1
|
Sanchez VA, Renner T, Baker LJ, Hendry TA. Genome evolution following an ecological shift in nectar-dwelling Acinetobacter. mSphere 2025; 10:e0101024. [PMID: 39723821 PMCID: PMC11774029 DOI: 10.1128/msphere.01010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The bacterial genus Acinetobacter includes species found in environmental habitats like soil and water, as well as taxa adapted to be host-associated or pathogenic. High genetic diversity may allow for this habitat flexibility, but the specific genes underlying switches between habitats are poorly understood. One lineage of Acinetobacter has undergone a substantial habitat change by evolving from a presumed soil-dwelling ancestral state to thrive in floral nectar. Here, we compared the genomes of floral-dwelling and pollinator-associated Acinetobacter, including newly described species, with genomes from relatives found in other environments to determine the genomic changes associated with this ecological shift. Following one evolutionary origin of floral nectar adaptation, nectar-dwelling Acinetobacter taxa have undergone reduction in genome size compared with relatives and have experienced dynamic gene gains and losses as they diversified. Gene content changes suggest a shift to metabolism of monosaccharides rather than diverse carbohydrates, and scavenging of nitrogen sources, which we predict to be beneficial in nectar environments. Gene gains appear to result from duplication events, evolutionary divergence, and horizontal gene transfer. Most notably, nectar-dwelling Acinetobacter acquired the ability to degrade pectin from plant pathogens, and the genes underlying this ability have duplicated and are under selection within the clade. We hypothesize that this ability was a key trait for adaptation to floral nectar, as it could improve access to nutrients in the nutritionally unbalanced habitat of nectar. These results identify the genomic changes and traits coinciding with a dramatic habitat switch from soil to floral nectar. IMPORTANCE Many bacteria, including the genus Acinetobacter, commonly evolve to exploit new habitats. However, the genetic changes that underlie habitat switches are often unknown. Floral nectar is home to specialized microbes that can grow in this nutritionally unbalanced habitat. Several specialized Acinetobacter species evolved from soil-dwelling relatives to become common and abundant in floral nectar. Here, we investigate the genomic adaptations required to successfully colonize a novel habitat like floral nectar. We performed comparative genomics analyses between nectar-dwelling Acinetobacter and Acinetobacter species from other environments, like soil and water. We find that although gene loss coincided with the switch to living in nectar, gains of specific genes from other bacteria may have been particularly important for this ecological change. Acinetobacter living in nectar gained genes for degrading pectin, a plant polysaccharide, which may improve access to nutrients in their environment. These findings shed light on how evolutionary novelty evolves in bacteria.
Collapse
Affiliation(s)
| | - Tanya Renner
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lydia J. Baker
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Tory A. Hendry
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
2
|
Wang R, Shi YC, Zhang B, Liu WR, Tan FQ, Lu F, Jiang N, Cheng LC, Xie KD, Wu XM, Guo WW. Gene expression profiles and metabolic pathways responsible for male sterility in cybrid pummelo. PLANT CELL REPORTS 2024; 43:262. [PMID: 39407042 DOI: 10.1007/s00299-024-03357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE Abnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP). G1 + HBP exhibited severe male sterility, manifesting as retarded anther differentiation, abnormal anther wall development (especially tapetum and endothecium), and deficient pollen wall formation. In the anthers of G1 + HBP, the expression of genes regulating anther differentiation and tapetum development was abnormal, and the expression of genes regulating endothecium secondary lignification thickening and pollen wall formation was down-regulated. The transcription of genes involved in MS-related biological processes, such as jasmonic acid (JA) signaling pathway, primary metabolism, flavonoid metabolism, and programmed cell death, was altered in G1 + HBP anthers, and the accumulation of MS-associated metabolites, including fatty acids, amino acids, sugars, ATP, flavonols and reactive oxygen species (ROS), was down-regulated in G1 + HBP anthers. In summary, abnormal expression of key genes regulating anther and pollen development, altered transcription of key genes involved in MS-related metabolic pathways, and insufficient accumulation of MS-related metabolites together lead to MS in G1 + HBP. The critical genes and the metabolism pathways identified herein provide new insights into the formation mechanism of MS in citrus and candidate genes for breeding seedless citrus.
Collapse
Affiliation(s)
- Rong Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201, China
| | - Yang-Cao Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan-Rong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng-Quan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fang Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lai-Chao Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
3
|
Luo C, Akhtar M, Min W, Bai X, Ma T, Liu C. Domain of unknown function (DUF) proteins in plants: function and perspective. PROTOPLASMA 2024; 261:397-410. [PMID: 38158398 DOI: 10.1007/s00709-023-01917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Domains of unknown function (DUFs), which are deposited in the protein family database (Pfam), are protein domains with conserved amino acid sequences and uncharacterized functions. Proteins with the same DUF were classified as DUF families. Although DUF families are generally not essential for the survival of plants, they play roles in plant development and adaptation. Characterizing the functions of DUFs is important for deciphering biological puzzles. DUFs were generally studied through forward and reverse genetics. Some novelty approaches, especially the determination of crystal structures and interaction partners of the DUFs, should attract more attention. This review described the identification of DUF genes by genome-wide and transcriptome-wide analyses, summarized the function of DUF-containing proteins, and addressed the prospects for future studies in DUFs in plants.
