of these cues across spatial gradients remains poorly understood. Here, we conducted a manipulative experiment with two daylength and three temperature treatments to investigate spatial differences in the response of ginkgo budburst to temperature and daylength, using twigs collected at three sites across a spatial gradient: a control site at a low latitude and low elevation on Tianmu Mountain (TMlow), a low latitude and high elevation site on Tianmu Mountain (TMhigh), and a high latitude site on Jiufeng mountain (JF). The mechanisms were also tested using in situ phenological observations of ginkgo along latitudes in China. We found that, compared to TMlow individuals, budburst dates occurred 12.6 (JF) and 7.7 (TMhigh) days earlier in high-latitude and high-elevation individuals when exposed to the same temperature and daylength treatments. Importantly, daylength only affected budburst at low latitudes, with long days (16 h) advancing budburst in low-latitude individuals by, on average, 8.1 days relative to short-day (8 h) conditions. This advance was most pronounced in low-elevation/latitude individuals (TMlow = 9.6 days; TMhigh = 6.7 days; JF = 1.6 days). In addition, we found that the temperature sensitivity of budburst decreased from 3.4 to 2.4 days °C-1 along latitude and from 3.4 to 2.5 days °C-1 along elevation, respectively. The field phenological observations verified the experimental results. Our findings provide empirical evidence of spatial differences in the relative effects of spring temperature and daylength on ginkgo budburst, which improved our understanding of spatial difference in phenological changes and the responses of terrestrial ecosystem to climate change.
Collapse
Affiliation(s)
- Zhaofei Wu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Shuxin Wang
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yongshuo H. Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yufeng Gong
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Chen-Feng Lin
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yun-Peng Zhao
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Janet S. Prevéy
- WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Constantin Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
14
|
A Decrease in the Daily Maximum Temperature during Global Warming Hiatus Causes a Delay in Spring Phenology in the China–DPRK–Russia Cross-Border Area. REMOTE SENSING 2022. [DOI: 10.3390/rs14061462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Spring phenology is the most sensitive indicator of climate change and exploring its response to climate change has important implications for ecosystem processes in the study area. The temperature changes before and after the global warming hiatus may affect the spatiotemporal pattern of land surface phenology. In this paper, taking the China–DPRK (Democratic People’s Republic of Korea)–Russia cross-border region as an example, based on GIMMS NDVI data, the Polyfit-Maximum method was used to extract the start date of the vegetation growing season (SOS). The variation trend of SOS and its response to climate change were analyzed in the early (1982–1998) and late (1998–2015) periods of the warming hiatus. At the regional scale, the spatial distribution of the SOS in the China–DPRK–Russia (CDR) cross-border area presents an elevation gradient, which is earlier in high-elevation areas and later in low-elevation areas. The temporal and spatial trend of SOS is mainly correlated by daytime maximum temperature (Tmax). The significant increase in Tmax in the early period promoted the advance of SOS (0.47 days/year), and the decrease in Tmax in the later period caused the delay of SOS (0.51 days/year). While the main influencing factor of the SOS changes in the region in the early and late periods was Tmax, the response of the SOS changes in China, DPRK and Russia to climate change also changed with the dramatic temperature changes during the warming hiatus. The Chinese side is increasingly responding to Tmax, while the North Korean side is becoming less responsive to climatic factors, and precipitation and radiation on the Russian side are driving the advance of the SOS.
Collapse
|
15
|
Spatial Difference between Temperature and Snowfall Driven Spring Phenology of Alpine Grassland Land Surface Based on Process-Based Modeling on the Qinghai–Tibet Plateau. REMOTE SENSING 2022. [DOI: 10.3390/rs14051273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a sensitive indicator for climate change, the spring phenology of alpine grassland on the Qinghai–Tibet Plateau (QTP) has received extensive concern over past decade. It has been demonstrated that temperature and precipitation/snowfall play an important role in driving the green-up in alpine grassland. However, the spatial differences in the temperature and snowfall driven mechanism of alpine grassland green-up onset are still not clear. This manuscript establishes a set of process-based models to investigate the climate variables driving spring phenology and their spatial differences. Specifically, using 500 m three-day composite MODIS NDVI datasets from 2000 to 2015, we first estimated the land surface green-up onset (LSGO) of alpine grassland in the QTP. Further, combining with daily air temperature and precipitation datasets from 2000 to 2015, we built up process-based models for LSGO in 86 meteorological stations in the QTP. The optimum models of the stations separating climate drivers spatially suggest that LSGO in grassland is: (1) controlled by temperature in the north, west and south of the QTP, where the precipitation during late winter and spring is less than 20 mm; (2) driven by the combination of temperature and precipitation in the middle, east and southwest regions with higher precipitation and (3) more likely controlled by both temperature and precipitation in snowfall dominant regions, since the snow-melting process has negative effects on the air temperature. The result dictates that snowfall and rainfall should be concerned separately in the improvement of the spring phenology model of the alpine grassland ecosystem.
