1
|
Alghazali T, Ahmed AT, Hussein UAR, Sanghvi G, Uthirapathy S, Edan RT, Lal M, Shit D, Naidu KS, Al-Hamairy AK. Noncoding RNA (ncRNA)-mediated regulation of TLRs: critical regulator of inflammation in tumor microenvironment. Med Oncol 2025; 42:144. [PMID: 40163200 DOI: 10.1007/s12032-025-02690-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
Toll-like receptors (TLRs) are central components of the innate immune system as they recognize molecular patterns associated with pathogens and cellular damage and initiate immune responses using MyD88- and TRIF-dependent pathways. In contrast to being very useful for immune defense, dysregulated TLR signaling may be involved in diseases, such as cancer and autoimmune conditions. In cancer, TLRs create an environment that supports tumorigenesis and growth. In addition to this, a class of multifunctional noncoding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, regulate gene expression without encoding proteins. MiRNAs regulate gene expression in a fine-tuned manner, while lncRNAs and circRNAs do so via diverse mechanisms. Notably, these ncRNAs interact, where lncRNAs and circRNAs function as competing endogenous RNAs and ceRNA, affecting miRNA activity. This interaction has a vital role in cancer pathology, in influencing that of various oncogenes and tumor suppressors in the tumor microenvironment; hence, modulation of ncRNAs could also be a great promising therapeutic approach. In this context, interplay between TLRs and ncRNAs is of paramount importance as they influence various parameters of the tumor microenvironment. TLR signaling works upon the expression of ncRNAs, while ncRNAs work back to regulate TLR signaling in return. An example of this includes miRNA targeting of components of the TLR; lncRNAs induced by TLR signaling possibly would favor tumor progression. Pharmacological interventions directed toward inhibiting these TLR pathways could be the model to halt malignancy by hampering pro-tumor inflammation and boosting immune responses against neoplasms. Hence, the review will highlight the complicated contrast of ncRNAs and TLRs within human cancer. By connecting the mechanisms, the researchers may study more about tumorigenesis and gather up new, innovative notions regarding therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Reem Turki Edan
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Madan Lal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Ahmed Khudhair Al-Hamairy
- Anesthesia Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Liatsos GD, Mariolis I, Hadziyannis E, Bamias A, Vassilopoulos D. Review of BCG immunotherapy for bladder cancer. Clin Microbiol Rev 2025; 38:e0019423. [PMID: 39932308 PMCID: PMC11905372 DOI: 10.1128/cmr.00194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
SUMMARYFor several decades, intravesical Bacillus Calmette-Guérin (iBCG) immunotherapy has been the gold standard adjuvant treatment for high-risk and selected intermediate-risk patients with non-muscle-invasive bladder cancer (NMIBC). In this review, the mechanisms of iBCG immune-mediated anti-cancer activity and resistance are presented. Furthermore, a literature review of short-term and systemic iBCG-related side effects was performed. A high incidence (75.5%) of iBCG-related short-term, self-limiting adverse events was observed, while more severe iBCG-related local/systemic complications (iBCG-rL/SCs) that required medical treatment or hospitalization occurred at a lower rate (2.35%). Disseminated was the most common form of iBCG-rSCs, while two-thirds of the cases were classified as infectious. The implementation of molecular-based techniques resulted in significantly higher diagnostic rates. Anti-tuberculous treatment (ATT) is the mainstay of treatment, while in patients with any iBCG-rL/SC form involving the vasculature, ATT should be combined with surgery. Local and osteoarticular forms have the lowest mortality, but their management necessitates severe and debilitating surgical procedures. The overall iBCG-attributed mortality in patients with iBCG-rL/SC was 7.4%, with disseminated, vascular, and lung involvements exhibiting the highest rates. Given the global shortage of BCG for the last two decades, as well as the paucity of effective options for iBCG-refractory or relapsing NMIBC patients, new therapeutic strategies are being tested with promising early results.