Collapse
Affiliation(s)
- Chengke Luo
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Maryam Akhtar
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Weifang Min
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xiaorong Bai
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Tianli Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Caixia Liu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
4
|
Guo X, Zhang Z, Li J, Zhang S, Sun W, Xiao X, Sun Z, Xue X, Wang Z, Zhang Y. Phenotypic and transcriptome profiling of spikes reveals the regulation of light regimens on spike growth and fertile floret number in wheat. PLANT, CELL & ENVIRONMENT 2024; 47:1575-1591. [PMID: 38269615 DOI: 10.1111/pce.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/25/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
The spike growth phase is critical for the establishment of fertile floret (grain) numbers in wheat (Triticum aestivum L.). Then, how to shorten the spike growth phase and increase grain number synergistically? Here, we showed high-resolution analyses of floret primordia (FP) number, morphology and spike transcriptomes during the spike growth phase under three light regimens. The development of all FP in a spike could be divided into four distinct stages: differentiation (Stage I), differentiation and morphology development concurrently (Stage II), morphology development (Stage III), and polarization (Stage IV). Compared to the short photoperiod, the long photoperiod shortened spike growth and stimulated early flowering by shortening Stage III; however, this reduced assimilate accumulation, resulting in fertile floret loss. Interestingly, long photoperiod supplemented with red light shortened the time required to complete Stages I-II, then raised assimilates supply in the spike and promoted anther development before polarization initiation, thereby increasing fertile FP number during Stage III, and finally maintained fertile FP development during Stage IV until they became fertile florets via a predicted dynamic gene network. Our findings proposed a light regimen, critical stages and candidate regulators that achieved a shorter spike growth phase and a higher fertile floret number in wheat.
Collapse
Affiliation(s)
- Xiaolei Guo
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- Department of Agronomy, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Siqi Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Wan Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuechen Xiao
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhencai Sun
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Zhimin Wang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Hutchison ER, Kasahara K, Zhang Q, Vivas EI, Cross TWL, Rey FE. Dissecting the impact of dietary fiber type on atherosclerosis in mice colonized with different gut microbial communities. NPJ Biofilms Microbiomes 2023; 9:31. [PMID: 37270570 PMCID: PMC10239454 DOI: 10.1038/s41522-023-00402-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
Dietary fiber consumption has been linked with improved cardiometabolic health, however, human studies have reported large interindividual variations in the observed benefits. We tested whether the effects of dietary fiber on atherosclerosis are influenced by the gut microbiome. We colonized germ-free ApoE-/- mice with fecal samples from three human donors (DonA, DonB, and DonC) and fed them diets supplemented with either a mix of 5 fermentable fibers (FF) or non-fermentable cellulose control (CC) diet. We found that DonA-colonized mice had reduced atherosclerosis burden with FF feeding compared to their CC-fed counterparts, whereas the type of fiber did not affect atherosclerosis in mice colonized with microbiota from the other donors. Microbial shifts associated with FF feeding in DonA mice were characterized by higher relative abundances of butyrate-producing taxa, higher butyrate levels, and enrichment of genes involved in synthesis of B vitamins. Our results suggest that atheroprotection in response to FF is not universal and is influenced by the gut microbiome.
Collapse
Affiliation(s)
- Evan R Hutchison
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qijun Zhang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eugenio I Vivas
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Jaffri SRF, Scheer H, MacAlister CA. The hydroxyproline O-arabinosyltransferase FIN4 is required for tomato pollen intine development. PLANT REPRODUCTION 2023; 36:173-191. [PMID: 36749417 DOI: 10.1007/s00497-023-00459-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 06/09/2023]
Abstract
The pollen grain cell wall is a highly specialized structure composed of distinct layers formed through complex developmental pathways. The production of the innermost intine layer, composed of cellulose, pectin and other polymers, is particularly poorly understood. Here we demonstrate an important and specific role for the hydroxyproline O-arabinosyltransferase (HPAT) FIN4 in tomato intine development. HPATs are plant-specific enzymes which initiate glycosylation of certain cell wall structural proteins and signaling peptides. FIN4 was expressed throughout pollen development in both the developing pollen and surrounding tapetal cells. A fin4 mutant with a partial deletion of the catalytic domain displayed significantly reduced male fertility in vivo and compromised pollen hydration and germination in vitro. However, fin4 pollen that successfully germinated formed morphologically normal pollen tubes with the same growth rate as the wild-type pollen. When we examined mature fin4 pollen, we found they were cytologically normal, and formed morphologically normal exine, but produced significantly thinner intine. During intine deposition at the late stages of pollen development we found fin4 pollen had altered polymer deposition, including reduced cellulose and increased detection of pectin, specifically homogalacturonan with both low and high degrees of methylesterification. Therefore, FIN4 plays an important role in intine formation and, in turn pollen hydration and germination and the process of intine formation involves dynamic changes in the developing pollen cell wall.