Collapse
|
16
|
Sensitivity of Green-Up Date to Meteorological Indicators in Hulun Buir Grasslands of China. REMOTE SENSING 2022. [DOI: 10.3390/rs14030670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Temperature and precipitation are considered to be the most important indicators affecting the green-up date. Sensitivity of the green-up date to temperature and precipitation is considered to be one of the key indicators to characterize the response of terrestrial ecosystems to climate change. We selected the main grassland types for analysis, including temperate steppe, temperate meadow steppe, upland meadow, and lowland meadow. This study investigates the variation in key meteorological indicators (daily maximum temperature (Tmax), daily minimum temperature (Tmin), and precipitation) between 2001 and 2018. We then examined the partial correlation and sensitivity of green-up date (GUD) to Tmax, Tmin, and precipitation. Our analysis indicated that the average GUD across the whole area was DOY 113. The mean GUD trend was −3.1 days/decade and the 25% region advanced significantly. Tmax and Tmin mainly showed a decreasing trend in winter (p > 0.05). In spring, Tmax mainly showed an increasing trend (p > 0.05) and Tmin a decreasing trend (p > 0.05). Precipitation showed no significant (p > 0.05) change trend and the trend range was ±10 mm/decade. For temperate steppe, the increase in Tmin in March promotes green-up (27.3%, the proportion of significant pixels), with a sensitivity of −0.17 days/°C. In addition, precipitation in April also promotes green-up (21.7%), with a sensitivity of −0.32 days/mm. The GUDs of temperate meadow steppe (73.9%), lowland meadow (65.9%), and upland meadow (22.1%) were mainly affected by Tmin in March, with sensitivities of −0.15 days/°C, −0.13 days/°C, and −0.14 days/°C, respectively. The results of this study reveal the response of vegetation to climate warming and contribute to improving the prediction of ecological changes as temperatures increase in the future.
Collapse
|
17
|
Beil I, Kreyling J, Meyer C, Lemcke N, Malyshev AV. Late to bed, late to rise-Warmer autumn temperatures delay spring phenology by delaying dormancy. GLOBAL CHANGE BIOLOGY 2021; 27:5806-5817. [PMID: 34431180 DOI: 10.1111/gcb.15858] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Spring phenology of temperate forest trees has advanced substantially over the last decades due to climate warming, but this advancement is slowing down despite continuous temperature rise. The decline in spring advancement is often attributed to winter warming, which could reduce chilling and thus delay dormancy release. However, mechanistic evidence of a phenological response to warmer winter temperatures is missing. We aimed to understand the contrasting effects of warming on plants leaf phenology and to disentangle temperature effects during different seasons. With a series of monthly experimental warming by ca. 2.4°C from late summer until spring, we quantified phenological responses of forest tree to warming for each month separately, using seedlings of four common European tree species. To reveal the underlying mechanism, we tracked the development of dormancy depth under ambient conditions as well as directly after each experimental warming. In addition, we quantified the temperature response of leaf senescence. As expected, warmer spring temperatures led to earlier leaf-out. The advancing effect of warming started already in January and increased towards the time of flushing, reaching 2.5 days/°C. Most interestingly, however, warming in October had the opposite effect and delayed spring phenology by 2.4 days/°C on average; despite six months between the warming and the flushing. The switch between the delaying and advancing effect occurred already in December. We conclude that not warmer winters but rather the shortening of winter, i.e., warming in autumn, is a major reason for the decline in spring phenology.
Collapse
Affiliation(s)
- Ilka Beil
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Jürgen Kreyling
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Claudia Meyer
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Nele Lemcke
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Andrey V Malyshev
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Wang J, Xi Z, He X, Chen S, Rossi S, Smith NG, Liu J, Chen L. Contrasting temporal variations in responses of leaf unfolding to daytime and nighttime warming. GLOBAL CHANGE BIOLOGY 2021; 27:5084-5093. [PMID: 34263513 DOI: 10.1111/gcb.15777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Earlier spring phenological events have been widely reported in plants under global warming. Recent studies reported a slowdown in the warming-induced advanced spring phenology in temperate regions. However, previous research mainly focused on daily mean temperature, thus neglecting the asymmetric phenological responses to daytime and nighttime temperature. Using long-term records of leaf unfolding in eight deciduous species at 1300 sites across central Europe, we assessed and compared the effects of daytime temperature, nighttime temperature, and photoperiod on leaf unfolding during 1951-1980 and 1981-2013. Although leaf unfolding was advanced by daytime warming during 1951-2013, the advancing responses of leaf unfolding significantly decreased from 1951-1980 to 1981-2013 due to a lower accumulation of chilling units by daytime warming. Nighttime warming delayed leaf unfolding during 1951-1980 but advanced it during 1981-2013 due to a higher accumulation of chilling units by nighttime warming. In contrast, critical daylength and plasticity of leaf unfolding dates remained unchanged between 1951 and 2013. Our study provided evidence that daytime warming instead of nighttime warming accounts for the slowdown in the advancing spring phenology and implied that nighttime warming-induced earlier spring phenology may be buffering the slowdown of the advanced spring phenology by daytime warming. The response of spring phenology to nighttime temperature may override that to daytime temperature under the actual trends in global warming.
Collapse
Affiliation(s)
- Jinmei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xujian He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shanshan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
19
|
Schaarschmidt S, Lawas LMF, Kopka J, Jagadish SVK, Zuther E. Physiological and molecular attributes contribute to high night temperature tolerance in cereals. PLANT, CELL & ENVIRONMENT 2021; 44:2034-2048. [PMID: 33764557 DOI: 10.1111/pce.14055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 05/24/2023]
Abstract
Asymmetric warming resulting in a faster increase in night compared to day temperatures affects crop yields negatively. Physiological characterization and agronomic findings have been complemented more recently by molecular biology approaches including transcriptomic, proteomic, metabolomic and lipidomic investigations in crops exposed to high night temperature (HNT) conditions. Nevertheless, the understanding of the underlying mechanisms causing yield decline under HNT is still limited. The discovery of significant differences between HNT-tolerant and HNT-sensitive cultivars is one of the main research directions to secure continuous food supply under the challenge of increasing climate change. With this review, we provide a summary of current knowledge on the physiological and molecular basis of contrasting HNT tolerance in rice and wheat cultivars. Requirements for HNT tolerance and the special adaptation strategies of the HNT-tolerant rice cultivar Nagina-22 (N22) are discussed. Putative metabolite markers for HNT tolerance useful for marker-assisted breeding are suggested, together with future research directions aimed at improving food security under HNT conditions.
