1
|
Vander Mijnsbrugge K, Moreels S, Moreels S, Buisset D, Vancampenhout K, Notivol Paino E. Influence of Summer Drought on Post-Drought Resprouting and Leaf Senescence in Prunus spinosa L. Growing in a Common Garden. PLANTS (BASEL, SWITZERLAND) 2025; 14:1132. [PMID: 40219200 PMCID: PMC11991280 DOI: 10.3390/plants14071132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Understanding how woody plants cope with severe water shortages is critical, especially for regions where droughts are becoming more frequent and intense. We studied the effects of drought intensity, focusing on post-drought resprouting, autumn leaf senescence and the subsequent spring bud burst. Furthermore, we aimed to study population differentiation in the drought and post-drought responses. We performed a summer dry-out experiment in a common garden of potted Prunus spinosa L. (Rosaceae) saplings. We analysed responses across different visual stress symptom categories and examined differentiation between provenances from a local origin (Western Europe, Belgium), a lower latitude (Spain) and a higher latitude (Sweden). The chance of post-drought resprouting was greater for the more severely affected plants than for the less severely affected ones, and it occurred earlier. The plants that displayed wilting of the leaves during the drought had a leaf senescence 2.7 days earlier than the controls, whereas that of plants with 25 to 75% and more than 75% of desiccated leaves was 7 and 15 days later, respectively. During the drought, the local provenance was the first to develop visual symptoms compared to the other two provenances. However, among plants that exhibited no or only mild symptoms, this provenance also had a higher likelihood of post-drought resprouting. Among the control plants, the higher-latitude provenance displayed leaf senescence earlier, while the lower-latitude provenance senesced later compared to the local provenance. However, these differences in the timing of leaf senescence among the three provenances disappeared in treated plants with more than 25% of desiccated leaves due to the drought. Whereas leaf senescence could be earlier or later depending on the developed drought symptoms, the timing of bud burst was only delayed. Results indicate that resprouting and timing of leaf senescence are responsive to the severity of the experienced drought in a provenance-dependent way.
Collapse
Affiliation(s)
- Kristine Vander Mijnsbrugge
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Stefaan Moreels
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Sharon Moreels
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Damien Buisset
- Department of Forest Ecology and Management, Research Institute for Nature and Forest, 9500 Geraardsbergen, Belgium; (S.M.); (S.M.); (D.B.)
| | - Karen Vancampenhout
- Department of Earth and Environmental Sciences, KU Leuven Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium;
| | - Eduardo Notivol Paino
- Department for Environment, Agricultural and Forest Systems, Agri-Food Research and Technology Centre of Aragon (CITA), 50059 Zaragoza, Spain;
| |
Collapse
|
2
|
Heubel S, Rammig A, Buras A. The Forest After Tomorrow: Projecting the Impact of a Collapsing Atlantic Meridional Overturning Circulation on European Tree-Species Distributions. GLOBAL CHANGE BIOLOGY 2025; 31:e70185. [PMID: 40270337 PMCID: PMC12019781 DOI: 10.1111/gcb.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Forest tree species are expected to experience a substantial redistribution due to climate change. While previous work has emphasized the effects of a warmer and drier climate on European tree-species distributions, to date no study has investigated the potential impact of a collapse of the Atlantic Meridional Overturning Circulation (AMOC). Here, we deploy climate-envelope models to quantile mapped, high-resolution (1km2) CMIP6 climate projections and compare tree-species distributions under an active AMOC vs. an inactive AMOC scenario. Across Europe, our tree-species projections indicate contrasting impacts of the two scenarios. In Scandinavia, many of the currently abundant tree species were projected a dramatic decline and partial disappearance due to the strong cooling under an inactive AMOC. In Central and Southern Europe, however, some of the currently abundant species suffered less under an inactive AMOC compared to an active AMOC scenario while others-such as the economically important species of Norway spruce-almost went extinct. As opposed to the classic climate-change scenario supporting Mediterranean species in Central Europe, projected European tree-species portfolios consisted of a higher share of boreal, cold-tolerant species in the inactive AMOC scenario. Finally, tree-species diversity was projected to decline even stronger under an inactive vs. an active AMOC scenario. Altogether, while an AMOC collapse may locally result in more favorable conditions for specific species in comparison to a classic climate-change scenario, the dramatic economic and ecological consequences suggested by our projections indicate the urgent need for climate-change mitigation to lower the likelihood of an AMOC collapse.
Collapse
Affiliation(s)
- Sina Heubel
- Land Surface‐Atmosphere InteractionsTU MunichFreisingGermany
- Department of Environmental Systems ScienceInstitute of Terrestrial Ecosystems, ETH ZurichZurichSwitzerland
| | - Anja Rammig
- Land Surface‐Atmosphere InteractionsTU MunichFreisingGermany
| | - Allan Buras
- Land Surface‐Atmosphere InteractionsTU MunichFreisingGermany
| |
Collapse
|
3
|
Moser B, Frei ER, Bachofen C, Wohlgemuth T, Scherrer D. Non-native Douglas fir seedlings outcompete native Norway spruce, silver fir and Scots pine under dry and nutrient-poor conditions. FRONTIERS IN PLANT SCIENCE 2025; 16:1546250. [PMID: 40182547 PMCID: PMC11966113 DOI: 10.3389/fpls.2025.1546250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Climate change is expected to significantly alter forest ecosystems, reducing the suitability of the key economic tree species Norway spruce (Picea abies) and European beech (Fagus sylvatica) in low- and mid-elevation forests of Central Europe. As these species face increasing pressures from drought, storms, and pests, it is crucial to identify alternative tree species that are economically viable and capable of maintaining primary ecosystem services. This study investigated the potential of Douglas fir (Pseudotsuga menziesii), a non-native conifer, to establish from seed and compete with native broadleaf and conifer species during the early regeneration stage under differing resource availabilities. We assessed the growth performance and phenotypic plasticity of Douglas fir seedlings over three years in a controlled common-garden experiment. Seedlings of Douglas fir, along with seven native species - Norway spruce, silver fir (Abies alba), Scots pine (Pinus sylvestris), European beech, pedunculate oak (Quercus robur), sessile oak (Q. petraea), and sycamore (Acer pseudoplatanus) - were grown for three years under factorial combinations of high and low availabilities of light, nutrients, and water. Seedling height, biomass allocation to shoots and roots and phenotypic plasticity of these traits were measured to evaluate the competitive ability of individual species and their potential to adapt to changing environmental conditions. While Douglas fir seedlings exhibited strong growth performance compared to the conifers Norway spruce and silver fir, their biomass production and height growth was considerably lower than that of the broadleaved sycamore and beech. However, Douglas fir's height growth rate in the third year exceeded all species except sycamore. This was particularly pronounced under dry and/or nutrient-poor conditions, indicating a potential competitive advantage under expected future climatic conditions. In agreement with field studies, our results indicate that non-native Douglas fir may sustainably establish in dry, nutrient poor European lowland forests due to its superior early growth performance under these conditions and the high phenotypic plasticity, of its root system. This holds especially in situations where the species competes with other conifers, while its ability to successfully compete with broadleaves appears to be largely restricted to nutrient-poor sites.
