1
|
Brinkerhoff RJ, Pandian J, Leber M, Hauser ID, Gaff HD. Impacts of Tick Parasitism on the Rodent Gut Microbiome. Microorganisms 2025; 13:888. [PMID: 40284724 PMCID: PMC12029286 DOI: 10.3390/microorganisms13040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/06/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Host microbiota may impact disease vector behavior and pathogen transmission, but little is known about associations between ectoparasites and microbial communities in wildlife reservoir species. We used Illumina metagenomic sequencing to explore the impacts of tick parasitism on the rodent fecal microbiome in both a field and laboratory setting. We found that tick parasitism on wild hosts was associated with variation in the fecal microbiota of both the white-footed deermouse, Peromyscus leucopus, and the southern cotton rat, Sigmodon hispidus. In a lab experiment, we detected significant changes to the fecal microbiome after experimental exposure to immature ticks in treated versus control BALB/c mice. Whereas there is variation in the fecal microbiome associated with each of the host species we tested, some of the same microbial taxa, notably members of the family Muribaculaceae, occurred at higher relative abundance in tick-parasitized hosts in both the field and laboratory studies, suggesting that there are consistent impacts of tick parasitism on the host gut microbiome. We recommend future studies to test the hypothesis that epithelial cell secretions, generated as part of the host's immune response to tick parasitism, could provide resources that allow particular microbial lineages in the mammalian gut to flourish.
Collapse
Affiliation(s)
| | - Joshua Pandian
- Biology Department, University of Richmond, Richmond, VA 23173, USA (I.D.H.)
| | - Meghan Leber
- Biology Department, University of Richmond, Richmond, VA 23173, USA (I.D.H.)
| | - Isabella D. Hauser
- Biology Department, University of Richmond, Richmond, VA 23173, USA (I.D.H.)
| | - Holly D. Gaff
- Biology Department, Old Dominion University, Norfolk, VA 23529, USA
- School of Mathematics and Computer Science, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
2
|
Vanhove MPM, Koblmüller S, Fernandes JMO, Hahn C, Plusquin M, Kmentová N. Cichlid fishes are promising underutilized models to investigate helminth-host-microbiome interactions. Front Immunol 2025; 16:1527184. [PMID: 40018030 PMCID: PMC11864961 DOI: 10.3389/fimmu.2025.1527184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
The "Old Friends Hypothesis" suggests insufficient exposure to symbionts hinders immune development, contributing to increased immune-related diseases in the Global North. The microbiome is often the focus; helminths, potentially also offering health benefits, lack attention. Infection and effect of helminths are influenced and perhaps determined by micro-organisms. Mechanisms behind parasite-microbiome interactions are poorly understood, despite implications on host health. These interactions are typically studied for single helminth species in laboratory animal models, overlooking helminth diversity. Reviewing research on relationships between helminth and microbial diversity yielded 27 publications; most focused on human or other mammalian hosts, relying on natural exposure rather than experimental helminth inoculation. Only about half investigated host health outcomes. Remaining knowledge gaps warrant considering additional candidate model systems. Given the high helminthiasis burden and species diversity of helminths, we propose seeking models in the Global South, where a considerable proportion of research on diversity aspects of helminth-microbiome interactions took place. Low availability of genomic resources for helminths in the Global South, however, necessitates more integrative helminthological research efforts. Given substantial similarities in immune systems, several fishes are models for human health/disease. More effort could be done to establish this for cichlids, whose representatives in the African Great Lakes provide a well-delineated, closed natural system relevant to human health in view of fish-borne zoonoses and other water-borne parasites. A good baseline exists for these cichlids' genomics, parasitology, and microbiology. We suggest exploring African Great Lake cichlids as model hosts for interactions between microbial diversity, helminth diversity, and host health.
Collapse
Affiliation(s)
- Maarten P. M. Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
| | | | - Jorge M. O. Fernandes
- Renewable Marine Resources Department, Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | | | - Michelle Plusquin
- Research Group Environmental Biology, Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
- Freshwater Biology, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
3
|
Linnemann L, Antwi-Ekwuruke J, Gnanapragassam V, Bang C, Rühlemann M, Ruland J, Hartmann W, Heepmann L, Dörken S, Yunus SM, Viebrock B, Schlosser A, Lepenies B, Breloer M. The C-type lectin receptor MINCLE interferes with eosinophil function and protective intestinal immunity in Strongyloides ratti-infected mice. Mucosal Immunol 2025; 18:220-231. [PMID: 39581231 DOI: 10.1016/j.mucimm.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Strongyloides ratti is a helminth parasite that displays tissue-migrating and intestinal life stages. Myeloid C-type lectin receptors (CLRs) are pattern recognition receptors that recognize pathogen-derived ligands and initiate immune responses. To date, the role of CLRs in S. ratti infection has not been investigated. Here, we show that S. ratti-derived ligands are recognized by the CLR Macrophage inducible Ca2+-dependent lectin receptor (MINCLE). While MINCLE-deficiency did not affect initiation of a protective anti-S. ratti type 2 immunity, MINCLE-deficient mice had a transient advantage in intestinal immunity. Unravelling the underlying mechanism, we show that next to macrophages, dendritic cells and neutrophils, a fraction of eosinophils express MINCLE and expand during S. ratti infection. MINCLE-deficient eosinophils exhibited a more active phenotype and prolonged expansion in vivo and displayed increased capacity to reduce S. ratti motility and produce reactive oxygen species in vitro, compared to wild-type (WT) eosinophils. Depletion of eosinophils in S. ratti-infected mice after the tissue-migration phase elevated intestinal worm burden in MINCLE-deficient mice to the WT level. Thus, our findings establish a central contribution of eosinophils to parasite ejection from the intestine and suggest that S. ratti-triggered signalling via MINCLE interferes with eosinophil mediated ejection of S. ratti from the intestine.
Collapse
Affiliation(s)
- Lara Linnemann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | | | - Vinayaga Gnanapragassam
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), 81675, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Wiebke Hartmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Lennart Heepmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Sara Dörken
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Saleh M Yunus
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Birte Viebrock
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Annette Schlosser
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Minka Breloer
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany; Department for Biology, University Hamburg, 20148, Hamburg, Germany.
| |
Collapse
|
4
|
Castañeda S, Poveda C, Suarez-Reyes C, Wu Y, Haugen N, Patiño LH, Weatherhead JE, Ramírez JD. Microbiota dynamics during Ascaris suum larval migration: Implications for host microbial communities in a murine model. Microb Pathog 2025; 198:107122. [PMID: 39549928 DOI: 10.1016/j.micpath.2024.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The complex interactions between parasites, their hosts, and associated microbiota hold significant implications for host health and disease outcomes. Helminths like Ascaris lumbricoides and Ascaris suum can significantly alter the host's intestinal microbiota, affecting both parasite biology and host pathology. Despite extensive research on host-microbiota changes due to helminth infections, the study of helminth-associated microbiota remains limited. This study aims to characterize the microbiota associated with Ascaris larvae and surrounding host tissues at distinct developmental stages (day 4, day 8, day 14), during larval migration through the liver, lungs, and intestine, and its impact on the host's microbiota in a murine model. Twenty mice were infected with 2500 embryonated A. suum eggs via oral gavage. Five Ascaris-infected mice and age-matched naïve mice were euthanized at 4-, 8-, and 14-days post-infection (DPI). Stool, intestine, liver, and lung samples were collected. Larvae were isolated from embryonated eggs in vitro, from the liver at 4 DPI, and the lung at 8 DPI. Utilizing 16S rRNA sequencing, we analyzed bacterial diversity in samples from different Ascaris stages and host tissues. Our results revealed a total of 8040 amplicon sequence variants (ASVs) with Ascaris samples displaying the highest diversity. Notably, Ascaris-larvae associated microbiota differed significantly from that of the host, with higher diversity observed in the parasite. Differential abundance analysis identified distinct taxonomic patterns, highlighting specific genera such as Bradyrhizobium, Achromobacter, and Pseudomonas in Ascaris. Our findings suggest that Ascaris harbors a unique microbiota that potentially exchanges bacteria with the host during larval migration. These insights pave the way for further research into the ecological and functional dynamics of helminth-microbiota interactions, which may inform novel therapeutic strategies targeting these microbial relationships to mitigate helminth infections and improve host health outcomes.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Cristina Poveda
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA; National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charlie Suarez-Reyes
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yifan Wu
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Noah Haugen
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Jill E Weatherhead
- Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA.
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Hammer AJ, Gaulke CA, Garcia-Jaramillo M, Leong C, Morre J, Sieler MJ, Stevens JF, Jiang Y, Maier CS, Kent ML, Sharpton TJ. Gut microbiota metabolically mediate intestinal helminth infection in zebrafish. mSystems 2024; 9:e0054524. [PMID: 39191377 PMCID: PMC11406965 DOI: 10.1128/msystems.00545-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Intestinal helminth parasite (IHP) infection induces alterations in the composition of microbial communities across vertebrates, although how gut microbiota may facilitate or hinder parasite infection remains poorly defined. In this work, we utilized a zebrafish model to investigate the relationship between gut microbiota, gut metabolites, and IHP infection. We found that extreme disparity in zebrafish parasite infection burden is linked to the composition of the gut microbiome and that changes in the gut microbiome are associated with variation in a class of endogenously produced signaling compounds, N-acylethanolamines, that are known to be involved in parasite infection. Using a statistical mediation analysis, we uncovered a set of gut microbes whose relative abundance explains the association between gut metabolites and infection outcomes. Experimental investigation of one of the compounds in this analysis reveals salicylaldehyde, which is putatively produced by the gut microbe Pelomonas, as a potent anthelmintic with activity against Pseudocapillaria tomentosa egg hatching, both in vitro and in vivo. Collectively, our findings underscore the importance of the gut microbiome as a mediating agent in parasitic infection and highlight specific gut metabolites as tools for the advancement of novel therapeutic interventions against IHP infection. IMPORTANCE Intestinal helminth parasites (IHPs) impact human health globally and interfere with animal health and agricultural productivity. While anthelmintics are critical to controlling parasite infections, their efficacy is increasingly compromised by drug resistance. Recent investigations suggest the gut microbiome might mediate helminth infection dynamics. So, identifying how gut microbes interact with parasites could yield new therapeutic targets for infection prevention and management. We conducted a study using a zebrafish model of parasitic infection to identify routes by which gut microbes might impact helminth infection outcomes. Our research linked the gut microbiome to both parasite infection and to metabolites in the gut to understand how microbes could alter parasite infection. We identified a metabolite in the gut, salicylaldehyde, that is putatively produced by a gut microbe and that inhibits parasitic egg growth. Our results also point to a class of compounds, N-acyl-ethanolamines, which are affected by changes in the gut microbiome and are linked to parasite infection. Collectively, our results indicate the gut microbiome may be a source of novel anthelmintics that can be harnessed to control IHPs.