Collapse
Affiliation(s)
| | | | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
20
|
Possen BJHM, Rousi M, Keski‐Saari S, Silfver T, Kontunen‐Soppela S, Oksanen E, Mikola J. New evidence for the importance of soil nitrogen on the survival and adaptation of silver birch to climate warming. Ecosphere 2021. [DOI: 10.1002/ecs2.3520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- B. J. H. M. Possen
- Ecology Section Royal HaskoningDHV Larixplein 1 Eindhoven5616 VBThe Netherlands
| | - M. Rousi
- Vantaa Research Unit Natural Resources Institute Finland P.O. Box 18 Vantaa01301Finland
| | - S. Keski‐Saari
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - T. Silfver
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| | - S. Kontunen‐Soppela
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - E. Oksanen
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - J. Mikola
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| |
Collapse
|
21
|
Baumgarten F, Zohner CM, Gessler A, Vitasse Y. Chilled to be forced: the best dose to wake up buds from winter dormancy. THE NEW PHYTOLOGIST 2021; 230:1366-1377. [PMID: 33577087 DOI: 10.1111/nph.17270] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 05/06/2023]
Abstract
Over the last decades, spring leaf-out of temperate and boreal trees has substantially advanced in response to global warming, affecting terrestrial biogeochemical fluxes and the Earth's climate system. However, it remains unclear whether leaf-out will continue to advance with further warming because species' effective chilling temperatures, as well as the amount of chilling time required to break dormancy, are still largely unknown for most forest tree species. Here, we assessed the progress of winter dormancy and quantified the efficiency of different chilling temperatures in six dominant temperate European tree species by exposing 1170 twig cuttings to a range of temperatures from -2°C to 10°C for 1, 3, 6 or 12 wk. We found that freezing temperatures were most effective for half of the species or as effective as chilling temperatures up to 10°C, that is, leading to minimum thermal time to and maximum success of budburst. Interestingly, chilling duration had a much larger effect on dormancy release than absolute chilling temperature. Our experimental results challenge the common assumption that optimal chilling temperatures range c. 4-6°C, instead revealing strong sensitivity to a large range of temperatures. These findings are valuable for improving phenological models and predicting future spring phenology in a warming world.
Collapse
Affiliation(s)
- Frederik Baumgarten
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich, 8092, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich, 8092, Switzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
22
|
Zhao H, Fu YH, Wang X, Zhang Y, Liu Y, Janssens IA. Diverging models introduce large uncertainty in future climate warming impact on spring phenology of temperate deciduous trees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143903. [PMID: 33316528 DOI: 10.1016/j.scitotenv.2020.143903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Spring phenology influences terrestrial ecosystem carbon, water and energy exchanges between the biosphere and atmosphere. Accurate prediction of spring phenology is therefore a prerequisite to foresee the impacts of climate warming on terrestrial ecosystems. In the present study, we studied the model performance of four widely used process-based models of spring leaf unfolding, including both a one-phase model (not considering a chilling phase: the Thermal Time model) and three two-phase models (all accounting for a required chilling period: the Parallel model, the Sequential model, the Unified model). Models were tested on five deciduous tree species occurring across Europe. We specifically investigated the divergence of their phenology predictions under future climate warming scenarios and studied the differences in the chilling periods. We found that, in general, the two-phase models performed slightly better than the one-phase model when fitting to the observed data, with all two-phase models performing similarly. However, leaf unfolding projections diverged substantially among the two-phase models over the period 2070-2100. Furthermore, we found that the modeled end dates of the chilling periods in these models also diverged, with advances for both the Sequential and Parallel models during the period 2070-2100 (compared to the period 1980-2010), and delays in the Unified model. These findings thus highlight large uncertainty in the two-phase phenology models and confirm that the mechanism underlying the leaf unfolding process is not yet understood. We therefore urgently need an improved understanding of the leaf unfolding process in order to improve the representation of phenology in terrestrial ecosystem models.
Collapse
Affiliation(s)
- Hongfang Zhao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yongshuo H Fu
- Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xuhui Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Yuan Zhang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yongwen Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ivan A Janssens
- Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
23
|
Park H, Jeong S, Peñuelas J. Accelerated rate of vegetation green-up related to warming at northern high latitudes. GLOBAL CHANGE BIOLOGY 2020; 26:6190-6202. [PMID: 32869929 DOI: 10.1111/gcb.15322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Mid- to high-latitude vegetation are experiencing changes in their seasonal cycles as a result of climate change. Although the rates of seasonal growth from winter dormancy to summer maturity have accelerated because of changes in environmental conditions, less attention has been paid to the rate of vegetation green-up (RVG) and its dynamics, which could advance vegetation maturity. We analyzed the long-term changes in RVG and the drivers at high northern latitudes for 35 years (1982-2016) using satellite-retrieved leaf area index data based on partial correlation analyses and multivariable linear regression. The rates tended to increase significantly with time, particularly at high latitudes above 60°N in North America (1.8% mon-1 decade-1 , p < .01) and Eurasia (1.0% mon-1 decade-1 , p < .01). The increasing trend in North America was mostly because of increased heat accumulation in spring (1.2% mon-1 decade-1 ), that is, more rapid green-up owing to warming, with an increased carbon dioxide concentration (0.6 mon-1 decade-1 ). The trend in Eurasia, however, was induced by warming, increased carbon dioxide concentration, and stronger radiation, 1.0%, 0.7%, and 0.5% mon-1 decade-1 , respectively, but was partly counteracted by earlier pregreen-up dates of -1.2% mon-1 decade-1 , that is, earlier initiation of growth which counteracted green-up rate acceleration. The results suggested that warming was the predominant factor influencing the accelerated RVG at high latitudes; however, Eurasian vegetation exhibited different green-up dynamics, mitigating the influence of warming with the earlier pregreen-up. Our findings imply that high-latitude warming will drive vegetation seasonality toward rapid green-up and early maturity, leading to the reinforcement of climate-vegetation interactions; however, the consequences will be more distinct in North America owing to the absence of alleviation by earlier pregreen-up.