Collapse
Affiliation(s)
- Barbara Moser
- Plant Regeneration Ecology, Forest Resources and Management Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Esther R. Frei
- Alpine Environment and Natural Hazards, Mountain Ecosystems Unit, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Functional Plant Ecology, Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Daniel Scherrer
- Plant Regeneration Ecology, Forest Resources and Management Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Reiter EJ, Weigel R, Leuschner C. Losing half the crown hardly affects the stem growth of a xeric southern beech population. Sci Rep 2025; 15:5721. [PMID: 39962236 PMCID: PMC11832943 DOI: 10.1038/s41598-025-90061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Globally, forest ecosystems face increasing climate warming-driven stress. Crown dieback is commonly used as an indicator of declining tree vitality and is closely related to reduced stem radial growth rates. In a xeric northern Patagonian Nothofagus pumilio population, in which the majority of trees possess damaged crowns, we explored the relationship between percent crown damage and growth trends (basal area increment, BAI), interannual growth variability, and the climate sensitivity of growth. The majority of trees show stable BAI since about 1940 despite 5 to > 50% crown damage, which ranges from dieback of small branches to the presence of decades-old snagged branches. A minority of trees with more severe crown damage (> 50 to 95%) show continued growth decline during the last 80 years, but have not yet died. Crown damage was the best predictor of the BAI trend which turned negative at about 50% damage. Stronger damaged trees showed a higher growth sensitivity to summer heat and drought. Thus, the health of this population is apparently not threatened by crown damage up to 50%. Rather, trees might profit from the reduced foliage area, allowing them to stabilize their water relations and maintain stable but fairly slow growth in a drying climate.
Collapse
Affiliation(s)
- Ernesto J Reiter
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany.
| | - Robert Weigel
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
- Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Wang Y, Rammig A, Blickensdörfer L, Wang Y, Zhu XX, Buras A. Species-specific responses of canopy greenness to the extreme droughts of 2018 and 2022 for four abundant tree species in Germany. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177938. [PMID: 39689475 DOI: 10.1016/j.scitotenv.2024.177938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Germany experienced extreme drought periods in 2018 and 2022, which significantly affected forests. These drought periods were natural experiments, providing valuable insights into how different tree species respond to drought. The quantification of species-specific drought responses may help to identify the most climate-change-resilient tree species, thereby informing effective forest regeneration strategies. In this study, we used remotely sensed peak-season canopy greenness as a proxy for tree vitality to estimate the drought response of four widely abundant tree species in Germany (oak, beech, spruce, and pine). We focused on two questions: (1) How were the four tree species affected by these two droughts? (2) Which environmental parameters primarily determined canopy greenness? To address these questions, we combined a recently published tree species classification map with remotely sensed canopy greenness and environmental variables related to plant available water capacity (PAWC) and atmospheric vapor pressure deficit (VPD). Our results indicate that the more isohydric species featured a greater decline in canopy greenness under these droughts compared to the more anisohydric species despite similar soil moisture conditions. Based on spatial lag models, we found that the influence of PAWC on canopy greenness increases with increasing isohydricity while the influence of VPD decreases. Our statistical analysis indicates that oak was the only species with significantly higher canopy greenness in 2022 compared to 2018. Yet, all species are likely to be susceptible to accumulated drought effects, such as insufficient recovery time and increased vulnerability to biotic pathogens, in the coming years. Our study provides critical insights into the diverse responses of different tree species to changing environments over a large environmental gradient in Central Europe and sheds light on the complex interactions between soil moisture, climate variables, and canopy greenness. These findings contribute to understanding forests' climate-change resilience and may guide forest management and conservation strategies.
Collapse
Affiliation(s)
- Yixuan Wang
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany.
| | - Anja Rammig
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany
| | - Lukas Blickensdörfer
- Thünen Institute of Farm Economics, Bundesallee 63, Braunschweig 38116, Germany; Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, Eberswalde 16225, Germany; Earth Observation Lab, Geography Department, Humboldt University of Berlin, Unter den Linden 6, Berlin 10099, Germany
| | - Yuanyuan Wang
- Chair of Data Science in Earth Observation, Technical University of Munich, Arcisstraße 21, Munich 80333, Germany
| | - Xiao Xiang Zhu
- Chair of Data Science in Earth Observation, Technical University of Munich, Arcisstraße 21, Munich 80333, Germany; Munich Center for Machine Learning, Arcisstraße 21, Munich 80333, Germany
| | - Allan Buras
- Professorship for Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-v.-Carlowitz-Platz 2, Freising 85354, Germany
| |
Collapse
|
6
|
Shakas A, Hediger R, Gessler A, Singha K, de Pasquale G, D'Odorico P, Wagner FM, Schaub M, Maurer H, Griess H, Gisler J, Meusburger K. Does optimality partitioning theory fail for belowground traits? Insights from geophysical imaging of a drought-release experiment in a Scots Pine forest. THE NEW PHYTOLOGIST 2025; 245:546-558. [PMID: 39558713 DOI: 10.1111/nph.20245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/10/2024] [Indexed: 11/20/2024]
Abstract
We investigate the impact of a 20-yr irrigation on root water uptake (RWU) and drought stress release in a naturally dry Scots pine forest. We use a combination of electrical resistivity tomography to image RWU, drone flights to image the crown stress and sensors to monitor soil water content. Our findings suggest that increased water availability enhances root growth and resource use efficiency, potentially increasing trees' resistance to future drought conditions by enabling water uptake from deeper soil layers. This research highlights the significant role of ecological memory and legacy effects in determining tree responses to environmental changes.