Collapse
Affiliation(s)
- George D. Liatsos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Ilias Mariolis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Emilia Hadziyannis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Attikon University General Hospital, Athens, Greece
| | - Dimitrios Vassilopoulos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| |
Collapse
|
3
|
Khan S, Simsek R, Fuentes JDB, Vohra I, Vohra S. Implication of Toll-Like Receptors in growth and management of health and diseases: Special focus as a promising druggable target to Prostate Cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189229. [PMID: 39608622 DOI: 10.1016/j.bbcan.2024.189229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Toll-like receptors (TLRs) are protein structures belonging to the pattern recognition receptors family. TLRs have the great potential that can directly recognize the specific molecular structures on the surface of pathogens, damaged senescent cells and apoptotic host cells. Available evidence suggests that TLRs have crucial roles in maintaining tissue homeostasis through control of the inflammatory and tissue repair responses during injury. TLRs are the player of first line of defense against different microbes and activate the signaling cascades which help to induce the immune system and inflammatory responses by affecting various signaling pathways, including nuclear factor-κB (NF-κB), interferon regulatory factors, and mitogen-activated protein kinases (MAPKs). TLRs have been identified to be over-expressed in different types of cancers and play an important role in control of health and management of diseases. The current review provides updated knowledge on the implication of TLRs in growth and management of cancers including prostate cancer.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Department of Medical Lab Technology, Indian Institute of Health Technology (IIHT), Paramedical and Nursing College, Deoband, 247554 Saharanpur, India; Department of Health Sciences, Novel Global Community Educational Foundation, Australia.
| | - Rahime Simsek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe Unversity, 06100 Ankara, Turkey
| | - Javier David Benitez Fuentes
- Medical Oncology Department, Hospital General Universitario de Elche, Carrer Almazara, 11, 03203 Elche, Alicante, Spain
| | - Isra Vohra
- University of Houston Clear Lake Graduated with bachelors Physiology, Houston, TX, USA
| | - Saeed Vohra
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Peng J, Sun J, Yu Y, Yuan Q, Zhang Y. Integrative multi-omics analysis reveals the role of toll-like receptor signaling in pancreatic cancer. Sci Rep 2025; 15:52. [PMID: 39747201 PMCID: PMC11696379 DOI: 10.1038/s41598-024-84062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the most destructive and invasive cancers, pancreatic cancer exhibits complex tumor heterogeneity, which has been a major challenge for clinicians in terms of patient treatment and prognosis. The toll-like receptor (TLR) pathway is closely related to the immune microenvironment within various cancer tissues. To explore the development pattern of pancreatic cancer and find an ideal biomarker, our research has explored the mechanism of the TLR pathway in pancreatic cancer. We collected single-cell expression data from 57,024 cells and transcriptomic data from 945 pancreatic cancer patients, and conducted a series of analyses at both the single-cell and transcriptomic levels. By calculating the TLR pathway score, we clustered pancreatic cancer patients and conducted a series of analyses including metabolic pathways, immune microenvironment, drug sensitivity and so on. In the process of building prognostic models, we screened 33 core genes related to the prognosis of pancreatic cancer, and combined a series of machine learning algorithms to build the prognosis model of pancreatic cancer. We used single cell sequencing to clarify the complex intrinsic relationship between TLR pathway and pancreatic cancer. The strongest TLR signals were observed in macrophages and endothelial cells. With the occurrence of pancreatic cancer, the TLR signal of various cell types gradually increased, but with the increase of the malignant degree of ductal epithelial cells, the TLR signal gradually weakened. Cluster analysis showed that patients with the most active TLR pathway had severe dysregulation of immune microenvironment and the worst prognosis. Finally, we combined a series of machine learning algorithms to build a pancreatic cancer prognosis model that includes four genes (NT5E, TGFBI, ANLN, and FAM83A). The model showed strong performance in predicting the survival state of pancreatic cancer samples. We explored the important role of TLR pathway in pancreatic cancer and established and validated a new prognosis model for pancreatic cancer based on TLR-related genes.
Collapse
Affiliation(s)
- Jie Peng
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Jiaao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Youfeng Yu
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yong Zhang
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China.