Collapse
Affiliation(s)
- Hoonyoung Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
- Institute for Sustainable Development (ISD), Seoul National University, Seoul, Republic of Korea
| | - Sujong Jeong
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
- Institute for Sustainable Development (ISD), Seoul National University, Seoul, Republic of Korea
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Vallès, Bellaterra, Spain
| |
Collapse
|
24
|
Chirichella R, Stephens PA, Mason THE, Apollonio M. Contrasting Effects of Climate Change on Alpine Chamois. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Roberta Chirichella
- Department of Veterinary Medicine University of Sassari via Vienna 2, I‐07100 Sassari Italy
| | - Philip A. Stephens
- Conservation Ecology Group, Department of Biosciences Durham University South Road Durham DH1 3LE United Kingdom
| | - Tom H. E. Mason
- Conservation Ecology Group, Department of Biosciences Durham University South Road Durham DH1 3LE United Kingdom
| | - Marco Apollonio
- Department of Veterinary Medicine University of Sassari via Vienna 2, I‐07100 Sassari Italy
| |
Collapse
|
25
|
Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling. Nat Commun 2020; 11:4945. [PMID: 33009378 PMCID: PMC7532433 DOI: 10.1038/s41467-020-18743-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Spring warming substantially advances leaf unfolding and flowering time for perennials. Winter warming, however, decreases chilling accumulation (CA), which increases the heat requirement (HR) and acts to delay spring phenology. Whether or not this negative CA-HR relationship is correctly interpreted in ecosystem models remains unknown. Using leaf unfolding and flowering data for 30 perennials in Europe, here we show that more than half (7 of 12) of current chilling models are invalid since they show a positive CA-HR relationship. The possible reason is that they overlook the effect of freezing temperature on dormancy release. Overestimation of the advance in spring phenology by the end of this century by these invalid chilling models could be as large as 7.6 and 20.0 days under RCPs 4.5 and 8.5, respectively. Our results highlight the need for a better representation of chilling for the correct understanding of spring phenological responses to future climate change. Climate warming is advancing spring leaf unfolding, but it is also reducing the cold periods that many trees require to break winter dormancy. Here, the authors show that 7 of 12 current chilling models fail to account for the correct relationship between chilling accumulation and heat requirement, leading to substantial overestimates of the advance of spring phenology under climate change.
Collapse
|
26
|
Zohner CM, Mo L, Pugh TAM, Bastin JF, Crowther TW. Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees. GLOBAL CHANGE BIOLOGY 2020; 26:4042-4055. [PMID: 32347650 DOI: 10.1111/gcb.15098] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Climate warming is currently advancing spring leaf-out of temperate and boreal trees, enhancing net primary productivity (NPP) of forests. However, it remains unclear whether this trend will continue, preventing for accurate projections of ecosystem functioning and climate feedbacks. Several ecophysiological mechanisms have been proposed to regulate the timing of leaf emergence in response to changing environmental cues, but the relative importance of those mechanisms remains unclear. Here, we use 727,401 direct phenological observations of common European forest trees to examine the dominant controls on leaf-out. Using the emerging mechanisms, we forecast future trajectories of spring arrival and evaluate the consequences for forest carbon dynamics. By representing hypothesized relationships with autumn temperature, winter chilling, and the timing of spring onset, we accurately predicted reductions in the advance of leaf-out. There was a strong consensus between our empirical model and existing process-based models, revealing that the advance in leaf-out will not exceed 2 weeks over the rest of the century. We further estimate that, under a 'business-as-usual' climate scenario, earlier spring arrival will enhance NPP of temperate and boreal forests by ~0.2 Gt per year at the end of the century. In contrast, previous estimates based on a simple degree-day model range around 0.8 Gt. As such, the expected NPP is drastically reduced in our updated model relative to previous estimates-by a total of ~25 Gt over the rest of the century. These findings reveal important environmental constraints on the productivity of broad-leaved deciduous trees and highlight that shifting spring phenology is unlikely to slow the rate of warming by offsetting anthropogenic carbon emissions.
Collapse
Affiliation(s)
- Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Thomas A M Pugh
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Jean-Francois Bastin
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
27
|
Wenden B, Mariadassou M, Chmielewski FM, Vitasse Y. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. GLOBAL CHANGE BIOLOGY 2020; 26:1808-1819. [PMID: 31724292 DOI: 10.1111/gcb.14918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Spring phenology of temperate trees has advanced worldwide in response to global warming. However, increasing temperatures may not necessarily lead to further phenological advance, especially in the warmer latitudes because of insufficient chilling and/or shorter day length. Determining the start of the forcing phase, that is, when buds are able to respond to warmer temperatures in spring, is therefore crucial to predict how phenology will change in the future. In this study, we used 4,056 leaf-out date observations during the period 1969-2017 for clones of European beech (Fagus sylvatica L.) and pedunculate oak (Quercus robur L.) planted in 63 sites covering a large latitudinal gradient (from Portugal ~41°N to Norway ~63°N) at the International Phenological Gardens in order to (a) evaluate how the sensitivity periods to forcing and chilling have changed with climate warming, and (b) test whether consistent patterns occur along biogeographical gradients, that is, from colder to warmer environments. Partial least squares regressions suggest that the length of the forcing period has been extended over the recent decades with climate warming in the colder latitudes but has been shortened in the warmer latitudes for both species, with a more pronounced shift for beech. We attribute the lengthening of the forcing period in the colder latitudes to earlier opportunities with temperatures that can promote bud development. In contrast, at warmer or oceanic climates, the beginning of the forcing period has been delayed, possibly due to insufficient chilling. However, in spite of a later beginning of the forcing period, spring phenology has continued to advance at these areas due to a faster satisfaction of heat requirements induced by climate warming. Overall, our results support that ongoing climate warming will have different effects on the spring phenology of forest trees across latitudes due to the interactions between chilling, forcing and photoperiod.