Collapse
Affiliation(s)
- Austin J Hammer
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Christopher A Gaulke
- Department of Pathobiology, University of Illinois Urbana Champaign, Illinois, USA
| | | | - Connor Leong
- Department of Microbiology, Oregon State University, Oregon, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Jeffrey Morre
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Michael J Sieler
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Oregon, USA
- Linus Pauling Institute, Oregon State University, Oregon, USA
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Oregon, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Oregon, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Oregon, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Oregon, USA
- Department of Statistics, Oregon State University, Oregon, USA
| |
Collapse
|
6
|
O'Ferrall AM, Musaya J, Stothard JR, Roberts AP. Aligning antimicrobial resistance surveillance with schistosomiasis research: an interlinked One Health approach. Trans R Soc Trop Med Hyg 2024; 118:498-504. [PMID: 38842743 PMCID: PMC11299544 DOI: 10.1093/trstmh/trae035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
One Health surveillance involves the analysis of human, animal and environmental samples, recognising their interconnectedness in health systems. Such considerations are crucial to investigate the transmission of many pathogens, including drug-resistant bacteria and parasites. The highest rates of antimicrobial resistance (AMR)-associated deaths are observed in sub-Saharan Africa, where concurrently the waterborne parasitic disease schistosomiasis can be highly endemic in both humans and animals. Although there is growing acknowledgment of significant interactions between bacteria and parasites, knowledge of relationships between schistosomes, microbes and AMR remains inadequate. In addition, newly emergent research has revealed the previously underappreciated roles of animals and the environment in both AMR and schistosomiasis transmission. We consider shared environmental drivers and colonisation linkage in this narrative review, with a focus on extended-spectrum beta-lactamase-mediated resistance among bacteria from the Enterobacteriaceae family, which is exceedingly prevalent and responsible for a high burden of AMR-associated deaths. Then we examine novel findings from Malawi, where the landscapes of AMR and schistosomiasis are rapidly evolving, and make comparisons to other geographic areas with similar co-infection epidemiology. We identify several knowledge gaps that could be addressed in future research, including the need to characterise the impact of intestinal schistosomiasis and freshwater contact on intestinal AMR colonisation, before proposing a rationale for connecting AMR surveillance and schistosomiasis research within a One Health framework.
Collapse
Affiliation(s)
- Angus M O'Ferrall
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Clinical Research Programme, Queen Elizabeth Central Hospital, College of Medicine, P.O. Box 30096 Chichiri, Blantyre 3, Malawi
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
7
|
Nouri A. Age-dependent development trends (models) of intestinal significant microbiota species and Eimeria oocysts in coccidia-challenged broiler chickens as affected by dietary encapsulated organic acids and anticoccidial drugs. Avian Pathol 2024; 53:264-284. [PMID: 38349388 DOI: 10.1080/03079457.2024.2319284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/20/2023] [Indexed: 03/12/2024]
Abstract
ABSTRACTThe study was conducted to investigate the effect of dietary encapsulated organic acids (EOAs) and anticoccidials on the age-dependent development trend of intestinal Lactobacillus, E. coli, coliforms, and Eimeria in Eimeria spp.-infected broiler chickens from reused litter. In total, 525 mixed-sex 1-day-old broiler chickens were used in an uninfected/un-supplemented control plus a 2 (no EOA or 0.1% EOA) × 3 (no anticoccidial, 0.05% maduramicin, and 0.02% diclazuril) factorial arrangement of treatments as a completely randomized design with five replicates of 15 chickens. Results indicated that the cubic model is the best model for explaining the development trends of the intestinal microbial population in uninfected and infected chickens (affected by the EOAs and anticoccidials). Based on the cubic models, the microbial populations had development trends with a decreasing slope from 1-day-old until the early or middle finisher period. EOAs and anticoccidials, especially their simultaneous usage, improved (P < 0.05) the linear and cubic models' slope (affected negatively by Eimeria infection). A polynomial model (order = 6) was determined as the best model for explaining the EOAs and anticoccidial effects on the trend of intestinal Eimeria oocysts in infected chickens. The infection peak (which happened at 25 days) was reduced by EOAs and anticoccidials, especially their simultaneous usage. In conclusion, cubic and polynomial (order = 6) regressions are the best models fitted for explaining the microbiota and Eimeria oocysts trends, respectively. EOAs and anticoccidials, especially their simultaneous usage, had beneficial effects on the microbiota and Eimeria development trends and gastrointestinal health in coccidia-infected broiler chickens.RESEARCH HIGHLIGHTSCubic regression is the best model for explaining intestinal microbiota development.Polynomial regression is the best model for intestinal Eimeria oocysts development.Age-development trends are affected by dietary encapsulated organic acids and anticoccidials.
Collapse
Affiliation(s)
- Ali Nouri
- Department of Animal Science, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| |
Collapse
|
8
|
Hammer AJ, Gaulke CA, Garcia-Jaramillo M, Leong C, Morre J, Sieler MJ, Stevens JF, Jiang Y, Maier CS, Kent ML, Sharpton TJ. Gut microbiota metabolically mediate intestinal helminth infection in Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605207. [PMID: 39091873 PMCID: PMC11291147 DOI: 10.1101/2024.07.26.605207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Intestinal helminth parasite (IHP) infection induces alterations in the composition of microbial communities across vertebrates, although how gut microbiota may facilitate or hinder parasite infection remains poorly defined. In this work we utilized a zebrafish model to investigate the relationship between gut microbiota, gut metabolites, and IHP infection. We found that extreme disparity in zebrafish parasite infection burden is linked to the composition of the gut microbiome, and that changes in the gut microbiome are associated with variation in a class of endogenously-produced signaling compounds, N-acylethanolamines, that are known to be involved in parasite infection. Using a statistical mediation analysis, we uncovered a set of gut microbes whose relative abundance explains the association between gut metabolites and infection outcomes. Experimental investigation of one of the compounds in this analysis reveals salicylaldehyde, which is putatively produced by the gut microbe Pelomonas, as a potent anthelmintic with activity against Pseudocapillaria tomentosa egg hatching, both in vitro and in vivo. Collectively, our findings underscore the importance of the gut microbiome as a mediating agent in parasitic infection and highlights specific gut metabolites as tools for the advancement of novel therapeutic interventions against IHP infection.
Collapse
Affiliation(s)
| | - Chris A. Gaulke
- Department of Pathobiology, University of Illinois Urbana Champaign
| | | | - Connor Leong
- Department of Microbiology, Oregon State University
| | | | | | - Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University
- Linus Pauling Institute, Oregon State University
| | - Yuan Jiang
- Department of Statistics, Oregon State University
| | | | | | - Thomas J. Sharpton
- Department of Microbiology, Oregon State University
- Department of Statistics, Oregon State University
| |
Collapse
|
9
|
Neely WJ, Souza KMC, Martins RA, Marshall VM, Buttimer SM, Brito de Assis A, Medina D, Whetstone RD, Lyra ML, Ribeiro JW, Greenspan SE, Haddad CFB, Alves dos Anjos L, Becker CG. Host-associated helminth diversity and microbiome composition contribute to anti-pathogen defences in tropical frogs impacted by forest fragmentation. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240530. [PMID: 39100162 PMCID: PMC11296196 DOI: 10.1098/rsos.240530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host-pathogen interactions and the potential implications of fragmentation on host fitness.
Collapse
Affiliation(s)
- Wesley J. Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
- Department of Biology, Texas State University, San Marcos, TX78666, USA
| | - Kassia M. C. Souza
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - Renato A. Martins
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | | | - Shannon M. Buttimer
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
| | - Ananda Brito de Assis
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Daniel Medina
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- Sistema Nacional de Investigación, SENACYT, City of Knowledge, Clayton, Panama, Republic of Panama
| | - Ross D. Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Mariana L. Lyra
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
- New York University Abu Dhabi, Abu Dhabi, UAE
| | - José Wagner Ribeiro
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Sasha E. Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL35487, USA
| | - Célio F. B. Haddad
- Department of Biodiversity and Aquaculture Center, Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Luciano Alves dos Anjos
- Departamento de Biologia e Zootecnia, Universidade Estadual Paulista, Ilha Solteira, São Paulo 15385-000, Brazil
| | - C. Guilherme Becker
- Department of Biology, The Pennsylvania State University, University Park, PA16803, USA
- One Health Microbiome Center, Center for Infectious Disease Dynamics, Ecology Institute, Huch Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16803, USA
| |
Collapse
|
10
|
Sargsian S, Mondragón-Palomino O, Lejeune A, Ercelen D, Jin WB, Varghese A, Lim YAL, Guo CJ, Loke P, Cadwell K. Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation. MICROBIOME 2024; 12:86. [PMID: 38730492 PMCID: PMC11084060 DOI: 10.1186/s40168-024-01793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/10/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.
Collapse
Affiliation(s)
- Shushan Sargsian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Defne Ercelen
- Department of Medicine, Division of Gastroenterology and Hepatology, New York University Langone Health, New York, NY, 10016, USA
| | - Wen-Bing Jin
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - Alan Varghese
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chun-Jun Guo
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ken Cadwell
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Li S, Li S, Liu S, Lu S, Li J, Cheng S, Zhang S, Huang S, Li J, Jian F. Portulaca oleracea exhibited anti-coccidian activity, fortified the gut microbiota of Hu lambs. AMB Express 2024; 14:50. [PMID: 38700828 PMCID: PMC11068709 DOI: 10.1186/s13568-024-01705-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/13/2024] [Indexed: 05/06/2024] Open
Abstract
Coccidia of the genus Eimeria are important pathogens that cause coccidiosis in livestock and poultry. Due to the expansion of intensive farming, coccidiosis has become more difficult to control. In addition, the continued use of anti-coccidiosis drugs has led to drug resistance and residue. Some herbs used in traditional Chinese medicine (TCM) have been shown to alleviate the clinical symptoms of coccidiosis, while enhancing immunity and growth performance (GP) of livestock and poultry. Previous in vitro and in vivo studies have reported that the TCM herb Portulaca oleracea exhibited anti-parasitic activities. In total, 36 female Hu lambs were equally divided into six treatment groups: PL (low-dose P. oleracea), PH (high-dose P. oleracea), PW (P. oleracea water extract), PE (P. oleracea ethanol extract), DIC (diclazuril), and CON (control). The treatment period was 14 days. The McMaster counting method was used to evaluate the anti-coccidiosis effects of the different treatments. Untargeted metabolomics and 16S rRNA gene sequencing were used to investigate the effects of treatment on the gut microbiota (GM) and GP. The results showed that P. oleracea ameliorated coccidiosis, improved GP, increased the abundances of beneficial bacteria, and maintained the composition of the GM, but failed to completely clear coccidian oocysts. The Firmicutes to Bacteroides ratio was significantly increased in the PH group. P. oleracea increased metabolism of tryptophan as well as some vitamins and cofactors in the GM and decreased the relative content of arginine, tryptophan, niacin, and other nutrients, thereby promoting intestinal health and enhancing GP. As an alternative to the anti-coccidiosis drug DIC, P. oleracea effectively inhibited growth of coccidia, maintained the composition of the GM, promoted intestinal health, and increased nutrient digestibility.