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China.
| |
Collapse
|
5
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
6
|
Pallathadka H, Khaleel AQ, Zwamel AH, Malathi H, Sharma S, Rizaev JA, Mustafa YF, Pramanik A, Shuhata Alubiady MH, Jawad MA. Multi-Drug Resistance and Breast Cancer Progression via Toll-Like Receptors (TLRs) Signaling. Cell Biochem Biophys 2024; 82:3015-3030. [PMID: 39110298 DOI: 10.1007/s12013-024-01418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 11/20/2024]
Abstract
Toll-like receptors (TLRs) are essential receptors involved in inflammation and innate immunity. Various types of cancer cells, as well as innate immune cells, express TLRs. There is mounting proof that TLRs are critical to the development and spread of cancer as well as metabolism. In breast cancer, up-regulated levels of TLRs have been linked to the aggressiveness of the diseases, worse treatment outcomes, and the emergence of therapeutic resistance. Patients with advanced non-resectable, recurring, and metastatic breast cancer currently have few available treatment choices. An intriguing new strategy is an innate immunity-mediated anticancer immunotherapy, either used alone or in conjunction with existing treatments. In fact, several TLR agonists and antagonists have been used in clinical studies for anti-cancer immunotherapy. Consequently, TLRs serve as critical targets for controlling the course of breast cancer and treatment resistance in addition to being implicated in immune responses against pathogen infection and cancer immunology. In this review, we deliver an overview of the most current findings on TLR involvement in the development of breast cancer and treatment resistance.
Collapse
Affiliation(s)
| | - Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Jasur Alimdjanovich Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| |
Collapse
|
7
|
Yesilbas Aksel Y, Barut EN, Engin S. Fosaprepitant improves cyclophosphamide-induced bladder damage by alleviating inflammatory response in mice. Toxicol Appl Pharmacol 2024; 492:117120. [PMID: 39378958 DOI: 10.1016/j.taap.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Inhibition of inflammatory process is a key therapeutic target for the treatment of interstitial cystitis (IC). Recent reports indicate that neurokinin 1 receptor (NK1R) antagonists have beneficial roles in inflammatory-based diseases. Herein, we investigate the protective effects of fosaprepitant (FOS), a NK1R antagonist, in cyclophosphamide (CP)-induced cystitis. The cystitis model was established multiple CP (80 mg/kg; i.p.) injection one day apart, and mice were treated with FOS (20 and 60 mg/kg/day; i.p.) for seven consecutive days. Detrusor contractility, vesical vascular permeability, myeloperoxidase (MPO) activity and protein expression levels of the TLR4 pathway were evaluated in mice bladder. Carbachol and electric field stimulation-evoked contractions of detrusor strips were significantly increased in CP-treated mice, which was significantly attenuated by FOS (60 mg/kg/day) treatment (p<0.001, p<0.05). Notably, vesical vascular permeability was markedly impaired in CP-induced cystitis, that was restored by FOS (60 mg/kg/day) treatment (p<0.01). MPO activity was significantly increased in cystitis group whereas FOS (20 and 60 mg/kg/day) treatment remarkably suppressed MPO activity in bladder tissue (p<0.001). Although TLR4 expression increased with cystitis, MyD88 and p-NFκBSer536/total NFκB did not change, FOS (20 and 60 mg/kg/day) treatment caused a dramatic decrease in TLR4 expression (p<0.001), indicating the anti-inflammatory effect of FOS. In conclusion, FOS improved detrusor overactivity and inflammatory response by inhibiting MPO activity and TLR4 expression, resulting in functional and histological recovery in CP-induced cystitis.