Collapse
Affiliation(s)
- Syeda Roop Fatima Jaffri
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Holly Scheer
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Bacalzo N, Couture G, Chen Y, Castillo JJ, Phillips KM, Fukagawa NK, Lebrilla CB. Quantitative Bottom-Up Glycomic Analysis of Polysaccharides in Food Matrices Using Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2023; 95:1008-1015. [PMID: 36542787 PMCID: PMC9850401 DOI: 10.1021/acs.analchem.2c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Carbohydrates are the most abundant biomolecules in nature, and specifically, polysaccharides are present in almost all plants and fungi. Due to their compositional diversity, polysaccharide analysis remains challenging. Compared to other biomolecules, high-throughput analysis for carbohydrates has yet to be developed. To address this gap in analytical science, we have developed a multiplexed, high-throughput, and quantitative approach for polysaccharide analysis in foods. Specifically, polysaccharides were depolymerized using a nonenzymatic chemical digestion process followed by oligosaccharide fingerprinting using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS). Both label-free relative quantitation and absolute quantitation were done based on the abundances of oligosaccharides produced. Method validation included evaluating recovery for a range of polysaccharide standards and a breakfast cereal standard reference material. Nine polysaccharides (starch, cellulose, β-glucan, mannan, galactan, arabinan, xylan, xyloglucan, chitin) were successfully quantitated with sufficient accuracy (5-25% bias) and high reproducibility (2-15% CV). Additionally, the method was used to identify and quantitate polysaccharides from a diverse sample set of food samples. Absolute concentrations of nine polysaccharides from apples and onions were obtained using an external calibration curve, where varietal differences were observed in some of the samples. The methodology developed in this study will provide complementary polysaccharide-level information to deepen our understanding of the interactions of dietary polysaccharides, gut microbial community, and human health.
Collapse
Affiliation(s)
- Nikita
P. Bacalzo
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Garret Couture
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Ye Chen
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | - Juan J. Castillo
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
| | | | - Naomi K. Fukagawa
- Beltsville
Human Nutrition Research Center, USDA Agricultural
Research Service, Beltsville, Maryland 20705, United States
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California—Davis, Davis, California 95616, United States
- Department
of Biochemistry and Molecular Medicine, University of California—Davis, Davis, California 95616, United States
| |
Collapse
|
8
|
Bu Y, Niu F, He M, Ye J, Yang X, Du Z, Zhang L, Song X. The gene TaPG encoding a polygalacturonase is critical for pollen development and male fertility in thermo-sensitive cytoplasmic male-sterility wheat. Gene 2022; 833:146596. [PMID: 35598679 DOI: 10.1016/j.gene.2022.146596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Thermo-sensitive cytoplasmic male sterility is of great significance to heterosis and hybrid seed production in wheat. Consequently, it is worthwhile to research the genes associated with male sterility. Although polygalacturonases (PGs) have been studied to play a crucial role in male reproduction of many plants, their functions in the reproductive development of wheat remain unclear. Here, TaPG (TraesCS7A02G404900) encoding a polygalacturonase was isolated from the anthers of KTM3315A, a wheat thermo-sensitive cytoplasmic male sterile with Aegilops kotschyi cytoplasm. Expression pattern analyses showed that TaPG was strongly expressed in fertile anthers and its protein was localized in the cell wall. Further verification via barley stripe mosaic virus revealed that the silencing of TaPG exhibited abnormal anthers, premature degradation of tapetum, pollen abortion, and defective pollen wall formation, resulting in the declination of fertility. Conclusively, our research suggested that TaPG contributed to the pollen development and male fertility, which will provide a novel insight into the fertility conversion of thermo-sensitive cytoplasmic male sterility in wheat.
Collapse
Affiliation(s)
- Yaning Bu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mengting He
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Zhejun Du
- Weiyang Extension Station for Agricultural Science and Technology, Xi'an, 710016 Shaanxi, China.
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
9
|
Duan Y, Wang L, Li X, Wang W, Wang J, Liu X, Zhong Y, Cao N, Tong M, Ge W, Guo Y, Li R. Arabidopsis SKU5 Similar 11 and 12 play crucial roles in pollen tube integrity, growth and guidance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:598-614. [PMID: 34775642 DOI: 10.1111/tpj.15580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/06/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Pollen tube integrity, growth and guidance are crucial factors in plant sexual reproduction. Members of the plant Skewed5 (SKU5) Similar (SKS) family show strong similarity to multicopper oxidases (MCOs), but they lack conserved histidines in MCO active sites. The functions of most SKS family members are unknown. Here, we show that Arabidopsis pollen-expressed SKS11 and SKS12 play important roles in pollen tube integrity, growth and guidance. The sks11sks12 mutant exhibited significantly reduced male fertility. Most of the pollen from sks11sks12 plants burst when germinated, and the pollen tubes grew slowly and exhibited defective growth along the funiculus and micropyle. SKS11-GFP and SKS12-mCherry were detected at the cell wall in pollen tubes. The contents of several cell wall polysaccharides and arabinogalactans were decreased in the pollen tube cell walls of sks11sks12 plants. Staining with a reactive oxygen species (ROS)-sensitive dye and use of the H2 O2 sensor HyPer revealed that the ROS content in the pollen tubes of sks11sks12 plants was remarkably reduced. SKS11444His-Ala , in which the last conserved histidine was mutated, could restore the mutant phenotypes of sks11sks12. Thus, SKS11/12 are required for pollen tube integrity, growth and guidance possibly by regulating the ROS level and cell wall polysaccharide deposition or remodeling in pollen tubes.