Collapse
Affiliation(s)
| | | | - Frank-M Chmielewski
- Faculty of Life Sciences, Thaer Institute of Agricultural and Horticultural Sciences, Humboldt-University of Berlin, Berlin, Germany
| | - Yann Vitasse
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| |
Collapse
|
28
|
Malyshev AV. Warming Events Advance or Delay Spring Phenology by Affecting Bud Dormancy Depth in Trees. FRONTIERS IN PLANT SCIENCE 2020; 11:856. [PMID: 32655599 PMCID: PMC7325971 DOI: 10.3389/fpls.2020.00856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/27/2020] [Indexed: 05/22/2023]
Abstract
The frequency of sudden, strong warming events is projected to increase in the future. The effects of such events on spring phenology of trees might depend on their timing because spring warming has generally been shown to advance spring budburst while fall and winter warming have been shown to delay spring phenology. To understand the mechanism behind timing-specific warming effects on spring phenology, I simulated warming events during fall, mid-winter and at the end of winter and quantified their effects on bud dormancy depth and subsequently on spring leaf out. The warming events were carried out in climate chambers on tree seedlings of Betula pendula and Fagus sylvatica in October, January, and February. Control seedlings were kept at photoperiod and temperature matching the daily fluctuating field conditions. Warmed seedlings were kept 10°C warmer than the control seedlings for 10 days during the respective warming periods. Warming in October increased bud dormancy depth and decreased spring leaf-out rate only for F. sylvatica, whereas warming in February reduced bud dormancy depth and advanced spring leaf-out rate only for B. pendula. Neither bud dormancy depth nor spring leaf out rate were affected by January warming. The results indicate that warming-induced changes in bud dormancy depth may explain species- and timing-specific warming effects on spring phenology. The extent to which the timing of bud dormancy phases is species-specific will influence among-species variation in future spring leaf out times.
Collapse
|
29
|
Zhang S, Isabel N, Huang JG, Ren H, Rossi S. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1631-1640. [PMID: 31385094 DOI: 10.1007/s00484-019-01776-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
There is evidence that the ongoing climate change is happening through nighttime rather than daytime warming. How such a daily-asymmetric warming modifies plant phenology is still unclear. We investigated the effects of asymmetric warming on bud break by daily monitoring seedlings belonging to 26 black spruce [Picea mariana (Mill.) BSP.] and 15 balsam fir [Abies balsamea (L.) Mill.] provenances from the native range in Canada. Seedlings were subjected to either daytime or nighttime warming in three growth chambers at temperatures ranging between 10 and 24 °C. On average, a warming of 4 °C advanced the timings of bud break in both species by 2.4 days, with the later phases being more sensitive to the treatment. Bud break of both species responded more strongly to daytime warming, with the bud break occurred 1.2 and 3.2 days earlier under daytime than nighttime warming in black spruce and balsam fir, respectively. A marked ecotypic differentiation was only observed in black spruce that originated from provenances distributed broadly across Canada, with seedlings from the warmest provenance completing bud break 8.3 days later than those from the coldest one. However, no significant effect of provenance was observed for balsam fir, the narrowly distributed species. Overall, the above results suggest that a higher temporal resolution such as temperatures during daytime and nighttime, and higher spatial resolution should be taken into account to improve the accuracy of phenological model predictions under global change scenarios. Phenological models based on daily average temperature should take into account the diverging impacts of asymmetric warming on plant phenology. Our findings may indicate that the influence of warming on plant phenology may be less dramatic than expected.
Collapse
Affiliation(s)
- Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nathalie Isabel
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, G1V4C7, Canada
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Hai Ren
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Sergio Rossi
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, G7H 2B1, Canada
| |
Collapse
|
30
|
Du Z, Zhao J, Liu X, Wu Z, Zhang H. Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35717-35727. [PMID: 31701415 DOI: 10.1007/s11356-019-06440-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/25/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Asymmetric warming has been increasingly discussed recently, yet knowledge of this difference in warming between daytime and nighttime is still limited. Most studies of how climate warming influences the terrestrial ecosystem often ignore this asymmetric effect. We investigated the change in temperature between daytime and nighttime and analyzed the relationships between normalized difference vegetation index and the temperature in the daytime (Tmax) and the nighttime (Tmin) from 1982 to 2015 in temperate China. Results showed a faster increase in Tmin (0.46 °C dec-1, p < 0.01) during the nighttime than in Tmax (0.42 °C dec-1, p < 0.01) during the daytime, which indicated an asymmetric warming rate. The asymmetric warming during the daytime and nighttime was closely related to variations in precipitation and solar radiation. The increasing Tmin and Tmax were most pronounced over a large portion of the entire temperate China, and their warming trends displayed a non-uniform spatial distribution. The area with daytime warming was larger than that with nighttime warming, approximately accounting for 99.53% and 96.22% of temperate China, respectively. The area with warming enhancing vegetation greenness was larger during the day (71.16% of temperate China, p < 0.05) than at night (61.60% of temperate China, p < 0.05), and vice versa, which presented asymmetric warming effects on China's temperate vegetation. We also found clear differences in the responses of the normalized difference vegetation index among different vegetation biomes to this asymmetric warming. Averagely, Tmax was significantly related to the NDVI of shrub, desert, broadleaf forest, needleleaf forest, and swamp (p < 0.01). However, this similar relationship appeared only between Tmin and desert vegetation (p < 0.01). Our findings emphasized the crucial role of asymmetric warming between the daytime maxima and nighttime minima in climate change research.