Collapse
Affiliation(s)
- Yaren Yesilbas Aksel
- Karadeniz Technical University, Graduate School of Health Sciences, Department of Pharmacology, Türkiye
| | - Elif Nur Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye.
| | - Seckin Engin
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye
| |
Collapse
|
8
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
9
|
Kos M, Bojarski K, Mertowska P, Mertowski S, Tomaka P, Dziki Ł, Grywalska E. Immunological Strategies in Gastric Cancer: How Toll-like Receptors 2, -3, -4, and -9 on Monocytes and Dendritic Cells Depend on Patient Factors? Cells 2024; 13:1708. [PMID: 39451226 PMCID: PMC11506270 DOI: 10.3390/cells13201708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Introduction: Toll-like receptors (TLRs) are key in immune response by recognizing pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In gastric cancer (GC), TLR2, TLR3, TLR4, and TLR9 are crucial for modulating immune response and tumor progression. (2) Objective: This study aimed to assess the percentage of dendritic cells and monocytes expressing TLR2, TLR3, TLR4, and TLR9, along with the concentration of their soluble forms in the serum of GC patients compared to healthy volunteers. Factors such as disease stage, tumor type, age, and gender were also analyzed. (3) Materials and Methods: Blood samples from newly diagnosed GC patients and healthy controls were immunophenotyped using flow cytometry to assess TLR expression on dendritic cell subpopulations and monocytes. Serum-soluble TLRs were measured by ELISA. Statistical analysis considered clinical variables such as tumor type, stage, age, and gender. (4) Results: TLR expression was significantly higher in GC patients, except for TLR3 on classical monocytes. Soluble forms of all TLRs were elevated in GC patients, with significant differences based on disease stage but not tumor type, except for serum TLR2, TLR4, and TLR9. (5) Conclusions: Elevated TLR expression and soluble TLR levels in GC patients suggest a role in tumor pathogenesis and progression, offering potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marek Kos
- Department of Public Health, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland;
| | - Krzysztof Bojarski
- General Surgery Department, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Piotr Tomaka
- Department of Anesthesiology and Intensive Care, SP ZOZ in Leczna, 52 Krasnystawska Street, 21-010 Leczna, Poland;
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, 251 Street, 92-213 Lodz, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
10
|
Wang B, Shao Y, Wang X, Li C. Identification and functional analysis of Toll-like receptor 2 from razor clam Sinonovacula constricta. Int J Biol Macromol 2024; 265:131029. [PMID: 38518946 DOI: 10.1016/j.ijbiomac.2024.131029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Toll-like receptor 2 (TLR2) is a member of TLR family that plays important roles in the innate immune system, such as pathogen recognition and inflammation regulation. In this study, the TLR2 homologue was cloned from razor clam Sinonovacula constricta (denoted as ScTLR2) and its immune function was explored. The full-length cDNA of ScTLR2 comprised 2890 nucleotides with a 5'-UTR of 218 bp, an open reading frame of 2169 bp encoding 722 amino acids and a 3'-UTR of 503 bp. The deduced amino acid of ScTLR2 showed similar structure to TLR2 homologue with a conserved signal peptide, four LRR domains, one LRR-TYP domain, one LRR-CT domain, one transmembrane domain and a conserved TIR domain. ScTLR2 mRNA was detected in all examined tissues with the highest expression in the gill. After Vibrio parahaemolyticus challenge, the mRNA expression of ScTLR2 was significantly induced both in gill and haemocytes. The recombinant ScTLR2-LRR protein could bind all tested PAMPs including LPS, PGN and MAN. Bacterial agglutination assay showed that rScTLR2 could agglutinate the six tested bacteria with a calcium dependent manner. More importantly, ScTLR2 silencing by siRNA transfection could significantly depress the mRNA expression of Myd88, NF-κB, Tollip, IRF1, and IRF8. The survival rate of S. constricta was markedly decreased after V. parahaemolyticus challenge under this condition. Our current study demonstrated that ScTLR2 served as a pattern recognition receptor to induce immune response against invasive pathogen.
