1
|
Ding S, Alexander E, Liang H, Kulchar RJ, Singh R, Herzog RW, Daniell H, Leong KW. Synthetic and Biogenic Materials for Oral Delivery of Biologics: From Bench to Bedside. Chem Rev 2025; 125:4009-4068. [PMID: 40168474 DOI: 10.1021/acs.chemrev.4c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
The development of nucleic acid and protein drugs for oral delivery has lagged behind their production for conventional nonoral routes. Over the past decade, the evolution of DNA- and RNA-based technologies combined with the innovation of state-of-the-art delivery vehicles for nucleic acids has brought rapid advancements to the biopharmaceutical field. Nucleic acid therapies have the potential to achieve long-lasting effects, or even cures, by inhibiting or editing genes, which is not possible with conventional small-molecule drugs. However, challenges and limitations must be addressed before these therapies can provide cures for chronic conditions and rare diseases, rather than only offering temporary relief. Nucleic acids and proteins face premature degradation in the acidic, enzyme-rich stomach environment and are rapidly cleared by the liver. To overcome these challenges, various delivery vehicles have been developed to transport therapeutic compounds to the intestines, where the active compounds are released and gut microbiota and mucosal immune system also play an important role. This review provides a comprehensive overview of the promises and pitfalls associated with the oral route of administration of biologics, current delivery systems, applications of orally delivered therapeutics, and the challenges and considerations for translation of nucleic acid and protein therapeutics into clinical practice.
Collapse
Affiliation(s)
- Suwan Ding
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Huiyi Liang
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| | - Rachel J Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roland W Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, Pennsylvania 19104, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, 500 West 120th Street, New York, New York 10027, United States
| |
Collapse
|
2
|
Daniell H, Guo Y, Singh R, Karki U, Kulchar RJ, Wakade G, Pihlava JM, Khazaei H, Cohen GH. Debulking influenza and herpes simplex virus strains by a wide-spectrum anti-viral protein formulated in clinical grade chewing gum. Mol Ther 2025; 33:184-200. [PMID: 39663701 PMCID: PMC11764783 DOI: 10.1016/j.ymthe.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Lack of Herpes Simplex Virus (HSV) vaccine, low vaccination rates of Influenza viruses, waning immunity and viral transmission after vaccination underscore the need to reduce viral loads at their transmission sites. Oral virus transmission is several orders of magnitude higher than nasal transmission. Therefore, in this study, we evaluated neutralization of viruses using a natural viral trap protein (FRIL) formulated in clinical-grade chewing gum. FRIL is highly stable in the lablab bean powder (683 days) and in chewing gum (790 days), and fully functional (794 days) when stored at ambient temperature. They passed the bioburden test with no aerobic bacteria, yeasts/molds, with minimal moisture content (1.28-5.9%). Bean gum extracts trapped HSV-1/HSV-2 75-94% in a dose-dependent manner through virus self-aggregation. Mastication simulator released >50% release of FRIL within 15 min of chewing the bean gum. In plaque reduction assays, >95% neutralization of H1N1 and H3N2 required ∼40 mg/mL, HSV-1 160 mg/mL, and HSV-2 74 mg/mL of bean gum for 1,000 copies/mL virus particles. Therefore, a 2000 mg bean gum tablet has more than adequate potency for clinical evaluation and is safe with no detectable levels of glycosides. These observations augur well for evaluating bean gum in human clinical studies to minimize virus infection/transmission.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yuwei Guo
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahul Singh
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Uddhab Karki
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel J Kulchar
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geetanjali Wakade
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Hamid Khazaei
- Natural Resources Institute Finland (Luke), Helsinki, Finland; Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Gary H Cohen
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Han J, Zhang J, Hu L, Wang C, Wang S, Miao G. Chloroplast display of subunit vaccines and their efficacy via oral administration. Int J Biol Macromol 2024; 258:129125. [PMID: 38163512 DOI: 10.1016/j.ijbiomac.2023.129125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
As a safe and natural "capsule," plants have several advantages over mammals and microorganisms for the production of oral vaccines. In this study, we innovatively utilized the transmembrane region of the pea Translocase of chloroplast 34 (TOC34) protein to display two subunit vaccines, capsid protein VP2 of Porcine parvovirus (PPV) and the heat-labile enterotoxin B (LTB) of Escherichia coli, on the surface of chloroplasts. Unlike microbial display techniques, chloroplast display circumvents antigen degradation in the stomach while retaining the size characteristic of microorganisms. Additionally, a co-expressed peptide adjuvant, antimicrobial peptide protegin-1 (PG1), was used to enhance the strength of oral immunization. Immunohistochemistry and trypsin digestion of chloroplast surface proteins confirmed the successful localization of both antigens on the chloroplast surface. In stable transgenic tobacco plants, the expression level of VP2-TOC34 ranged from 0.21 to 6.83 μg/g FW, while LTB-TOC34 ranged from 2.42 to 10.04 μg/g FW. By contrasting the digestive characteristics of plant materials with different particle sizes, it was observed that plant materials with diameters around 1 mm exhibited more prominent advantages in terms of chloroplast release and antigen exposure compared to both larger and smaller particles. Oral immunization resulted in significantly increased levels of specific IgG and secretory IgA in the mice compared to the control, with similar effects observed between the groups receiving oral immunization alone and those receiving a combination of initial injection and subsequent oral immunization. Challenge experiments further demonstrated the effective protection against infection in mice using this approach. These findings highlight the potential of chloroplast display technology for the development of effective oral vaccines.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jifeng Zhang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Luya Hu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chengrun Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shunchang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China.
| |
Collapse
|
4
|
Menzies SK, Arinto-Garcia R, Amorim FG, Cardoso IA, Abada C, Crasset T, Durbesson F, Edge RJ, El-Kazzi P, Hall S, Redureau D, Stenner R, Boldrini-França J, Sun H, Roldão A, Alves PM, Harrison RA, Vincentelli R, Berger I, Quinton L, Casewell NR, Schaffitzel C. ADDovenom: Thermostable Protein-Based ADDomer Nanoparticles as New Therapeutics for Snakebite Envenoming. Toxins (Basel) 2023; 15:673. [PMID: 38133177 PMCID: PMC10747859 DOI: 10.3390/toxins15120673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Snakebite envenoming can be a life-threatening medical emergency that requires prompt medical intervention to neutralise the effects of venom toxins. Each year up to 138,000 people die from snakebites and threefold more victims suffer life-altering disabilities. The current treatment of snakebite relies solely on antivenom-polyclonal antibodies isolated from the plasma of hyperimmunised animals-which is associated with numerous deficiencies. The ADDovenom project seeks to deliver a novel snakebite therapy, through the use of an innovative protein-based scaffold as a next-generation antivenom. The ADDomer is a megadalton-sized, thermostable synthetic nanoparticle derived from the adenovirus penton base protein; it has 60 high-avidity binding sites to neutralise venom toxins. Here, we outline our experimental strategies to achieve this goal using state-of-the-art protein engineering, expression technology and mass spectrometry, as well as in vitro and in vivo venom neutralisation assays. We anticipate that the approaches described here will produce antivenom with unparalleled efficacy, safety and affordability.