Collapse
Affiliation(s)
- Shiheng Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Senyang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
- International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, 450046, Henan, China
| | - Shuaiqi Liu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shunli Lu
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Jing Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shuqi Cheng
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Sumei Zhang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Shucheng Huang
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Junqiang Li
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China
| | - Fuchun Jian
- College of Animal Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
12
|
Coutry N, Gasmi I, Herbert F, Jay P. Mechanisms of intestinal dysbiosis: new insights into tuft cell functions. Gut Microbes 2024; 16:2379624. [PMID: 39042424 PMCID: PMC11268228 DOI: 10.1080/19490976.2024.2379624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.
Collapse
Affiliation(s)
- Nathalie Coutry
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Imène Gasmi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Fabien Herbert
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
13
|
Nemathaga M, Smith RM, Malatji DP. Interactions between the helminth and intestinal microbiome in smallholder chicken farming systems. Front Vet Sci 2023; 10:1309151. [PMID: 38179334 PMCID: PMC10766368 DOI: 10.3389/fvets.2023.1309151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Helminth parasite infections are widespread in smallholder farming systems affecting farmers and livestock animals. There are pathogenic parasites that populate the gut of their host and coexist closely with the gut microbiota. The physical and immunological environment of the gut can be modified by parasites and microbiota creating a wide range of interactions. These interactions modify the development of infection, affects overall host health, and can modify the way a host interacts with its bacterial microbiota. In addition, where there is a high worm burden parasites will affect the health of the host and intestinal tract colonization. This review highlights key studies on the interaction between helminth parasites and the intestinal microbiome to understand the relationship between parasitic worm infections and gut microbiome health in chickens. Finally, the review discusses modulations, molecular changes, and the importance of helminth-microbiome interactions for the host.
Collapse
Affiliation(s)
| | | | - Dikeledi P. Malatji
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Roodepoort, South Africa
| |
Collapse
|
14
|
Cain JL, Norris JK, Swan MP, Nielsen MK. A diverse microbial community and common core microbiota associated with the gonad of female Parascaris spp. Parasitol Res 2023; 123:56. [PMID: 38105374 DOI: 10.1007/s00436-023-08086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The microbiome plays an important role in health, where changes in microbiota composition can have significant downstream effects within the host, and host-microbiota relationships can be exploited to affect health outcomes. Parasitic helminths affect animals globally, but an exploration of their microbiota has been limited, despite the development of anti-Wolbachia drugs to help control infections with some filarial nematodes. The equine ascarids, Parascaris spp., are considered the most pathogenic nematodes affecting juvenile horses and are also the only ascarid parasite to have developed widespread anthelmintic resistance. The aim of this study was to characterize the microbiota of this helminth, focusing on the female gonad, determine a core microbiota for this organ, identify bacterial species, and show bacterial localization to the female gonad via in situ hybridization (ISH). A total of 22 gonads were isolated from female Parascaris spp. collected from three foals, and 9 female parasites were formalin-fixed and paraffin-embedded for ISH. Next-generation sequencing was performed using V3-V4 primers as well as the Swift Amplicon™ 16S+ ITS Panel. Overall, ten genera were identified as members of the Parascaris spp. female gonad and twelve bacterial species were identified. The most prevalent genus was Mycoplasma, followed by Reyranella, and there were no differences in alpha diversity between parasites from different horses. Specific eubacteria staining was identified in both the intestine and within the gonad using ISH. Overall, this study provided in-depth information regarding the female Parascaris spp. microbiota and was the first to identify the core microbiota within a specific parasite organ.
Collapse
Affiliation(s)
- Jennifer L Cain
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA.
| | - Jamie K Norris
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| | - Melissa P Swan
- University of Kentucky Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY, 40511, USA
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Road, Lexington, KY, 40503, USA
| |
Collapse
|
15
|
Sodi I, Martini M, Salari F, Perrucci S. Gastrointestinal Parasite Infections and Environmental Sustainability of the Ovine Sector: Eimeria spp. Infections and Nitrogen and Phosphorus Excretions in Dairy Sheep in Italy. Pathogens 2023; 12:1459. [PMID: 38133342 PMCID: PMC10746012 DOI: 10.3390/pathogens12121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
In sheep farming, gastrointestinal parasites can be responsible for significant reductions in animal health and production. Nitrogen (N) and phosphorus (P) fecal excretions are the main determining factors for N2O emissions from manure management and may pose other environmental problems, such as the acidification and eutrophication of natural habitats. By using the Mini-FLOTAC technique on fecal samples from sheep of different ages and physiological status from 19 dairy sheep farms in Tuscany (central Italy), gastrointestinal parasite infections were evaluated. The animal N and P fecal contents were also assessed, with the aim of evaluating possible relationships between the identified parasites and the environmental sustainability of the examined farms. The obtained results showed that Eimeria spp. (86.36%) and gastrointestinal strongyle (54.55%) infections are prevalent in the examined farms. Moreover, significantly higher (p ≤ 0.05) P and Eimeria oocyst/gram-of-feces (OPG) values were found in fecal samples from animals < 1 year of age, and a significant (p ≤ 0.05) positive correlation resulted between N content and Eimeria OPG in fecal samples from animals in the first month of lactation. The findings from this study suggest for the first time that Eimeria spp. infections may have an impact on the environmental sustainability of sheep farming.
Collapse
Affiliation(s)
- Irene Sodi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (I.S.); (M.M.)
| | - Mina Martini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (I.S.); (M.M.)
- Research Center Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Federica Salari
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (I.S.); (M.M.)
| | - Stefania Perrucci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (I.S.); (M.M.)
- Research Center Nutraceuticals and Food for Health, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
16
|
Swanson K, Blakeslee AMH, Fowler AE, Roozbehi S, Field EK. Microbial communities are indicators of parasite infection status. Environ Microbiol 2023; 25:3423-3434. [PMID: 37918974 DOI: 10.1111/1462-2920.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host-parasite relationships. Yet, while studies have investigated host-parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host-parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.
Collapse
Affiliation(s)
- Kyle Swanson
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - April M H Blakeslee
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Amy E Fowler
- Environmental Science & Policy Department, George Mason University, Fairfax, Virginia, USA
| | - Sara Roozbehi
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
17
|
Leroux N, Sylvain FE, Holland A, Luis Val A, Derome N. Gut microbiota of an Amazonian fish in a heterogeneous riverscape: integrating genotype, environment, and parasitic infections. Microbiol Spectr 2023; 11:e0275522. [PMID: 37724869 PMCID: PMC10581195 DOI: 10.1128/spectrum.02755-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/14/2023] [Indexed: 09/21/2023] Open
Abstract
A number of key factors can structure the gut microbiota of fish such as environment, diet, health state, and genotype. Mesonauta festivus, an Amazonian cichlid, is a relevant model organism to study the relative contribution of these factors on the community structure of fish gut microbiota. M. festivus has well-studied genetic populations and thrives in rivers with drastically divergent physicochemical characteristics. Here, we collected 167 fish from 12 study sites and used 16S and 18S rRNA metabarcoding approaches to characterize the gut microbiome structure of M. festivus. These data sets were analyzed in light of the host fish genotypes (genotyping-by-sequencing) and an extensive characterization of environmental physico-chemical parameters. We explored the relative contribution of environmental dissimilarity, the presence of parasitic taxa, and phylogenetic relatedness on structuring the gut microbiota. We documented occurrences of Nyctotherus sp. infecting a fish and linked its presence to a dysbiosis of the host gut microbiota. Moreover, we detected the presence of helminths which had a minor impact on the gut microbiota of their host. In addition, our results support a higher impact of the phylogenetic relatedness between fish rather than environmental similarity between sites of study on structuring the gut microbiota for this Amazonian cichlid. Our study in a heterogeneous riverscape integrates a wide range of factors known to structure fish gut microbiomes. It significantly improves understanding of the complex relationship between fish, their parasites, their microbiota, and the environment. IMPORTANCE The gut microbiota is known to play important roles in its host immunity, metabolism, and comportment. Its taxonomic composition is modulated by a complex interplay of factors that are hard to study simultaneously in natural systems. Mesonauta festivus, an Amazonian cichlid, is an interesting model to simultaneously study the influence of multiple variables on the gut microbiota. In this study, we explored the relative contribution of the environmental conditions, the presence of parasitic infections, and the genotype of the host on structuring the gut microbiota of M. festivus in Amazonia. Our results highlighted infections by a parasitic ciliate that caused a disruption of the gut microbiota and by parasitic worms that had a low impact on the microbiota. Finally, our results support a higher impact of the genotype than the environment on structuring the microbiota for this fish. These findings significantly improve understanding of the complex relationship among fish, their parasites, their microbiota, and the environment.
Collapse
Affiliation(s)
- Nicolas Leroux
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Quebec City, Quebec, Canada
| | - Francois-Etienne Sylvain
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Quebec City, Quebec, Canada
| | - Aleicia Holland
- Department of Environment and Genetics, Centre for Freshwater Ecosystems, Wodonga, Victoria, Australia
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, Brazil
| | - Nicolas Derome
- Department of Biology, Laval University, Quebec City, Quebec, Canada
- Institut de Biologie Intégrative et des Systèmes, Quebec City, Quebec, Canada
| |
Collapse
|
18
|
Maruszewska-Cheruiyot M, Szewczak L, Krawczak-Wójcik K, Kierasińska M, Stear M, Donskow-Łysoniewska K. The Impact of Intestinal Inflammation on Nematode's Excretory-Secretory Proteome. Int J Mol Sci 2023; 24:14127. [PMID: 37762428 PMCID: PMC10531923 DOI: 10.3390/ijms241814127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Parasitic nematodes and their products are promising candidates for therapeutics against inflammatory bowel diseases (IBD). Two species of nematodes, the hookworm Necator americanus and the whipworm Trichuis suis, are being used in clinical treatment trials of IBD referred to as "helminth therapy". Heligmosomoides polygyrus is a well-known model for human hookworm infections. Excretory-secretory (ES) products of H. polygyrus L4 stage that developed during colitis show a different immunomodulatory effect compared to the ES of H. polgyrus from healthy mice. The aim of the study was to evaluate excretory-secretory proteins produced by H. polygyrus L4 stage males and females that developed in the colitic milieu. Mass spectrometry was used to identify proteins. Blast2GO was used to investigate the functions of the discovered proteins. A total of 387 proteins were identified in the ES of H. polygyrus L4 males (HpC males), and 330 proteins were identified in the ES of L4 females that developed in the colitic milieu (HpC females). In contrast, only 200 proteins were identified in the ES of L4 males (Hp males) and 218 in the ES of L4 females (Hp females) that developed in control conditions. Most of the proteins (123) were detected in all groups. Unique proteins identified in the ES of HpC females included annexin, lysozyme-2, apyrase, and galectin. Venom allergen/Ancylostoma-secreted protein-like, transthyretin-like family proteins, and galectins were found in the secretome of HpC males but not in the secretome of control males. These molecules may be responsible for the therapeutic effects of nematodes in DSS-induced colitis.