Collapse
Affiliation(s)
- Ziqiang Du
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Jie Zhao
- College of Natural Resources & Environment, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Xuejia Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhitao Wu
- Institute of Loess Plateau, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Hong Zhang
- College of Environmental &Resource Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
31
|
Peaucelle M, Janssens IA, Stocker BD, Descals Ferrando A, Fu YH, Molowny-Horas R, Ciais P, Peñuelas J. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat Commun 2019; 10:5388. [PMID: 31772185 PMCID: PMC6879605 DOI: 10.1038/s41467-019-13365-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022] Open
Abstract
Leaf unfolding in temperate forests is driven by spring temperature, but little is known about the spatial variance of that temperature dependency. Here we use in situ leaf unfolding observations for eight deciduous tree species to show that the two factors that control chilling (number of cold days) and heat requirement (growing degree days at leaf unfolding, GDDreq) only explain 30% of the spatial variance of leaf unfolding. Radiation and aridity differences among sites together explain 10% of the spatial variance of leaf unfolding date, and 40% of the variation in GDDreq. Radiation intensity is positively correlated with GDDreq and aridity is negatively correlated with GDDreq spatial variance. These results suggest that leaf unfolding of temperate deciduous trees is adapted to local mean climate, including water and light availability, through altered sensitivity to spring temperature. Such adaptation of heat requirement to background climate would imply that models using constant temperature response are inherently inaccurate at local scale.
Collapse
Affiliation(s)
- Marc Peaucelle
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain.
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain.
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| | - Ivan A Janssens
- Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Benjamin D Stocker
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain
- Institute of Agricultural Sciences, Department for Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8006, Zürich, Switzerland
| | - Adrià Descals Ferrando
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University Beijing, Beijing, China
| | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS UVSQ, 91191, Gif sur Yvette, France
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain
| |
Collapse
|
32
|
Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, Geng X, Peñuelas J, Zhang X, Janssens IA, Campioli M. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. TREE PHYSIOLOGY 2019; 39:1277-1284. [PMID: 30989235 DOI: 10.1093/treephys/tpz041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Leaf senescence (LS) affects tree fitness, species distribution and ecosystem structure and functioning. The drivers of LS and the processes underlying it have been studied, but the studies have mainly focused on environmental cues and have mainly been based on statistical analyses using in situ data sets. Experimental investigation and field verification of the processes and drivers are thus urgently needed. We conducted a nutrient-addition experiment after a spring-warming experiment in which an ~40-day range of leaf-out (LO) dates was induced in horse chestnut (Aesculus hippocastanum) and beech (Fagus sylvatica) saplings. We found that both increased nutrient supply and advanced LO date significantly affected the timing of LS, but their effects were opposite, as the former delayed and the latter advanced the senescence. The effects of nutrient supply and LO interacted species specifically. In chestnut, the delay of senescence caused by fertilization increased with the delay of LO and was thus stronger for individuals that flushed late in the spring. On the contrary, in beech the delay of senescence caused by fertilization decreased with the delay of LO and was insignificant for individuals with the latest LO. The experimental findings for beech were confirmed with mature trees at a regional scale. The interactive effect between nutrients and LO on senescence may be associated with variable sensitivity to photoperiod, growth sink limitation and/or direct effect of foliar nutrition on the timing of senescence. Our novel results show that the interactive effects of LO and nutrient supply on the timing of LS should be further addressed experimentally in forthcoming studies. It would also be interesting to consider our results in the further development of phenological models used in assessing the effects of climatic change. The differences found in the present study between horse chestnut and beech suggest that the results found for one species cannot necessarily be generalized to other species, so studies with different temperate tree species are called for.
Collapse
Affiliation(s)
- Yongshuo H Fu
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
- Centre of Excellence Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, BE, Belgium
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Delpierre
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaojun Geng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Josep Peñuelas
- CREAF, Edifici C, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Ivan A Janssens
- Centre of Excellence Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, BE, Belgium
| | - Matteo Campioli
- Centre of Excellence Plants and Ecosystems, Department of Biology, University of Antwerp, Antwerp, BE, Belgium
| |
Collapse
|
33
|
Meng F, Zhang L, Zhang Z, Jiang L, Wang Y, Duan J, Wang Q, Li B, Liu P, Hong H, Lv W, Renzeng W, Wang Z, Luo C, Dorji T, Zhou H, Du M, Wang S. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 2019; 100:e02775. [DOI: 10.1002/ecy.2775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Fandong Meng
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
| | - Lirong Zhang
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
| | - Zhenhua Zhang
- Northwest Institute of Plateau Biology Chinese Academy of Sciences Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area Xining 810008 China
| | - Lili Jiang
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
| | - Yanfen Wang
- Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Jichuang Duan
- Binhai Research Institute in Tianjin Tianjin 300457 China
| | - Qi Wang
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Bowen Li
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Peipei Liu
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Huan Hong
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Wangwang Lv
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Wangmu Renzeng
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhezhen Wang
- The University of Chicago Medicine and Biological Sciences Division 5801 South Ellis Avenue Chicago Illinois 60637 USA
| | - Caiyun Luo
- Northwest Institute of Plateau Biology Chinese Academy of Sciences Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area Xining 810008 China
| | - Tsechoe Dorji
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- CAS Center for Excellence in Tibetan Plateau Earth Science Chinese Academy of Sciences Beijing 100101 China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology Chinese Academy of Sciences Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area Xining 810008 China
| | - Mingyuan Du
- Institute for Agro‐Environmental Sciences NARO Tsukuba 305‐8604 Japan
| | - Shiping Wang
- Key Laboratory of Alpine Ecology and Biodiversity Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China
- CAS Center for Excellence in Tibetan Plateau Earth Science Chinese Academy of Sciences Beijing 100101 China
| |
Collapse
|
34
|
Fu YH, Zhang X, Piao S, Hao F, Geng X, Vitasse Y, Zohner C, Peñuelas J, Janssens IA. Daylength helps temperate deciduous trees to leaf-out at the optimal time. GLOBAL CHANGE BIOLOGY 2019; 25:2410-2418. [PMID: 30927554 DOI: 10.1111/gcb.14633] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 05/21/2023]
Abstract
Global warming has led to substantially earlier spring leaf-out in temperate-zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf-out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf-out in all studied species. In warm springs when leaf-out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming-induced advancement of leaf-out and protects the tree against precocious leaf-out and the associated risks of late frosts. In contrast, longer-than-average daylength (in cold springs when leaf-out is late) reduces the heat requirement for leaf-out, ensuring that trees do not leaf-out too late and miss out on large amounts of solar energy. These results provide the first large-scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf-out phenology in temperate deciduous trees.