Collapse
Affiliation(s)
- Stefanie K. Menzies
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Raquel Arinto-Garcia
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernanda Gobbi Amorim
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Iara Aimê Cardoso
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Camille Abada
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Thomas Crasset
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Fabien Durbesson
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Rebecca J. Edge
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Priscila El-Kazzi
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Sophie Hall
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Damien Redureau
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Richard Stenner
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Johara Boldrini-França
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Huan Sun
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Technológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, 13009 Marseille, France
| | - Imre Berger
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock’s Close, Bristol BS8 1TS, UK
| | - Loïc Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, Allée du six Aout 11, Quartier Agora, Liège Université, 4000 Liège, Belgium
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Ehsasatvatan M, Kohnehrouz BB. The lyophilized chloroplasts store synthetic DARPin G3 as bioactive encapsulated organelles. J Biol Eng 2023; 17:63. [PMID: 37798746 PMCID: PMC10557345 DOI: 10.1186/s13036-023-00383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/02/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The high cost of fermentation, purification, cold storage and transportation, short shelf life, and sterile delivery methods of biopharmaceuticals, is a matter for producers and consumers as well. Since the FDA has now approved plant cells for large-scale, cost-effective biopharmaceutical production, the isolation and lyophilization of transplastomic chloroplasts can cover concerns about limitations. DARPins are engineered small single-domain proteins that have been selected to bind to HER2 with high affinity and specificity. HER2 is an oncogene involved in abnormal cell growth in some cancers and the target molecule for cancer immunotherapy. RESULTS In this study, we reported the prolonged stability and functionality of DARPin G3 in lyophilized transplastomic tobacco leaves and chloroplasts. Western blot analysis of lyophilized leaves and chloroplasts stored at room temperature for up to nine months showed that the DARPin G3 protein was stable and preserved proper folding. Lyophilization of leaves and isolated chloroplasts increased DARPin G3 protein concentrations by 16 and 32-fold, respectively. The HER2-binding assay demonstrated that the chloroplast-made DARPin G3 can maintain its stability and binding activity without any affinity drop in lyophilized leaf materials throughout this study for more than nine months at room temperature. CONCLUSION Lyophilization of chloroplasts expressing DARPin G3 would further reduce costs and simplify downstream processing, purification, and storage. Compressed packages of lyophilized chloroplasts were much more effective than lyophilized transplastomic leaves considering occupied space and downstream extraction and purification of DARPin G3 after nine months. These methods facilitate any relevant formulation practices for these compounds to meet any demand-oriented needs.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| |
Collapse
|
6
|
Kaldis A, Uddin MS, Guluarte JO, Martin C, Alexander TW, Menassa R. Development of a plant-based oral vaccine candidate against the bovine respiratory pathogen Mannheimia haemolytica. FRONTIERS IN PLANT SCIENCE 2023; 14:1251046. [PMID: 37790785 PMCID: PMC10542578 DOI: 10.3389/fpls.2023.1251046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 10/05/2023]
Abstract
Bovine respiratory disease (BRD) affects feedlot cattle across North America, resulting in economic losses due to animal treatment and reduced performance. In an effort to develop a vaccine candidate targeting a primary bacterial agent contributing to BRD, we produced a tripartite antigen consisting of segments of the virulence factor Leukotoxin A (LktA) and lipoprotein PlpE from Mannheimia haemolytica, fused to a cholera toxin mucosal adjuvant (CTB). This recombinant subunit vaccine candidate was expressed in the leaves of Nicotiana benthamiana plants, with accumulation tested in five subcellular compartments. The recombinant protein was found to accumulate highest in the endoplasmic reticulum, but targeting to the chloroplast was employed for scaling up production due the absence of post-translational modification while still producing feasible levels. Leaves were freeze dried, then orally administered to mice to determine its immunogenicity. Sera from mice immunized with leaf tissue expressing the recombinant antigen contained IgG antibodies, specifically recognizing both LktA and PlpE. These mice also had a mucosal immune response to the CTB+LktA+PlpE protein as measured by the presence of LktA- and PlpE-specific IgA antibodies in lung and fecal material. Moreover, the antigen remained stable at room temperature with limited deterioration for up to one year when stored as lyophilized plant material. This study demonstrated that a recombinant antigen expressed in plant tissue elicited both humoral and mucosal immune responses when fed to mice, and warrants evaluation in cattle.
Collapse
Affiliation(s)
- Angelo Kaldis
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jose Ortiz Guluarte
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Coby Martin
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rima Menassa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
7
|
Wang Y, Demirer GS. Synthetic biology for plant genetic engineering and molecular farming. Trends Biotechnol 2023; 41:1182-1198. [PMID: 37012119 DOI: 10.1016/j.tibtech.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Many efforts have been put into engineering plants to improve crop yields and stress tolerance and boost the bioproduction of valuable molecules. Yet, our capabilities are still limited due to the lack of well-characterized genetic building blocks and resources for precise manipulation and given the inherently challenging properties of plant tissues. Advancements in plant synthetic biology can overcome these bottlenecks and release the full potential of engineered plants. In this review, we first discuss the recently developed plant synthetic elements from single parts to advanced circuits, software, and hardware tools expediting the engineering cycle. Next, we survey the advancements in plant biotechnology enabled by these recent resources. We conclude the review with outstanding challenges and future directions of plant synthetic biology.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gozde S Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Kwong KWY, Xin Y, Lai NCY, Sung JCC, Wu KC, Hamied YK, Sze ETP, Lam DMK. Oral Vaccines: A Better Future of Immunization. Vaccines (Basel) 2023; 11:1232. [PMID: 37515047 PMCID: PMC10383709 DOI: 10.3390/vaccines11071232] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Oral vaccines are gaining more attention due to their ease of administration, lower invasiveness, generally greater safety, and lower cost than injectable vaccines. This review introduces certified oral vaccines for adenovirus, recombinant protein-based, and transgenic plant-based oral vaccines, and their mechanisms for inducing an immune response. Procedures for regulatory approval and clinical trials of injectable and oral vaccines are also covered. Challenges such as instability and reduced efficacy in low-income countries associated with oral vaccines are discussed, as well as recent developments, such as Bacillus-subtilis-based and nanoparticle-based delivery systems that have the potential to improve the effectiveness of oral vaccines.
Collapse
Affiliation(s)
- Keith Wai-Yeung Kwong
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Ying Xin
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | - Nelson Cheuk-Yin Lai
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Johnny Chun-Chau Sung
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
- Oristry BioTech (HK) Limited, Hong Kong, China
- Theratide BioTech (HK) Limited, Hong Kong, China
| | - Kam-Chau Wu
- Research Department, DreamTec Cytokines Limited, Hong Kong, China
| | | | - Eric Tung-Po Sze
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China
| | - Dominic Man-Kit Lam
- DrD Novel Vaccines Limited, Hong Kong, China
- Torsten Wiesel International Research Institute, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Singh R, Lin S, Nair SK, Shi Y, Daniell H. Oral booster vaccine antigen-Expression of full-length native SARS-CoV-2 spike protein in lettuce chloroplasts. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:887-889. [PMID: 36577691 PMCID: PMC9880656 DOI: 10.1111/pbi.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 05/04/2023]
Affiliation(s)
- Rahul Singh
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shina Lin
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Smruti K. Nair
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Yao Shi
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
10
|
Winckler LI, Dissmeyer N. Molecular determinants of protein half-life in chloroplasts with focus on the Clp protease system. Biol Chem 2023; 404:499-511. [PMID: 36972025 DOI: 10.1515/hsz-2022-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Abstract
Proteolysis is an essential process to maintain cellular homeostasis. One pathway that mediates selective protein degradation and which is in principle conserved throughout the kingdoms of life is the N-degron pathway, formerly called the ‘N-end rule’. In the cytosol of eukaryotes and prokaryotes, N-terminal residues can be major determinants of protein stability. While the eukaryotic N-degron pathway depends on the ubiquitin proteasome system, the prokaryotic counterpart is driven by the Clp protease system. Plant chloroplasts also contain such a protease network, which suggests that they might harbor an organelle specific N-degron pathway similar to the prokaryotic one. Recent discoveries indicate that the N-terminal region of proteins affects their stability in chloroplasts and provides support for a Clp-mediated entry point in an N-degron pathway in plastids. This review discusses structure, function and specificity of the chloroplast Clp system, outlines experimental approaches to test for an N-degron pathway in chloroplasts, relates these aspects into general plastid proteostasis and highlights the importance of an understanding of plastid protein turnover.
Collapse
Affiliation(s)
- Lioba Inken Winckler
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| | - Nico Dissmeyer
- Department of Plant Physiology and Protein Metabolism Laboratory, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
- Center of Cellular Nanoanalytics (CellNanOs), Barbarastrasse 11, D-49076 Osnabruck, Germany
- Faculty of Biology, University of Osnabruck, Barbarastrasse 11, D-49076 Osnabruck, Germany
| |
Collapse
|
11
|
Peng R, Zhang W, Wang Y, Deng Y, Wang B, Gao J, Li Z, Wang L, Fu X, Xu J, Han H, Tian Y, Yao Q. Genetic engineering of complex feed enzymes into barley seed for direct utilization in animal feedstuff. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:560-573. [PMID: 36448454 PMCID: PMC9946151 DOI: 10.1111/pbi.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff. We co-expressed three commonly used feed enzymes (phytase, β-glucanase, and xylanase) in barley seeds using the Agrobacterium-mediated transformation method and generated a new barley germplasm. The results showed that these enzymes were stable and had no effect on the development of the seeds. Supplementation of the basal diet of laying hens with only 8% of enzyme-containing seeds decreased the quantities of indigestible carbohydrates, improved the availability of phosphorus, and reduced the impact of animal production on the environment to an extent similar to directly adding exogenous enzymes to the feed. Feeding enzyme-containing seeds to layers significantly increased the strength of the eggshell and the weight of the eggs by 10.0%-11.3% and 5.6%-7.7% respectively. The intestinal microbiota obtained from layers fed with enzyme-containing seeds was altered compared to controls and was dominated by Alispes and Rikenella. Therefore, the transgenic barley seeds produced in this study can be used as an ideal feedstuff for use in animal feed.