Collapse
Affiliation(s)
- Marta Maruszewska-Cheruiyot
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| | - Ludmiła Szewczak
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 00-096 Warsaw, Poland;
| | - Katarzyna Krawczak-Wójcik
- Department of Biomedical Sciences, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka 34, 00-968 Warsaw, Poland;
| | - Magdalena Kierasińska
- Department of Histology and Embryology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland;
| | - Michael Stear
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Katarzyna Donskow-Łysoniewska
- Department of Experimental Immunotherapy, Faculty of Medicine, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland;
| |
Collapse
|
19
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
20
|
Lapid R, Motro Y, Craddock H, Khalfin B, King R, Bar-Gal GK, Moran-Gilad J. Fecal microbiota of the synanthropic golden jackal (Canis aureus). Anim Microbiome 2023; 5:37. [PMID: 37542305 PMCID: PMC10403885 DOI: 10.1186/s42523-023-00259-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
The golden jackal (Canis aureus), is a medium canid carnivore widespread throughout the Mediterranean region and expanding into Europe. This species thrives near human settlements and is implicated in zoonoses such as rabies. This study explores for the first time, the golden jackal fecal microbiota. We analyzed 111 fecal samples of wild golden jackals using 16S rRNA amplicon sequencing the connection of the microbiome to animal characteristics, burden of pathogens and geographic and climate characteristics. We further compared the fecal microbiota of the golden jackal to the black-backed jackal and domestic dog. We found that the golden jackal fecal microbiota is dominated by the phyla Bacteroidota, Fusobacteriota and Firmicutes. The golden jackal fecal microbiota was associated with different variables, including geographic region, age-class, exposure to rabies oral vaccine, fecal parasites and toxoplasmosis. A remarkable variation in the relative abundance of different taxa was also found associated with different variables, such as age-class. Linear discriminant analysis effect size (LEfSe) analysis found abundance of specific taxons in each region, Megasphaera genus in group 1, Megamonas genus in group 2 and Bacteroides coprocola species in group 3. We also found a different composition between the fecal microbiota of the golden jackal, blacked-backed jackal and the domestic dog. Furthermore, LEfSe analysis found abundance of Fusobacterium and Bacteroides genera in the golden jackal, Clostridia class in blacked-backed jackal and Megamonas genus in domestic dog. The golden jackal fecal microbiota is influenced by multiple factors including host traits and pathogen burden. The characterization of the microbiota of this thriving species may aid in mapping its spread and proximity to human settlements. Moreover, understanding the jackal microbiota could inform the study of potential animal and human health risks and inform control measures.
Collapse
Affiliation(s)
- Roi Lapid
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B. 12, 7610001, Rehovot, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Hillary Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Boris Khalfin
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Roni King
- Science and Conservation Division, Israel Nature and Parks Authority, 3 Am Ve'Olamo St., 95463, Jerusalem, Israel
| | - Gila Kahila Bar-Gal
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O.B. 12, 7610001, Rehovot, Israel
| | - Jacob Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel.
| |
Collapse
|
21
|
Appiah-Twum F, Akorli J, Okyere L, Sagoe K, Osabutey D, Cappello M, Wilson MD. The effect of single dose albendazole (400 mg) treatment on the human gut microbiome of hookworm-infected Ghanaian individuals. Sci Rep 2023; 13:11302. [PMID: 37438457 PMCID: PMC10338455 DOI: 10.1038/s41598-023-38376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
Microbes play a key role in human gut homeostasis, metabolic, immunologic and physiopathology of the body. A longitudinal study conducted during 2018-2021 in the Kintampo North Municipality in Ghana demonstrated low hookworm infection cure rates following treatment with a single dose of 400 mg albendazole in some communities. To investigate associations between hookworm infection and the gut microbiome, we examined stool samples from consented participants who were either cured or remained infected after treatment. At each time point, stool was collected prior to and 10-14 days after albendazole treatment. We used 16S rRNA amplicon sequencing of DNA extracted from stool samples to investigate the composition and diversity of the gut microbiota and to identify potential microbial biomarkers associated with treatment outcomes. Hookworm infection was associated with increased species richness (p = 0.0093). Among treated individuals, there was also a significant variation in microbiota composition at 10-14 days following single-dose albendazole treatment. Individuals cured of hookworm infection after treatment showed a significant reduction in microbiota composition when compared to their pre-treatment state (ANOSIM; p = 0.02), whilst individuals who failed to clear the infection showed no change in microbiota composition (ANOSIM; p = 0.35). Uninfected individuals and those who were successfully treated were similar in their microbial composition and structure. We also found that the abundance of Clostridia spp. was increased in infected individuals pre- or post-treatment. Predictive functional profiling revealed the enrichment of two pyruvate ferredoxin oxidoreductase subunit pathways in individuals who remained infected after treatment (p < 0.05), alluding to an upturn of strictly anaerobic commensal bacteria such as Clostridia spp. This study suggests a relationship between human gut microbiome dysbiosis and albendazole therapy outcomes of hookworm infection. Future studies will further characterize specific biomarkers identified within this study to establish their potential for assessment of pharmacological responses to anthelminthic therapies, as well as explore the possibility of using probiotic supplementation as an adjunct treatment to increase albendazole effectiveness against hookworm.
Collapse
Affiliation(s)
- Francis Appiah-Twum
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Lydia Okyere
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
- Department of Pathobiology, University of Illinois, Urbana-Champaign, 2522 Vet Med Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Kate Sagoe
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
- Pan African University Institute for Basic Sciences, Technology, and Innovation (PAUSTI), P. O. Box 62000 00200, Nairobi, Kenya
| | - Dickson Osabutey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Michael Cappello
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, 60 College St, New Haven, CT, 06520, USA
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana.
| |
Collapse
|
22
|
Sargsian S, Lejeune A, Ercelen D, Jin WB, Varghese A, Loke P, Lim YAL, Guo CJ, Cadwell K. Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543751. [PMID: 37333296 PMCID: PMC10274677 DOI: 10.1101/2023.06.05.543751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, displayed microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes previously shown to have immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. Here, we further characterized the functional properties of these bacteria. Enzymatic and metabolomic profiling revealed a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. These results provide functional insights into the microbiotas of an understudied population.
Collapse
Affiliation(s)
- Shushan Sargsian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Defne Ercelen
- Division of Gastroenterology and Hepatology, Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Alan Varghese
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - P’ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ken Cadwell
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
- Lead Contact
| |
Collapse
|
23
|
Vaziri GJ, Jones MM, Carr HA, Nuñez CMV. Out of the stable: Social disruption and concurrent shifts in the feral mare ( Equus caballus) fecal microbiota. Ecol Evol 2023; 13:e10079. [PMID: 37187967 PMCID: PMC10175550 DOI: 10.1002/ece3.10079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
The disruption of animals' symbiotic bacterial communities (their microbiota) has been associated with myriad factors including changes to the diet, hormone levels, and various stressors. The maintenance of healthy bacterial communities may be especially challenging for social species as their microbiotas are also affected by group membership, social relationships, microbial transfer between individuals, and social stressors such as increased competition and rank maintenance. We investigated the effects of increased social instability, as determined by the number of group changes made by females, on the microbiota in free-living, feral horses (Equus caballus) on Shackleford Banks, a barrier island off the North Carolina coast. Females leaving their groups to join new ones had fecal microbial communities that were similarly diverse but compositionally different than those of females that did not change groups. Changing groups was also associated with the increased abundance of a several bacterial genera and families. These changes may be significant as horses are heavily dependent upon their microbial communities for nutrient absorption. Though we cannot identify the particular mechanism(s) driving these changes, to the best of our knowledge, ours is the first study to demonstrate an association between acute social perturbations and the microbiota in a free-ranging mammal.
Collapse
Affiliation(s)
- Grace J. Vaziri
- Ecology and Evolutionary BiologyUniversity of ConnecticutMansfieldConnecticutUSA
| | - Maggie M. Jones
- Department of Natural Resource Ecology and ManagementIowa State UniversityAmes, IowaUSA
- Present address:
School of Natural Resources and EnvironmentUniversity of FloridaGainesvilleFloridaUSA
| | - Haley A. Carr
- Department of Natural Resource Ecology and ManagementIowa State UniversityAmes, IowaUSA
| | - Cassandra M. V. Nuñez
- Department of Natural Resource Ecology and ManagementIowa State UniversityAmes, IowaUSA
- Department of Biological SciencesThe University of MemphisMemphisTennesseeUSA
| |
Collapse
|
24
|
Rooney J, Cantacessi C, Sotillo J, Cortés A. Gastrointestinal worms and bacteria: From association to intervention. Parasite Immunol 2023; 45:e12955. [PMID: 36300732 DOI: 10.1111/pim.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
A plethora of studies, both experimental and epidemiological, have indicated the occurrence of associations between infections by gastrointestinal (GI) helminths and the composition and function of the host gut microbiota. Given the worldwide risk and spread of anthelmintic resistance, particularly for GI parasites of livestock, a better understanding of the mechanisms underpinning the relationships between GI helminths and the gut microbiome, and between the latter and host health, may assist the development of novel microbiome-targeting and other bacteria-based strategies for parasite control. In this article, we review current and prospective methods to manipulate the host gut microbiome, and/or to exploit the immune stimulatory and modulatory properties of gut bacteria (and their products) to counteract the negative impact of GI worm infections; we also discuss the potential applications of these intervention strategies in programmes aimed to aid the fight against helminth diseases of humans and livestock.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, València, Spain
| |
Collapse
|
25
|
Fenn J, Taylor C, Goertz S, Wanelik KM, Paterson S, Begon M, Jackson J, Bradley J. Discrete patterns of microbiome variability across timescales in a wild rodent population. BMC Microbiol 2023; 23:87. [PMID: 36997846 PMCID: PMC10061908 DOI: 10.1186/s12866-023-02824-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Mammalian gastrointestinal microbiomes are highly variable, both within individuals and across populations, with changes linked to time and ageing being widely reported. Discerning patterns of change in wild mammal populations can therefore prove challenging. We used high-throughput community sequencing methods to characterise the microbiome of wild field voles (Microtus agrestis) from faecal samples collected across 12 live-trapping field sessions, and then at cull. Changes in α- and β-diversity were modelled over three timescales. Short-term differences (following 1–2 days captivity) were analysed between capture and cull, to ascertain the degree to which the microbiome can change following a rapid change in environment. Medium-term changes were measured between successive trapping sessions (12–16 days apart), and long-term changes between the first and final capture of an individual (from 24 to 129 days). The short period between capture and cull was characterised by a marked loss of species richness, while over medium and long-term in the field, richness slightly increased. Changes across both short and long timescales indicated shifts from a Firmicutes-dominant to a Bacteroidetes-dominant microbiome. Dramatic changes following captivity indicate that changes in microbiome diversity can be rapid, following a change of environment (food sources, temperature, lighting etc.). Medium- and long-term patterns of change indicate an accrual of gut bacteria associated with ageing, with these new bacteria being predominately represented by Bacteroidetes. While the patterns of change observed are unlikely to be universal to wild mammal populations, the potential for analogous shifts across timescales should be considered whenever studying wild animal microbiomes. This is especially true if studies involve animal captivity, as there are potential ramifications both for animal health, and the validity of the data itself as a reflection of a ‘natural’ state of an animal.
