1
|
Carlisle T, Vandayar Y, Taylor L, Molefe I, Martin LJ, Wilscott-Davids C, Verster J, Opperman C, Heathfield LJ. A multicentre study comparing post-mortem SARS-CoV-2 antibody testing in Cape Town mortuaries. S Afr J Infect Dis 2025; 40:683. [PMID: 40357180 PMCID: PMC12067580 DOI: 10.4102/sajid.v40i1.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/02/2025] [Indexed: 05/15/2025] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) was recognised as a global pandemic in 2019, yet the exact number of infections is still unclear. In addition, there is limited research on post-mortem antibody testing. Objectives This study sought to evaluate the use of the SureScreen COVID-19 immunoglobulin (Ig) G and IgM Rapid Test Cassette in deceased individuals by comparing it to the gold-standard antibody tests in South Africa, and to identify the most appropriate antibody testing method for post-mortem samples. Method Between May 2021 and February 2023, fifty cases, with suspected COVID-19 infection during their lifetime, were recruited from Tygerberg Mortuary and Salt River Mortuary, after obtaining informed consent from their next-of-kin. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was confirmed through antemortem positive COVID-19 polymerase chain reaction (PCR) (PCP) tests in 39 participants. Blood samples were collected during autopsies in serum separator tubes, which yielded better separation when centrifuged immediately after collection. The SureScreen test was performed alongside Roche Diagnostics Elecsys Anti-SARS-CoV-2 and Abbott Architect SARS-CoV-2 IgG assays. Results Among the confirmed PCP cases, Elecsys demonstrated the highest sensitivity (97.1%) followed by SureScreen IgG (82.1%). In a logistic regression analysis, PCP confirmation was significantly associated with the SureScreen IgG results (p < 0.05). Conclusion Overall, Roche's Elecsys had the highest yield of positive results on our cohort of post-mortem serum samples, followed by SureScreen, and finally, Abbott's Architect assay. Contribution These results suggest that the SureScreen test has potential as a screening tool in mortuary settings, with Roche's Elecsys assay recommended for diagnostic confirmation.
Collapse
Affiliation(s)
- Tayna Carlisle
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Yuvika Vandayar
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura Taylor
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Itumeleng Molefe
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lorna J Martin
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Candice Wilscott-Davids
- Division of Forensic Medicine, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Janette Verster
- Division of Forensic Medicine, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Christoffel Opperman
- National Health Laboratory Service, Green Point Tuberculosis Laboratory, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Stellenbosch University, Cape Town, South Africa
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura J Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Ruchisrisarod C, Wanthong P, Joyjinda Y, Bunprakob S, Hemachudha P, Mungaomklang A, Supharatpariyakorn T, Hemachudha T, Wasontiwong AS. Antibodies response in symptomatic and asymptomatic SARS-CoV-2 infected persons in Thailand. PLoS One 2025; 20:e0308850. [PMID: 39932922 PMCID: PMC11813072 DOI: 10.1371/journal.pone.0308850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/31/2024] [Indexed: 02/13/2025] Open
Abstract
Antibody assays of IgM, IgG and surrogate isotype independent virus neutralizing antibody (sVNT) targeting receptor binding domain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) were employed in 97 real-time Reverse Transcription Polymerase Chain Reaction (RT-PCR) confirmed Coronavirus Disease 2019 (COVID-19) patients with varying severity admitted to King Chulalongkorn Memorial Hospital. Concordance rate was 100% regardless of severity, onset of symptoms and magnitude of viral load. Per available samples, antibodies appeared on the same day of symptom onset in one patient; one day after in 18 patients and two days after in 19 patients. In two patients, antibodies appeared as early as 4 days after infection (exposure). IgM and IgG were evident in all patients' first assay (within two days of admission). sVNT was also evident within two days of admission in all but 3 patients. IgM usually remained positive during the entire course of hospital stay, where the longest in this study was 32 days. Antibody assays were also applied to samples collected at a State Quarantine premise from 77 asymptomatic Thais returning from Sudan in October. Virus was detected by real-time RT-PCR in 15 cases (day 0 = 6, day 3 = 4, day 5 = 4 and day 9 = 1). Twenty-nine (including 11 RT-PCR positive cases) were antibody positive on day 0, while 4 PCR positive with antibody negative on day 0 became antibody positive on day 14. Evaluation on antibody response at days 7 or 10 is needed to help build a case to shorten length of quarantine among negative cases.
Collapse
Affiliation(s)
- Chanida Ruchisrisarod
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phanni Wanthong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yutthana Joyjinda
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saowalak Bunprakob
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pasin Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anek Mungaomklang
- Department of Disease Control, Ministry of Public Health, Institute for Urban Disease Control and Prevention, Bangkok, Thailand
| | - Thirawat Supharatpariyakorn
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Abhinbhen Saraya Wasontiwong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre, World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Oyebanji OA, Sundheimer N, Ragavapuram V, Wilson BM, Abul Y, Gravenstein S, Bosch J, King CL, Canaday DH. Avidity maturation of humoral response following primary and booster doses of BNT162b2 mRNA vaccine among nursing home residents and healthcare workers. GeroScience 2024; 46:6183-6194. [PMID: 38789833 PMCID: PMC11493945 DOI: 10.1007/s11357-024-01215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Infections, despite vaccination, can be clinically consequential for frail nursing home residents (NHR). Poor vaccine-induced antibody quality may add risk for such subsequent infections and more severe disease. We assessed antibody binding avidity, as a surrogate for antibody quality, among NHR and healthcare workers (HCW). We longitudinally sampled 112 NHR and 52 HCWs who received the BNT162b2 mRNA vaccine after each dose up to the Wuhan-BA.4/5-based Omicron bivalent boosters. We quantified anti-spike, anti-receptor binding domain (RBD), and avidity levels to the ancestral Wuhan, Delta, and Omicron BA.1 & 4/5 strains. The primary vaccination series produced substantial anti-spike and RBD levels which were low in avidity against all strains tested. Antibody avidity progressively increased in the 6-8 months that followed. Avidity significantly increased after the 1st booster but not for subsequent boosters. This study underscores the importance of booster vaccination among NHR and HCWs. The 1st booster dose increases avidity, increasing vaccine-induced functional antibody. The higher cross-reactivity of higher avidity antibodies to other SARS-CoV-2 strains should translate to better protection from ever-evolving strains. Higher avidities may help explain how the vaccine's protective effects persist despite waning antibody titers after each vaccine dose.