Collapse
Affiliation(s)
- Yazhou Duan
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Limin Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Xueling Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Wanlei Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Jing Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Xiaoyu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Yangyang Zhong
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Nana Cao
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Mengjuan Tong
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Weina Ge
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Yi Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| | - Rui Li
- Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Science, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Shijia Zhuang, Hebei, 050024, P.R. China
| |
Collapse
|
10
|
Šola K, Dean GH, Li Y, Lohmann J, Movahedan M, Gilchrist EJ, Adams KL, Haughn GW. Expression Patterns and Functional Characterization of Arabidopsis Galactose Oxidase-Like Genes Suggest Specialized Roles for Galactose Oxidases in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1927-1943. [PMID: 34042158 DOI: 10.1093/pcp/pcab073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Galactose oxidases (GalOxs) are well-known enzymes that have been identified in several fungal species and characterized using structural and enzymatic approaches. However, until very recently, almost no information on their biological functions was available. The Arabidopsis (Arabidopsis thaliana) gene ruby particles in mucilage (RUBY) encodes a putative plant GalOx that is required for pectin cross-linking through modification of galactose (Gal) side chains and promotes cell-cell adhesion between seed coat epidermal cells. RUBY is one member of a family of seven putative GalOxs encoded in the Arabidopsis genome. To examine the function(s) of GalOxs in plants, we studied the remaining six galactose oxidase-like (GOXL) proteins. Like RUBY, four of these proteins (GOXL1, GOXL3, GOXL5 and GOXL6) were found to localize primarily to the apoplast, while GOXL2 and GOXL4 were found primarily in the cytoplasm. Complementation and GalOx assay data suggested that GOXL1, GOXL3 and possibly GOXL6 have similar biochemical activity to RUBY, whereas GOXL5 only weakly complemented and GOXL2 and GOXL4 showed no activity. Members of this protein family separated into four distinct clades prior to the divergence of the angiosperms. There have been recent duplications in Brassicaceae resulting in two closely related pairs of genes that have either retained similarity in expression (GOXL1 and GOXL6) or show expression divergence (GOXL3 and RUBY). Mutant phenotypes were not detected when these genes were disrupted, but their expression patterns suggest that these proteins may function in tissues that require mechanical reinforcements in the absence of lignification.
Collapse
Affiliation(s)
- Krešimir Šola
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, Noord-Holland 1098 XH, The Netherlands
| | - Gillian H Dean
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| | - Yi Li
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Sjaak van Schie B.V., Maasdijk, Schenkeldijk 8, Zuid-Holland 2676 LD, The Netherlands
| | - Julia Lohmann
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Mahsa Movahedan
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Burnaby Hospital, 3935 Kincaid St, Burnaby, British Columbia V5G 2X6, Canada
| | - Erin J Gilchrist
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Anandia Labs, 125-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| | - George W Haughn
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
11
|
Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not Just a Simple Sugar: Arabinose Metabolism and Function in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1791-1812. [PMID: 34129041 DOI: 10.1093/pcp/pcab087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/05/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.
Collapse
Affiliation(s)
- Alban Mariette
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Hee Sung Kang
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Joshua L Heazlewood
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Staffan Persson
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Center (CPSC), University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Berit Ebert
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| | - Edwin R Lampugnani
- School of BioSciences, University of Melbourne, Parkville, VIC 3170, Australia
| |
Collapse
|
12
|
Westermann J. Two Is Company, but Four Is a Party-Challenges of Tetraploidization for Cell Wall Dynamics and Efficient Tip-Growth in Pollen. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112382. [PMID: 34834745 PMCID: PMC8623246 DOI: 10.3390/plants10112382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 05/27/2023]
Abstract
Some cells grow by an intricately coordinated process called tip-growth, which allows the formation of long tubular structures by a remarkable increase in cell surface-to-volume ratio and cell expansion across vast distances. On a broad evolutionary scale, tip-growth has been extraordinarily successful, as indicated by its recurrent 're-discovery' throughout evolutionary time in all major land plant taxa which allowed for the functional diversification of tip-growing cell types across gametophytic and sporophytic life-phases. All major land plant lineages have experienced (recurrent) polyploidization events and subsequent re-diploidization that may have positively contributed to plant adaptive evolutionary processes. How individual cells respond to genome-doubling on a shorter evolutionary scale has not been addressed as elaborately. Nevertheless, it is clear that when polyploids first form, they face numerous important challenges that must be overcome for lineages to persist. Evidence in the literature suggests that tip-growth is one of those processes. Here, I discuss the literature to present hypotheses about how polyploidization events may challenge efficient tip-growth and strategies which may overcome them: I first review the complex and multi-layered processes by which tip-growing cells maintain their cell wall integrity and steady growth. I will then discuss how they may be affected by the cellular changes that accompany genome-doubling. Finally, I will depict possible mechanisms polyploid plants may evolve to compensate for the effects caused by genome-doubling to regain diploid-like growth, particularly focusing on cell wall dynamics and the subcellular machinery they are controlled by.
Collapse
Affiliation(s)
- Jens Westermann
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Universitätsstrasse 2, 8092 Zürich, Switzerland
| |
Collapse
|
13
|
Jaffri SRF, MacAlister CA. Sequential Deposition and Remodeling of Cell Wall Polymers During Tomato Pollen Development. FRONTIERS IN PLANT SCIENCE 2021; 12:703713. [PMID: 34386029 PMCID: PMC8354551 DOI: 10.3389/fpls.2021.703713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 06/09/2023]
Abstract
The cell wall of a mature pollen grain is a highly specialized, multilayered structure. The outer, sporopollenin-based exine provides protection and support to the pollen grain, while the inner intine, composed primarily of cellulose, is important for pollen germination. The formation of the mature pollen grain wall takes place within the anther with contributions of cell wall material from both the developing pollen grain as well as the surrounding cells of the tapetum. The process of wall development is complex; multiple cell wall polymers are deposited, some transiently, in a controlled sequence of events. Tomato (Solanum lycopersicum) is an important agricultural crop, which requires successful fertilization for fruit production as do many other members of the Solanaceae family. Despite the importance of pollen development for tomato, little is known about the detailed pollen gain wall developmental process. Here, we describe the structure of the tomato pollen wall and establish a developmental timeline of its formation. Mature tomato pollen is released from the anther in a dehydrated state and is tricolpate, with three long apertures without overlaying exine from which the pollen tube may emerge. Using histology and immunostaining, we determined the order in which key cell wall polymers were deposited with respect to overall pollen and anther development. Pollen development began in young flower buds when the premeiotic microspore mother cells (MMCs) began losing their cellulose primary cell wall. Following meiosis, the still conjoined microspores progressed to the tetrad stage characterized by a temporary, thick callose wall. Breakdown of the callose wall released the individual early microspores. Exine deposition began with the secretion of the sporopollenin foot layer. At the late microspore stage, exine deposition was completed and the tapetum degenerated. The pollen underwent mitosis to produce bicellular pollen; at which point, intine formation began, continuing through to pollen maturation. The entire cell wall development process was also punctuated by dynamic changes in pectin composition, particularly changes in methyl-esterified and de-methyl-esterified homogalacturonan.