Collapse
Affiliation(s)
- Jonathan Fenn
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Christopher Taylor
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Sarah Goertz
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Klara M. Wanelik
- grid.10025.360000 0004 1936 8470University of Liverpool, Liverpool, UK
| | - Steve Paterson
- grid.10025.360000 0004 1936 8470University of Liverpool, Liverpool, UK
| | - Mike Begon
- grid.10025.360000 0004 1936 8470University of Liverpool, Liverpool, UK
| | - Joe Jackson
- grid.8752.80000 0004 0460 5971University of Salford, Salford, UK
| | - Jan Bradley
- grid.4563.40000 0004 1936 8868School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
26
|
Maestas DR, Chung L, Han J, Wang X, Sommerfeld SD, Kelly SH, Moore E, Nguyen HH, Mejías JC, Peña AN, Zhang H, Hooks JST, Chin AF, Andorko JI, Berlinicke CA, Krishnan K, Choi Y, Anderson AE, Mahatme R, Mejia C, Eric M, Woo J, Ganguly S, Zack DJ, Zhao L, Pearce EJ, Housseau F, Pardoll DM, Elisseeff JH. Helminth egg derivatives as proregenerative immunotherapies. Proc Natl Acad Sci U S A 2023; 120:e2211703120. [PMID: 36780522 PMCID: PMC9974432 DOI: 10.1073/pnas.2211703120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
The immune system is increasingly recognized as an important regulator of tissue repair. We developed a regenerative immunotherapy from the helminth Schistosoma mansoni soluble egg antigen (SEA) to stimulate production of interleukin (IL)-4 and other type 2-associated cytokines without negative infection-related sequelae. The regenerative SEA (rSEA) applied to a murine muscle injury induced accumulation of IL-4-expressing T helper cells, eosinophils, and regulatory T cells and decreased expression of IL-17A in gamma delta (γδ) T cells, resulting in improved repair and decreased fibrosis. Encapsulation and controlled release of rSEA in a hydrogel further enhanced type 2 immunity and larger volumes of tissue repair. The broad regenerative capacity of rSEA was validated in articular joint and corneal injury models. These results introduce a regenerative immunotherapy approach using natural helminth derivatives.
Collapse
Affiliation(s)
- David R. Maestas
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Liam Chung
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
| | - Jin Han
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Xiaokun Wang
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Sven D. Sommerfeld
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Sean H. Kelly
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Erika Moore
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Materials Science and Engineering, University of Florida, Gainesville, FL32611
| | - Helen Hieu Nguyen
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Joscelyn C. Mejías
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Hong Zhang
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Joshua S. T. Hooks
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Alexander F. Chin
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - James I. Andorko
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
| | - Cynthia A. Berlinicke
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Kavita Krishnan
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Younghwan Choi
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Amy E. Anderson
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Ronak Mahatme
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Christopher Mejia
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Marie Eric
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - JiWon Woo
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
| | - Sudipto Ganguly
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Liang Zhao
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Edward J. Pearce
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD21287
| | - Franck Housseau
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Drew M. Pardoll
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21287
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
| |
Collapse
|
27
|
The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century. Pathogens 2022; 11:pathogens11121439. [PMID: 36558772 PMCID: PMC9784563 DOI: 10.3390/pathogens11121439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The tapeworm Hymenolepis diminuta is a common parasite of the small intestine in rodents but it can also infect humans. Due to its characteristics and ease of maintenance in the laboratory, H. diminuta is also an important model species in studies of cestodiasis, including the search for new drugs, treatments, diagnostics and biochemical processes, as well as its host-parasite interrelationships. A great deal of attention has been devoted to the immune response caused by H. diminuta in the host, and several studies indicate that infection with H. diminuta can reduce the severity of concomitant disease. Here, we present a critical review of the experimental research conducted with the use of H. diminuta as a model organism for over more than two decades (in the 21st century). The present review evaluates the tapeworm H. diminuta as a model organism for studying the molecular biology, biochemistry and immunology aspects of parasitology, as well as certain clinical applications. It also systematizes the latest research on this species. Its findings may contribute to a better understanding of the biology of tapeworms and their adaptation to parasitism, including complex correlations between H. diminuta and invertebrate and vertebrate hosts. It places particular emphasis on its value for the further development of modern experimental parasitology.
Collapse
|
28
|
Hymenolepis diminuta Reduce Lactic Acid Bacterial Load and Induce Dysbiosis in the Early Infection of the Probiotic Colonization of Swiss Albino Rat. Microorganisms 2022; 10:microorganisms10122328. [PMID: 36557581 PMCID: PMC9785584 DOI: 10.3390/microorganisms10122328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Tapeworm infection continues to be an important cause of morbidity worldwide. Recent metagenomics studies have established a link between gut microbiota and parasite infection. The identification of gut probiotics is of foremost importance to explore its relationship and function with the parasite in the host. In this study, the gut content of hosts infected with tapeworm Hymenolepis diminuta and non-infected host gut were disected out to determine their Lactic acid bacterial (LAB) population in MRS agar and microbial community was analysed by metagenomics. The bacterial count was calculated on a bacterial counting chamber and their morphology was determined microscopically and biochemically. Further, to determine the safety profile antibiotic resistance test, antimicrobial, hemolytic activity, and adhesion capability were calculated. We found six dominant probiotic strains and a decrease in LAB load from 1.7-2.3 × 107 CFU/mL in the uninfected group to a range of 8.4 × 105 CFU/mL to 3.2 × 105 CFU/mL in the infected groups with respect to an increase in the parasite number from 10-18. In addition, we found a depletion in the probiotic relative abundance of Lactobacillus and an enrichment in potentially pathogenic Proteobacteria, Fusobacteria, and Streptococcus. Phylogenetic analysis of the six probiotics revealed a close similarity with different strains of L. brevis, L. johnsonii, L. taiwansis, L. reuteri, L. plantarum, and L. pentosus. Thus, this study suggests that the parasite inhibits probiotic colonization in the gut during its early establishment of infection inside the host.
Collapse
|
29
|
Gut bacteriome and metabolome of Ascaris lumbricoides in patients. Sci Rep 2022; 12:19524. [PMID: 36376367 PMCID: PMC9663418 DOI: 10.1038/s41598-022-23608-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
The most frequent intestinal helminth infections in humans are attributed to Ascaris lumbricoides, and there are concerns over the anthelminthic resistance of this species. The gut microbiota has essential roles in host physiology. Therefore, discovering host-parasite-microbiota interactions could help develop alternative helminthiasis treatments. Additionally, these interactions are modulated by functional metabolites that can reveal the mechanisms of infection and disease progression. Thus, we aimed to investigate bacteriomes in the gut of helminths and fecal samples of patients via next-generation sequencing. Our results showed that infection intensity was associated with the bacterial composition of helminth guts but not with the intestinal bacteriome of human hosts. Moreover, the metabolomes of A. lumbricoides in the heavy and light ascariasis cases were characterized using ultra-high performance liquid chromatography/time-of-flight mass spectrometry. Increased levels of essential biomolecules, such as amino acids, lipids, and nucleotide precursors, were found in the guts of helminths isolated from heavily infected patients, implying that these metabolites are related to egg production and ascariasis pathogenicity. These findings are the first step towards a more complete understanding of the mechanisms by which the bacteriome of helminth guts affect their colonization and may reveal novel and more effective approaches to parasitic disease therapy.
Collapse
|
30
|
Donnelly S. The immunology of parasite infections: Grand challenges. FRONTIERS IN PARASITOLOGY 2022; 1:1069205. [PMID: 39816470 PMCID: PMC11732110 DOI: 10.3389/fpara.2022.1069205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 01/18/2025]
Affiliation(s)
- Sheila Donnelly
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
31
|
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays. Parasit Vectors 2022; 15:354. [PMID: 36184586 PMCID: PMC9528173 DOI: 10.1186/s13071-022-05443-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. METHODS Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. RESULTS Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. CONCLUSIONS Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity.
Collapse
|
32
|
Izvekova GI. Parasitic Infections and Intestinal Microbiota: A Review. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Noel SC, Fortin-Hamel L, Haque M, Scott ME. Maternal gastrointestinal nematode infection enhances spatial memory of uninfected juvenile mouse pups. Sci Rep 2022; 12:9796. [PMID: 35697723 PMCID: PMC9192650 DOI: 10.1038/s41598-022-13971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
The developing brain is particularly vulnerable to factors including maternal infection during pregnancy. Establishment of neural networks critical for memory and cognition begins during the perinatal period, when Heligmosomoides bakeri, a gastrointestinal (GI) nematode restricted to the maternal mouse intestine, has been shown to upregulate expression of long-term potentiation genes in the young rodent pup brain. We explored the impact of maternal infection during pregnancy and early lactation on the spatial behavior of uninfected male and female juvenile mice. Pre-weaned pups of H. bakeri infected dams exhibited less exploratory behaviour compared to pups of uninfected dams on postnatal day (PD) 16 but not PD 17, possibly reflecting a transient fear of an unfamiliar environment and/or a brief neurodevelopmental delay. Our two spatial memory tests show for the first time an enhancement of spatial memory in response to maternal nematode infection regardless of pup sex. At PD 17, pups of infected dams expressed object location memories after 3 h in the Object Location Test whereas offspring of uninfected mothers did not. In addition, at PD 34, juveniles of infected mothers retained their ability to find the escape hole in the Barnes Maze Test for one week whereas offspring from uninfected mothers did not. This finding is even more striking given that spatial memory was positively associated with pup length, yet this maternal infection impaired linear growth of pups. Thus, the positive impact of maternal infection on spatial memory countered any impairment associated with the shorter length of the pups. Overall, these novel findings indicate that a maternal GI nematode infection during pregnancy and lactation positively influences the spatial memory of uninfected juvenile offspring with potential fitness implications for the next generation.