Collapse
Affiliation(s)
- Oladayo A Oyebanji
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Nicholas Sundheimer
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Vaishnavi Ragavapuram
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Brigid M Wilson
- Geriatric Research Education and Clinical Center, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
| | - Yasin Abul
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, Rhode Island, USA
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, Rhode Island, USA
- Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - David H Canaday
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Geriatric Research Education and Clinical Center, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA.
| |
Collapse
|
4
|
Berre ML, Paulovčáková T, Verissimo CDM, Doyle S, Dalton JP, Masterson C, Martínez ER, Walsh L, Gormley C, Laffey JG, McNicholas B, Simpkin AJ, Kilcoyne M. A new multiplex SARS-CoV-2 antigen microarray showed correlation of IgG, IgA, and IgM antibodies from patients with COVID-19 disease severity and maintenance of relative IgA and IgM antigen binding over time. PLoS One 2023; 18:e0283537. [PMID: 36996259 PMCID: PMC10062637 DOI: 10.1371/journal.pone.0283537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/12/2023] [Indexed: 04/01/2023] Open
Abstract
Zoonotic spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans in December 2019 caused the coronavirus disease 2019 (COVID-19) pandemic. Serological monitoring is critical for detailed understanding of individual immune responses to infection and protection to guide clinical therapeutic and vaccine strategies. We developed a high throughput multiplexed SARS-CoV-2 antigen microarray incorporating spike (S) and nucleocapsid protein (NP) and fragments expressed in various hosts which allowed simultaneous assessment of serum IgG, IgA, and IgM responses. Antigen glycosylation influenced antibody binding, with S glycosylation generally increasing and NP glycosylation decreasing binding. Purified antibody isotypes demonstrated a binding pattern and intensity different from the same isotype in whole serum, probably due to competition from the other isotypes present. Using purified antibody isotypes from naïve Irish COVID-19 patients, we correlated antibody isotype binding to different panels of antigens with disease severity, with binding to the S region S1 expressed in insect cells (S1 Sf21) significant for IgG, IgA, and IgM. Assessing longitudinal response for constant concentrations of purified antibody isotypes for a patient subset demonstrated that the relative proportion of antigen-specific IgGs decreased over time for severe disease, but the relative proportion of antigen-specific IgA binding remained at the same magnitude at 5 and 9 months post-first symptom onset. Further, the relative proportion of IgM binding decreased for S antigens but remained the same for NP antigens. This may support antigen-specific serum IgA and IgM playing a role in maintaining longer-term protection, important for developing and assessing vaccine strategies. Overall, these data demonstrate the multiplexed platform as a sensitive and useful platform for expanded humoral immunity studies, allowing detailed elucidation of antibody isotypes response against multiple antigens. This approach will be useful for monoclonal antibody therapeutic studies and screening of donor polyclonal antibodies for patient infusions.
Collapse
Affiliation(s)
- Marie Le Berre
- Carbohydrate Signalling Group, Infectious Disease Section, School of Chemical and Biological Sciences, University of Galway, Galway, Ireland
| | - Terézia Paulovčáková
- Carbohydrate Signalling Group, Infectious Disease Section, School of Chemical and Biological Sciences, University of Galway, Galway, Ireland
| | - Carolina De Marco Verissimo
- Molecular Parasitology Lab, Centre for One Health and Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Seán Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John P. Dalton
- Molecular Parasitology Lab, Centre for One Health and Ryan Institute, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Claire Masterson
- School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Eduardo Ribes Martínez
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Laura Walsh
- University College Dublin, Belfield, Dublin, Ireland
| | - Conor Gormley
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John G. Laffey
- School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Department of Anaesthesia and Intensive Care Medicine, University Hospital Galway, Saolta University Hospital Group, Galway, Ireland
| | - Bairbre McNicholas
- School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
- Department of Anaesthesia and Intensive Care Medicine, University Hospital Galway, Saolta University Hospital Group, Galway, Ireland
| | - Andrew J. Simpkin
- School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Infectious Disease Section, School of Chemical and Biological Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Serna-Muñoz R, Hernández-Terán A, Soto-Nava M, Tapia-Trejo D, Ávila-Ríos S, Mejía-Nepomuceno F, García E, Castillejos-López M, Higuera-Iglesias AL, Aquino-Gálvez A, Thirion-Romero I, Pérez-Padilla R, Aguilar-Faisal JL, Vázquez-Pérez JA. Longitudinal Characterization of a Neutralizing and Total Antibody Response in Patients with Severe COVID-19 and Fatal Outcomes. Vaccines (Basel) 2022; 10:2063. [PMID: 36560474 PMCID: PMC9785259 DOI: 10.3390/vaccines10122063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The host immune response to SARS-CoV-2 appears to play a critical role in disease pathogenesis and clinical manifestations in severe COVID-19 cases. Until now, the importance of developing a neutralizing antibody response in the acute phase and its relationship with progression to severe disease or fatal outcome among hospitalized patients remains unclear. In this study, we aim to characterize and compare longitudinally the primary humoral immune host response in the early stages of the disease, looking for an association between neutralization, antibody titers, infective viral lineage, and the clinical outcome in hospitalized and non-hospitalized patients. A total of 111 patients admitted at INER from November 2021 to June 2022 were included. We found that patients with negative or low neutralization showed a significant reduction in survival probability compared to patients with medium or high neutralization. We observed a significant decrease in the median of neutralization in patients infected with viral variants with changes in RBD of the spike protein. Our results suggest that developing an early and robust neutralizing response against SARS-CoV-2 may increase survival probability in critical patients.