Collapse
|
14
|
Cruz-Valderrama JE, Bernal-Gallardo JJ, Herrera-Ubaldo H, de Folter S. Building a Flower: The Influence of Cell Wall Composition on Flower Development and Reproduction. Genes (Basel) 2021; 12:genes12070978. [PMID: 34206830 PMCID: PMC8304806 DOI: 10.3390/genes12070978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Floral patterning is a complex task. Various organs and tissues must be formed to fulfill reproductive functions. Flower development has been studied, mainly looking for master regulators. However, downstream changes such as the cell wall composition are relevant since they allow cells to divide, differentiate, and grow. In this review, we focus on the main components of the primary cell wall-cellulose, hemicellulose, and pectins-to describe how enzymes involved in the biosynthesis, modifications, and degradation of cell wall components are related to the formation of the floral organs. Additionally, internal and external stimuli participate in the genetic regulation that modulates the activity of cell wall remodeling proteins.
Collapse
|
15
|
Takebe N, Nakamura A, Watanabe T, Miyashita A, Satoh S, Iwai H. Cell wall Glycine-rich Protein2 is involved in tapetal differentiation and pollen maturation. JOURNAL OF PLANT RESEARCH 2020; 133:883-895. [PMID: 32929552 DOI: 10.1007/s10265-020-01223-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 05/06/2023]
Abstract
The tapetum plays important roles in anther development by providing materials for pollen-wall formation and nutrients for pollen development. Here, we report the characterization of a male-sterile mutant of glycine-rich protein 2 (OsGRP2), which exhibits irregular cell division and dysfunction of the tapetum. GRP is a cellwall structural protein present in the cell walls of diverse plant species, but its function is unclear in pollen development. We found that few GRP genes are expressed in rice and thus focused on one highly expressed gene, OsGRP2. The tapetal cell walls of an OsGRP2 mutant did not thicken at the pollen mothercell stage, as a result, pollen maturation and fertility rate decreased. High OsGRP2 expression was detected in male-floral organs, and OsGRP2 was distributed in the tapetum. OsGRP2 participated in establishment of the cellwall network during early tapetum development. In conclusion, our results indicate that OsGRP2 plays important roles in the differentiation and function of the tapetum.
Collapse
Affiliation(s)
- Naomi Takebe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Tomomi Watanabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Aya Miyashita
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan.
| |
Collapse
|
16
|
Pieczywek PM, Cybulska J, Zdunek A. An Atomic Force Microscopy Study on the Effect of β-Galactosidase, α-L-Rhamnosidase and α-L-Arabinofuranosidase on the Structure of Pectin Extracted from Apple Fruit Using Sodium Carbonate. Int J Mol Sci 2020; 21:E4064. [PMID: 32517129 PMCID: PMC7312408 DOI: 10.3390/ijms21114064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
The enzyme driven changes in plant cell wall structure during fruit ripening result in debranching, depolymerization and solubilization of pectin polysaccharides, which has an effect in terms of the postharvest quality losses in fruit. Atomic force microscopy (AFM) has revealed that diluted alkali soluble pectins (DASP) from fruit and vegetables have an interesting tendency to self-assemble into regular structures. However, the mechanism is not yet fully understood. The current study is aimed at investigating the role of neutral sugars, namely galactose, rhamnose and arabinose in the formation of the branched structure of DASP. β-galactosidase, α-L-rhamnosidase and α-L-arabinofuranosidase enzymes were used for the treatment of DASP extracted from Golden Delicious apple flesh (Malus domestica cv. Golden Delicious). The effects of the selective degradation of pectic polysaccharides after 15, 30, 60, 90 and 120 min of incubation were observed using AFM. The α-L-rhamnosidase enzyme activity on pectin extracted with Na2CO3 did not cause any visible or measurable degradation of the molecular structure. The moderate effects of β-galactosidase enzymatic treatment suggested the possible role of galactose in the branching of DASP molecules deposited on mica. Data obtained for α-L-arabinofuranosidase indicated the crucial role of arabinose in the formation and preservation of the highly branched structure of the DASP fraction.