Collapse
Affiliation(s)
- Alexis Shakas
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Roman Hediger
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Kamini Singha
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO, 80401, USA
| | - Giulia de Pasquale
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), 1305, La Serena, Chile
| | - Petra D'Odorico
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Florian M Wagner
- Geophysical Imaging and Monitoring, RWTH Aachen University, 52062, Aachen, Germany
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Hansruedi Maurer
- Department of Earth and Planetary Sciences, ETH Zurich, 8092, Zurich, Switzerland
| | - Holger Griess
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Jonas Gisler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| | - Katrin Meusburger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Adhikari Y, Bachstein N, Gohr C, Blumröder JS, Meier C, Ibisch PL. Old-growth beech forests in Germany as cool islands in a warming landscape. Sci Rep 2024; 14:30311. [PMID: 39639117 PMCID: PMC11621415 DOI: 10.1038/s41598-024-81209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The climate crisis seriously threatens Central European forests and their ecosystem functions. There are indications that old-growth forests are relatively resilient and efficient in micro-climatic regulation during extreme climatic conditions. This study evaluates five well-protected old beech forests in Germany, part of a UNESCO World Heritage Site. We examined temperature dynamics and vitality in core, buffer, and border zones during hot days from 2017 to 2023, using Landsat 8 and 9 imageries to assess Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), alongside on-site Air Temperature (AT) measurements. Our findings reveal that all five forests were impacted by recent extreme heat events, with core zones remaining cooler and more vital, followed by buffer zones. Temperature-regulating patterns varied with landscape characteristics and the surrounding matrixes. We observed a site-dependent cooling effect of the forest interior that increased with higher LST. Our study highlights the value of old-growth forests and recommends increasing effective protection around mature forests, establishing corridors between isolated patches, and creating mosaics in managed landscapes that include unmanaged areas capable of developing into old-growth ecosystems.
Collapse
Affiliation(s)
- Yojana Adhikari
- Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, Germany.
| | - Nadine Bachstein
- Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, Germany
| | - Charlotte Gohr
- Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, Germany
- Center of Methods, Faculty of Sustainability, Leuphana University, 21335, Lüneburg, Germany
| | - Jeanette S Blumröder
- Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, Germany
| | - Caroline Meier
- Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, Germany
| | - Pierre L Ibisch
- Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Alfred-Möller-Str. 1, 16225, Eberswalde, Germany
| |
Collapse
|
8
|
Klesse S, Peters RL, Alfaro-Sánchez R, Badeau V, Baittinger C, Battipaglia G, Bert D, Biondi F, Bosela M, Budeanu M, Čada V, Camarero JJ, Cavin L, Claessens H, Cretan AM, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Espelta JM, Garamszegi B, Grabner M, Gricar J, Hacket-Pain A, Hansen JK, Hartl C, Hevia A, Hobi M, Janda P, Jump AS, Kašpar J, Kazimirović M, Keren S, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Lévesque M, Longares LA, Del Castillo EM, Menzel A, Merela M, Mikoláš M, Motta R, Muffler L, Neycken A, Nola P, Panayotov M, Petritan AM, Petritan IC, Popa I, Prislan P, Levanič T, Roibu CC, Rubio-Cuadrado Á, Sánchez-Salguero R, Šamonil P, Stajić B, Svoboda M, Tognetti R, Toromani E, Trotsiuk V, van der Maaten E, van der Maaten-Theunissen M, Vannoppen A, Vašíčková I, von Arx G, Wilmking M, Weigel R, Zlatanov T, Zang C, Buras A. No Future Growth Enhancement Expected at the Northern Edge for European Beech due to Continued Water Limitation. GLOBAL CHANGE BIOLOGY 2024; 30:e17546. [PMID: 39450699 DOI: 10.1111/gcb.17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species. Using a unique pan-European tree-ring network of 26,430 European beech (Fagus sylvatica L.) trees from 2118 sites, we applied a linear mixed-effects modeling framework to (i) explain variation in climate-dependent growth and (ii) project growth for the near future (2021-2050) across the entire distribution of beech. We modeled the spatial pattern of radial growth responses to annually varying climate as a function of mean climate conditions (mean annual temperature, mean annual climatic water balance, and continentality). Over the calibration period (1952-2011), the model yielded high regional explanatory power (R2 = 0.38-0.72). Considering a moderate climate change scenario (CMIP6 SSP2-4.5), beech growth is projected to decrease in the future across most of its distribution range. In particular, projected growth decreases by 12%-18% (interquartile range) in northwestern Central Europe and by 11%-21% in the Mediterranean region. In contrast, climate-driven growth increases are limited to around 13% of the current occurrence, where the historical mean annual temperature was below ~6°C. More specifically, the model predicts a 3%-24% growth increase in the high-elevation clusters of the Alps and Carpathian Arc. Notably, we find little potential for future growth increases (-10 to +2%) at the poleward leading edge in southern Scandinavia. Because in this region beech growth is found to be primarily water-limited, a northward shift in its distributional range will be constrained by water availability.