Collapse
Affiliation(s)
- Ri‐He Peng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Wen‐Hui Zhang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yu Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Dong Deng
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Bo Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jian‐Jie Gao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Zhen‐Jun Li
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Li‐Juan Wang
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Xiao‐Yan Fu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Jing Xu
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Hong‐Juan Han
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Yong‐Sheng Tian
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| | - Quan‐Hong Yao
- Biotechnology Research Institute of Shanghai Academy of Agricultural SciencesShanghai Key Laboratory of Agricultural Genetics and BreedingShanghaiChina
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified OrganismsMinistry of Agriculture and Rural AffairsShanghaiChina
| |
Collapse
|
12
|
Bravo-Vázquez LA, Mora-Hernández EO, Rodríguez AL, Sahare P, Bandyopadhyay A, Duttaroy AK, Paul S. Current Advances of Plant-Based Vaccines for Neurodegenerative Diseases. Pharmaceutics 2023; 15:711. [PMID: 36840033 PMCID: PMC9963606 DOI: 10.3390/pharmaceutics15020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Erick Octavio Mora-Hernández
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
| | - Alma L. Rodríguez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla, Querétaro 76230, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
13
|
Guo Z, Li B, Du J, Shen F, Zhao Y, Deng Y, Kuang Z, Tao Y, Wan M, Lu X, Wang D, Wang Y, Han Y, Wei J, Li L, Guo X, Zhao C, Yang X. LettuceGDB: The community database for lettuce genetics and omics. PLANT COMMUNICATIONS 2023; 4:100425. [PMID: 35964156 PMCID: PMC9860171 DOI: 10.1016/j.xplc.2022.100425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 05/17/2023]
Abstract
As a globally popular leafy vegetable and a representative plant of the Asteraceae family, lettuce has great economic and academic significance. In the last decade, high-throughput sequencing, phenotyping, and other multi-omics data in lettuce have accumulated on a large scale, thus increasing the demand for an integrative lettuce database. Here, we report the establishment of a comprehensive lettuce database, LettuceGDB (https://www.lettucegdb.com/). As an omics data hub, the current LettuceGDB includes two reference genomes with detailed annotations; re-sequencing data from over 1000 lettuce varieties; a collection of more than 1300 worldwide germplasms and millions of accompanying phenotypic records obtained with manual and cutting-edge phenomics technologies; re-analyses of 256 RNA sequencing datasets; a complete miRNAome; extensive metabolite information for representative varieties and wild relatives; epigenetic data on the genome-wide chromatin accessibility landscape; and various lettuce research papers published in the last decade. Five hierarchically accessible functions (Genome, Genotype, Germplasm, Phenotype, and O-Omics) have been developed with a user-friendly interface to enable convenient data access. Eight built-in tools (Assembly Converter, Search Gene, BLAST, JBrowse, Primer Design, Gene Annotation, Tissue Expression, Literature, and Data) are available for data downloading and browsing, functional gene exploration, and experimental practice. A community forum is also available for information sharing, and a summary of current research progress on different aspects of lettuce is included. We believe that LettuceGDB can be a comprehensive functional database amenable to data mining and database-driven exploration, useful for both scientific research and lettuce breeding.
Collapse
Affiliation(s)
- Zhonglong Guo
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China; College of Biology and the Environment, Nanjing Forestry University, Nanjing 510275, P.R. China
| | - Bo Li
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Jianjun Du
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China
| | - Fei Shen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yongxin Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yang Deng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Zheng Kuang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China
| | - Miaomiao Wan
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China
| | - Xianju Lu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China
| | - Dong Wang
- WeiRan Biotech, Beijing 100085, P.R. China
| | - Ying Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China
| | - Yingyan Han
- Beijing Key Laboratory of New Technology in Agricultural Application, Beijing University of Agriculture, Beijing 102206, P.R. China
| | - Jianhua Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences and School of Advanced Agricultural Sciences, Peking University, Beijing 100871, P.R. China
| | - Xinyu Guo
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China.
| | - Chunjiang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Lab of Digital Plant, Beijing Research Center for Information Technology in Agriculture, Beijing 100097, P.R. China.
| | - Xiaozeng Yang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R. China; Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Agro-biotechnology Research Center, Beijing 100097, P.R. China.
| |
Collapse
|
14
|
Zhang L, Xu W, Ma X, Sun X, Fan J, Wang Y. Virus-like Particles as Antiviral Vaccine: Mechanism, Design, and Application. BIOTECHNOL BIOPROC E 2023; 28:1-16. [PMID: 36627930 PMCID: PMC9817464 DOI: 10.1007/s12257-022-0107-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/09/2023]
Abstract
Virus-like particles (VLPs) are viral structural protein that are noninfectious as they do not contain viral genetic materials. They are safe and effective immune stimulators and play important roles in vaccine development because of their intrinsic immunogenicity to induce cellular and humoral immune responses. In the design of antiviral vaccine, VLPs based vaccines are appealing multifunctional candidates with the advantages such as self-assembling nanoscaled structures, repetitive surface epitopes, ease of genetic and chemical modifications, versatility as antigen presenting platforms, intrinsic immunogenicity, higher safety profile in comparison with live-attenuated vaccines and inactivated vaccines. In this review, we discuss the mechanism of VLPs vaccine inducing cellular and humoral immune responses. We outline the impact of size, shape, surface charge, antigen presentation, genetic and chemical modification, and expression systems when constructing effective VLPs based vaccines. Recent applications of antiviral VLPs vaccines and their clinical trials are summarized.
Collapse
Affiliation(s)
- Lei Zhang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Wen Xu
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Xi Ma
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - XiaoJing Sun
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - JinBo Fan
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| | - Yang Wang
- Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Department of Basic Medicine, Xi'an Medical University, Xi'an, 710021, Shaanxi China
| |
Collapse
|
15
|
Mathew M, Thomas J. Tobacco-Based Vaccines, Hopes, and Concerns: A Systematic Review. Mol Biotechnol 2022:10.1007/s12033-022-00627-5. [PMID: 36528727 PMCID: PMC9759281 DOI: 10.1007/s12033-022-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Emerging infectious diseases have vigorously devastated the global economy and health sector; cost-effective plant-based vaccines (PBV) can be the potential solution to withstand the current health economic crisis. The prominent role of tobacco as an efficient expression system for PBV has been well-established for decades, through this review we highlight the importance of tobacco-based vaccines (TBV) against evolving infectious diseases in humans. Studies focusing on the use of TBV for human infectious diseases were searched in PubMed, Google Scholar, and science direct from 1995 to 2021 using the keywords Tobacco-based vaccines OR transgenic tobacco OR Nicotiana benthamiana vaccines AND Infectious diseases or communicable diseases. We carried out a critical review of the articles and studies that fulfilled the eligibility criteria and were included in this review. Of 976 studies identified, only 63 studies fulfilling the eligibility criteria were included, which focused on either the in vitro, in vivo, or clinical studies on TBV for human infectious diseases. Around 43 in vitro studies of 23 different infectious pathogens expressed in tobacco-based systems were identified and 23 in vivo analysis studies were recognized to check the immunogenicity of vaccine candidates while only 10 of these were subjected to clinical trials. Viral infectious pathogens were studied more than bacterial pathogens. From our review, it was evident that TBV can be an effective health strategy to combat the emerging viral infectious diseases which are very difficult to manage with the current health facilities. The timely administration of cost-effective TBV can prevent the outburst of viral infections, thereby can protect the global healthcare system to a greater extent.
Collapse
Affiliation(s)
- Mintu Mathew
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Kochi, Kerala India
| |
Collapse
|
16
|
Ehsasatvatan M, Kohnehrouz BB, Gholizadeh A, Ofoghi H, Shanehbandi D. The production of the first functional antibody mimetic in higher plants: the chloroplast makes the DARPin G3 for HER2 imaging in oncology. Biol Res 2022; 55:32. [PMID: 36274167 PMCID: PMC9590205 DOI: 10.1186/s40659-022-00400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Designed mimetic molecules are attractive tools in biopharmaceuticals and synthetic biology. They require mass and functional production for the assessment of upcoming challenges in the near future. The DARPin family is considered a mimetic pharmaceutical peptide group with high affinity binding to specific targets. DARPin G3 is designed to bind to the HER2 (human epidermal growth factor receptor 2) tyrosine kinase receptor. Overexpression of HER2 is common in some cancers, including breast cancer, and can be used as a prognostic and predictive tool for cancer. The chloroplasts are cost-effective alternatives, equal to, and sometimes better than, bacterial, yeast, or mammalian expression systems. This research examined the possibility of the production of the first antibody mimetic, DARPin G3, in tobacco chloroplasts for HER2 imaging in oncology. Results The chloroplast specific DARPin G3 expression cassette was constructed and transformed into N. tabacum chloroplasts. PCR and Southern blot analysis confirmed integration of transgenes as well as chloroplastic and cellular homoplasmy. The Western blot analysis and ELISA confirmed the production of DARPin G3 at the commercial scale and high dose with the rate of 20.2% in leaf TSP and 33.7% in chloroplast TSP. The functional analysis by ELISA confirmed the binding of IMAC purified chloroplast-made DARPin G3 to the extracellular domain of the HER2 receptor with highly effective picomolar affinities. The carcinoma cellular studies by flow cytometry and immunofluorescence microscopy confirmed the correct functioning by the specific binding of the chloroplast-made DARPin G3 to the HER2 receptor on the surface of HER2-positive cancer cell lines. Conclusion The efficient functional bioactive production of DARPin G3 in chloroplasts led us to introduce plant chloroplasts as the site of efficient production of the first antibody mimetic molecules. This report, as the first case of the cost-effective production of mimetic molecules, enables researchers in pharmaceuticals, synthetic biology, and bio-molecular engineering to develop tool boxes by producing new molecular substitutes for diverse purposes.