Collapse
Affiliation(s)
- Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20–270 Lublin, Poland; (J.C.); (A.Z.)
| | | | | |
Collapse
|
17
|
Ochoa-Jiménez VA, Berumen-Varela G, Burgara-Estrella A, Orozco-Avitia JA, Ojeda-Contreras ÁJ, Trillo-Hernández EA, Rivera-Domínguez M, Troncoso-Rojas R, Báez-Sañudo R, Datsenka T, Handa AK, Tiznado-Hernández ME. Functional analysis of tomato rhamnogalacturonan lyase gene Solyc11g011300 during fruit development and ripening. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:31-40. [PMID: 30212659 DOI: 10.1016/j.jplph.2018.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) is a domain of plant cell wall pectin. The rhamnogalacturonan lyase (RGL) enzyme (EC 4.2.2.23) degrades RG-I by cleaving the α-1,4 glycosidic bonds located between the l-rhamnose and d-galacturonic residues of the main chain. While RGL's biochemical mode of action is well known, its effects on plant physiology remain unclear. To investigate the role of the RGL enzyme in plants, we have expressed the Solyc11g011300 gene under a constitutive promoter (CaMV35S) in tomato cv. 'Ohio 8245' and evaluated the expression of this and other RGL genes, enzymatic activity and alterations in vegetative tissue, and tomato physiology in transformed lines compared to the positive control (plants harboring the pCAMBIA2301 vector) and the isogenic line. The highest expression levels of the Solyc11g011300, Solyc04g076630, and Solyc04g076660 genes were observed in leaves and roots and at 10 and 20 days after anthesis (DAA). Transgenic lines exhibited lower RGL activity in leaves and roots and during fruit ripening, whereas higher activity was observed at 10, 20, and 30 DAA than in the isogenic line and positive control. Both transgenic lines showed a lower number of seeds and fruits, higher root length, and less pollen germination percentage and viability. In red ripe tomatoes, transgenic fruits showed greater firmness, longer shelf life, and reduced shriveling than did the isogenic line. Additionally, a delay of one week in fruit ripening in transgenic fruits was also recorded. Altogether, our data demonstrate that the Solyc11g011300 gene participates in pollen tube germination, fruit firmness, and the fruit senescence phenomena that impact postharvest shelf life.
Collapse
Affiliation(s)
- Verónica-Alhelí Ochoa-Jiménez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico; Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Guillermo Berumen-Varela
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico; Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Alexel Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora, 83000, Mexico
| | - Jesús-Antonio Orozco-Avitia
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico
| | - Ángel-Javier Ojeda-Contreras
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico
| | - Eduardo-Antonio Trillo-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico
| | - Marisela Rivera-Domínguez
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico
| | - Reginaldo Báez-Sañudo
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico
| | - Tatsiana Datsenka
- Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Martín-Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km. 0.6, Apdo Postal 1735, Hermosillo, Sonora, 83304, Mexico.
| |
Collapse
|
18
|
Berumen-Varela G, Ochoa-Jiménez VA, Burgara-Estrella A, Trillo-Hernández EA, Ojeda-Contreras ÁJ, Orozco-Avitia A, Rivera-Domínguez M, Troncoso-Rojas R, Báez-Sañudo R, Datsenka T, Handa AK, Tiznado-Hernández ME. Functional analysis of a tomato (Solanum lycopersicum L.) rhamnogalacturonan lyase promoter. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:175-184. [PMID: 30121402 DOI: 10.1016/j.jplph.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
The enzyme rhamnogalacturonan lyase (RGL) cleaves α-1,4 glycosidic bonds located between rhamnose and galacturonic acid residues in the main chain of rhamnogalacturonan-I (RG-I), a component of the plant cell wall polymer pectin. Although the mode of action of RGL is well known, its physiological functions associated with fruit biology are less understood. Here, we generated transgenic tomato plants expressing the β-glucuronidase (GUS) reporter gene under the control of a -504 bp or a -776 bp fragment of the promoter of a tomato RGL gene, Solyc11g011300. GUS enzymatic activity and the expression levels of GUS and Solyc11g011300 were measured in a range of organs and fruit developmental stages. GUS staining was undetectable in leaves and roots, but high GUS enzymatic activity was detected in flowers and red ripe (RR) fruits. Maximal expression levels of Solyc11g011300 were detected at the RR developmental stage. GUS activity was 5-fold higher in flowers expressing GUS driven by the -504 bp RGL promoter fragment (RGFL3::GUS) than in the isogenic line, and 1.7-fold higher when GUS gene was driven by the -776 bp RGL promoter fragment (RGLF2::GUS) or the constitutive CaMV35S promoter. Quantitative real-time polymerase chain reaction analysis showed that the highest expression of GUS was in fruits at 40 days after anthesis, for both promoter fragments. The promoter of Solyc11g011300 is predicted to contain cis-acting elements, and to be active in pollen grains, pollen tubes, flowers and during tomato fruit ripening, suggesting that the Solyc11g011300 promoter is transcriptionally active and organ-specific.
Collapse
Affiliation(s)
- Guillermo Berumen-Varela
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México; Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Verónica-Alhelí Ochoa-Jiménez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México; Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Alexel Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, Sonora 83000, Mexico
| | - Eduardo-Antonio Trillo-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Ángel-Javier Ojeda-Contreras
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Antonio Orozco-Avitia
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Marisela Rivera-Domínguez
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Rosalba Troncoso-Rojas
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Reginaldo Báez-Sañudo
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México
| | - Tatsiana Datsenka
- Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Avtar K Handa
- Department of Horticulture and Landscape Architecture, Purdue University, 1165 Horticulture Building, West Lafayette, IN, 47907-1165, USA
| | - Martín-Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera a la Victoria Km 0.6, Hermosillo, Sonora 83304, México.
| |
Collapse
|
19
|
Laursen T, Stonebloom SH, Pidatala VR, Birdseye DS, Clausen MH, Mortimer JC, Scheller HV. Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:340-351. [PMID: 29418030 DOI: 10.1111/tpj.13860] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing β-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-β-l-Arap to galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.