Collapse
Affiliation(s)
- Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, Bern, Switzerland
| | - Richard L Peters
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Tree Growth and Wood Physiology, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Raquel Alfaro-Sánchez
- Higher Technical School of Agronomic and Forestry Engineering and Biotechnology, University of Castilla-La Ancha, Albacete, Spain
- Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, Alberta, Canada
| | - Vincent Badeau
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, Nancy, France
| | - Claudia Baittinger
- Environmental Archaeology and Materials Science, National Museum of Denmark, Copenhagen, Denmark
| | - Giovanna Battipaglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Didier Bert
- INRAE, University of Bordeaux, BIOGECO, Cestas, France
| | - Franco Biondi
- Department of Natural Resources and Environmental Science, DendroLab, University of Nevada, Reno, Nevada, USA
| | - Michal Bosela
- Technical University in Zvolen, Zvolen, Slovakia
- National Forest Centre, Zvolen, Slovakia
| | - Marius Budeanu
- National Institute for Research and Development in Forestry "Marin Dracea", Brasov, Romania
| | - Vojtěch Čada
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha-Suchdol, Czech Republic
| | | | - Liam Cavin
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Hugues Claessens
- University of Liège - Gembloux Agro-Bio Tech - Forest Is Life, Gembloux, Belgium
| | - Ana-Maria Cretan
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Brasov, Romania
| | - Katarina Čufar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martin de Luis
- Department of Geography and Regional Planning, IUCA, University of Zaragoza, Zaragoza, Spain
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | - Choimaa Dulamsuren
- Chair of Applied Vegetation Ecology, University of Freiburg, Freiburg, Germany
| | | | - Balazs Garamszegi
- University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | - Michael Grabner
- University of Natural Resources and Life Sciences Vienna, BOKU, Vienna, Austria
| | | | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Jon Kehlet Hansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Hartl
- Nature Rings - Environmental Research and Education, Mainz, Germany
| | - Andrea Hevia
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
- Laboratorio DendrOlavide, Universidad Pablo de Olavide, Sevilla, Spain
| | - Martina Hobi
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha-Suchdol, Czech Republic
| | - Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - Jakub Kašpar
- Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic
| | | | - Srdjan Keren
- Faculty of Forestry, University of Agriculture in Krakow, Krakow, Poland
| | - Juergen Kreyling
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Alexander Land
- Institute of Biology (190a), University of Hohenheim, Stuttgart, Germany
| | - Nicolas Latte
- University of Liège - Gembloux Agro-Bio Tech - Forest Is Life, Gembloux, Belgium
| | | | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Mathieu Lévesque
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Luis A Longares
- Department of Geography and Regional Planning, IUCA, University of Zaragoza, Zaragoza, Spain
| | | | - Annette Menzel
- Department of Life Science Systems, Ecoclimatology, Technical University of Munich, Freising, Germany
| | - Maks Merela
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Martin Mikoláš
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha-Suchdol, Czech Republic
| | - Renzo Motta
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
| | - Lena Muffler
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
- Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Anna Neycken
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Paola Nola
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - Any Mary Petritan
- National Institute for Research and Development in Forestry "Marin Dracea", Brasov, Romania
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Brasov, Romania
| | - Ionel Popa
- National Institute for Research and Development in Forestry Marin Dracea, Voluntari, Romania
- Center for Mountain Economy (CE-MONT), Vatra Dornei, Romania
| | | | - Tom Levanič
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Catalin-Constantin Roibu
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan Cel Mare" University of Suceava, Suceava, Romania
| | - Álvaro Rubio-Cuadrado
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, Madrid, Spain
| | | | - Pavel Šamonil
- Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Branko Stajić
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha-Suchdol, Czech Republic
| | - Roberto Tognetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano/Bozen, Piazza Università, Bolzano, Italy
| | - Elvin Toromani
- Department of Forestry, Faculty of Forestry Sciences, Agricultural University of Tirana, Tirana, Albania
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Tharandt, Germany
| | | | - Astrid Vannoppen
- Vlaamse Instelling voor Technologisch Onderzoek NV, Mol, Belgium
| | - Ivana Vašíčková
- Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic
| | - Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Oeschger Centre for Climate Change Research, Bern, Switzerland
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Robert Weigel
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
- Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Tzvetan Zlatanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Christian Zang
- Institute for Ecology and Landscape, Weihenstephan-Triesdorf University of Applied Sciences, Freising, Germany
| | - Allan Buras
- Professorship for Land-Surface-Atmosphere Interactions, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Enderle L, Gribbe S, Muffler L, Weigel R, Hertel D, Leuschner C. A warmer climate impairs the growth performance of Central Europe's major timber species in lowland regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173665. [PMID: 38823720 DOI: 10.1016/j.scitotenv.2024.173665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Recent hot droughts have caused tree vitality decline and increased mortality in many forest regions on earth. Most of Central Europe's important timber species have suffered from the extreme 2018/2019 hot drought, confronting foresters with difficult questions about the choice of more drought- and heat-resistant tree species. We compared the growth dynamics of European beech, sessile oak, Scots pine and Douglas fir in a warmer and a cooler lowland region of Germany to explore the adaptive potential of the four species to climate warming (24 forest stands). The basal area increment (BAI) of the two conifers has declined since about 1990-2010 in both regions, and that of beech in the warmer region, while oak showed positive BAI trends. A 2 °C difference in mean temperatures and a higher frequency of hot days (temperature maximum >30 °C) resulted in greater sensitivity to a negative climatic water balance in beech and oak, and elevated sensitivity to summer heat in Douglas fir and pine. This suggests to include hot days in climate-growth analyses. Negative pointer years were closely related to dry years. Nevertheless, all species showed growth recovery within one to three years. We conclude that all four species are sensitive to a deteriorating climatic water balance and hot temperatures, and have so far not been able to successfully acclimate to the warmer climate, with especially Douglas and beech, but also Scots pine, being vulnerable to a warming and drying climate.
Collapse
Affiliation(s)
- Lena Enderle
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany.
| | - Stella Gribbe
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Lena Muffler
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany; Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Robert Weigel
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany; Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Dietrich Hertel
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| | - Christoph Leuschner
- Plant Ecology and Ecosystems Research, University of Goettingen, Goettingen, Germany
| |
Collapse
|
10
|
Eisenring M, Gessler A, Frei ER, Glauser G, Kammerer B, Moor M, Perret-Gentil A, Wohlgemuth T, Gossner MM. Legacy effects of premature defoliation in response to an extreme drought event modulate phytochemical profiles with subtle consequences for leaf herbivory in European beech. THE NEW PHYTOLOGIST 2024; 242:2495-2509. [PMID: 38641748 DOI: 10.1111/nph.19721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Extreme droughts can have long-lasting effects on forest community dynamics and species interactions. Yet, our understanding of how drought legacy modulates ecological relationships is just unfolding. We tested the hypothesis that leaf chemistry and herbivory show long-term responses to premature defoliation caused by an extreme drought event in European beech (Fagus sylvatica L.). For two consecutive years after the extreme European summer drought in 2018, we collected leaves from the upper and lower canopy of adjacently growing drought-stressed and unstressed trees. Leaf chemistry was analyzed and leaf damage by different herbivore-feeding guilds was quantified. We found that drought had lasting impacts on leaf nutrients and on specialized metabolomic profiles. However, drought did not affect the primary metabolome. Drought-related phytochemical changes affected damage of leaf-chewing herbivores whereas damage caused by other herbivore-feeding guilds was largely unaffected. Drought legacy effects on phytochemistry and herbivory were often weaker than between-year or between-canopy strata variability. Our findings suggest that a single extreme drought event bears the potential to long-lastingly affect tree-herbivore interactions. Drought legacy effects likely become more important in modulating tree-herbivore interactions since drought frequency and severity are projected to globally increase in the coming decades.