Collapse
Affiliation(s)
- Ricardo Serna-Muñoz
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Alejandra Hernández-Terán
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | - Maribel Soto-Nava
- CIENI Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City 14080, Mexico
| | - Daniela Tapia-Trejo
- CIENI Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City 14080, Mexico
| | - Santiago Ávila-Ríos
- CIENI Centre for Research in Infectious Diseases, National Institute of Respiratory Diseases, Mexico City 14080, Mexico
| | - Fidencio Mejía-Nepomuceno
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | - Emma García
- Departamento de Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | - Manuel Castillejos-López
- Departamento de Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | - Anjarath Lorena Higuera-Iglesias
- Departamento de Unidad de Epidemiología Hospitalaria e Infectología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | - Ireri Thirion-Romero
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | - Rogelio Pérez-Padilla
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| | | | - Joel Armando Vázquez-Pérez
- Departamento de Investigación en Tabaquismo y EPOC, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas INER, Mexico City 14080, Mexico
| |
Collapse
|
6
|
Al Dossary R. Antibody Dependent Enhancement of SARS-CoV-2 Infection in the Era of Rapid Vaccine Development. Med Arch 2022; 76:383-386. [PMID: 36545460 PMCID: PMC9760241 DOI: 10.5455/medarh.2022.76.383-386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Antibody dependent enhancement (ADE) is a unique immunopathological phenomenon in which pre-existing immunity to a viral agent accentuate disease severity upon secondary exposure. Multiple viruses have been shown to demsotrate ADE with no clear understanding of the underlying mechansims. Recently, with the emeregence of Sever acute respiratory syndrome-2 (SARS-CoV2) and the need for rapid vaccine prodcution, ADE have emerged as an important issue that need to be assessed. Objective The aim of this study was to review ADE, proposed mechanisms and impact of ADE in the era of rapid SARS-CoV2 vaccine production. Methods Review of existing published literature on ADE and SARS-CoV2 and identify facts that support or otherwise contradict the impact of ADE on SARS-CoV2 vaccination. Results SARS-CoV2 demonstrate high genetic homology to other members of the Coronaviridae viral family and animal studies and studies on SARS-CoV, another member of the Coronaviridae have been shown to induce ADE. In addition sever SARS-CoV2 infection have been associated with high antibody titer. Yet vaccine efficacy studies and studies on breakthrough infection showed reduced severity in individual with preexisting immunity. Conclusion Although evidence exist to support ADE in SARS-CoV2, multiple studies do not support its occurrence, indicating the need for more case control studies to understand the role of high antibody titer and disease severity and compare disease severity in patient with preexisting immunity vs naïve individuals.
Collapse
Affiliation(s)
- Reem Al Dossary
- Department of Microbiology, Collage of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia 1
| |
Collapse
|
7
|
Daamen AR, Bachali P, Bonham CA, Somerville L, Sturek JM, Grammer AC, Kadl A, Lipsky PE. COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity. Front Immunol 2022; 13:989556. [PMID: 36189236 PMCID: PMC9522616 DOI: 10.3389/fimmu.2022.989556] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 manifests a spectrum of respiratory symptoms, with the more severe often requiring hospitalization. To identify markers for disease progression, we analyzed longitudinal gene expression data from patients with confirmed SARS-CoV-2 infection admitted to the intensive care unit (ICU) for acute hypoxic respiratory failure (AHRF) as well as other ICU patients with or without AHRF and correlated results of gene set enrichment analysis with clinical features. The results were then compared with a second dataset of COVID-19 patients separated by disease stage and severity. Transcriptomic analysis revealed that enrichment of plasma cells (PCs) was characteristic of all COVID-19 patients whereas enrichment of interferon (IFN) and neutrophil gene signatures was specific to patients requiring hospitalization. Furthermore, gene expression results were used to divide AHRF COVID-19 patients into 2 groups with differences in immune profiles and clinical features indicative of severe disease. Thus, transcriptomic analysis reveals gene signatures unique to COVID-19 patients and provides opportunities for identification of the most at-risk individuals.
Collapse
Affiliation(s)
| | | | - Catherine A. Bonham
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | - Lindsay Somerville
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Jeffrey M. Sturek
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
| | | | - Alexandra Kadl
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Charlottesville, VA, United States
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
8
|
Traoré A, Guindo MA, Konaté D, Traoré B, Diakité SA, Kanté S, Dembélé A, Cissé A, Incandela NC, Kodio M, Coulibaly YI, Faye O, Kajava AV, Pratesi F, Migliorini P, Papini AM, Pacini L, Rovero P, Errante F, Diakité M, Arevalo-Herrera M, Herrera S, Corradin G, Balam S. Seroreactivity of the Severe Acute Respiratory Syndrome Coronavirus 2 Recombinant S Protein, Receptor-Binding Domain, and Its Receptor-Binding Motif in COVID-19 Patients and Their Cross-Reactivity With Pre-COVID-19 Samples From Malaria-Endemic Areas. Front Immunol 2022; 13:856033. [PMID: 35585976 PMCID: PMC9109707 DOI: 10.3389/fimmu.2022.856033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the global interest and the unprecedented number of scientific studies triggered by the COVID-19 pandemic, few data are available from developing and low-income countries. In these regions, communities live under the threat of various transmissible diseases aside from COVID-19, including malaria. This study aims to determine the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroreactivity of antibodies from COVID-19 and pre-COVID-19 samples of individuals in Mali (West Africa). Blood samples from COVID-19 patients (n = 266) at Bamako Dermatology Hospital (HDB) and pre-COVID-19 donors (n = 283) from a previous malaria survey conducted in Dangassa village were tested by ELISA to assess IgG antibodies specific to the full-length spike (S) protein, the receptor-binding domain (RBD), and the receptor-binding motif (RBM436-507). Study participants were categorized by age, gender, treatment duration for COVID-19, and comorbidities. In addition, the cross-seroreactivity of samples from pre-COVID-19, malaria-positive patients against the three antigens was assessed. Recognition of the SARS-CoV-2 proteins by sera from COVID-19 patients was 80.5% for S, 71.1% for RBD, and 31.9% for RBM (p < 0.001). While antibody responses to S and RBD tended to be age-dependent, responses to RBM were not. Responses were not gender-dependent for any of the antigens. Higher antibody levels to S, RBD, and RBM at hospital entry were associated with shorter treatment durations, particularly for RBD (p < 0.01). In contrast, higher body weights negatively influenced the anti-S antibody response, and asthma and diabetes weakened the anti-RBM antibody responses. Although lower, a significant cross-reactive antibody response to S (21.9%), RBD (6.7%), and RBM (8.8%) was detected in the pre-COVID-19 and malaria samples. Cross-reactive antibody responses to RBM were mostly associated (p < 0.01) with the absence of current Plasmodium falciparum infection, warranting further study.