Collapse
|
17
|
Bolaños-Martínez OC, Strasser R. Plant-made poliovirus vaccines - Safe alternatives for global vaccination. FRONTIERS IN PLANT SCIENCE 2022; 13:1046346. [PMID: 36340406 PMCID: PMC9630729 DOI: 10.3389/fpls.2022.1046346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Human polioviruses are highly infectious viruses that are spread mainly through the fecal-oral route. Infection of the central nervous system frequently results in irreversible paralysis, a disease called poliomyelitis. Children under five years are mainly affected if they have not acquired immunity through natural infection or via vaccination. Current polio vaccines comprise the injectable inactivated polio vaccine (IPV, also called the Salk vaccine) and the live-attenuated oral polio vaccine (OPV, also called the Sabin vaccine). The main limitations of the IPV are the reduced protection at the intestinal mucosa, the site of virus replication, and the high costs for manufacturing due to use of live viruses. While the OPV is more effective and stimulates mucosal immunity, it is manufactured using live-attenuated strains that can revert into pathogenic viruses resulting in major safety concerns and vaccine-derived outbreaks. During the last fifteen years, plant-based poliovirus vaccines have been explored by several groups as a safe and low-cost alternative, and promising results in protection against challenges with viruses and induction of neutralizing antibodies have been obtained. However, low yields and a high frequency in dose administration highlight the need for improvements in polioviral antigen production. In this review, we provide insights into recent efforts to develop plant-made poliovirus candidates, with an emphasis on strategies to optimize the production of viral antigens.
Collapse
Affiliation(s)
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
18
|
Yokoyama A, Oiwa S, Matsui T, Sawada K, Tasaka Y, Matsumura T. Energy-efficient production of vaccine protein against porcine edema disease from transgenic lettuce (Lactuca sativa L.). Sci Rep 2022; 12:15951. [PMID: 36153428 PMCID: PMC9509315 DOI: 10.1038/s41598-022-19491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/30/2022] [Indexed: 11/14/2022] Open
Abstract
The development of functional protein production systems using transgenic plants as hosts has been rapidly progressing in recent years. Lettuce (Lactuca sativa L.) has been studied as one such host, and it has been reported that the biomass of lettuce per area and target protein expression level can be increased by optimizing the cultivation conditions. Therefore, we investigated methods to minimize the input light energy per target protein to reduce production costs. Herein, we examined the yield of a nontoxic B subunit of Stx2e (Stx2eB) from transgenic lettuce under various cultivation conditions. Stx2eB acts as a vaccine against swine edema disease. The effects of photon flux densities (PPFDs), photoperiod, and light source on Stx2eB production were examined and the findings suggested that 400 μmol m-2 s-1, 24 h, and white LED lamps, respectively, contributed to energy-efficient Stx2eB production. In addition, Stx2eB was produced 1.4 times more efficiently per unit area time using a high plant density (228.5 plants m-2) than a common density (30.4 plants m-2). The findings of the present study can facilitate the development of energy-efficient and low-cost production processes for vaccine protein production, considering temporal and spatial perspectives.
Collapse
Affiliation(s)
- Asuka Yokoyama
- Innovation Strategy and Carbon Neutral Transformation Department, Idemitsu Kosan Co., Ltd., 1-2-1, Otemachi, Chiyoda-Ku, Tokyo, Japan.
| | - Seika Oiwa
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Takeshi Matsui
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Kazutoshi Sawada
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd., 1280 Kamiizumi, Sodegaura-Shi, Chiba, 299-0293, Japan
| | - Yasushi Tasaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, 062-8517, Japan
| |
Collapse
|
19
|
Chloroplast Engineering: Fundamental Insights and Its Application in Amelioration of Environmental Stress. Appl Biochem Biotechnol 2022; 195:2463-2482. [PMID: 35484466 DOI: 10.1007/s12010-022-03930-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
Abstract
Chloroplasts are specialized organelle that are responsible for converting light energy to chemical energy, thereby driving the carbon dioxide fixation. Apart from photosynthesis, chloroplast is the site for essential cellular processes that determine the plant adaptation to changing environment. Owing to the presence of their own expression system, it provides an optimum platform for engineering valued traits as well as site for synthesis of bio-compounds. Advancements in technology have further enhanced the scope of using chloroplast as a multifaceted tool for the biotechnologist to develop stress-tolerant plants and ameliorate environmental stress. Focusing on chloroplast biotechnology, this review discusses the advances in chloroplast engineering and its application in enhancing plant adaptation and resistance to environmental stress and the development of new bioproducts and processes. This is accomplished through analysis of its biogenesis and physiological processes, highlighting the chloroplast engineering and recent developments in chloroplast biotechnology. In the first part of the review, the evolution and principles of structural organization and physiology of chloroplast are discussed. In the second part, the chief methods and mechanisms involved in chloroplast transformation are analyzed. The last part represents an updated analysis of the application of chloroplast engineering in crop improvement and bioproduction of industrial and health compounds.
Collapse
|
20
|
Gerszberg A, Hnatuszko-Konka K. Compendium on Food Crop Plants as a Platform for Pharmaceutical Protein Production. Int J Mol Sci 2022; 23:3236. [PMID: 35328657 PMCID: PMC8951019 DOI: 10.3390/ijms23063236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in crop biotechnology related to the availability of molecular tools and methods developed for transformation and regeneration of specific plant species have been observed. As a consequence, the interest in plant molecular farming aimed at producing the desired therapeutic proteins has significantly increased. Since the middle of the 1980s, recombinant pharmaceuticals have transformed the treatment of many serious diseases and nowadays are used in all branches of medicine. The available systems of the synthesis include wild-type or modified mammalian cells, plants or plant cell cultures, insects, yeast, fungi, or bacteria. Undeniable benefits such as well-characterised breeding conditions, safety, and relatively low costs of production make plants an attractive yet competitive platform for biopharmaceutical production. Some of the vegetable plants that have edible tubers, fruits, leaves, or seeds may be desirable as inexpensive bioreactors because these organs can provide edible vaccines and thus omit the purification step of the final product. Some crucial facts in the development of plant-made pharmaceuticals are presented here in brief. Although crop systems do not require more strictly dedicated optimization of methodologies at any stages of the of biopharmaceutical production process, here we recall the complete framework of such a project, along with theoretical background. Thus, a brief review of the advantages and disadvantages of different systems, the principles for the selection of cis elements for the expression cassettes, and available methods of plant transformation, through to the protein recovery and purification stage, are all presented here. We also outline the achievements in the production of biopharmaceuticals in economically important crop plants and provide examples of their clinical trials and commercialization.
Collapse
Affiliation(s)
- Aneta Gerszberg
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Katarzyna Hnatuszko-Konka
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
21
|
Occhialini A, Pfotenhauer AC, Li L, Harbison SA, Lail AJ, Burris JN, Piasecki C, Piatek AA, Daniell H, Stewart CN, Lenaghan SC. Mini-synplastomes for plastid genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:360-373. [PMID: 34585834 PMCID: PMC8753362 DOI: 10.1111/pbi.13717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.
Collapse
Affiliation(s)
- Alessandro Occhialini
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Alexander C. Pfotenhauer
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Li Li
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | - Stacee A. Harbison
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Andrew J. Lail
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jason N. Burris
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| | | | | | - Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - C. Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Scott C. Lenaghan
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
| |
Collapse
|
22
|
Monreal-Escalante E, Ramos-Vega A, Angulo C, Bañuelos-Hernández B. Plant-Based Vaccines: Antigen Design, Diversity, and Strategies for High Level Production. Vaccines (Basel) 2022; 10:100. [PMID: 35062761 PMCID: PMC8782010 DOI: 10.3390/vaccines10010100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/25/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022] Open
Abstract
Vaccines for human use have conventionally been developed by the production of (1) microbial pathogens in eggs or mammalian cells that are then inactivated, or (2) by the production of pathogen proteins in mammalian and insect cells that are purified for vaccine formulation, as well as, more recently, (3) by using RNA or DNA fragments from pathogens. Another approach for recombinant antigen production in the last three decades has been the use of plants as biofactories. Only have few plant-produced vaccines been evaluated in clinical trials to fight against diseases, of which COVID-19 vaccines are the most recent to be FDA approved. In silico tools have accelerated vaccine design, which, combined with transitory antigen expression in plants, has led to the testing of promising prototypes in pre-clinical and clinical trials. Therefore, this review deals with a description of immunoinformatic tools and plant genetic engineering technologies used for antigen design (virus-like particles (VLP), subunit vaccines, VLP chimeras) and the main strategies for high antigen production levels. These key topics for plant-made vaccine development are discussed and perspectives are provided.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
- CONACYT—Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico
| | - Abel Ramos-Vega
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, Instituto PoliItécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, BCS, Mexico; (A.R.-V.); (C.A.)
| | - Bernardo Bañuelos-Hernández
- Escuela de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, Leon 37150, GTO, Mexico
| |
Collapse
|
23
|
Debnath N, Thakur M, Khushboo, Negi NP, Gautam V, Kumar Yadav A, Kumar D. Insight of oral vaccines as an alternative approach to health and disease management: An innovative intuition and challenges. Biotechnol Bioeng 2021; 119:327-346. [PMID: 34755343 DOI: 10.1002/bit.27987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Vaccination is the most suitable and persuasive healthcare program for the prohibition of various deadly diseases. However, the higher production cost and purification strategies are out of reach for the developing nations. In this scenario, development of edible vaccine turns out to be the most promising alternative for remodeling the pharmaceutical industry with reduced production and purification costs. Generally, oral route of vaccination is mostly preferred due to its safety, compliance, low manufacturing cost and most importantly the ability to induce immunity in both systemic and mucosal sites. Genetically modified microorganisms and plants could efficiently be used as vehicles for edible vaccines. Edible vaccines are supposed to reduce the risk associated with traditional vaccines. Currently, oral vaccines are available in the market for several viral and bacterial diseases like cholera, hepatitis B, malaria, rabies etc. Herein, the review focuses on the breakthrough events in the area of edible vaccines associated with dietary microbes and plants for better control over diseases.