Collapse
Affiliation(s)
- Michael Eisenring
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, Davos, 7260, Switzerland
- Climate Change and Extremes in Alpine Regions Research Centre CERC, Davos, 7260, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Bernd Kammerer
- Core Facility Metabolomics, Albert-Ludwigs-University Freiburg, Freiburg, 79014, Germany
| | - Maurice Moor
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Anouchka Perret-Gentil
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Martin M Gossner
- Forest Health & Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zürich, 8092, Switzerland
| |
Collapse
|
11
|
Leifsson C, Buras A, Klesse S, Baittinger C, Bat-Enerel B, Battipaglia G, Biondi F, Stajić B, Budeanu M, Čada V, Cavin L, Claessens H, Čufar K, de Luis M, Dorado-Liñán I, Dulamsuren C, Garamszegi B, Grabner M, Hacket-Pain A, Hansen JK, Hartl C, Huang W, Janda P, Jump AS, Kazimirović M, Knutzen F, Kreyling J, Land A, Latte N, Lebourgeois F, Leuschner C, Longares LA, Martinez Del Castillo E, Menzel A, Motta R, Muffler-Weigel L, Nola P, Panayatov M, Petritan AM, Petritan IC, Popa I, Roibu CC, Rubio-Cuadrado Á, Rydval M, Scharnweber T, Camarero JJ, Svoboda M, Toromani E, Trotsiuk V, van der Maaten-Theunissen M, van der Maaten E, Weigel R, Wilmking M, Zlatanov T, Rammig A, Zang CS. Identifying drivers of non-stationary climate-growth relationships of European beech. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173321. [PMID: 38782287 DOI: 10.1016/j.scitotenv.2024.173321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.
Collapse
Affiliation(s)
- Christopher Leifsson
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Allan Buras
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Stefan Klesse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Claudia Baittinger
- The National Museum of Denmark, Environmental Archaeology and Materials Science, I.C. Modewegs Vej 11, DK - 2800 Kgs. Lyngby, Denmark
| | - Banzragch Bat-Enerel
- Plant Ecology, University of Goettingen, 37073 Goettingen, Germany; Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | | | - Franco Biondi
- DendroLab, Dept. of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Branko Stajić
- University of Belgrade, Faculty of Forestry, Belgrade, Serbia
| | - Marius Budeanu
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Vojtěch Čada
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Liam Cavin
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Hugues Claessens
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | - Katarina Čufar
- University of Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin de Luis
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | - Isabel Dorado-Liñán
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Choimaa Dulamsuren
- Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
| | - Balázs Garamszegi
- Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Grabner
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jon Kehlet Hansen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Hartl
- Nature Rings - Environmental Research & Education, 55118 Mainz, Germany
| | - Weiwei Huang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Pavel Janda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Alistair S Jump
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | | | - Florian Knutzen
- Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany
| | - Jürgen Kreyling
- University of Greifswald, Experimental Plant Ecology, Soldmannstraße 15, 17498 Greifswald, Germany
| | - Alexander Land
- University of Hohenheim, Institute of Biology (190a), Garbenstraße 30, 70599 Stuttgart, Germany
| | - Nicolas Latte
- Forest is Life, ULiège, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | | | | | - Luis A Longares
- Dpto. de Geografía y Ordenación del Territorio, IUCA, Universidad de Zaragoza, C/ Pedro Cerbuna s/n, 50009 Zaragoza. Spain
| | | | - Annette Menzel
- Technical University of Munich, TUM School of Life Sciences, Ecoclimatology, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Renzo Motta
- Department of Agricoltural Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy
| | - Lena Muffler-Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Paola Nola
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy
| | - Momchil Panayatov
- University of Forestry, Dendrology Department, Forest Faculty, Sofia, Bulgaria
| | - Any Mary Petritan
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania
| | - Ion Catalin Petritan
- Faculty of Silviculture and Forest Engineering, Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Transilvania University of Braşov, Braşov, Romania
| | - Ionel Popa
- National Institute for Research and Development in Forestry Marin Dracea, 13 Closca street, Brasov, Romania; Center for Mountain Economy (CE-MONT), Vatra Dornei, Romania
| | - Cǎtǎlin-Constantin Roibu
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Universitatii street, no. 13, Suceava RO720229, Romania
| | - Álvaro Rubio-Cuadrado
- Departamento de Sistemas y Recursos Naturales, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid. Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Miloš Rydval
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Tobias Scharnweber
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE), CSIC, Avda. Montañana 1005, 50080 Zaragoza, Spain
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 129, Praha 6, Suchdol 16521, Czech Republic
| | - Elvin Toromani
- Department of Forestry, Agricultural University Tirana, Tirana, Albania
| | - Volodymyr Trotsiuk
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | | | - Ernst van der Maaten
- Chair of Forest Growth and Woody Biomass Production, TU Dresden, Dresden, Germany
| | - Robert Weigel
- Ecological-Botanical Garden, University of Bayreuth, 95447 Bayreuth, Germany
| | - Martin Wilmking
- Institute for Botany and Landscape Ecology, University Greifswald, 17487 Greifswald, Germany
| | - Tzvetan Zlatanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
| | - Anja Rammig
- Technical University of Munich, TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Hans-Carl-v.-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian S Zang
- Weihenstephan-Triesdorf University of Applied Sciences, Department of Forestry, Hans-Carl-v.-Carlowitz-Platz 3, 85354 Freising, Germany
| |
Collapse
|
12
|
Wang S, Hoch G, Grun G, Kahmen A. Water loss after stomatal closure: quantifying leaf minimum conductance and minimal water use in nine temperate European tree species during a severe drought. TREE PHYSIOLOGY 2024; 44:tpae027. [PMID: 38412116 PMCID: PMC10993720 DOI: 10.1093/treephys/tpae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Residual canopy transpiration (Emin_canop) is a key physiological trait that determines trees' survival time under drought after stomatal closure and after trees have limited access to soil water. Emin_canop mainly depends on leaf minimum conductance (gmin) and vapor pressure deficit. Here we determined the seasonal variation of gmin and how gmin is related to interspecies variation in leaf cuticular and stomatal traits for nine European tree species in a mature forest. In addition, we determined the species-specific temperature responses of gmin. With this newly obtained insight, we calculated Emin_canop for the nine species for one day at our research site during the 2022 central European hot drought. Our results show that at ambient temperatures gmin ranged from 0.8 to 4.8 mmol m-2 s-1 across the nine species and was stable in most species throughout the growing season. The interspecies variation of gmin was associated with leaf cuticular and stomatal traits. Additionally, gmin exhibited strong temperature responses and increased, depending on species, by a factor of two to four in the range of 25-50 °C. For the studied species at the site, during a single hot drought day, Emin_canop standardized by tree size (stem basal area) ranged from 2.0 to 36.7 L m-2, and non-standardized Emin_canop for adult trees ranged from 0.3 to 5.3 L. Emin_canop also exhibited species-specific rapid increases under hotter temperatures. Our results suggest that trees, depending on species, need reasonable amounts of water during a drought, even when stomates are fully closed. Species differences in gmin and ultimately Emin_canop can, together with other traits, affect the ability of a tree to keep its tissue hydrated during a drought and is likely to contribute to species-specific differences in drought vulnerability.