Collapse
Affiliation(s)
- Sophia C Noel
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Liana Fortin-Hamel
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Manjurul Haque
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Marilyn E Scott
- Institute of Parasitology, McGill University (Macdonald Campus), 21,111 Lakeshore Road, Ste-Anne de Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
34
|
Clinical helminth infections alter host gut and saliva microbiota. PLoS Negl Trop Dis 2022; 16:e0010491. [PMID: 35675339 PMCID: PMC9212162 DOI: 10.1371/journal.pntd.0010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/21/2022] [Accepted: 05/12/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Previous reports show altered gut bacterial profiles are associated with helminth infected individuals. Our recently published molecular survey of clinical helminthiases in Thailand border regions demonstrated a more comprehensive picture of infection prevalence when Kato Katz microscopy and copro-qPCR diagnostics were combined. We revealed that Opisthorchis viverrini, hookworm, Ascaris lumbricoides and Trichuris trichiura were the most predominant helminth infections in these regions. In the current study, we have profiled the faecal and saliva microbiota of a subset of these helminth infected participants, in order to determine if microbial changes are associated with parasite infection.
Methods
A subset of 66 faecal samples from Adisakwattana et al., (2020) were characterised for bacterial diversity using 16S rRNA gene profiling. Of these samples a subset of 24 participant matched saliva samples were also profiled for microbiota diversity. Sequence data were compiled, OTUs assigned, and diversity and abundance analysed using the statistical software Calypso.
Results
The data reported here indicate that helminth infections impact on both the host gut and oral microbiota. The profiles of faecal and saliva samples, irrespective of the infection status, were considerably different from each other, with more alpha diversity associated with saliva (p-value≤ 0.0015). Helminth infection influenced the faecal microbiota with respect to specific taxa, but not overall microbial alpha diversity. Conversely, helminth infection was associated with increased saliva microbiota alpha diversity (Chao 1 diversity indices) at both the genus (p-value = 0.042) and phylum (p-value = 0.026) taxa levels, compared to uninfected individuals. Elevated individual taxa in infected individuals saliva were noted at the genus and family levels. Since Opisthorchis viverrini infections as a prominent health concern to Thailand, this pathogen was examined separately to other helminths infections present. Individuals with an O. viverrini mono-infection displayed both increases and decreases in genera present in their faecal microbiota, while increases in three families and one order were also observed in these samples.
Discussion
In this study, helminth infections appear to alter the abundance of specific faecal bacterial taxa, but do not impact on overall bacterial alpha or beta diversity. In addition, the faecal microbiota of O. viverrini only infected individuals differed from that of other helminth single and dual infections. Saliva microbiota analyses of individuals harbouring active helminth infections presented increased levels of both bacterial alpha diversity and abundance of individual taxa. Our data demonstrate that microbial change is associated with helminthiases in endemic regions of Thailand, and that this is reflected in both faecal and saliva microbiota. To our knowledge, this is the first report of an altered saliva microbiota in helminth infected individuals. This work may provide new avenues for improved diagnostics; and an enhanced understanding of both helminth infection pathology and the interplay between helminths, bacteria and their host.
Collapse
|
35
|
Castañeda S, Paniz-Mondolfi A, Ramírez JD. Detangling the Crosstalk Between Ascaris, Trichuris and Gut Microbiota: What´s Next? Front Cell Infect Microbiol 2022; 12:852900. [PMID: 35694539 PMCID: PMC9174645 DOI: 10.3389/fcimb.2022.852900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infections remain a global public health issue, particularly in low- and middle-income countries, where roundworms from theTrichuris and Ascaris genera are most prevalent. These geohelminths not only impact human health but most importantly also affect animal well-being, in particular the swine industry. Host-helminth parasite interactions are complex and at the same time essential to understand the biology, dynamics and pathophysiology of these infections. Within these interactions, the immunomodulatory capacity of these helminths in the host has been extensively studied. Moreover, in recent years a growing interest on how helminths interact with the intestinal microbiota of the host has sparked, highlighting how this relationship plays an essential role in the establishment of initial infection, survival and persistence of the parasite, as well as in the development of chronic infections. Identifying the changes generated by these helminths on the composition and structure of the host intestinal microbiota constitutes a field of great scientific interest, since this can provide essential and actionable information for designing effective control and therapeutic strategies. Helminths like Trichuris and Ascaris are a focus of special importance due to their high prevalence, higher reinfection rates, resistance to anthelmintic therapy and unavailability of vaccines. Therefore, characterizing interactions between these helminths and the host intestinal microbiota represents an important approach to better understand the nature of this dynamic interface and explore novel therapeutic alternatives based on management of host microbiota. Given the extraordinary impact this may have from a biological, clinical, and epidemiological public health standpoint, this review aims to provide a comprehensive overview of current knowledge and future perspectives examining the parasite-microbiota interplay and its impact on host immunity.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Juan David Ramírez, ;
| |
Collapse
|
36
|
Papaiakovou M, Littlewood DTJ, Doyle SR, Gasser RB, Cantacessi C. Worms and bugs of the gut: the search for diagnostic signatures using barcoding, and metagenomics-metabolomics. Parasit Vectors 2022; 15:118. [PMID: 35365192 PMCID: PMC8973539 DOI: 10.1186/s13071-022-05225-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) helminth infections cause significant morbidity in both humans and animals worldwide. Specific and sensitive diagnosis is central to the surveillance of such infections and to determine the effectiveness of treatment strategies used to control them. In this article, we: (i) assess the strengths and limitations of existing methods applied to the diagnosis of GI helminth infections of humans and livestock; (ii) examine high-throughput sequencing approaches, such as targeted molecular barcoding and shotgun sequencing, as tools to define the taxonomic composition of helminth infections; and (iii) discuss the current understanding of the interactions between helminths and microbiota in the host gut. Stool-based diagnostics are likely to serve as an important tool well into the future; improved diagnostics of helminths and their environment in the gut may assist the identification of biomarkers with the potential to define the health/disease status of individuals and populations, and to identify existing or emerging anthelmintic resistance.
Collapse
Affiliation(s)
- Marina Papaiakovou
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | | | | | - Robin B. Gasser
- Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
| |
Collapse
|
37
|
Transcript and blood-microbiome analysis towards a blood diagnostic tool for goats affected by Haemonchus contortus. Sci Rep 2022; 12:5362. [PMID: 35354850 PMCID: PMC8967894 DOI: 10.1038/s41598-022-08939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
The Alpine goat (Capra aegagrus hircus) is parasitized by the barber pole worm (Haemonchus contortus). Hematological parameters from transcript and metagenome analysis in the host are reflective of infestation. We explored comparisons between blood samples of control, infected, infected zoledronic acid-treated, and infected antibody (anti-γδ T cells) treated wethers under controlled conditions. Seven days post-inoculation (dpi), we identified 7,627 transcripts associated with the different treatment types. Microbiome measurements at 7 dpi revealed fewer raw read counts across all treatments and a less diverse microbial flora than at 21 dpi. This study identifies treatment specific transcripts and an increase in microflora abundance and diversity as wethers age. Further, F/B ratio reflect health, based on depression or elevation above thresholds defined by the baseline of non-infected controls. Forty Alpine wethers were studied where blood samples were collected from five goats in four treatment groups on 7 dpi and 21 dpi. Transcript and microbiome profiles were obtained using the Partek Flow (St. Louis, Missouri, USA) software suites pipelines. Inflammation comparisons were based on the Firmicutes/Bacteriodetes ratios that are calculated as well as the reduction of microbial diversity.
Collapse
|
38
|
Guiver E, Galan M, Lippens C, Bellenger J, Faivre B, Sorci G. Increasing helminth infection burden depauperates the diversity of the gut microbiota and alters its composition in mice. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100082. [PMID: 36589866 PMCID: PMC9795360 DOI: 10.1016/j.crpvbd.2022.100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
Abstract
The gut microbiota constitutes a diverse community of organisms with pervasive effects on host homeostasis. The diversity and composition of the gut microbiota depend on both intrinsic (host genetics) and extrinsic (environmental) factors. Here, we investigated the reaction norms of fecal microbiota diversity and composition in three strains of mice infected with increasing doses of the gastrointestinal nematode Heligmosomoides polygyrus. We found that α-diversity (bacterial taxonomic unit richness) declined along the gradient of infective doses, and β-diversity (dissimilarity between the composition of the microbiota of uninfected and infected mice) increased as the infective dose increased. We did not find evidence for genotype by environment (host strain by infective dose) interactions, except when focusing on the relative abundance of the commonest bacterial families. A simulation approach also showed that significant genotype by environment interactions would have been hardly found even with much larger sample size. These results show that increasing parasite burden progressively depauperates microbiota diversity and contributes to rapidly change its composition, independently from the host genetic background.
Collapse
Affiliation(s)
- Emmanuel Guiver
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Maxime Galan
- Centre de Biologie pour la Gestion des Populations, CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, 755 Avenue du Campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez Cedex, France
| | - Cédric Lippens
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Jérôme Bellenger
- Lipides Nutrition Cancer, INSERM UMR 1231, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| |
Collapse
|
39
|
Hahn MA, Piecyk A, Jorge F, Cerrato R, Kalbe M, Dheilly NM. Host phenotype and microbiome vary with infection status, parasite genotype, and parasite microbiome composition. Mol Ecol 2022; 31:1577-1594. [PMID: 35000227 DOI: 10.1111/mec.16344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/09/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
A growing literature demonstrates the impact of helminths on their host gut microbiome. We investigated whether the stickleback host microbiome depends on eco-evolutionary variables by testing the impact of exposure to the cestode parasite Schistocephalus solidus with respect to infection success, host genotype, parasite genotype, and parasite microbiome composition. We observed constitutive differences in the microbiome of sticklebacks of different origin, and those differences increased when sticklebacks exposed to the parasite resisted infection. In contrast, the microbiome of successfully infected sticklebacks varied with parasite genotype. More specifically, we revealed that the association between microbiome and immune gene expression increased in infected individuals and varied with parasite genotype. In addition, we showed that S. solidus hosts a complex endo- microbiome and that bacterial abundance in the parasite correlates with expression of host immune genes. Within this comprehensive analysis we demonstrated that (i) parasites contribute to modulating the host microbiome through both successful and unsuccessful infection, (ii) when infection is successful, the host microbiome varies with parasite genotype due to genotype-dependent variation in parasite immunomodulation, and (iii) the parasite-associated microbiome is distinct from its host's and impacts the host immune response to infection.