Collapse
Affiliation(s)
- Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neelam P Negi
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Vibhav Gautam
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar Yadav
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir (UT), India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
24
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
25
|
Stanbekova G, Beisenov D, Nizkorodova A, Iskakov B, Warzecha H. Production of the sheep pox virus structural protein SPPV117 in tobacco chloroplasts. Biotechnol Lett 2021; 43:1475-1485. [PMID: 33797655 PMCID: PMC8017516 DOI: 10.1007/s10529-021-03117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE A chloroplast transgenic approach was assessed in order to produce a structural protein SPPV117 of sheep pox virus in Nicotiana tabacum for the future development of a plant-based subunit vaccine against sheep pox. RESULTS Two DNA constructs containing SPPV117 coding sequence under the control of chloroplast promoter and terminator of psbA gene or rrn promoter and rbcL terminator were designed and inserted into the chloroplast genome by a biolistic method. The transgenic plants were selected via PCR analysis. Northern and Western blot analysis showed expression of the transgene at transcriptional and translational levels, respectively. The recombinant protein accumulated to about 0.3% and 0.9% of total soluble protein in leaves when expressed from psbA and rrn promoter, respectively. Plant-produced SPPV117 protein was purified using metal affinity chromatography and the protein yield was 19.67 ± 1.25 µg g-1 (FW). The serum of a sheep infected with the virus recognised the chloroplast-produced protein indicating that the protein retains its antigenic properties. CONCLUSIONS These results demonstrate that chloroplasts are a suitable system for the production of a candidate subunit vaccine against sheep pox.
Collapse
Affiliation(s)
- Gulshan Stanbekova
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Daniyar Beisenov
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Anna Nizkorodova
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Bulat Iskakov
- Protein and Nucleic Acids Research, M. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
26
|
Rosales-Mendoza S, Cervantes-Rincón T, Romero-Maldonado A, Monreal-Escalante E, Nieto-Gómez R. Transgenic plants expressing a Clostridium difficile spore antigen as an approach to develop low-cost oral vaccines. Biotechnol Prog 2021; 37:e3141. [PMID: 33666366 DOI: 10.1002/btpr.3141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Gastrointestinal infections caused by Clostridium difficile lead to significant impact in terms of morbidity and mortality, causing from mild symptoms, such as a low-grade fever, watery stools, and minor abdominal cramping as well as more severe symptoms such as bloody diarrhea, pseudomembrane colitis, and toxic megacolon. Vaccination is a viable approach to fight against C. difficile and several efforts in this direction are ongoing. Plants are promising vaccine biofactories offering low cost, enhanced safety, and allow for the formulation of oral vaccines. Herein, the CdeM protein, which is a spore antigen associated with immunoprotection against C. difficile, was selected to begin the development of plant-based vaccine candidates. The vaccine antigen is based in a fusion protein (LTB-CdeM), carrying the CdeM antigen, fused to the carboxi-terminus of the B subunit of the Escherichia coli heat-labile enterotoxin (LTB) as a mucosal immunogenic carrier. LTB-CdeM was produced in plants using a synthetic optimized gene according codon usage and mRNA stability criteria. The obtained transformed tobacco lines produced the LTB-CdeM antigen in the range of 52-90 μg/g dry weight leaf tissues. The antigenicity of the plant-made LTB-CdeM antigen was evidenced by GM1-ELISA and immunogenicity assessment performed in test mice revealed that the LTB-CdeM antigen is orally immunogenic inducing humoral responses against CdeM epitopes. This report constitutes the first step in the development of plant-based vaccines against C. difficile infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/metabolism
- Clostridioides difficile/genetics
- Enterotoxins/genetics
- Escherichia coli Proteins/genetics
- Immunoglobulin G/blood
- Mice
- Mice, Inbred BALB C
- Molecular Farming
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Spores, Bacterial/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Edible/metabolism
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Tomás Cervantes-Rincón
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Andrea Romero-Maldonado
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ricardo Nieto-Gómez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
27
|
Microparticles and Nanoparticles from Plants-The Benefits of Bioencapsulation. Vaccines (Basel) 2021; 9:vaccines9040369. [PMID: 33920425 PMCID: PMC8069552 DOI: 10.3390/vaccines9040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
The efficacy of drugs and vaccines depends on their stability and ability to interact with their targets in vivo. Many drugs benefit from encapsulation, which protects them from harsh conditions and allows targeted delivery and controlled release. Although many encapsulation methods are inexpensive, such as the formulation of tablets for oral delivery, others require complex procedures that add significantly to production costs and require low-temperature transport and storage, making them inaccessible in developing countries. In this review we consider the benefits of encapsulation technologies based on plants. Plant-derived biopolymers such as starch and the maize storage protein zein are already used as protective coatings, but plant cells used as production host provide natural in vivo bioencapsulation that survives passage through the stomach and releases drugs in the intestine, due to the presence of microbes that can digest the cell wall. Proteins can also be encapsulated in subcellular compartments such as protein bodies, which ensure stability and activity while often conferring additional immunomodulatory effects. Finally, we consider the incorporation of drugs and vaccines into plant-derived nanoparticles assembled from the components of viruses. These are extremely versatile, allowing the display of epitopes and targeting peptides as well as carrying cargoes of drugs and imaging molecules.
Collapse
|
28
|
Khan I, Daniell H. Oral delivery of therapeutic proteins bioencapsulated in plant cells: preclinical and clinical advances. Curr Opin Colloid Interface Sci 2021; 54. [PMID: 33967586 DOI: 10.1016/j.cocis.2021.101452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oral delivery of protein drugs (PDs) made in plant cells could revolutionize current approaches of their production and delivery. Expression of PDs reduces their production cost by elimination of prohibitively expensive fermentation, purification, cold transportation/storage, and sterile injections and increases their shelf life for several years. Ability of plant cell wall to protect PDs from digestive acids/enzymes, commensal bacteria to release PDs in gut lumen after lysis of plant cell wall and role of GALT in inducing tolerance facilitate prevention or treatment allergic, autoimmune diseases or anti-drug antibody responses. Delivery of functional proteins facilitate treatment of inherited or metabolic disorders. Recent advances in making PDs free of antibiotic resistance genes in edible plant cells, long-term storage at ambient temperature maintaining their efficacy, production in cGMP facilities, IND enabling studies for clinical advancement and FDA approval of orally delivered PDs augur well for advancing this novel drug delivery platform technology.
Collapse
Affiliation(s)
- Imran Khan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
30
|
Nakahira Y, Mizuno K, Yamashita H, Tsuchikura M, Takeuchi K, Shiina T, Kawakami H. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. FRONTIERS IN PLANT SCIENCE 2021; 12:717952. [PMID: 34497627 PMCID: PMC8419230 DOI: 10.3389/fpls.2021.717952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 05/13/2023]
Abstract
Nervous necrosis virus (NNV) is the causative agent of viral nervous necrosis (VNN), which is one of the most serious fish diseases leading to mass mortality in a wide range of fish species worldwide. Although a few injectable inactivated vaccines are commercially available, there is a need for more labor-saving, cost-effective, and fish-friendly immunization methods. The use of transgenic plants expressing pathogen-derived recombinant antigens as edible vaccines is an ideal way to meet these requirements. In this study, chloroplast genetic engineering was successfully utilized to overexpress the red-spotted grouper NNV capsid protein (RGNNV-CP). The RGNNV-CP accumulated at high levels in all young, mature, and old senescent leaves of transplastomic tobacco plants (averaging approximately 3 mg/g leaf fresh weight). The RGNNV-CP efficiently self-assembled into virus-like particles (RGNNV-VLPs) in the chloroplast stroma of the transgenic lines, which could be readily observed by in situ transmission electron microscopy. Furthermore, intraperitoneal injection and oral administration of the crudely purified protein extract containing chloroplast-derived RGNNV-VLPs provided the sevenband grouper fish with sufficient protection against RGNNV challenge, and its immunogenicity was comparable to that of a commercial injectable vaccine. These findings indicate that chloroplast-derived VLP vaccines may play a promising role in the prevention of various diseases, not only in fish but also in other animals, including humans.