Collapse
Affiliation(s)
- Songwei Wang
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Günter Hoch
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Georges Grun
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences – Botany, University of Basel, Schönbeinstrasse 6, 4056 Basel, Switzerland
| |
Collapse
|
13
|
Neycken A, Wohlgemuth T, Frei ER, Klesse S, Baltensweiler A, Lévesque M. Slower growth prior to the 2018 drought and a high growth sensitivity to previous year summer conditions predisposed European beech to crown dieback. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169068. [PMID: 38049004 DOI: 10.1016/j.scitotenv.2023.169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
The record-breaking drought in 2018 caused premature leaf discoloration and shedding (early browning) in many beech (Fagus sylvatica L.) dominated forests in Central Europe. However, a high degree of variability in drought response among individual beech trees was observed. While some trees were severely impacted by the prolonged water deficits and high temperatures, others remained vital with no or only minor signs of crown vitality loss. Why some beech trees were more susceptible to drought-induced crown damage than others and whether growth recovery is possible are poorly understood. Here, we aimed to identify growth characteristics associated with the variability in drought response between individual beech trees based on a sample of 470 trees in northern Switzerland. By combining tree growth measurements and crown condition assessments, we also investigated the possible link between crown dieback and growth recovery after drought. Beech trees with early browning exhibited an overall lower growth vigor before the 2018 drought than co-occurring vital beech trees. This lower vigor is mainly indicated by lower overall growth rates, stronger growth declines in the past decades, and higher growth-climate sensitivity. Particularly, warm previous year summer conditions negatively affected current growth of the early-browning trees. These findings suggest that the affected trees had less access to critical resources and were physiologically limited in their growth predisposing them to early browning. Following the 2018 drought, observed growth recovery potential corresponded to the amount of crown dieback and the local climatic water balance. Overall, our findings emphasize that beech-dominated forests in Central Europe are under increasing pressure from severe droughts, ultimately reducing the competitive ability of this species, especially on lowland sites with shallow soils and low water holding capacity.
Collapse
Affiliation(s)
- Anna Neycken
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich 8092, Switzerland.
| | - Thomas Wohlgemuth
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Esther R Frei
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, 7260 Davos Dorf, Switzerland; Climate Change and Extremes in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| | - Stefan Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Andri Baltensweiler
- Forest Resources and Management, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Mathieu Lévesque
- Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich 8092, Switzerland
| |
Collapse
|
14
|
Kinzinger L, Mach J, Haberstroh S, Schindler Z, Frey J, Dubbert M, Seeger S, Seifert T, Weiler M, Orlowski N, Werner C. Interaction between beech and spruce trees in temperate forests affects water use, root water uptake pattern and canopy structure. TREE PHYSIOLOGY 2024; 44:tpad144. [PMID: 38070177 DOI: 10.1093/treephys/tpad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Beneficial and negative effects of species interactions can strongly influence water fluxes in forest ecosystems. However, little is known about how trees dynamically adjust their water use when growing with interspecific neighbours. Therefore, we investigated the interaction effects between Fagus sylvatica (European beech) and Picea abies (Norway spruce) on water-use strategies and aboveground structural characteristics. We used continuous in situ isotope spectroscopy of xylem and soil water to investigate source water dynamics and root water uptake depths. Picea abies exhibited a reduced sun-exposed crown area in equally mixed compared with spruce-dominated sites, which was further correlated to a reduction in sap flow of -14.5 ± 8.2%. Contrarily, F. sylvatica trees showed +13.3 ± 33.3% higher water fluxes in equally mixed compared with beech-dominated forest sites. Although a significantly higher crown interference by neighbouring trees was observed, no correlation of water fluxes and crown structure was found. High time-resolved xylem δ2H values showed a large plasticity of tree water use (-74.1 to -28.5‰), reflecting the δ2H dynamics of soil and especially precipitation water sources. Fagus sylvatica in equally mixed sites shifted water uptake to deeper soil layers, while uptake of fresh precipitation was faster in beech-dominated sites. Our continuous in situ water stable isotope measurements traced root water uptake dynamics at unprecedented temporal resolution, indicating highly dynamic use of water sources in response to precipitation and to neighbouring species competition. Understanding this plasticity may be highly relevant in the context of increasing water scarcity and precipitation variability under climate change.