Collapse
Affiliation(s)
- Beibei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| | - Xuelei Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Bourlotos G, Baigent W, Hong M, Plagakis S, Grundy L. BCG induced lower urinary tract symptoms during treatment for NMIBC-Mechanisms and management strategies. Front Neurosci 2024; 17:1327053. [PMID: 38260019 PMCID: PMC10800852 DOI: 10.3389/fnins.2023.1327053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) accounts for ~70-75% of total bladder cancer tumors and requires effective early intervention to avert progression. The cornerstone of high-risk NMIBC treatment involves trans-urethral resection of the tumor followed by intravesical Bacillus Calmette-Guerin (BCG) immunotherapy. However, BCG therapy is commonly accompanied by significant lower urinary tract symptoms (LUTS) including urinary urgency, urinary frequency, dysuria, and pelvic pain which can undermine treatment adherence and clinical outcomes. Despite this burden, the mechanisms underlying the development of BCG-induced LUTS have yet to be characterized. This review provides a unique perspective on the mechanisms thought to be responsible for the development of BCG-induced LUTS by focussing on the sensory nerves responsible for bladder sensory transduction. This review focuses on how the physiological response to BCG, including inflammation, urothelial permeability, and direct interactions between BCG and sensory nerves could drive bladder afferent sensitization leading to the development of LUTS. Additionally, this review provides an up-to-date summary of the latest clinical data exploring interventions to relieve BCG-induced LUTS, including therapeutic targeting of bladder contractions, inflammation, increased bladder permeability, and direct inhibition of bladder sensory signaling. Addressing the clinical burden of BCG-induced LUTS holds significant potential to enhance patient quality of life, treatment compliance, and overall outcomes in NMIBC management. However, the lack of knowledge on the pathophysiological mechanisms that drive BCG-induced LUTS has limited the development of novel and efficacious therapeutic options. Further research is urgently required to unravel the mechanisms that drive BCG-induced LUTS.
Collapse
Affiliation(s)
- Georgia Bourlotos
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - William Baigent
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Matthew Hong
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
- Urology Unit, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Sophie Plagakis
- Urology Unit, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Luke Grundy
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
12
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
Toll‐like receptors (TLRs) belong to a germline‐encoded protein family. These are pattern recognition receptors. They sense pathogen‐associated molecular patterns (PAMPs). When this occurs, activation of the NF‐ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross‐prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF‐ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF‐ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
|
13
|
Alonso JCC, de Souza BR, Reis IB, de Arruda Camargo GC, de Oliveira G, de Barros Frazão Salmazo MI, Gonçalves JM, de Castro Roston JR, Caria PHF, da Silva Santos A, de Freitas LLL, Billis A, Durán N, Fávaro WJ. OncoTherad ® (MRB-CFI-1) Nanoimmunotherapy: A Promising Strategy to Treat Bacillus Calmette-Guérin-Unresponsive Non-Muscle-Invasive Bladder Cancer: Crosstalk among T-Cell CX3CR1, Immune Checkpoints, and the Toll-Like Receptor 4 Signaling Pathway. Int J Mol Sci 2023; 24:17535. [PMID: 38139364 PMCID: PMC10743608 DOI: 10.3390/ijms242417535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This study assessed the safety and efficacy of OncoTherad® (MRB-CFI-1) nanoimmunotherapy for non-muscle invasive bladder cancer (NMIBC) patients unresponsive to Bacillus Calmette-Guérin (BCG) and explored its mechanisms of action in a bladder cancer microenvironment. A single-arm phase I/II study was conducted with 44 patients with NMIBC who were unresponsive to BCG treatment. Primary outcomes were pathological complete response (pCR) and relapse-free survival (RFS). Secondary outcomes comprised response duration and therapy safety. Patients' mean age was 65 years; 59.1% of them were refractory, 31.8% relapsed, and 9.1% were intolerant to BCG. Moreover, the pCR rate after 24 months reached 72.7% (95% CI), whereas the mean RFS reached 21.4 months. Mean response duration in the pCR group was 14.3 months. No patient developed muscle-invasive or metastatic disease during treatment. Treatment-related adverse events occurred in 77.3% of patients, mostly grade 1-2 events. OncoTherad® activated the innate immune system through toll-like receptor 4, leading to increased interferon signaling. This activation played a crucial role in activating CX3CR1+ CD8 T cells, decreasing immune checkpoint molecules, and reversing immunosuppression in the bladder microenvironment. OncoTherad® has proved to be a safe and effective therapeutic option for patients with BCG-unresponsive NMIBC, besides showing likely advantages in tumor relapse prevention processes.