Collapse
Affiliation(s)
- Abdouramane Traoré
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Merepen A. Guindo
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa Konaté
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bourama Traoré
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Seidina A. Diakité
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Salimata Kanté
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Assitan Dembélé
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Abdourhamane Cissé
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Nathan C. Incandela
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Mamoudou Kodio
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Yaya I. Coulibaly
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Ousmane Faye
- Department of Ministry of Health and Social Development, Hopital de Dermatologie de Bamako (HDB), Bamako, Mali
| | - Andrey V. Kajava
- Montpellier Cell Biology Research Center (CRBM), University of Montpellier, CNRS, Montpellier, France
| | - Federico Pratesi
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Immuno-Allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Florence, Italy
| | - Fosca Errante
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Florence, Italy
| | - Mahamadou Diakité
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Myriam Arevalo-Herrera
- Department of Immunology, Malaria Vaccine and Drug Development Center, Cali, Colombia
- Department of Immunology, Caucaseco Scientific Research Center, Cali, Colombia
| | - Socrates Herrera
- Department of Immunology, Malaria Vaccine and Drug Development Center, Cali, Colombia
- Department of Immunology, Caucaseco Scientific Research Center, Cali, Colombia
| | | | - Saidou Balam
- Immunogenetic Laboratory and Parasitology, University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Bhat V, Chavan P, Khattry N, Gupta S. Dynamics of viral RNA load, virus culture, seroconversion & infectivity in COVID-19 patients: Implications on isolation policy. Indian J Med Res 2021; 153:585-590. [PMID: 34414920 PMCID: PMC8555608 DOI: 10.4103/ijmr.ijmr_3564_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has spread all over the world due to rapid person-to-person transmission. More information about viral load dynamics and replication is needed for clarity on duration of infectiousness of an individual, along with its implications on transmission. This is important to healthcare facilities and public health authorities in formulating guidance on the duration of isolation for patients and return to work criteria for healthcare workers. The duration of detection of viral RNA by molecular methods in the upper respiratory tract has ranged from 2 to 12 wk. Viral RNA detection by reverse transcription polymerase chain reaction (RT-PCR) does not necessarily mean that the individual is infectious to others, as the detected virus may not be replication competent. Infectious virus is generally not shed beyond 20 days of the onset of symptoms in most patients, including severely ill and immunocompromised, as indicated by failure to isolate replication-competent virus beyond this timeline in available studies. Further, detection of neutralizing antibodies in the serum, although associated with positive RT-PCR, is generally not associated with infectious virus shedding as indicated by negative viral cultures beyond this period. In this review, we analyze the current literature on the dynamics of viral load, culture, seroconversion and their implications on infectivity and the duration of isolation precautions for COVID-19 patients.
Collapse
Affiliation(s)
- Vivek Bhat
- Department of Microbiology, Advanced Centre for Treatment, Research & Education, Tata Memorial Centre, Homi Bhaba National Institute, Navi Mumbai, Maharashtra, India
| | - Preeti Chavan
- Department of Composite Laboratory, Advanced Centre for Treatment, Research & Education, Tata Memorial Centre, Homi Bhaba National Institute, Navi Mumbai, Maharashtra, India
| | - Navin Khattry
- Department of Medical Oncology, Advanced Centre for Treatment, Research & Education, Tata Memorial Centre, Homi Bhaba National Institute, Navi Mumbai, Maharashtra, India
| | - Sudeep Gupta
- Department of Medical Oncology, Advanced Centre for Treatment, Research & Education, Tata Memorial Centre, Homi Bhaba National Institute, Navi Mumbai, Maharashtra, India
| |
Collapse
|
10
|
Struck F, Schreiner P, Staschik E, Wochinz-Richter K, Schulz S, Soutschek E, Motz M, Bauer G. Incomplete IgG avidity maturation after seasonal coronavirus infections. J Med Virol 2021; 94:186-196. [PMID: 34427932 DOI: 10.1002/jmv.27291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
In classical viral infections, the avidity of immunoglobulin G (IgG) is low during acute infection and high a few months later. As recently reported, SARS-CoV-2 infections are not following this scheme, but they are rather characterized by incomplete avidity maturation. This study was performed to clarify whether infection with seasonal coronaviruses also leads to incomplete avidity maturation. The avidity of IgG toward the nucleoprotein (NP) of the seasonal coronaviruses 229E, NL63, OC43, HKU1 and of SARS-CoV-2 was determined in the sera from 88 healthy, SARS-CoV-2-negative subjects and in the sera from 70 COVID-19 outpatients, using the recomLine SARS-CoV-2 assay with recombinant antigens. In the sera from SARS-CoV-2-negative subjects, incomplete avidity maturation (persistent low and intermediate avidity indices) was the lowest for infections with the alpha-coronaviruses 229E (33.3%) and NL63 (61.3%), and the highest for the beta-coronaviruses OC43 (77.5%) and HKU1 (71.4%). In the sera from COVID-19 patients, the degree of incomplete avidity maturation of IgG toward NP of 223E, OC43, and HKU1 was not significantly different from that found in SARS-CoV-2-negative subjects, but a significant increase in avidity was observed for IgG toward NP of NL63. Though there was no cross-reaction between SARS-CoV-2 and seasonal coronaviruses, higher concentrations of IgG directed toward seasonal coronaviruses seemed to indirectly increase avidity maturation of IgG directed toward SARS-CoV-2. Our data show that incomplete IgG avidity maturation represents a characteristic consequence of coronavirus infections. This raises problems for the serological differentiation between acute and past infections and may be important for the biology of coronaviruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Georg Bauer
- Institute of Virology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Ruggiero M, Somigliana E, Tassis B, Li Piani L, Uceda Renteria S, Barbara G, Lunghi G, Pietrasanta C, Ferrazzi E. Clinical relevance of SARS-CoV-2 infection in late pregnancy. BMC Pregnancy Childbirth 2021; 21:505. [PMID: 34253173 PMCID: PMC8273567 DOI: 10.1186/s12884-021-03985-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Evidence on the outcome of SARS-CoV-2 infection in pregnancy is generally reassuring but yet not definitive. METHODS To specifically assess the impact of SARS-CoV-2 infection in late pregnancy, we prospectively recruited 315 consecutive women delivering in a referral hospital located in Lombardy, Italy in the early phase of the epidemic. Restriction of the recruitment to this peculiar historical time period allowed to exclude infections occurring early in pregnancy and to limit the recall bias. All recruited subjects underwent a nasopharyngeal swab to assess the presence of Sars-Cov-2 using Real-time PCR. In addition, two different types of antibodies for the virus were evaluated in peripheral blood, those against the spike proteins S1 and S2 of the envelope and those against the nucleoprotein of the nucleocapsid. Women were considered to have had SARS-CoV-2 infection in pregnancy if at least one of the three assessments was positive. RESULTS Overall, 28 women had a diagnosis of SARS-CoV-2 infection in pregnancy (8.9%). Women diagnosed with the infection were more likely to report one or more episodes of symptoms suggestive for Covid-19 (n = 11, 39.3%) compared to unaffected women (n = 39, 13.6%). The corresponding OR was 4.11 (95%CI: 1.79-9.44). Symptoms significantly associated with Covid-19 in pregnancy included fever, cough, dyspnea and anosmia. Only one woman necessitated intensive care. Pregnancy outcome in women with and without SARS-CoV-2 infection did not also differ. CONCLUSIONS SARS-CoV-2 infection is asymptomatic in three out of five women in late pregnancy and is rarely severe. In addition, pregnancy outcome may not be markedly affected.