Collapse
Affiliation(s)
- Laura Kinzinger
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| | - Judith Mach
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
| | - Simon Haberstroh
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| | - Zoe Schindler
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Julian Frey
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
| | - Maren Dubbert
- IBG, PB 1 'Landschaftsprozesse', Leibniz Zentrum für Agrarlandschaftsforschung (ZALF) e. V, Eberswalder Straße 84, 15374 Müncheberg, Germany
| | - Stefan Seeger
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
- Soil Physics, Department of Crop Sciences, University of Göttingen, Grisebachstraße 6, 37077 Gottingen, Germany
| | - Thomas Seifert
- Chair of Forest Growth and Dendroecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg, Germany
- Department of Forest and Wood Science, Stellenbosch University, Bosman Street, 7599 Stellenbosch, South Africa
| | - Markus Weiler
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
| | - Natalie Orlowski
- Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Friedrichstraße 39, 79089 Freiburg, Germany
- Chair of Site Ecology and Plant Nutrition, Institute of Soil Science and Site Ecology, TU Dresden, Pienner Strasse 19, Tharandt 01737, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Faculty of Environment and Natural Resources, University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany
| |
Collapse
|
15
|
Fragnière Y, Champoud L, Küffer N, Braillard L, Jutzi M, Wohlgemuth T, Kozlowski G. Cliff-edge forests: Xerothermic hotspots of local biodiversity and models for future climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17196. [PMID: 38404209 DOI: 10.1111/gcb.17196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Cliffs are remarkable environments that enable the existence of microclimates. These small, isolated sites, decoupled from the regional macroclimate, play a significant role in maintaining species biodiversity, particularly in topographically homogeneous landscapes. Our study investigated the microclimate of south-exposed forests situated at the edge of sandstone cliffs in the western part of the North Alpine Foreland Basin in Switzerland and its role in local forest community composition. Using direct measurements from data loggers, as well as vegetation analyses, it was possible to quantify the microclimate of the cliff-edge forests and compare it with that of the surrounding forests. Our results highlighted the significant xerothermic and more variable nature of the cliff-edge forest microclimate, with a mean soil temperature up to 3.72°C warmer in the summer, higher annual (+28%) and daily (+250%) amplitudes of soil temperature, which frequently expose vegetation to extreme temperatures, and an 83% higher soil drying rate. These differences have a distinct influence on forest communities: cliff-edge forests are significantly different from surrounding forests. The site particularities of cliff edges support the presence of locally rare species and forest types, particularly of Scots pine. Cliff edges must therefore be considered microrefugia with a high conservation value for both xerothermic species and flora adapted to more continental climates. Moreover, the microclimate of cliff-edge forests could resemble the future climate in many ways. We argue that these small areas, which are already experiencing the future climate, can be seen as natural laboratories to better answer the following question: what will our forests look like in a few decades with accelerated climate change?
Collapse
Affiliation(s)
- Yann Fragnière
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
| | - Luca Champoud
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
| | - Nicolas Küffer
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
| | - Luc Braillard
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Michael Jutzi
- Info Flora, the National Data and Information Center on the Swiss Flora, Bern, Switzerland
| | - Thomas Wohlgemuth
- Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Gregor Kozlowski
- Department of Biology and Botanic Garden, University of Fribourg, Fribourg, Switzerland
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Natural History Museum Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
van der Woude AM, Peters W, Joetzjer E, Lafont S, Koren G, Ciais P, Ramonet M, Xu Y, Bastos A, Botía S, Sitch S, de Kok R, Kneuer T, Kubistin D, Jacotot A, Loubet B, Herig-Coimbra PH, Loustau D, Luijkx IT. Temperature extremes of 2022 reduced carbon uptake by forests in Europe. Nat Commun 2023; 14:6218. [PMID: 37803032 PMCID: PMC10558467 DOI: 10.1038/s41467-023-41851-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
The year 2022 saw record breaking temperatures in Europe during both summer and fall. Similar to the recent 2018 drought, close to 30% (3.0 million km2) of the European continent was under severe summer drought. In 2022, the drought was located in central and southeastern Europe, contrasting the Northern-centered 2018 drought. We show, using multiple sets of observations, a reduction of net biospheric carbon uptake in summer (56-62 TgC) over the drought area. Specific sites in France even showed a widespread summertime carbon release by forests, additional to wildfires. Partial compensation (32%) for the decreased carbon uptake due to drought was offered by a warm autumn with prolonged biospheric carbon uptake. The severity of this second drought event in 5 years suggests drought-induced reduced carbon uptake to no longer be exceptional, and important to factor into Europe's developing plans for net-zero greenhouse gas emissions that rely on carbon uptake by forests.
Collapse
Affiliation(s)
- Auke M van der Woude
- University of Groningen, Centre for Isotope Research, Groningen, 8481 NG, The Netherlands
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
| | - Wouter Peters
- University of Groningen, Centre for Isotope Research, Groningen, 8481 NG, The Netherlands.
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands.
| | - Emilie Joetzjer
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000, Nancy, France
| | - Sébastien Lafont
- Functional Ecology and Environmental Physics, Ephyse, INRA, Villenave d'Ornon, France
| | - Gerbrand Koren
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Philippe Ciais
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Michel Ramonet
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Yidi Xu
- UMR CEA-CNRS-UVSQ, Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
| | - Ana Bastos
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Remco de Kok
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
- ICOS ERIC, Carbon Portal, Geocentrum II, Sölvegatan 12, SE-22362, Lund, Sweden
| | - Tobias Kneuer
- Deutscher Wetterdienst, Hohenpeissenberg Meteorological Observatory, Hohenpeissenberg, Germany
| | - Dagmar Kubistin
- Deutscher Wetterdienst, Hohenpeissenberg Meteorological Observatory, Hohenpeissenberg, Germany
| | - Adrien Jacotot
- Sol, Agro et hydrosystèmes, Spatialisation (SAS), UMR 1069, INRAE, Institut Agro, Rennes, France
| | - Benjamin Loubet
- Université Paris Saclay, AgroParisTech, INRAE, UMR 1402 ECOSYS, 91120, Palaiseau, France
| | | | - Denis Loustau
- ISPA, Bordeaux Sciences Agro, INRAE, F-33140, Villenave d'Ornon, France
| | - Ingrid T Luijkx
- Wageningen University, Meteorology & Air Quality Dept, Wageningen, 6700 AA, The Netherlands
| |
Collapse
|
17
|
Vacek Z, Vacek S, Cukor J. European forests under global climate change: Review of tree growth processes, crises and management strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117353. [PMID: 36716544 DOI: 10.1016/j.jenvman.2023.117353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/07/2022] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The ongoing global climate change is challenging all sectors, forestry notwithstanding. On the one hand, forest ecosystems are exposed to and threatened by climate change, but on the other hand, forests can influence the course of climate change by regulating the water regime, air quality, carbon sequestration, and even reduce climate extremes. Therefore, it is crucial to see climate change not only as a risk causing forest disturbances and economic consequences but also as an opportunity for innovative approaches to forest management, conservation, and silviculture based on the results of long-term research. We reviewed 365 studies evaluating the impact of climate change on European forest ecosystems, all published during the last 30 years (1993-2022). The most significant consequences of climate change include more frequent and destructive large-scale forest disturbances (wildfire, windstorm, drought, flood, bark beetle, root rot), and tree species migration. Species distribution shifts and changes in tree growth rate have substantial effects on ecosystem carbon storage. Diameter/volume increment changed from -1 to +99% in Central and Northern Europe, while it decreased from -12 to -49% in Southern Europe across tree species over the last ca. 50 years. However, it is important to sharply focus on the causes of climate change and subsequently, on adaptive strategies, which can successfully include the creation of species-diverse, spatially and age-wise structured stands (decrease drought stress and increase production), prolongation of the regenerative period, or the use of suitable introduced tree species (e.g., Douglas fir, black pine, and Mediterranean oaks). But the desired changes are based on increasing diversity and the mitigation of climate change, and will require significantly higher initial costs for silviculture practices. In conclusion, the scope and complexity of the topic require further comprehensive and long-term studies focusing on international cooperation. We see a critical gap in the transfer of research results into actual forest practice, which will be the key factor influencing afforestation of forest stands and forest growth in the following decades. What our forests will look like for future generations and what the resulting impact of climate change will be on forestry is in the hands of forest managers, depending on supportive forestry research and climate change policy, including adaptive and mitigation strategies.