Collapse
Affiliation(s)
- Yongshuo H Fu
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Xuan Zhang
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Fanghua Hao
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Xiaojun Geng
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing, China
| | - Yann Vitasse
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Constantin Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Josep Peñuelas
- CREAF, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
| | - Ivan A Janssens
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Fu YH, Piao S, Zhou X, Geng X, Hao F, Vitasse Y, Janssens IA. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. GLOBAL CHANGE BIOLOGY 2019; 25:1696-1703. [PMID: 30779408 DOI: 10.1111/gcb.14599] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 05/21/2023]
Abstract
Leaf phenology is one of the most reliable bioindicators of ongoing global warming in temperate and boreal zones because it is highly sensitive to temperature variation. A large number of studies have reported advanced spring leaf-out due to global warming, yet the temperature sensitivity of leaf-out has significantly decreased in temperate deciduous tree species over the past three decades. One of the possible mechanisms is that photoperiod is limiting further advance to protect the leaves against potential damaging frosts. However, the "photoperiod limitation" hypothesis remains poorly investigated and experimentally tested. Here, we conducted a photoperiod- and temperature-manipulation experiment in climate chambers on two common deciduous species in Europe: Fagus sylvatica (European beech, a typically late flushing species) and Aesculus hippocastanum (horse chestnut, a typically early flushing species). In agreement with previous studies, we found that the warming significantly advanced the leaf-out dates by 4.3 and 3.7 days/°C for beech and horse chestnut saplings, respectively. However, shorter photoperiod significantly reduced the temperature sensitivity of beech only (3.0 days/°C) by substantially increasing the heat requirement to avoid leafing-out too early. Interestingly, the photoperiod limitation only occurs below a certain daylength (photoperiod threshold) when the warming increased above 4°C for beech trees. In contrast, for chestnut, no photoperiod threshold was found even when the ambient air temperature was warmed by 5°C. Given the species-specific photoperiod effect on leaf phenology, the sequence of the leaf-out timing among forest tree species may change under future climate warming conditions. Nonphotoperiodic species may benefit from warmer springs by starting the growing season earlier than photoperiodic sensitive species, modifying forest ecosystem structure and functions, but this photoperiod limitation needs to be further investigated experimentally in numerous species.
Collapse
Affiliation(s)
- Yongshuo H Fu
- College of water sciences, Beijing Normal University, Beijing, China
- Department of biology, University of Antwerp, Antwerp, Belgium
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Xuancheng Zhou
- College of water sciences, Beijing Normal University, Beijing, China
| | - Xiaojun Geng
- College of water sciences, Beijing Normal University, Beijing, China
| | - Fanghua Hao
- College of water sciences, Beijing Normal University, Beijing, China
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| | - Ivan A Janssens
- Department of biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
36
|
Bigler C, Vitasse Y. Daily Maximum Temperatures Induce Lagged Effects on Leaf Unfolding in Temperate Woody Species Across Large Elevational Gradients. FRONTIERS IN PLANT SCIENCE 2019; 10:398. [PMID: 30984231 PMCID: PMC6447654 DOI: 10.3389/fpls.2019.00398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The timing of leaf unfolding in temperate woody species is predominantly controlled by the seasonal course of temperature in late winter and early spring. However, quantifying lagged temperature effects on spring phenology is still challenging. Here, we aimed at investigating lagged and potentially non-linear effects of daily maximum temperatures on the probability of leaf unfolding in temperate woody species growing across large elevational gradients. We analyzed 5280 observations of leaf-out time of four tree species (European beech, horse chestnut, European larch, Norway spruce) and one shrub species (common hazel) that were recorded by volunteers over 40 years at 42 locations in Switzerland. We used a case-crossover sampling design to match leaf-out dates with control dates (i.e., dates before or after leaf-out), and analyzed these data with conditional logistic regression accounting for lagged temperature effects over 60 days. Multivariate meta-analyses were used to synthesize lagged temperature and elevational effects on leaf unfolding across multiple phenological stations. Temperature effects on the probability of leaf unfolding were largest at relatively short lags (i.e., within ca. 10 days) and decreased with increasing lags. Short- to mid-term effects (i.e., within ca. 10 to 20 days) were larger for late-leafing species known to be photoperiod-sensitive (beech, Norway spruce). Temperature effects increased for the broadleaved species (horse chestnut, hazel, beech) with decreasing elevation, particularly within ca. 10 to 40 days, i.e., leaf unfolding occurs more rapidly at low elevations for a given daily maximum temperature. Our novel findings provide evidence of cumulative and long-term temperature effects on leaf unfolding, whereby the efficiency of relatively high temperatures to trigger leaf-out becomes higher shortly before bud burst. These lagged associations between temperature and leaf unfolding improve our understanding of phenological responses across temperate woody species with differing ecological requirements that occur along elevational gradients.