Collapse
Affiliation(s)
- Megan A Hahn
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Agnes Piecyk
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz, Centre for Ocean Research Kiel, Germany
| | - Fátima Jorge
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Robert Cerrato
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Martin Kalbe
- Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz, Centre for Ocean Research Kiel, Germany
| | - Nolwenn M Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.,ANSES, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail - Laboratoire de Ploufragan-Plouzané, Unité Génétique Virale de Biosécurité, Ploufragan, France.,UMR 1161 Virology ANSES/INRAE/ENVA, ANSES Animal Health Laboratory, 94704, Maisons-Alfort, France
| |
Collapse
|
40
|
Barelli C, Donati C, Albanese D, Pafčo B, Modrý D, Rovero F, Hauffe HC. Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats. Sci Rep 2021; 11:21569. [PMID: 34732823 PMCID: PMC8566450 DOI: 10.1038/s41598-021-01145-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
The mammalian gastrointestinal tract harbours a highly complex ecosystem composed of a variety of micro- (bacteria, fungi, viruses, protozoans) and macro-organisms (helminths). Although most microbiota research focuses on the variation of single gut components, the crosstalk between components is still poorly characterized, especially in hosts living under natural conditions. We investigated the gut micro-biodiversity (bacteria, fungi and helminths) of 158 individuals of two wild non-human primates, the Udzungwa red colobus (Procolobus gordonorum) and the yellow baboon (Papio cynocephalus). These species have contrasting diets and lifestyles, but live sympatrically in both human-impacted and pristine forests in the Udzungwa Mountains of Tanzania. Using non-invasive faecal pellets, helminths were identified using standard microscopy while bacteria and fungi were characterized by sequencing the V1–V3 variable region of the 16S rRNA gene for bacteria and the ITS1–ITS2 fragment for fungi. Our results show that both diversity and composition of bacteria and fungi are associated with variation in helminth presence. Although interactions differed by habitat type, in both primates we found that Strongyloides was negatively associated and Trichuris was positively associated with bacterial and fungal richness. To our knowledge, this is one of the few studies demonstrating an interaction between helminth and gut microbiota communities in wild non-human primates.
Collapse
Affiliation(s)
- Claudia Barelli
- Conservation Genetic Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy. .,Department of Biology, University of Florence, Sesto Fiorentino, Italy.
| | - Claudio Donati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| | - Davide Albanese
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| | - Barbora Pafčo
- Department of Pathology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic.,Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - David Modrý
- Department of Pathology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Francesco Rovero
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Heidi C Hauffe
- Conservation Genetic Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele All'Adige, Italy
| |
Collapse
|
41
|
Lu C, Yan Y, Jian F, Ning C. Coccidia-Microbiota Interactions and Their Effects on the Host. Front Cell Infect Microbiol 2021; 11:751481. [PMID: 34660347 PMCID: PMC8517481 DOI: 10.3389/fcimb.2021.751481] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/25/2022] Open
Abstract
As a common parasitic disease in animals, coccidiosis substantially affects the health of the host, even in the absence of clinical symptoms and intestinal tract colonization. Gut microbiota is an important part of organisms and is closely related to the parasite and host. Parasitic infections often have adverse effects on the host, and their pathogenic effects are related to the parasite species, parasitic site and host-parasite interactions. Coccidia-microbiota-host interactions represent a complex network in which changes in one link may affect the other two factors. Furthermore, coccidia-microbiota interactions are not well understood and require further research. Here, we discuss the mechanisms by which coccidia interact directly or indirectly with the gut microbiota and the effects on the host. Understanding the mechanisms underlying coccidia-microbiota-host interactions is important to identify new probiotic strategies for the prevention and control of coccidiosis.
Collapse
Affiliation(s)
- Chenyang Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yaqun Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Changshen Ning
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
42
|
Chavez IN, Brown TM, Assié A, Bryant AS, Samuel BS, Hallem EA. Skin-penetrating nematodes exhibit life-stage-specific interactions with host-associated and environmental bacteria. BMC Biol 2021; 19:221. [PMID: 34620172 PMCID: PMC8499433 DOI: 10.1186/s12915-021-01153-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skin-penetrating nematodes of the genus Strongyloides infect over 600 million people, posing a major global health burden. Their life cycle includes both a parasitic and free-living generation. During the parasitic generation, infective third-stage larvae (iL3s) actively engage in host seeking. During the free-living generation, the nematodes develop and reproduce on host feces. At different points during their life cycle, Strongyloides species encounter a wide variety of host-associated and environmental bacteria. However, the microbiome associated with Strongyloides species, and the behavioral and physiological interactions between Strongyloides species and bacteria, remain unclear. RESULTS We first investigated the microbiome of the human parasite Strongyloides stercoralis using 16S-based amplicon sequencing. We found that S. stercoralis free-living adults have an associated microbiome consisting of specific fecal bacteria. We then investigated the behavioral responses of S. stercoralis and the closely related rat parasite Strongyloides ratti to an ecologically diverse panel of bacteria. We found that S. stercoralis and S. ratti showed similar responses to bacteria. The responses of both nematodes to bacteria varied dramatically across life stages: free-living adults were strongly attracted to most of the bacteria tested, while iL3s were attracted specifically to a narrow range of environmental bacteria. The behavioral responses to bacteria were dynamic, consisting of distinct short- and long-term behaviors. Finally, a comparison of the growth and reproduction of S. stercoralis free-living adults on different bacteria revealed that the bacterium Proteus mirabilis inhibits S. stercoralis egg hatching, and thereby greatly decreases parasite viability. CONCLUSIONS Skin-penetrating nematodes encounter bacteria from various ecological niches throughout their life cycle. Our results demonstrate that bacteria function as key chemosensory cues for directing parasite movement in a life-stage-specific manner. Some bacterial genera may form essential associations with the nematodes, while others are detrimental and serve as a potential source of novel nematicides.
Collapse
Affiliation(s)
- Ivan N Chavez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Taylor M Brown
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
43
|
Stracke K, Adisakwattana P, Phuanukoonnon S, Yoonuan T, Poodeepiyasawat A, Dekumyoy P, Chaisiri K, Roth Schulze A, Wilcox S, Karunajeewa H, Traub RJ, Jex AR. Field evaluation of the gut microbiome composition of pre-school and school-aged children in Tha Song Yang, Thailand, following oral MDA for STH infections. PLoS Negl Trop Dis 2021; 15:e0009597. [PMID: 34310596 PMCID: PMC8341710 DOI: 10.1371/journal.pntd.0009597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/05/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Soil-transmitted helminths, such as roundworms (Ascaris lumbricoides), whipworms (Trichuris trichiura) and hookworms (Necator americanus and Ancylostoma spp.), are gastrointestinal parasites that occur predominantly in low- to middle-income countries worldwide and disproportionally impact children. Depending on the STH species, health status of the host and infection intensity, direct impacts of these parasites include malnutrition, anaemia, diarrhoea and physical and cognitive stunting. The indirect consequences of these infections are less well understood. Specifically, gastrointestinal infections may exert acute or chronic impacts on the natural gut microfauna, leading to increased risk of post-infectious gastrointestinal disorders, and reduced gut and overall health through immunomodulating mechanisms. To date a small number of preliminary studies have assessed the impact of helminths on the gut microbiome, but these studies are conflicting. Here, we assessed STH burden in 273 pre-school and school-aged children in Tha Song Yang district, Tak province, Thailand receiving annual oral mebendazole treatment. Ascaris lumbricoides (107/273) and Trichuris trichiura (100/273) were the most prevalent species and often occurred as co-infections (66/273). Ancylostoma ceylanicum was detected in a small number of children as well (n = 3). All of these infections were of low intensity (<4,999 or 999 eggs per gram for Ascaris and Trichuris respectively). Using this information, we characterised the baseline gut microbiome profile and investigated acute STH-induced alterations, comparing infected with uninfected children at the time of sampling. We found no difference between these groups in bacterial alpha-diversity, but did observe differences in beta-diversity and specific differentially abundant OTUs, including increased Akkermansia muciniphila and Bacteroides coprophilus, and reduced Bifidobacterium adolescentis, each of which have been previously implicated in STH-associated changes in the gut microfauna.
Collapse
Affiliation(s)
- Katharina Stracke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suparat Phuanukoonnon
- Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Akkarin Poodeepiyasawat
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Stephen Wilcox
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Harin Karunajeewa
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medicine–Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca J. Traub
- Department of Veterinary Biosciences, Faculty for Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron R. Jex
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Veterinary Biosciences, Faculty for Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Trumbić Ž, Hrabar J, Palevich N, Carbone V, Mladineo I. Molecular and evolutionary basis for survival, its failure, and virulence factors of the zoonotic nematode Anisakis pegreffii. Genomics 2021; 113:2891-2905. [PMID: 34186188 DOI: 10.1016/j.ygeno.2021.06.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
Parasitism is a highly successful life strategy and a driving force in genetic diversity that has evolved many times over. Accidental infections of non-targeted hosts represent an opportunity for lateral host switches and parasite niche expansion. However, if directed toward organisms that are phylogenetically distant from parasite's natural host, such as humans, it may present a dead-end environment where the parasite fails to mature or is even killed by host immunity. One example are nematodes of Anisakidae family, genus Anisakis, that through evolution have lost the ability to propagate in terrestrial hosts, but can survive for a limited time in humans causing anisakiasis. To scrutinize versatility of Anisakis to infect an evolutionary-distant host, we performed transcriptomic profiling of larvae successfully migrating through the rat, a representative model of accidental human infection and compared it to that of larvae infecting an evolutionary-familiar, paratenic host (fish). In a homeothermic accidental host Anisakis upregulated ribosome-related genes, cell division, cuticle constituents, oxidative phosphorylation, in an unsuccessful attempt to molt to the next stage. In contrast, in the paratenic poikilothermic host where metabolic pathways were moderately upregulated or silenced, larvae prepared for dormancy by triggering autophagy and longevity pathways. Identified differences and the modelling of handful of shared transcripts, provide the first insights into evolution of larval nematode virulence, warranting their further investigation as potential drug therapy targets.