Collapse
Affiliation(s)
- Marta Ruggiero
- Department of Woman, New-Born and Child, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Via M. Fanti, 6, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Edgardo Somigliana
- Department of Woman, New-Born and Child, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Via M. Fanti, 6, 20122, Milan, Italy.
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy.
| | - Beatrice Tassis
- Department of Woman, New-Born and Child, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Via M. Fanti, 6, 20122, Milan, Italy
| | - Letizia Li Piani
- Department of Woman, New-Born and Child, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Via M. Fanti, 6, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Sara Uceda Renteria
- Virology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Milan, Italy
| | - Giussy Barbara
- Department of Woman, New-Born and Child, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Via M. Fanti, 6, 20122, Milan, Italy
| | - Giovanna Lunghi
- Virology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Milan, Italy
| | - Carlo Pietrasanta
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
- Neonatal Intensive Care Unit (NICU), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Milan, Italy
| | - Enrico Ferrazzi
- Department of Woman, New-Born and Child, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Mangiagalli Centre, Via M. Fanti, 6, 20122, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
12
|
Khoshkam Z, Aftabi Y, Stenvinkel P, Paige Lawrence B, Rezaei MH, Ichihara G, Fereidouni S. Recovery scenario and immunity in COVID-19 disease: A new strategy to predict the potential of reinfection. J Adv Res 2021; 31:49-60. [PMID: 33520309 PMCID: PMC7832464 DOI: 10.1016/j.jare.2020.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 01/28/2023] Open
Abstract
Background The recent ongoing outbreak of coronavirus disease 2019 (COVID-19), still is an unsolved problem with a growing rate of infected cases and mortality worldwide. The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is targeting the angiotensin-converting enzyme 2 (ACE2) receptor and mostly causes a respiratory illness. Although acquired and resistance immunity is one of the most important aspects of alleviating the trend of the current pandemic; however, there is still a big gap of knowledge regarding the infection process, immunopathogenesis, recovery, and reinfection. Aim of Review To answer the questions regarding "the potential and probability of reinfection in COVID-19 infected cases" or "the efficiency and duration of SARS-CoV-2 infection-induced immunity against reinfection" we critically evaluated the current reports on SARS-CoV-2 immunity and reinfection with special emphasis on comparative studies using animal models that generalize their finding about protection and reinfection. Also, the contribution of humoral immunity in the process of COVID-19 recovery and the role of ACE2 in virus infectivity and pathogenesis has been discussed. Furthermore, innate and cellular immunity and inflammatory responses in the disease and recovery conditions are reviewed and an overall outline of immunologic aspects of COVID-19 progression and recovery in three different stages are presented. Finally, we categorized the infected cases into four different groups based on the acquired immunity and the potential for reinfection. Key Scientific Concepts of Review In this review paper, we proposed a new strategy to predict the potential of reinfection in each identified category. This classification may help to distribute resources more meticulously to determine: who needs to be serologically tested for SARS-CoV-2 neutralizing antibodies, what percentage of the population is immune to the virus, and who needs to be vaccinated.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- ADE, Antibody-dependent enhancement
- ARDS, Acute respiratory distress syndrome
- Ang II, Angiotensin II
- BAL, Bronchoalveolar lavage
- COVID-19
- COVID-19, Coronavirus disease 2019
- Coronavirus
- ERS, Early recovery stage
- FcR, Fc receptor
- ISGs, Interferon-stimulated genes
- Immunity
- LRS, Late recovery stage
- N, Nucleocapsid
- NAb, Neutralizing antibody
- NK, Natural killer
- PBMCs, Peripheral blood mononuclear cells
- PSO, Post symptom onset
- RBD, Receptor-binding domain
- RT-PCR, Real-time reverse transcriptase–polymerase chain reaction
- Recovery
- Reinfection
- SARS-CoV-2
- SARS-CoV-2, Severe acute respiratory syndrome coronavirus 2
- sACE2, Soluble ACE2
Collapse
Affiliation(s)
- Zahra Khoshkam
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Tehran, Tehran, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - B. Paige Lawrence
- Departments of Environmental Medicine and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Mehran Habibi Rezaei
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Tehran, Tehran, Iran
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences Tokyo University of Science, Noda, Japan
- Health Management Center, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Sasan Fereidouni
- Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
13
|
Rasmi Y, Li X, Khan J, Ozer T, Choi JR. Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Anal Bioanal Chem 2021; 413:4137-4159. [PMID: 34008124 PMCID: PMC8130795 DOI: 10.1007/s00216-021-03377-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic is currently a serious global health threat. While conventional laboratory tests such as quantitative real-time polymerase chain reaction (qPCR), serology tests, and chest computerized tomography (CT) scan allow diagnosis of COVID-19, these tests are time-consuming and laborious, and are limited in resource-limited settings or developing countries. Point-of-care (POC) biosensors such as chip-based and paper-based biosensors are typically rapid, portable, cost-effective, and user-friendly, which can be used for COVID-19 in remote settings. The escalating demand for rapid diagnosis of COVID-19 presents a strong need for a timely and comprehensive review on the POC biosensors for COVID-19 that meet ASSURED criteria: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Deliverable to end users. In the present review, we discuss the importance of rapid and early diagnosis of COVID-19 and pathogenesis of COVID-19 along with the key diagnostic biomarkers. We critically review the most recent advances in POC biosensors which show great promise for the detection of COVID-19 based on three main categories: chip-based biosensors, paper-based biosensors, and other biosensors. We subsequently discuss the key benefits of these biosensors and their use for the detection of antigen, antibody, and viral nucleic acids. The commercial POC biosensors for COVID-19 are critically compared. Finally, we discuss the key challenges and future perspectives of developing emerging POC biosensors for COVID-19. This review would be very useful for guiding strategies for developing and commercializing rapid POC tests to manage the spread of infections.Graphical abstract.