Collapse
Affiliation(s)
- Tomas Laursen
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Solomon H Stonebloom
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Venkataramana R Pidatala
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Devon S Birdseye
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Mads H Clausen
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Jenny C Mortimer
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Grimplet J, Ibáñez S, Baroja E, Tello J, Ibáñez J. Phenotypic, Hormonal, and Genomic Variation Among Vitis vinifera Clones With Different Cluster Compactness and Reproductive Performance. FRONTIERS IN PLANT SCIENCE 2018; 9:1917. [PMID: 30666262 PMCID: PMC6330345 DOI: 10.3389/fpls.2018.01917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/10/2018] [Indexed: 05/09/2023]
Abstract
Previous studies showed that the number of berries is a major component of the compactness level of the grapevine clusters. Variation in number of fruits is regulated by events occurring in the fruitset, but also before during the flower formation and pollination, through factors like the initial number of flowers or the gametic viability. Therefore, the identification of the genetic bases of this variation would provide an invaluable knowledge of the grapevine reproductive development and useful tools for managing yield and cluster compactness. We performed the phenotyping of four clones (two compact and two loose clones) of the Tempranillo cultivar with reproducible different levels of cluster compactness over seasons. Measures of reproductive performance included flower number per inflorescence, berry number per cluster, fruitset, coulure, and millerandage indices. Besides, their levels of several hormones during the inflorescence and flower development were determined, and their transcriptomes were evaluated at critical time points (just before the start and at the end of flowering). For some key reproductive traits, like number of berries per cluster and number of seeds per berry, clones bearing loose clusters showed differences with the compact clones and also differed from each other, indicating that each one follows different paths to produce loose clusters. Variation between clones was observed for abscisic acid and gibberellins levels at particular development stages, and differences in GAs could be related to phenotypic differences. Likewise, various changes between clones were found at the transcriptomic level, mostly just before the start of flowering. Several of the differentially expressed genes between one of the loose clones and the compact clones are known to be over-expressed in pollen, and many of them were related to cell wall modification processes or to the phenylpropanoids metabolism. We also found polymorphisms between clones in candidate genes that could be directly involved in the variation of the compactness level.
Collapse
|
21
|
Amsbury S, Kirk P, Benitez-Alfonso Y. Emerging models on the regulation of intercellular transport by plasmodesmata-associated callose. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:105-115. [PMID: 29040641 DOI: 10.1093/jxb/erx337] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The intercellular transport of molecules through membranous channels that traverse the cell walls-so-called plasmodesmata-is of fundamental importance for plant development. Regulation of plasmodesmata aperture (and transport capacity) is mediated by changes in the flanking cell walls, mainly via the synthesis/degradation (turnover) of the (1,3)-β-glucan polymer callose. The role of callose in organ development and in plant environmental responses is well recognized, but detailed understanding of the mechanisms regulating its accumulation and its effects on the structure and permeability of the channels is still missing. We compiled information on the molecular components and signalling pathways involved in callose turnover at plasmodesmata and, more generally, on the structural and mechanical properties of (1,3)-β-glucan polymers in cell walls. Based on this revision, we propose models integrating callose, cell walls, and the regulation of plasmodesmata structure and intercellular communication. We also highlight new tools and interdisciplinary approaches that can be applied to gain further insight into the effects of modifying callose in cell walls and its consequences for intercellular signalling.
Collapse
Affiliation(s)
- Sam Amsbury
- Centre for Plant Science, School of Biology, University of Leeds, UK
| | - Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, UK
| | | |
Collapse
|
22
|
Huang JH, Kortstee A, Dees DC, Trindade LM, Visser RG, Gruppen H, Schols HA. Evaluation of both targeted and non-targeted cell wall polysaccharides in transgenic potatoes. Carbohydr Polym 2017; 156:312-321. [DOI: 10.1016/j.carbpol.2016.09.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
|
23
|
Kotake T, Yamanashi Y, Imaizumi C, Tsumuraya Y. Metabolism of L-arabinose in plants. JOURNAL OF PLANT RESEARCH 2016; 129:781-792. [PMID: 27220955 PMCID: PMC5897480 DOI: 10.1007/s10265-016-0834-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/31/2016] [Indexed: 05/07/2023]
Abstract
L-Arabinose (L-Ara) is a plant-specific sugar accounting for 5-10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). L-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of L-Ara and the metabolism of L-Ara-containing molecules in plants.
Collapse
Affiliation(s)
- Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Yukiko Yamanashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Chiemi Imaizumi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Yoichi Tsumuraya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
24
|
Stonebloom S, Ebert B, Xiong G, Pattathil S, Birdseye D, Lao J, Pauly M, Hahn MG, Heazlewood JL, Scheller HV. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans. BMC PLANT BIOLOGY 2016; 16:90. [PMID: 27091363 PMCID: PMC4836069 DOI: 10.1186/s12870-016-0780-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/13/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. RESULTS T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wild type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. CONCLUSIONS Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.