Collapse
Affiliation(s)
- Yoichi Nakahira
- College of Agriculture, Ibaraki University, Ami, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Yoichi Nakahira,
| | | | | | | | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Basic Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | | |
Collapse
|
31
|
Darqui FS, Radonic LM, Beracochea VC, Hopp HE, López Bilbao M. Peculiarities of the Transformation of Asteraceae Family Species: The Cases of Sunflower and Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:767459. [PMID: 34899788 PMCID: PMC8662702 DOI: 10.3389/fpls.2021.767459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
The Asteraceae family is the largest and most diversified family of the Angiosperms, characterized by the presence of numerous clustered inflorescences, which have the appearance of a single compound flower. It is estimated that this family represents around 10% of all flowered species, with a great biodiversity, covering all environments on the planet, except Antarctica. Also, it includes economically important crops, such as lettuce, sunflower, and chrysanthemum; wild flowers; herbs, and several species that produce molecules with pharmacological properties. Nevertheless, the biotechnological improvement of this family is limited to a few species and their genetic transformation was achieved later than in other plant families. Lettuce (Lactuca sativa L.) is a model species in molecular biology and plant biotechnology that has easily adapted to tissue culture, with efficient shoot regeneration from different tissues, organs, cells, and protoplasts. Due to this plasticity, it was possible to obtain transgenic plants tolerant to biotic or abiotic stresses as well as for the production of commercially interesting molecules (molecular farming). These advances, together with the complete sequencing of lettuce genome allowed the rapid adoption of gene editing using the CRISPR system. On the other hand, sunflower (Helianthus annuus L.) is a species that for years was considered recalcitrant to in vitro culture. Although this difficulty was overcome and some publications were made on sunflower genetic transformation, until now there is no transgenic variety commercialized or authorized for cultivation. In this article, we review similarities (such as avoiding the utilization of the CaMV35S promoter in transformation vectors) and differences (such as transformation efficiency) in the state of the art of genetic transformation techniques performed in these two species.
Collapse
Affiliation(s)
- Flavia Soledad Darqui
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Laura Mabel Radonic
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - Valeria Cecilia Beracochea
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
| | - H. Esteban Hopp
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marisa López Bilbao
- IABIMO (Instituto de Agrobiotecnología y Biología Molecular), UEDD INTA-CONICET, CNIA, Buenos Aires, Argentina
- *Correspondence: Marisa López Bilbao,
| |
Collapse
|
32
|
Geem KR, Song Y, Hwang I, Bae HJ, Lee DW. Production of Gloeophyllum trabeum Endoglucanase Cel12A in Nicotiana benthamiana for Cellulose Degradation. FRONTIERS IN PLANT SCIENCE 2021; 12:696199. [PMID: 34262588 PMCID: PMC8273430 DOI: 10.3389/fpls.2021.696199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/02/2021] [Indexed: 05/06/2023]
Abstract
Lignocellulosic biomass from plants has been used as a biofuel source and the potent acidic endoglucanase GtCel12A has been isolated from Gloeophyllum trabeum, a filamentous fungus. In this study, we established a plant-based platform for the production of active GtCel12A fused to family 3 cellulose-binding module (CBM3). We used the signal sequence of binding immunoglobulin protein (BiP) and the endoplasmic reticulum (ER) retention signal for the accumulation of the produced GtCel12A in the ER. To achieve enhanced enzyme expression, we incorporated the M-domain of the human receptor-type tyrosine-protein phosphatase C into the construct. In addition, to enable the removal of N-terminal domains that are not necessary after protein expression, we further incorporated the cleavage site of Brachypodium distachyon small ubiquitin-like modifier. The GtCel12A-CBM3 fusion protein produced in the leaves of Nicotiana benthamiana exhibited not only high solubility but also efficient endoglucanase activity on the carboxymethyl cellulose substrate as determined by 3,5-dinitrosalicylic acid assay. The endoglucanase activity of GtCel12A-CBM3 was maintained even when immobilized on microcrystalline cellulose beads. Taken together, these results indicate that GtCel12A endoglucanase produced in plants might be used to provide monomeric sugars from lignocellulosic biomass for bioethanol production.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
| | - Younho Song
- Bio-Energy Research Center, Chonnam National University, Gwangju, South Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, South Korea
| | - Hyeun-Jong Bae
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Dong Wook Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, South Korea
- Bio-Energy Research Center, Chonnam National University, Gwangju, South Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, South Korea
- *Correspondence: Dong Wook Lee
| |
Collapse
|
33
|
Generation, analysis, and transformation of macro-chloroplast Potato (Solanum tuberosum) lines for chloroplast biotechnology. Sci Rep 2020; 10:21144. [PMID: 33273600 PMCID: PMC7713401 DOI: 10.1038/s41598-020-78237-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Chloroplast biotechnology is a route for novel crop metabolic engineering. The potential bio-confinement of transgenes, the high protein expression and the possibility to organize genes into operons represent considerable advantages that make chloroplasts valuable targets in agricultural biotechnology. In the last 3 decades, chloroplast genomes from a few economically important crops have been successfully transformed. The main bottlenecks that prevent efficient transformation in a greater number of crops include the dearth of proven selectable marker gene-selection combinations and tissue culture methods for efficient regeneration of transplastomic plants. The prospects of increasing organelle size are attractive from several perspectives, including an increase in the surface area of potential targets. As a proof-of-concept, we generated Solanum tuberosum (potato) macro-chloroplast lines overexpressing the tubulin-like GTPase protein gene FtsZ1 from Arabidopsis thaliana. Macro-chloroplast lines exhibited delayed growth at anthesis; however, at the time of harvest there was no significant difference in height between macro-chloroplast and wild-type lines. Macro-chloroplasts were successfully transformed by biolistic DNA-delivery and efficiently regenerated into homoplasmic transplastomic lines. We also demonstrated that macro-chloroplasts accumulate the same amount of heterologous protein than wild-type organelles, confirming efficient usage in plastid engineering. Advantages and limitations of using enlarge compartments in chloroplast biotechnology are discussed.
Collapse
|
34
|
Beisenov DK, Stanbekova GE, Iskakov BK. Тransplastomic tobacco plants producing the hydrophilic domain of the sheep pox virus coat protein L1R. Vavilovskii Zhurnal Genet Selektsii 2020; 24:905-912. [PMID: 35088004 PMCID: PMC8764143 DOI: 10.18699/vj20.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/24/2020] [Accepted: 10/26/2020] [Indexed: 12/05/2022] Open
Abstract
Sheep pox has a wide geographical range of distribution and poses a threat to sheep breeding worldwide,
as the disease is highly contagious and is accompanied by large economic losses. Vaccines based on live attenuated
virus strains are currently being used for prevention of this disease. Such vaccines are effective, but potentially dangerous because of the possible virus reversion to a pathogenic state. The development of safe recombinant subunit
vaccines against sheep pox is very relevant. The high ploidy level of the plant chloroplasts makes it possible to obtain large quantities of foreign proteins. The purpose of this study was to create transplastomic Nicotiana tabacum
plants producing one of the candidate vaccine proteins of sheep pox virus L1R. A vector containing a deletion variant
of the SPPV_56 gene, which encodes the N-terminal hydrophilic part of the viral coat protein L1R, was constructed
to transform tobacco plastids. It provides integration of the transgene into the trnG/trnfM region of the chloroplast
tobacco genome by homologous recombination. Spectinomycin-resistant tobacco lines were obtained by biolistic
gun-mediated genetic transformation. PCR analysis in the presence of gene-specific primers confirmed integration of
the transgene into the plant genome. Subsequent Northern and Western blot analysis showed the gene expression
at the transcriptional and translational levels. The recombinant protein yields reached up to 0.9 % of total soluble
protein. The transplastomic plants displayed a growth retardation and pale green leaf color compared to the wild
type, but they developed normally and produced seeds. Southern blot analysis showed heteroplasmy of the plastids
in the obtained plants due to recombination events between native and introduced regulatory plastid DNA elements.
The recombinant protein from plant tissue was purified using metal affinity chromatography. Future research will be
focused on determining the potential of the chloroplast-produced protein to induce neutralizing antibodies against
SPPV strains.
Collapse
Affiliation(s)
- D K Beisenov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - G E Stanbekova
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - B K Iskakov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| |
Collapse
|
35
|
Daniell H. From conception to COVID-19: an arduous journey of tribulations of racism and triumphs. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2147-2154. [PMID: 32799416 PMCID: PMC7460971 DOI: 10.1111/pbi.13468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/07/2023]
Abstract
Growing up in a densely wooded tropical forest enhanced my curiosity in plants and reading biography of Marie Curie profoundly influenced pursuit of my research career. Early in my career, I developed in vitro functional chloroplasts, capable of expressing foreign genes and this laid the foundation for the chloroplast genetic engineering field. Four decades of research has advanced chloroplast bioreactors for production of industrial enzymes or biopharmaceuticals by small or large companies. Because I experienced firsthand horrors of expensive vaccines or medicines, I devoted most of my career to develop affordable therapeutics. During this long journey, I suffered institutional racial discrimination but was rescued by several guardian angels. This biography gives readers a glimpse of tribulations and triumphs of my journey and recognizes important contributions made by my mentees.