Collapse
Affiliation(s)
- Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, 5714783734, Urmia, Iran
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, 5714783734, Urmia, Iran
| | - Xiaokang Li
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center, 1005, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), 1011, Lausanne, Switzerland
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Kingdom of Saudi Arabia
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemical-Metallurgical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
14
|
Natarajan H, Crowley AR, Butler SE, Xu S, Weiner JA, Bloch EM, Littlefield K, Wieland-Alter W, Connor RI, Wright PF, Benner SE, Bonny TS, Laeyendecker O, Sullivan D, Shoham S, Quinn TC, Larman HB, Casadevall A, Pekosz A, Redd AD, Tobian AAR, Ackerman ME. Markers of Polyfunctional SARS-CoV-2 Antibodies in Convalescent Plasma. mBio 2021; 12:e00765-21. [PMID: 33879585 PMCID: PMC8092262 DOI: 10.1128/mbio.00765-21] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Convalescent plasma is a promising therapy for coronavirus disease 2019 (COVID-19), but the antibody characteristics that contribute to efficacy remain poorly understood. This study analyzed plasma samples from 126 eligible convalescent blood donors in addition to 15 naive individuals, as well as an additional 20 convalescent individuals as a validation cohort. Multiplexed Fc Array binding assays and functional antibody response assays were utilized to evaluate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody composition and activity. Donor convalescent plasma samples contained a range of antibody cell- and complement-mediated effector functions, indicating the diverse antiviral activity of humoral responses observed among recovered individuals. In addition to viral neutralization, convalescent plasma samples contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis, and antibody-dependent cellular cytotoxicity against SARS-CoV-2. Plasma samples from a fraction of eligible donors exhibited high activity across all activities evaluated. These polyfunctional plasma samples could be identified with high accuracy with even single Fc Array features, whose correlation with polyfunctional activity was confirmed in the validation cohort. Collectively, these results expand understanding of the diversity of antibody-mediated antiviral functions associated with convalescent plasma, and the polyfunctional antiviral functions suggest that it could retain activity even when its neutralizing capacity is reduced by mutations in variant SARS-CoV-2.IMPORTANCE Convalescent plasma has been deployed globally as a treatment for COVID-19, but efficacy has been mixed. Better understanding of the antibody characteristics that may contribute to its antiviral effects is important for this intervention as well as offer insights into correlates of vaccine-mediated protection. Here, a survey of convalescent plasma activities, including antibody neutralization and diverse effector functions, was used to define plasma samples with broad activity profiles. These polyfunctional plasma samples could be reliably identified in multiple cohorts by multiplex assay, presenting a widely deployable screening test for plasma selection and investigation of vaccine-elicited responses.
Collapse
Affiliation(s)
- Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
| | - Andrew R Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
| | - Savannah E Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
| | - Shiwei Xu
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kirsten Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Ruth I Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Sarah E Benner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Tania S Bonny
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Thomas C Quinn
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, New Hampshire, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Imai K, Kitagawa Y, Tabata S, Kubota K, Nagura-Ikeda M, Matsuoka M, Miyoshi K, Sakai J, Ishibashi N, Tarumoto N, Takeuchi S, Ito T, Maesaki S, Tamura K, Maeda T. Antibody response patterns in COVID-19 patients with different levels of disease severity in Japan. J Med Virol 2021; 93:3211-3218. [PMID: 33620098 PMCID: PMC8014305 DOI: 10.1002/jmv.26899] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
We analyzed antibody response patterns according to the level of disease severity in patients with novel coronavirus disease 2019 (COVID-19) in Japan. We analyzed 611 serum specimens from 231 patients with COVID-19 (mild, 170; severe, 31; critical, 30). Immunoglobulin M (IgM) and IgG antibodies against nucleocapsid protein (N) and spike 1 protein (S1) were detected by enzyme-linked immunosorbent assays. The peaks of fitting curves for the optical density (OD) values of IgM and IgG antibodies against N appeared simultaneously, while those against S1 were delayed compared with N. The OD values of IgM against N and IgG against both N and S1 were significantly higher in the severe and critical cases than in the mild cases at 11 days after symptom onset. The seroconversion rates of IgG were higher than those of IgM against both N and S1 during the clinical course based on the optimal cut-off values defined in this study. The seroconversion rates of IgG and IgM against N and S1 were higher in the severe and critical cases than in the mild cases. Our findings show that a stronger antibody response occurred in COVID-19 patients with greater disease severity and there were low seroconversion rates of antibodies against N and S1 in the mild cases.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Yutaro Kitagawa
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Sakiko Tabata
- Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Katsumi Kubota
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Mayu Nagura-Ikeda
- Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Masaru Matsuoka
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Kazuyasu Miyoshi
- Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Noriomi Ishibashi
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Shinichi Takeuchi
- Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| | - Toshimitsu Ito
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Kaku Tamura
- Department of Internal Medicine, Self-Defense Forces Central Hospital, Tokyo, Japan
| | - Takuya Maeda
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Clinical Laboratory, Saitama Medical University Hospital, Saitama, Japan
| |
Collapse
|
16
|
Bauer G, Struck F, Schreiner P, Staschik E, Soutschek E, Motz M. The challenge of avidity determination in SARS-CoV-2 serology. J Med Virol 2021; 93:3092-3104. [PMID: 33565617 PMCID: PMC8013859 DOI: 10.1002/jmv.26863] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
The serological responses towards severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) nucleoprotein, receptor‐binding domain (RBD), and spike protein S1 are characterized by incomplete avidity maturation. Analysis with varying concentrations of urea allows to determine distinct differences in avidity maturation, though the total process remains at an unusually low level. Despite incomplete avidity maturation, this approach allows to define early and late stages of infection. It therefore can compensate for the recently described irregular kinetic patterns of immunoglobulin M and immunoglobulin G (IgG) directed towards SARS‐CoV‐2 antigens. The serological responses towards seasonal coronaviruses neither have a negative nor positive impact on SARS‐CoV‐2 serology in general. Avidity determination in combination with measurement of antibody titers and complexity of the immune response allows to clearly differentiate between IgG responses towards seasonal coronaviruses and SARS‐CoV‐2. Cross‐reactions seem to occur with very low probability. They can be recognized by their pattern of response and through differential treatment with urea. As high avidity has been shown to be essential in several virus systems for the protective effect of neutralizing antibodies, it should be clarified whether high avidity of IgG directed towards RBD indicates protective immunity. If this is the case, monitoring of avidity should be part of the optimization of vaccination programs. Avidity maturation of immunoglobulin G (IgG) towards severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) antigens is distinct, but incomplete in most cases
Nevertheless, avidity determination allows to differentiate between acute and past SARS CoV‐infection
Avidity maturation is instrumental for differentiation between IgG responses towards SARS‐CoV‐2 and seasonal coronaviruses
It is suggested to clarify whether high avidity is required for and indicative of protective immunity.