Collapse
Affiliation(s)
- Željka Trumbić
- University Department of Marine Studies, University of Split, 21000 Split, Croatia
| | - Jerko Hrabar
- Laboratory of Aquaculture, Institute of Oceanography & Fisheries, 21000 Split, Croatia
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Vincenzo Carbone
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4410, New Zealand
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre of Czech Academy of Science, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
45
|
Topalović O, Vestergård M. Can microorganisms assist the survival and parasitism of plant-parasitic nematodes? Trends Parasitol 2021; 37:947-958. [PMID: 34162521 DOI: 10.1016/j.pt.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Plant-parasitic nematodes (PPNs) remain a hardly treatable problem in many crops worldwide. Low efficacy of many biocontrol agents may be due to negligence of the native microbiota that is naturally associated with nematodes in soil, and which may protect nematodes against microbial antagonists. This phenomenon is more extensively studied for other nematode parasites, so we compiled these studies and drew parallels to the existing knowledge on PPN. We describe how microbial-mediated modulation of host immune responses facilitate nematode parasitism and discuss the role of Caenorhabditis elegans-protective microbiota to get an insight into the microbial protection of PPNs in soil. Molecular mechanisms of PPN-microbial interactions are also discussed. An understanding of microbial-aided PPN performance is thus pivotal for efficient management of PPNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| | - Mette Vestergård
- Aarhus University, Institute for Agroecology, Faculty of Technical Sciences, Aarhus University, 4200, Slagelse, Denmark.
| |
Collapse
|
46
|
Doyen V, Corazza F, Nhu Thi H, Le Chi T, Truyens C, Nagant C, Tran Thi Mong H, Fils JF, Thi Ngoc Huynh P, Michel O. Hookworm treatment induces a decrease of suppressive regulatory T cell associated with a Th2 inflammatory response. PLoS One 2021; 16:e0252921. [PMID: 34111180 PMCID: PMC8191899 DOI: 10.1371/journal.pone.0252921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Background Like other helminths, hookworms (HW) induce a regulatory immune response able to modulate and dampen reactivity of the host to antigens. No data about the evolution of the immune response after treatment are available. We aim to phenotype the regulatory immune response during natural HW infection and its evolution after treatment. Methodology Twenty hookworm infected (HW+) and 14 non-infected subjects HW–from endemic area in the periphery of Ho Chi Minh City were included. Blood and feces samples were obtained before, 2 and 4 weeks after treatment with Albendazole 400mg. Additional samples were obtained at 3 and 12 months in the HW+ group. Hematological parameters, Treg (CD4+CD25hiFoxP3hi) and surface molecules (CD39, CD62L, ICOS, PD-1, CD45RA) were measured as well as inflammatory and lymphocytes differentiation cytokines such as IL-1β, IL-6, IFNγ, IL-4, IL-17, IL-10, IL-2 and TGFβ. Results HW+ subjects showed higher Treg, TregICOS+, Treg PD1-, TregCD62L+ and CD45RA+FoxP3lo resting Treg (rTreg). CD45RA-FoxP3lo non-suppressive Treg cells were also increased. No preferential Th1/Th2 orientation was observed, nor difference for IL-10 between two groups. After treatment, Treg, TregICOS+, TregCD62L+, Treg PD1- and rTreg decreased while IL-4 and IL-6 cytokines increased. Conclusion During HW infection, Treg are increased and characterized by a heterogeneous population: a highly suppressive as well as a non-suppressive T cells phenotype. After treatment, Treg with immune-suppressive phenotype exhibited a decrease parallel to an inflammatory Th2 response.
Collapse
Affiliation(s)
- Virginie Doyen
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Clinic of Immunoallergology, CHU Brugmann, ULB, Brussels, Belgium
- * E-mail:
| | - Francis Corazza
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Immunology Laboratory, LHUB-ULB, Brussels, Belgium
| | - Hoa Nhu Thi
- Parasitology and Mycology Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | - Thanh Le Chi
- Immunology Laboratory, Pasteur Institute, Ho Chi Minh, Vietnam
| | - Carine Truyens
- Parasitology Laboratory, ULB Center for Research in immunology (U-CRI), Université Libre de Bruxelles, Brussels, Belgium
| | - Carole Nagant
- Laboratory of Translational Research, ULB223, CHU Brugmann, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Immunology Laboratory, LHUB-ULB, Brussels, Belgium
| | - Hiep Tran Thi Mong
- Department of Family Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh, Vietnam
| | | | | | - Olivier Michel
- Clinic of Immunoallergology, CHU Brugmann, ULB, Brussels, Belgium
| |
Collapse
|
47
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
48
|
Abstract
The belief that investing in child health and nutrition can generate improvements in individuals’ future quality of life is the rationale for many policy initiatives around the world. Yet there remains limited evidence on the causal impacts of child health gains on adult living standards, especially in developing countries. This study contributes evidence that addresses leading methodological concerns, by using variation in child health via a randomized health intervention that provided deworming treatment to Kenyan children. We estimate impacts on individual living standards up to 20 y later among a representative sample of participants, and find those in the deworming treatment group experience meaningful gains in adult living standards and earnings, and shifts in sectors of residence and employment. Estimating the impact of child health investments on adult living standards entails multiple methodological challenges, including the lack of experimental variation in health status, an inability to track individuals over time, and accurately measuring living standards and productivity in low-income settings. This study exploits a randomized school health intervention that provided deworming treatment to Kenyan children, and uses longitudinal data to estimate impacts on economic outcomes up to 20 y later. The effective respondent tracking rate was 84%. Individuals who received two to three additional years of childhood deworming experienced a 14% gain in consumption expenditures and 13% increase in hourly earnings. There are also shifts in sectors of residence and employment: treatment group individuals are 9% more likely to live in urban areas, and experience a 9% increase in nonagricultural work hours. Most effects are concentrated among males and older individuals. The observed consumption and earnings benefits, together with deworming’s low cost when distributed at scale, imply that a conservative estimate of its annualized social internal rate of return is 37%, a high return by any standard.
Collapse
|
49
|
Slater R, Frau A, Hodgkinson J, Archer D, Probert C. A Comparison of the Colonic Microbiome and Volatile Organic Compound Metabolome of Anoplocephala perfoliata Infected and Non-Infected Horses: A Pilot Study. Animals (Basel) 2021; 11:ani11030755. [PMID: 33803473 PMCID: PMC7999024 DOI: 10.3390/ani11030755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary In horses, tapeworm infection is associated with specific forms of colic (abdominal pain) that can be life-threatening without surgical treatment. There is growing evidence that intestinal parasites interact with the gut bacteria, and the consequences of these interactions may influence the ability of the host to resist infection and parasite-associated disease. We aimed to compare the intestinal bacteria and the gases produced by metabolic processes in the gut between horses that had varying levels of tapeworms and those with no tapeworm present. Overall, the diversity of gut bacteria was similar in horses with and without tapeworms. There were some decreases in beneficial bacteria in horses with tapeworms, indicating a possible negative consequence of infection. Intestinal gases correlated with some bacteria indicating their functionality and use as potential markers of active bacteria. Our study validates further research investigating tapeworm and gut bacteria interactions in the horse. Abstract Anoplocephala perfoliata is a common equine tapeworm associated with an increased risk of colic (abdominal pain) in horses. Identification of parasite and intestinal microbiota interactions have consequences for understanding the mechanisms behind parasite-associated colic and potential new methods for parasite control. A. perfoliata was diagnosed by counting of worms in the caecum post-mortem. Bacterial DNA was extracted from colonic contents and sequenced targeting of the 16S rRNA gene (V4 region). The volatile organic compound (VOC) metabolome of colonic contents was characterised using gas chromatography mass spectrometry. Bacterial diversity (alpha and beta) was similar between tapeworm infected and non-infected controls. Some compositional differences were apparent with down-regulation of operational taxonomic units (OTUs) belonging to the symbiotic families of Ruminococcaceae and Lachnospiraceae in the tapeworm-infected group. Overall tapeworm burden accounted for 7–8% of variation in the VOC profile (permutational multivariate analysis of variance). Integration of bacterial OTUs and VOCs demonstrated moderate to strong correlations indicating the potential of VOCs as markers for bacterial OTUs in equine colonic contents. This study has shown potential differences in the intestinal microbiome and metabolome of A. perfoliata infected and non-infected horses. This pilot study did not control for extrinsic factors including diet, disease history and stage of infection.
Collapse
Affiliation(s)
- Rachael Slater
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
- Correspondence:
| | - Alessandra Frau
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| | - Jane Hodgkinson
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Debra Archer
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Leahurst Campus, Chester High Road, Wirral CH64 7TE, UK; (J.H.); (D.A.)
| | - Chris Probert
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3GE, UK; (A.F.); (C.P.)
| |
Collapse
|
50
|
von Huth S, Thingholm LB, Kofoed PE, Bang C, Rühlemann MC, Franke A, Holmskov U. Intestinal protozoan infections shape fecal bacterial microbiota in children from Guinea-Bissau. PLoS Negl Trop Dis 2021; 15:e0009232. [PMID: 33657123 PMCID: PMC7959362 DOI: 10.1371/journal.pntd.0009232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/15/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Intestinal parasitic infections, caused by helminths and protozoa, are globally distributed and major causes of worldwide morbidity. The gut microbiota may modulate parasite virulence and host response upon infection. The complex interplay between parasites and the gut microbiota is poorly understood, partly due to sampling difficulties in remote areas with high parasite burden. In a large study of children in Guinea-Bissau, we found high prevalence of intestinal parasites. By sequencing of the 16S rRNA genes of fecal samples stored on filter paper from a total of 1,204 children, we demonstrate that the bacterial microbiota is not significantly altered by helminth infections, whereas it is shaped by the presence of both pathogenic and nonpathogenic protozoa, including Entamoeba (E.) spp. and Giardia (G.) lamblia. Within-sample diversity remains largely unaffected, whereas overall community composition is significantly affected by infection with both nonpathogenic E. coli (R2 = 0.0131, P = 0.0001) and Endolimax nana (R2 = 0.00902, P = 0.0001), and by pathogenic E. histolytica (R2 = 0.0164, P = 0.0001) and G. lamblia (R2 = 0.00676, P = 0.0001). Infections with multiple parasite species induces more pronounced shifts in microbiota community than mild ones. A total of 31 bacterial genera across all four major bacterial phyla were differentially abundant in protozoan infection as compared to noninfected individuals, including increased abundance of Prevotella, Campylobacter and two Clostridium clades, and decreased abundance of Collinsella, Lactobacillus, Ruminococcus, Veillonella and one Clostridium clade. In the present study, we demonstrate that the fecal bacterial microbiota is shaped by intestinal parasitic infection, with most pronounced associations for protozoan species. Our results provide insights into the interplay between the microbiota and intestinal parasites, which are valuable to understand infection biology and design further studies aimed at optimizing treatment strategies.
Collapse
Affiliation(s)
- Sebastian von Huth
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Denmark
| | - Louise B. Thingholm
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Germany
| | - Poul-Erik Kofoed
- Department of Pediatrics, Kolding Hospital, Denmark
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Germany
| | - Malte C. Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Germany
| | - Uffe Holmskov
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Denmark
- * E-mail:
| |
Collapse
|