Collapse
Affiliation(s)
- Zdeněk Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic.
| | - Stanislav Vacek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic
| | - Jan Cukor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6-Suchdol, Czech Republic; Forestry and Game Management Research Institute, Strnady 136, 252 02 Jíloviště, Czech Republic
| |
Collapse
|
18
|
Thomas FM, Schunck L, Zisakos A. Legacy Effects in Buds and Leaves of European Beech Saplings ( Fagus sylvatica) after Severe Drought. PLANTS (BASEL, SWITZERLAND) 2023; 12:568. [PMID: 36771652 PMCID: PMC9920899 DOI: 10.3390/plants12030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Against the background of climate change, we studied the effects of a severe summer drought on buds of European beech (Fagus sylvatica L.) saplings and on leaves formed during the subsequent spring in trees attributed to different drought-damage classes. For the first time, we combined assessments of the vitality (assessed through histochemical staining), mass and stable carbon isotope ratios (δ13C) of buds from drought-stressed woody plants with morphological and physiological variables of leaves that have emerged from the same plants and crown parts. The number, individual mass and vitality of the buds decreased and δ13C increased with increasing drought-induced damage. Bud mass, vitality and δ13C were significantly intercorrelated. The δ13C of the buds was imprinted on the leaves formed in the subsequent spring, but individual leaf mass, leaf size and specific leaf area were not significantly different among damage classes. Vitality and δ13C of the buds are suitable indicators of the extent of preceding drought impact. Bud vitality may be used as a simple means of screening saplings for the flushing capability in the subsequent spring. European beech saplings are susceptible, but-due to interindividual differences-are resilient, to a certain extent, to a singular severe drought stress.
Collapse
|
19
|
Klesse S, Wohlgemuth T, Meusburger K, Vitasse Y, von Arx G, Lévesque M, Neycken A, Braun S, Dubach V, Gessler A, Ginzler C, Gossner MM, Hagedorn F, Queloz V, Samblás Vives E, Rigling A, Frei ER. Long-term soil water limitation and previous tree vigor drive local variability of drought-induced crown dieback in Fagus sylvatica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:157926. [PMID: 35985592 DOI: 10.1016/j.scitotenv.2022.157926] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Ongoing climate warming is increasing evapotranspiration, a process that reduces plant-available water and aggravates the impact of extreme droughts during the growing season. Such an exceptional hot drought occurred in Central Europe in 2018 and caused widespread defoliation in mid-summer in European beech (Fagus sylvatica L.) forests. Here, we recorded crown damage in 2021 in nine mature even-aged beech-dominated stands in northwestern Switzerland along a crown damage severity gradient (low, medium, high) and analyzed tree-ring widths of 21 mature trees per stand. We aimed at identifying predisposing factors responsible for differences in crown damage across and within stands such as tree growth characteristics (average growth rates and year-to-year variability) and site-level variables (mean canopy height, soil properties). We found that stand-level crown damage severity was strongly related to soil water availability, inferred from tree canopy height and plant available soil water storage capacity (AWC). Trees were shorter in drier stands, had higher year-to-year variability in radial growth, and showed higher growth sensitivity to moisture conditions of previous late summer than trees growing on soils with sufficient AWC, indicating that radial growth in these forests is principally limited by soil water availability. Within-stand variation of post-drought crown damage corresponded to growth rate and tree size (diameter at breast height, DBH), i.e., smaller and slower-growing trees that face more competition, were associated with increased crown damage after the 2018 drought. These findings point to tree vigor before the extreme 2018 drought (long-term relative growth rate) as an important driver of damage severity within and across stands. Our results suggest that European beech is less likely to be able to cope with future climate change-induced extreme droughts on shallow soils with limited water retention capacity.
Collapse
Affiliation(s)
- S Klesse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland.
| | - T Wohlgemuth
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - K Meusburger
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - Y Vitasse
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - G von Arx
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - M Lévesque
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - A Neycken
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - S Braun
- Institute for Applied Plant Biology AG, Witterswil, Switzerland
| | - V Dubach
- Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - A Gessler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - C Ginzler
- Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - M M Gossner
- Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland; Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - F Hagedorn
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - V Queloz
- Forest Health & Biotic Interactions, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - E Samblás Vives
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Valles, Spain
| | - A Rigling
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
| | - E R Frei
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland; Alpine Environment and Natural Hazards, WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland; Climate Change and Extremes in Alpine Regions Research Centre CERC, 7260 Davos Dorf, Switzerland
| |
Collapse
|
20
|
Schuldt B, Ruehr NK. Responses of European forests to global change-type droughts. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1093-1097. [PMID: 36445187 DOI: 10.1111/plb.13484] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Affiliation(s)
- B Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Dresden, Germany
| | - N K Ruehr
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
21
|
Werner C. Extreme droughts and heatwaves endanger temperate forests. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1091-1092. [PMID: 36445188 DOI: 10.1111/plb.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|