Collapse
Affiliation(s)
- Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
36
|
Bolaños-Martínez OC, Govea-Alonso DO, Cervantes-Torres J, Hernández M, Fragoso G, Sciutto-Conde E, Rosales-Mendoza S. Expression of immunogenic poliovirus Sabin type 1 VP proteins in transgenic tobacco. J Biotechnol 2020; 322:10-20. [PMID: 32659239 DOI: 10.1016/j.jbiotec.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
One of the milestones of vaccinology is the depletion of the global impact of Poliomyelitis. The current vaccines to deal with Polio comprise the Sabin and Salk formulations. The main limitation of the former is the use of attenuated viruses that can revert into pathogenic forms, whereas the latter is more expensive and induces no protection in the intestinal tract; the site of virus replication. Genetically engineered plants cope with such limitations. In addition, they offer a low-cost alternative for production, storage and delivery of vaccines. This technology has been narrowly applied in the development of Polio vaccines. Herein, we explored the ability of tobacco cells to express the immunogenic VP1, VP2, VP3, and VP4 Polio antigens, which are relevant for vaccine development. Evidence on the expression of the plant-made Polio VPs is presented and an immunogenicity assessment proved their capacity to induce local and systemic humoral responses when administered by subcutaneous and oral routes. The plant-made VPs will be useful in the development of low-cost vaccine formulations able to induce effective mucosal immunity without the risks associated to the use of attenuated viruses; therefore there is a potential for this technology to contribute toward Polio eradication.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Capsid Proteins/metabolism
- Feces/chemistry
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Farming
- Plants, Genetically Modified/genetics
- Poliomyelitis/prevention & control
- Poliomyelitis/virology
- Poliovirus/genetics
- Poliovirus/immunology
- Poliovirus Vaccine, Oral/genetics
- Poliovirus Vaccine, Oral/immunology
- Poliovirus Vaccine, Oral/metabolism
- Nicotiana/genetics
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/metabolism
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, S.L.P, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, S.L.P., 78210, Mexico; Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, S.L.P, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, S.L.P., 78210, Mexico
| | - Jacquelynne Cervantes-Torres
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - Marisela Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico
| | - Edda Sciutto-Conde
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, Ciudad de México, 04650, Mexico.
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, S.L.P, 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí, S.L.P., 78210, Mexico.
| |
Collapse
|
37
|
Goli M. Review of novel human β-coronavirus (2019-nCoV or SARS-CoV-2) from the food industry perspective-Appropriate approaches to food production technology. Food Sci Nutr 2020; 8:5228-5237. [PMID: 33042532 PMCID: PMC7537128 DOI: 10.1002/fsn3.1892] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
Coronaviruses, enveloped nonsegmented positive-sense RNA viruses, can affect the respiratory and digestive systems of humans and a variety of birds and mammals. The primary target cells of coronaviruses compromise the respiratory and gastrointestinal region epithelial cells due to their cell features and delivery through fomites, airborne, or fecal-oral routes. Some functional food sources due to having crucial chemical compounds may help individuals to overcome this infection by modulating the body's immune system, generating antiviral activity against the infection, and reducing other respiratory problems. The purpose of this study was to review these coronaviruses, especially SARS (because of its very similar gene sequence to the 2019-nCoV or SARS-CoV-2), from the perspective of appropriate approaches to food production technology, including following good food safety practices in food production lines; avoidance of underheating in the processing of swine and the other meat products; uncertainty about the safety of frozen or refrigerated meat products; providing unfavorable environmental conditions for coronavirus survival (minimum heat treatment, e.g., low-temperature long time and greater for liquid food products, pH ≤ 3, minimum storage relative humidity); production of industrial foods fortified and enriched with vitamin D, C, B3, K, amino acid L-tryptophan, nicotinamide adenine dinucleotide (NAD+), and tannins; and preventing the production of industrial foods fortified or enriched with mineral supplements that participate in the Fenton reaction in the human body. Considering these aspects during times and places of coronavirus, prevalence will be essential for preventing further outbreaks at the community level.
Collapse
Affiliation(s)
- Mohammad Goli
- Department of food science and technologyIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
- Laser and Biophotonics in Biotechnologies Research centerIsfahan (Khorasgan) BranchIslamic Azad UniversityIsfahanIran
| |
Collapse
|
38
|
Nawae W, Yundaeng C, Naktang C, Kongkachana W, Yoocha T, Sonthirod C, Narong N, Somta P, Laosatit K, Tangphatsornruang S, Pootakham W. The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9091247. [PMID: 32967378 PMCID: PMC7570002 DOI: 10.3390/plants9091247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 05/20/2023]
Abstract
Vigna mungo is cultivated in approximately 5 million hectares worldwide. The chloroplast genome of this species has not been previously reported. In this study, we sequenced the genome and transcriptome of the V. mungo chloroplast. We identified many positively selected genes in the photosynthetic pathway (e.g., rbcL, ndhF, and atpF) and RNA polymerase genes (e.g., rpoC2) from the comparison of the chloroplast genome of V. mungo, temperate legume species, and tropical legume species. Our transcriptome data from PacBio isoform sequencing showed that the 51-kb DNA inversion could affect the transcriptional regulation of accD polycistronic. Using Illumina deep RNA sequencing, we found RNA editing of clpP in the leaf, shoot, flower, fruit, and root tissues of V. mungo. We also found three G-to-A RNA editing events that change guanine to adenine in the transcripts transcribed from the adenine-rich regions of the ycf4 gene. The edited guanine bases were found particularly in the chloroplast genome of the Vigna species. These G-to-A RNA editing events were likely to provide a mechanism for correcting DNA base mutations. The V. mungo chloroplast genome sequence and the analysis results obtained in this study can apply to phylogenetic studies and chloroplast genome engineering.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutintorn Yundaeng
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Nattapol Narong
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand; (P.S.); (K.L.)
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency, 111 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (W.N.); (C.Y.); (C.N.); (W.K.); (T.Y.); (C.S.); (N.N.); (S.T.)
- Correspondence: or
| |
Collapse
|
39
|
Shanmugaraj B, I. Bulaon CJ, Phoolcharoen W. Plant Molecular Farming: A Viable Platform for Recombinant Biopharmaceutical Production. PLANTS 2020; 9:plants9070842. [PMID: 32635427 PMCID: PMC7411908 DOI: 10.3390/plants9070842] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
The demand for recombinant proteins in terms of quality, quantity, and diversity is increasing steadily, which is attracting global attention for the development of new recombinant protein production technologies and the engineering of conventional established expression systems based on bacteria or mammalian cell cultures. Since the advancements of plant genetic engineering in the 1980s, plants have been used for the production of economically valuable, biologically active non-native proteins or biopharmaceuticals, the concept termed as plant molecular farming (PMF). PMF is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. The development and improvement of the transient expression system has significantly reduced the protein production timeline and greatly improved the protein yield in plants. The major factors that drive the plant-based platform towards potential competitors for the conventional expression system are cost-effectiveness, scalability, flexibility, versatility, and robustness of the system. Many biopharmaceuticals including recombinant vaccine antigens, monoclonal antibodies, and other commercially viable proteins are produced in plants, some of which are in the pre-clinical and clinical pipeline. In this review, we consider the importance of a plant- based production system for recombinant protein production, and its potential to produce biopharmaceuticals is discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: ; Tel.: +66-2-218-8359; Fax: +66-2-218-8357
| |
Collapse
|
40
|
Park J, Yan G, Kwon KC, Liu M, Gonnella PA, Yang S, Daniell H. Oral delivery of novel human IGF-1 bioencapsulated in lettuce cells promotes musculoskeletal cell proliferation, differentiation and diabetic fracture healing. Biomaterials 2020; 233:119591. [PMID: 31870566 PMCID: PMC6990632 DOI: 10.1016/j.biomaterials.2019.119591] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
Human insulin-like growth factor-1 (IGF-1) plays important roles in development and regeneration of skeletal muscles and bones but requires daily injections or surgical implantation. Current clinical IGF-1 lacks e-peptide and is glycosylated, reducing functional efficacy. In this study, codon-optimized Pro-IGF-1 with e-peptide (fused to GM1 receptor binding protein CTB or cell penetrating peptide PTD) was expressed in lettuce chloroplasts to facilitate oral delivery. Pro-IGF-1 was expressed at high levels in the absence of the antibiotic resistance gene in lettuce chloroplasts and was maintained in subsequent generations. In lyophilized plant cells, Pro-IGF-1 maintained folding, assembly, stability and functionality up to 31 months, when stored at ambient temperature. CTB-Pro-IGF-1 stimulated proliferation of human oral keratinocytes, gingiva-derived mesenchymal stromal cells and mouse osteoblasts in a dose-dependent manner and promoted osteoblast differentiation through upregulation of ALP, OSX and RUNX2 genes. Mice orally gavaged with the lyophilized plant cells significantly increased IGF-1 levels in sera, skeletal muscles and was stable for several hours. When bioencapsulated CTB-Pro-IGF-1 was gavaged to femoral fractured diabetic mice, bone regeneration was significantly promoted with increase in bone volume, density and area. This novel delivery system should increase affordability and patient compliance, especially for treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- J Park
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - G Yan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - K-C Kwon
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Liu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - P A Gonnella
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - H Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Shanmugaraj B, Malla A, Phoolcharoen W. Emergence of Novel Coronavirus 2019-nCoV: Need for Rapid Vaccine and Biologics Development. Pathogens 2020; 9:E148. [PMID: 32098302 PMCID: PMC7168632 DOI: 10.3390/pathogens9020148] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022] Open
Abstract
Novel Coronavirus (2019-nCoV) is an emerging pathogen that was first identified in Wuhan, China in late December 2019. This virus is responsible for the ongoing outbreak that causes severe respiratory illness and pneumonia-like infection in humans. Due to the increasing number of cases in China and outside China, the WHO declared coronavirus as a global health emergency. Nearly 35,000 cases were reported and at least 24 other countries or territories have reported coronavirus cases as early on as February. Inter-human transmission was reported in a few countries, including the United States. Neither an effective anti-viral nor a vaccine is currently available to treat this infection. As the virus is a newly emerging pathogen, many questions remain unanswered regarding the virus's reservoirs, pathogenesis, transmissibility, and much more is unknown. The collaborative efforts of researchers are needed to fill the knowledge gaps about this new virus, to develop the proper diagnostic tools, and effective treatment to combat this infection. Recent advancements in plant biotechnology proved that plants have the ability to produce vaccines or biopharmaceuticals rapidly in a short time. In this review, the outbreak of 2019-nCoV in China, the need for rapid vaccine development, and the potential of a plant system for biopharmaceutical development are discussed.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ashwini Malla
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| | - Waranyoo Phoolcharoen
- Research unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand; (B.S.); (A.M.)