Collapse
Affiliation(s)
- Georg Bauer
- Institute of VirologyMedical Center, University of FreiburgFreiburgGermany
- Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | | | | | | | | | | |
Collapse
|
17
|
Putcharoen O, Wacharapluesadee S, Chia WN, Paitoonpong L, Tan CW, Suwanpimolkul G, Jantarabenjakul W, Ruchisrisarod C, Wanthong P, Sophonphan J, Chariyavilaskul P, Wang LF, Hemachudha T. Early detection of neutralizing antibodies against SARS-CoV-2 in COVID-19 patients in Thailand. PLoS One 2021; 16:e0246864. [PMID: 33577615 PMCID: PMC7880427 DOI: 10.1371/journal.pone.0246864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The presence of neutralizing antibodies (NAbs) is an indicator of protective immunity for most viral infections. A newly developed surrogate viral neutralization assay (sVNT) offers the ability to detect total receptor binding domain-targeting NAbs in an isotype-independent manner, increasing the test sensitivity. Thus, specimens with low IgM/ IgG antibody levels showed strong neutralization activity in sVNT. METHODS This study aimed to measure the %inhibition of NAbs measured by sVNT in PCR-confirmed COVID-19 patients. The sensitivity of sVNT for the diagnosis of SARS-CoV-2 infection and its kinetics were determined. RESULTS Ninety-seven patients with PCR-confirmed SARS-CoV-2 infection were included in this study. Majority of the patients were 21-40 years old (67%) and 63% had mild symptoms. The sensitivity of sVNT for the diagnosis of SARS-CoV-2 infection was 99% (95% confidence interval (CI) 94.4-100%) and the specificity was 100% (95% CI 98.3-100%). The negative predictive value of sVNT from the samples collected before and after 7 days of symptom onset was 99.5% (95% CI 97.4-100%) and 100% (95% CI 93.8-100%), respectively. The level of inhibition at days 8-14 were significantly higher than days 0-7 (p<0.001). The median %inhibition values by severity of COVID-19 symptoms were 79.9% (interquartile range (IQR) 49.7-91.8%); 89.0% (IQR 71.2-92.4%); and 86.6% (IQR 69.5-92.8%), for mild, moderate and severe/critical symptoms respectively. The median level of sVNT %inhibition of severe was significantly higher than the mild group (p = 0.05). CONCLUSION The sVNT is a practical and robust serological test for SARS-CoV-2 infection and does not require specialized biosafety containment. It can be used clinically to aid diagnosis in both early and late infection especially in cases when the real-time RT-PCR results in weakly negative or weakly positive, and to determine the protective immune response from SARS-CoV-2 infection in patients.
Collapse
Affiliation(s)
- Opass Putcharoen
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Health Science Centre World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Leilani Paitoonpong
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Gompol Suwanpimolkul
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Watsamon Jantarabenjakul
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Chanida Ruchisrisarod
- Thai Red Cross Emerging Infectious Diseases Health Science Centre World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phanni Wanthong
- Thai Red Cross Emerging Infectious Diseases Health Science Centre World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Sophonphan
- The HIV Netherlands Australia Thailand Research Collaboration (HIV-NAT), Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Clinical Pharmacokinetics and Pharmacogenomics Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science Centre World Health Organization Collaborating Centre for Research and Training on Viral Zoonoses, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
18
|
Development and Validation of a Multiplex, Bead-based Assay to Detect Antibodies Directed Against SARS-CoV-2 Proteins. Transplantation 2021; 105:79-89. [PMID: 33273320 DOI: 10.1097/tp.0000000000003524] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transplant recipients who develop COVID-19 may be at increased risk for morbidity and mortality. Determining the status of antibodies against SARS-CoV-2 in both candidates and recipients will be important to understand the epidemiology and clinical course of COVID-19 in this population. While there are multiple tests to detect antibodies to SARS-CoV-2, their performance is variable. Tests vary according to their platforms and the antigenic targets which make interpretation of the results challenging. Furthermore, for some assays, sensitivity and specificity are less than optimal. Additionally, currently available serological tests do not exclude the possibility that positive responses are due to cross reactive antibodies to community coronaviruses rather than SARS-CoV-2. METHODS This study describes the development and validation of a high-throughput multiplex antibody detection assay. RESULTS The multiplex assay has the capacity to identify, simultaneously, patient responses to 5 SARS-CoV-2 proteins, namely, the full spike protein, 3 individual domains of the spike protein (S1, S2, and receptor binding domain), and the nucleocapsid protein. The antibody response to the above proteins are SARS-CoV-2-specific, as antibodies against 4 common coronaviruses do not cross-react. CONCLUSIONS This new assay provides a novel tool to interrogate the spectrum of immune responses to SAR-CoV-2 and is uniquely suitable for use in the transplant setting. Test configuration is essentially identical to the single antigen bead assays used in the majority of histocompatibility laboratories around the world and could easily be implemented into routine screening of transplant candidates and recipients.
Collapse
|
19
|
Hartanto H, Wu M, Lam ML, Chen TH. Microfluidic immunoassay for detection of serological antibodies: A potential tool for rapid evaluation of immunity against SARS-CoV-2. BIOMICROFLUIDICS 2020; 14:061507. [PMID: 33343783 PMCID: PMC7738199 DOI: 10.1063/5.0031521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/23/2020] [Indexed: 05/06/2023]
Abstract
In December 2019, coronavirus disease 2019 became a pandemic affecting more than 200 countries and territories. Millions of lives are still affected because of mandatory quarantines, which hamstring economies and induce panic. Immunology plays a major role in the modern field of medicine, especially against virulent infectious diseases. In this field, neutralizing antibodies are heavily studied because they reflect the level of infection and individuals' immune status, which are essential when considering resumption of work, flight travel, and border entry control. More importantly, it also allows evaluating the antiviral vaccine efficacy as vaccines are still known for being the ultimate intervention method to inhibit the rapid spread of virulent infectious diseases. In this Review, we first introduce the host immune response after the infection of SARS-CoV-2 and discuss the latest results using conventional immunoassays. Next, as an enabling platform for detection with sufficient sensitivity while saving analysis time and sample size, the progress of microfluidic-based immunoassays is discussed and compared based on surface modification, microfluidic kinetics, signal output, signal amplification, sample matrix, and the detection of anti-SARS-CoV-2 antibodies. Based on the overall comparison, this Review concludes by proposing the future integration of visual quantitative signals on microfluidic devices as a more suitable approach for general use and large-scale surveillance.