Collapse
Affiliation(s)
- Christof Bigler
- Forest Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- SwissForestLab, Birmensdorf, Switzerland
| | - Yann Vitasse
- SwissForestLab, Birmensdorf, Switzerland
- Disturbance Ecology, Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
37
|
Fu YH, Piao S, Delpierre N, Hao F, Hänninen H, Liu Y, Sun W, Janssens IA, Campioli M. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. GLOBAL CHANGE BIOLOGY 2018; 24:2159-2168. [PMID: 29245174 DOI: 10.1111/gcb.14021] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Climate warming is substantially shifting the leaf phenological events of plants, and thereby impacting on their individual fitness and also on the structure and functioning of ecosystems. Previous studies have largely focused on the climate impact on spring phenology, and to date the processes underlying leaf senescence and their associated environmental drivers remain poorly understood. In this study, experiments with temperature gradients imposed during the summer and autumn were conducted on saplings of European beech to explore the temperature responses of leaf senescence. An additional warming experiment during winter enabled us to assess the differences in temperature responses of spring leaf-out and autumn leaf senescence. We found that warming significantly delayed the dates of leaf senescence both during summer and autumn warming, with similar temperature sensitivities (6-8 days delay per °C warming), suggesting that, in the absence of water and nutrient limitation, temperature may be a dominant factor controlling the leaf senescence in European beech. Interestingly, we found a significantly larger temperature response of autumn leaf senescence than of spring leaf-out. This suggests a possible larger contribution of delays in autumn senescence, than of the advancement in spring leaf-out, to extending the growing season under future warmer conditions.
Collapse
Affiliation(s)
- Yongshuo H Fu
- College of water sciences, Beijing Normal University, Beijing, China
- Department of Biology, Centre of Excellence PLECO (Plant and Vegetation Ecology), University of Antwerp, Wilrijk, Belgium
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Institute of Tibetan Plateau Research, Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Delpierre
- Ecologie Systématique Evolution, Univ. Paris-Sud, CNRS, Agro Paris Tech, Université Paris, Saclay, Orsay, France
| | - Fanghua Hao
- College of water sciences, Beijing Normal University, Beijing, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| | - Yongjie Liu
- Department of Biology, Centre of Excellence PLECO (Plant and Vegetation Ecology), University of Antwerp, Wilrijk, Belgium
| | - Wenchao Sun
- College of water sciences, Beijing Normal University, Beijing, China
| | - Ivan A Janssens
- Department of Biology, Centre of Excellence PLECO (Plant and Vegetation Ecology), University of Antwerp, Wilrijk, Belgium
| | - Matteo Campioli
- Department of Biology, Centre of Excellence PLECO (Plant and Vegetation Ecology), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
38
|
Liu Q, Fu YH, Liu Y, Janssens IA, Piao S. Simulating the onset of spring vegetation growth across the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2018; 24:1342-1356. [PMID: 29055157 DOI: 10.1111/gcb.13954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Changes in the spring onset of vegetation growth in response to climate change can profoundly impact climate-biosphere interactions. Thus, robust simulation of spring onset is essential to accurately predict ecosystem responses and feedback to ongoing climate change. To date, the ability of vegetation phenology models to reproduce spatiotemporal patterns of spring onset at larger scales has not been thoroughly investigated. In this study, we took advantage of phenology observations via remote sensing to calibrate and evaluated six models, including both one-phase (considering only forcing temperatures) and two-phase (involving forcing, chilling, and photoperiod) models across the Northern Hemisphere between 1982 and 2012. Overall, we found that the model that integrated the photoperiod effect performed best at capturing spatiotemporal patterns of spring phenology in boreal and temperate forests. By contrast, all of the models performed poorly in simulating the onset of growth in grasslands. These results suggest that the photoperiod plays a role in controlling the onset of growth in most Northern Hemisphere forests, whereas other environmental factors (e.g., precipitation) should be considered when simulating the onset of growth in grasslands. We also found that the one-phase model performed as well as the two-phase models in boreal forests, which implies that the chilling requirement is probably fulfilled across most of the boreal zone. Conversely, two-phase models performed better in temperate forests than the one-phase model, suggesting that photoperiod and chilling play important roles in these temperate forests. Our results highlight the significance of including chilling and photoperiod effects in models of the spring onset of forest growth at large scales, and indicate that the consideration of additional drivers may be required for grasslands.
Collapse
Affiliation(s)
- Qiang Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yongshuo H Fu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Yongwen Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ivan A Janssens
- Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
39
|
Signarbieux C, Toledano E, Sanginés de Carcer P, Fu YH, Schlaepfer R, Buttler A, Vitasse Y. Asymmetric effects of cooler and warmer winters on beech phenology last beyond spring. GLOBAL CHANGE BIOLOGY 2017; 23:4569-4580. [PMID: 28464396 DOI: 10.1111/gcb.13740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
In temperate trees, the timings of plant growth onset and cessation affect biogeochemical cycles, water, and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been yet investigated in trees. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013-2014 by conducting a reciprocal transplant experiment between two elevations (1,340 vs. 371 m a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease in air temperature in winter/spring resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we also found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in late summer. Budset of saplings that experienced a cooler winter was delayed by 31 days compared to the control, whereas it was delayed by only 10 days in saplings that experienced a warmer winter. Budburst timing in 2015 was not significantly impacted by the artificial advance or delay of the budburst timing in 2014, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.
Collapse
Affiliation(s)
- Constant Signarbieux
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
| | - Ester Toledano
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
- Universidad Polítecnica de Madrid, Madrid, Spain
| | - Paula Sanginés de Carcer
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
| | - Yongshuo H Fu
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Beijing Normal University, Beijing, China
| | - Rodolphe Schlaepfer
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Alexandre Buttler
- School of Architecture, Civil and Environmental Engineering ENAC, Laboratory of Ecological Systems ECOS, Station 2, École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL Site Lausanne, Station 2, Lausanne, Switzerland
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, UFR des Sciences et Techniques, 16 route de Gray, Université de Franche-Comté, Besançon, France
| | - Yann Vitasse
- Institute of Geography, University of Neuchatel, Neuchatel, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Neuchâtel, Switzerland
| |
Collapse
|