Collapse
Affiliation(s)
- Solomon Stonebloom
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Berit Ebert
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Guangyan Xiong
- />Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Sivakumar Pattathil
- />Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA
- />BioEnergy Science Center, University of Georgia, Athens, GA 30602-4712 USA
| | - Devon Birdseye
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Jeemeng Lao
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Markus Pauly
- />Energy Biosciences Institute, University of California, Berkeley, CA 94720 USA
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Michael G. Hahn
- />Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA
- />BioEnergy Science Center, University of Georgia, Athens, GA 30602-4712 USA
- />Department of Plant Biology, University of Georgia, Athens, GA 30602-4712 USA
| | - Joshua L. Heazlewood
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />ARC Centre of Excellence in Plant Cell Walls, School of Botany, The University of Melbourne, 3010 Melbourne, Victoria Australia
| | - Henrik Vibe Scheller
- />Joint BioEnergy Institute and Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- />Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
25
|
Shi J, Cui M, Yang L, Kim YJ, Zhang D. Genetic and Biochemical Mechanisms of Pollen Wall Development. TRENDS IN PLANT SCIENCE 2015; 20:741-753. [PMID: 26442683 DOI: 10.1016/j.tplants.2015.07.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/31/2015] [Indexed: 05/18/2023]
Abstract
The pollen wall is a specialized extracellular cell wall matrix that surrounds male gametophytes and plays an essential role in plant reproduction. Uncovering the mechanisms that control the synthesis and polymerization of the precursors of pollen wall components has been a major research focus in plant biology. We review current knowledge on the genetic and biochemical mechanisms underlying pollen wall development in eudicot model Arabidopsis thaliana and monocot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regulation are addressed. Current challenges and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Meihua Cui
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Li Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Department of Oriental Medicinal Biotechnology and Graduate School of Biotechnology, College of Life Science, Kyung Hee University, Youngin, 446-701, South Korea
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia.
| |
Collapse
|
26
|
Leroux O, Sørensen I, Marcus SE, Viane RLL, Willats WGT, Knox JP. Antibody-based screening of cell wall matrix glycans in ferns reveals taxon, tissue and cell-type specific distribution patterns. BMC PLANT BIOLOGY 2015; 15:56. [PMID: 25848828 PMCID: PMC4351822 DOI: 10.1186/s12870-014-0362-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND While it is kno3wn that complex tissues with specialized functions emerged during land plant evolution, it is not clear how cell wall polymers and their structural variants are associated with specific tissues or cell types. Moreover, due to the economic importance of many flowering plants, ferns have been largely neglected in cell wall comparative studies. RESULTS To explore fern cell wall diversity sets of monoclonal antibodies directed to matrix glycans of angiosperm cell walls have been used in glycan microarray and in situ analyses with 76 fern species and four species of lycophytes. All major matrix glycans were present as indicated by epitope detection with some variations in abundance. Pectic HG epitopes were of low abundance in lycophytes and the CCRC-M1 fucosylated xyloglucan epitope was largely absent from the Aspleniaceae. The LM15 XXXG epitope was detected widely across the ferns and specifically associated with phloem cell walls and similarly the LM11 xylan epitope was associated with xylem cell walls. The LM5 galactan and LM6 arabinan epitopes, linked to pectic supramolecules in angiosperms, were associated with vascular structures with only limited detection in ground tissues. Mannan epitopes were found to be associated with the development of mechanical tissues. We provided the first evidence for the presence of MLG in leptosporangiate ferns. CONCLUSIONS The data sets indicate that cell wall diversity in land plants is multifaceted and that matrix glycan epitopes display complex spatio-temporal and phylogenetic distribution patterns that are likely to relate to the evolution of land plant body plans.
Collapse
Affiliation(s)
- Olivier Leroux
- />Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000 Belgium
| | - Iben Sørensen
- />Department of Plant Biology and Biotechnology, Copenhagen University, Thorvaldsensvej 40, Frederiksberg, 1871 Denmark
- />Department of Plant Biology, Cornell University, Ithaca, NY 14853 USA
| | - Susan E Marcus
- />Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Ronnie LL Viane
- />Pteridology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent, B-9000 Belgium
| | - William GT Willats
- />Department of Plant Biology and Biotechnology, Copenhagen University, Thorvaldsensvej 40, Frederiksberg, 1871 Denmark
| | - J Paul Knox
- />Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
27
|
Song D, Sun J, Li L. Diverse roles of PtrDUF579 proteins in Populus and PtrDUF579-1 function in vascular cambium proliferation during secondary growth. PLANT MOLECULAR BIOLOGY 2014; 85:601-12. [PMID: 24899403 DOI: 10.1007/s11103-014-0206-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/22/2014] [Indexed: 05/09/2023]
Abstract
DUF579 (domain of unknown function 579) family proteins contain a DUF579 domain structure but vary greatly in their overall sequence similarity. Several DUF579 proteins have been found to play a role in cell wall biosynthesis in Arabidopsis, while DUF579 family genes have not yet been systematically investigated in Populus. In this study, the Populus DUF579 family proteins were found to be localized in different cell types and subcellular locations. The diverse expression patterns of the proteins indicate that they may perform different functions in Populus. Among the DUF579 family members, PtrDUF579-1 is found to be specifically expressed in vascular cambium zone cells where it is localized in the Golgi apparatus. Suppression of PtrDUF579-1 expression reduced plant height and stem diameter size. Cambium cell division and xylem tissue growth was inhibited while secondary cell wall formation was unchanged in PtrDUF579-1 suppressed plants. Cell walls analysis showed that the composition of the pectin fraction of the cambium cell wall was altered while other polysaccharides were not affected in PtrDUF579-1 suppressed plants. This observation suggest cambium expressed PtrDUF579-1 may affect cell wall biosynthesis and be involved in cambium cell proliferation in Populus. Overall, DUF579 family proteins play a diverse set of roles in Populus.
Collapse
Affiliation(s)
- Dongliang Song
- National Key Laboratory of Plant Molecular Genetics/Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | |
Collapse
|