Collapse
Affiliation(s)
- Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Miu Ling Lam
- School of Creative Media, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, China
- Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
Head-to-head evaluation on diagnostic accuracies of six SARS-CoV-2 serological assays. Pathology 2020; 52:770-777. [PMID: 33092816 PMCID: PMC7524664 DOI: 10.1016/j.pathol.2020.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
In this study, we evaluated and compared six SARS-CoV-2 serology kits including the Abbott SARS-CoV-2 IgG assay, Beckman Access SARS-CoV-2 IgG assay, OCD Vitros OCD Anti-SARS-CoV-2 Total antibody assay, Roche Elecsys Anti SARS-CoV-2 assay, Siemens SARS-CoV-2 Total assay, and cPass surrogate viral neutralising antibody assay. A total of 336 non-duplicated residual serum samples that were obtained from COVID-19 confirmed patients (n=173) on PCR and negative controls (n=163) obtained pre-December 2019 before the COVID-19 pandemic were used for the study. These were concurrently analysed on the different immunoassay platforms and correlated with clinical characteristics. Our results showed all assays had specificity ranging from 99.3% to 100.0%. Overall sensitivity across all days of symptoms, in descending order were OCD (49.1%, 95% CI 41.8-56.5%), cPass (44.8%, 95% CI 37.5-52.3%), Roche (41.6%, 95% CI 34.5-49.0%), Siemens (39.9%, 95% CI 32.9-47.3%), Abbott (39.8%, 95% CI 32.9-47.3%) and Beckman (39.6%, 95% CI 32.5-47.3%). Testing after at least 14 days from symptom onset is required to achieve AUCs greater than 0.80. OCD and cPass performed the best in terms of sensitivity for >21 days symptoms with 93.3% (95% CI, 73.5-99.2%) and 96.7% (95% CI, 82.8-99.9%), respectively. Both also shared the greatest concordance, kappa 0.963 (95% CI 0.885-1.0), p<0.001, and had the lowest false negative rates. Serology results should be interpreted with caution in certain cases. False negatives were observed in a small number of individuals with COVID-19 on immunosuppressive therapy, pauci-symptomatic or who received antiretroviral therapy. In conclusion, all assays exhibited excellent specificity and total antibody assays with spike protein configurations generally outperformed nucleocapsid configurations and IgG assays in terms of diagnostic sensitivity.
Collapse
|
21
|
Natarajan H, Crowley AR, Butler SE, Xu S, Weiner JA, Bloch EM, Littlefield K, Wieland-Alter W, Connor RI, Wright PF, Benner SE, Bonny TS, Laeyendecker O, Sullivan D, Shoham S, Quinn TC, Larman HB, Casadevall A, Pekosz A, Redd AD, Tobian AA, Ackerman ME. SARS-CoV-2 antibody signatures robustly predict diverse antiviral functions relevant for convalescent plasma therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.09.16.20196154. [PMID: 32995801 PMCID: PMC7523138 DOI: 10.1101/2020.09.16.20196154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Convalescent plasma has emerged as a promising COVID-19 treatment. However, the humoral factors that contribute to efficacy are poorly understood. This study functionally and phenotypically profiled plasma from eligible convalescent donors. In addition to viral neutralization, convalescent plasma contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis and antibody-dependent cellular cytotoxicity against SARS-CoV-2. These activities expand the antiviral functions associated with convalescent plasma and together with neutralization efficacy, could be accurately and robustly from antibody phenotypes. These results suggest that high-throughput profiling could be used to screen donors and plasma may provide benefits beyond neutralization.
Collapse
Affiliation(s)
- Harini Natarajan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Andrew R. Crowley
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Savannah E. Butler
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Shiwei Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joshua A. Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kirsten Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wendy Wieland-Alter
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Ruth I. Connor
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Sarah E. Benner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tania S. Bonny
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Oliver Laeyendecker
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shmuel Shoham
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas C. Quinn
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew D. Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
22
|
Rodríguez-Argente F, Alba-Domínguez M, Ortiz-Muñoz E, Ortega-González Á. Oromucosal immunomodulation as clinical spectrum mitigating factor in SARS-CoV-2 infection. Scand J Immunol 2020; 93:e12972. [PMID: 32892403 PMCID: PMC7816245 DOI: 10.1111/sji.12972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
Mounting evidence supports the importance of mucosal immunity in the immune response to SARS‐CoV‐2. Active virus replication in the upper respiratory tract for the first days of infection opens a new perspective in immunological strategies to counteract viral pathogenicity. An effective mucosal innate immune response to SARS‐CoV‐2 paves the way to an also effective adaptive immune response. A strong local immune response seems to be crucial in the initial contention of the virus by the organism and for triggering the production of the necessary neutralizing antibodies in sera and mucosal secretions. However, if the innate immune response fails to overcome the immune evasion mechanisms displayed by the virus, the infection will progress and the lack of an adaptive immune response will take the patient to an overreactive but ineffective innate immune response. To revert this scenario, an immune strategy based on enhancement of immunity in the first days of infection would be theoretically well come. But serious concerns about cytokine response syndrome prevent us to do so. Fortunately, it is possible to enhance immune system response without causing inflammation through immunomodulation. Immunomodulation of local immune response at the oropharyngeal mucosa could hypothetically activate our mucosal immunity, which could send an early an effective warning to the adaptive immune system. There are studies on immunotherapeutic management of upper respiratory tract infections in children that can place us in the right path to design an immune strategy able to mitigate COVID‐19 symptoms and reduce clinical progression.
Collapse
Affiliation(s)
- Francisco Rodríguez-Argente
- Department of Pediatrics, Emergency Department, Department of Pneumology, Hospital Universitario Nuestra Señora del Prado, Talavera de la Reina, Spain
| | | | - Elena Ortiz-Muñoz
- Emergency Department, Hospital Universitario Nuestra Señora del Prado, Talavera de la Reina, Spain
| | - Ángel Ortega-González
- Pneumology Department, Hospital Universitario Nuestra Señora del Prado, Talavera de la Reina, Spain
| |
Collapse
|
23
|
French MA, Moodley Y. The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times. Respirology 2020; 25:680-682. [PMID: 32436320 PMCID: PMC7280731 DOI: 10.1111/resp.13852] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Martyn A French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Division of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Yuben Moodley
- Medical School, University of Western Australia, Perth, WA, Australia.,Department of Respiratory Medicine, Fiona Stanley Hospital, Perth, WA, Australia.,Institute of Respiratory Health, Perth, WA, Australia
| |
Collapse
|