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
42
|
Tremouillaux-Guiller J, Moustafa K, Hefferon K, Gaobotse G, Makhzoum A. Plant-made HIV vaccines and potential candidates. Curr Opin Biotechnol 2020; 61:209-216. [PMID: 32058899 DOI: 10.1016/j.copbio.2020.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Millions of people around the world suffer from heavy social and health burdens related to HIV/AIDS and its associated opportunistic infections. To reduce these burdens, preventive and therapeutic vaccines are required. Effective HIV vaccines have been under investigation for several decades using different animal models. Potential plant-made HIV vaccine candidates have also gained attention in the past few years. In addition to this, broadly neutralizing antibodies produced in plants which can target conserved viral epitopes and neutralize mutating HIV strains have been identified. Numerous epitopes of envelope glycoproteins and capsid proteins of HIV-1 are a part of HIV therapy. Here, we discuss some recent findings aiming to produce anti-HIV-1 recombinant proteins in engineered plants for AIDS prophylactics and therapeutic treatments.
Collapse
Affiliation(s)
| | | | | | - Goabaone Gaobotse
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Botswana.
| |
Collapse
|
43
|
Bamogo PKA, Brugidou C, Sérémé D, Tiendrébéogo F, Djigma FW, Simpore J, Lacombe S. Virus-based pharmaceutical production in plants: an opportunity to reduce health problems in Africa. Virol J 2019; 16:167. [PMID: 31888686 PMCID: PMC6937724 DOI: 10.1186/s12985-019-1263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Developing African countries face health problems that they struggle to solve. The major causes of this situation are high therapeutic and logistical costs. Plant-made therapeutics are easy to produce due to the lack of the safety considerations associated with traditional fermenter-based expression platforms, such as mammalian cells. Plant biosystems are easy to scale up and inexpensive, and they do not require refrigeration or a sophisticated medical infrastructure. These advantages provide an opportunity for plant-made pharmaceuticals to counteract diseases for which medicines were previously inaccessible to people in countries with few resources. MAIN BODY The techniques needed for plant-based therapeutic production are currently available. Viral expression vectors based on plant viruses have greatly enhanced plant-made therapeutic production and have been exploited to produce a variety of proteins of industrial, pharmaceutical and agribusiness interest. Some neglected tropical diseases occurring exclusively in the developing world have found solutions through plant bioreactor technology. Plant viral expression vectors have been reported in the production of therapeutics against these diseases occurring exclusively in the third world, and some virus-derived antigens produced in plants exhibit appropriate antigenicity and immunogenicity. However, all advances in the use of plants as bioreactors have been made by companies in Europe and America. The developing world is still far from acquiring this technology, although plant viral expression vectors may provide crucial help to overcome neglected diseases. CONCLUSION Today, interest in these tools is rising, and viral amplicons made in and for Africa are in progress. This review describes the biotechnological advances in the field of plant bioreactors, highlights factors restricting access to this technology by those who need it most and proposes a solution to overcome these limitations.
Collapse
Affiliation(s)
- Pingdwende Kader Aziz Bamogo
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Christophe Brugidou
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Drissa Sérémé
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Ecole Doctorale Sciences et Technologie, Université Joseph Ki-Zerbo; Centre de Recherche Biomoléculaire Piétro Annigoni (CERBA), Ouagadougou 01, BP, 364, Burkina Faso
| | - Séverine Lacombe
- Interactions Plantes Microorganismes et Environnement (IPME), IRD, CIRAD, Université Montpellier, 911 Avenue Agropolis BP64501, 34394, Montpellier Cedex 5, France.
- Laboratoire de Virologie et de Biotechnologies Végétales, Institut de L'Environnement et de Recherches Agricoles (INERA)/LMI Patho-Bios, 01BP476, Ouagadougou 01, Burkina Faso.
| |
Collapse
|
44
|
Habibi P, Daniell H, Soccol CR, Grossi‐de‐Sa MF. The potential of plant systems to break the HIV-TB link. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1868-1891. [PMID: 30908823 PMCID: PMC6737023 DOI: 10.1111/pbi.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/13/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Tuberculosis (TB) and human immunodeficiency virus (HIV) can place a major burden on healthcare systems and constitute the main challenges of diagnostic and therapeutic programmes. Infection with HIV is the most common cause of Mycobacterium tuberculosis (Mtb), which can accelerate the risk of latent TB reactivation by 20-fold. Similarly, TB is considered the most relevant factor predisposing individuals to HIV infection. Thus, both pathogens can augment one another in a synergetic manner, accelerating the failure of immunological functions and resulting in subsequent death in the absence of treatment. Synergistic approaches involving the treatment of HIV as a tool to combat TB and vice versa are thus required in regions with a high burden of HIV and TB infection. In this context, plant systems are considered a promising approach for combatting HIV and TB in a resource-limited setting because plant-made drugs can be produced efficiently and inexpensively in developing countries and could be shared by the available agricultural infrastructure without the expensive requirement needed for cold chain storage and transportation. Moreover, the use of natural products from medicinal plants can eliminate the concerns associated with antiretroviral therapy (ART) and anti-TB therapy (ATT), including drug interactions, drug-related toxicity and multidrug resistance. In this review, we highlight the potential of plant system as a promising approach for the production of relevant pharmaceuticals for HIV and TB treatment. However, in the cases of HIV and TB, none of the plant-made pharmaceuticals have been approved for clinical use. Limitations in reaching these goals are discussed.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Bioprocess Engineering and BiotechnologyFederal University of ParanáCuritibaPRBrazil
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
| | - Henry Daniell
- Department of BiochemistrySchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Maria Fatima Grossi‐de‐Sa
- Embrapa Genetic Resources and BiotechnologyBrasíliaDFBrazil
- Catholic University of BrasíliaBrasíliaDFBrazil
- Post Graduation Program in BiotechnologyUniversity PotiguarNatalRNBrazil
| |
Collapse
|
45
|
Virus-Like Particles-Based Mucosal Nanovaccines. NANOVACCINES 2019. [PMCID: PMC7120988 DOI: 10.1007/978-3-030-31668-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Virus-like particles (VLPs) are protein complexes that resemble a virus and constitute highly immunogenic entities as they mimic the pathogen at an important degree. Among nanovaccines, those based on VLPs are the most successful thus far with some formulations already commercialized (e.g., those against hepatitis B and E viruses and human papillomavirus). This chapter highlights the advantages of VLPs-based vaccines, describing approaches for their design and transmittance of the state of the art for mucosal VLPs-based vaccines development. Several candidates have been produced in insect cells, plants, and E. coli and mammalian cells; they have been mainly evaluated in i.n. and oral immunization schemes. i.n. vaccines against the influenza virus and the Norwalk virus are the most advanced applications. For the latter, i.n. formulations are under clinical evaluation. Perspectives for the field comprise the expansion of the use of low-cost platforms such as plants and bacteria, the development of multiepitopic/multivalent vaccines, and computationally designed VLPs. Mucosal VLPs-based vaccines stand as a major promising approach in vaccinology and the initiation of more clinical trials is envisaged in a short time.
Collapse
|