Collapse
Affiliation(s)
- João Carlos Cardoso Alonso
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
- Paulínia Municipal Hospital, Paulínia 13140-000, São Paulo, Brazil
| | - Bianca Ribeiro de Souza
- Obstetrics & Gynecology Department, Ovarian Cancer Research Group University of British Columbia, Vancouver, BC V6Z 2K8, Canada;
| | - Ianny Brum Reis
- Diagnosis and Surgery Department, Dentistry School, São Paulo State University (UNESP), Araraquara 14801-903, São Paulo, Brazil;
| | - Gabriela Cardoso de Arruda Camargo
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - Gabriela de Oliveira
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - Maria Izabel de Barros Frazão Salmazo
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - Juliana Mattoso Gonçalves
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - José Ronaldo de Castro Roston
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - Paulo Henrique Ferreira Caria
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - André da Silva Santos
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - Leandro Luiz Lopes de Freitas
- Pathology Department, Medical School, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-888, São Paulo, Brazil; (L.L.L.d.F.); (A.B.)
| | - Athanase Billis
- Pathology Department, Medical School, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-888, São Paulo, Brazil; (L.L.L.d.F.); (A.B.)
| | - Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| | - Wagner José Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy (LCURGIN), Universidade Estadual de Campinas (UNICAMP), Campinas 13083-865, São Paulo, Brazil; (G.C.d.A.C.); (G.d.O.); (M.I.d.B.F.S.); (J.M.G.); (J.R.d.C.R.); (P.H.F.C.); (A.d.S.S.); (N.D.)
| |
Collapse
|
14
|
Archer AC, DeBerry JJ, DeWitte C, Ness TJ. Neonatal Cystitis Makes Adult Female Rat Urinary Bladders More Sensitive to Low Concentration Microbial Antigens. Res Rep Urol 2023; 15:531-539. [PMID: 38106986 PMCID: PMC10723592 DOI: 10.2147/rru.s444167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Purpose Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain disorder. Patients with IC/BPS often experience "flares" of symptom exacerbation throughout their lifetime, initiated by triggers, such as urinary tract infections. This study sought to determine whether neonatal bladder inflammation (NBI) alters the sensitivity of adult rat bladders to microbial antigens. Methods Female NBI rats received intravesical zymosan treatments on postnatal days P14-P16 while anesthetized; Neonatal Control Treatment (NCT) rats were anesthetized. In adults, bladder and spinal cord Toll-like receptor type 2 and 4 (TLR2, TLR4) contents were determined using ELISAs. Other rats were injected intravesically with lipopolysaccharide (LPS; mimics an E. coli infection; 25, 50, 100, or 200 μg/mL) or Zymosan (mimics yeast infection; 0.01, 0.1, 1, and 10 mg/mL) solutions on the following day. Visceromotor responses (VMRs; abdominal contractions) to graded urinary bladder distention (UBD, 10-60 mm Hg, 20s) were quantified as abdominal electromyograms (EMGs). Results Bladder TLR2 and TLR4 protein levels increased in NBI rats. These rats displayed statistically significant, dose-dependent, robustly augmented VMRs following all but the lowest doses of LPS and Zymosan tested, when compared with their adult treatment control groups. The NCT groups showed minimal responses to LPS in adults and minimally increased EMG measurements following the highest dose of Zymosan. Conclusion The microbial antigens LPS and Zymosan augmented nociceptive VMRs to UBD in rats that experienced NBI but had little effect on NCT rats at the doses tested. The greater content of bladder TLR2 and TLR4 proteins in the NBI group was consistent with increased responsiveness to their agonists, Zymosan and LPS, respectively. Given that patients with IC/BPS have a higher incidence of childhood urinary tract infections, this increased responsiveness to microbial antigens may explain the flares in symptoms following "subclinical" tract infections.
Collapse
Affiliation(s)
- Ashley C Archer
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jennifer J DeBerry
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cary DeWitte
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Shao S, Miao H, Ma W. Unraveling the enigma of tumor-associated macrophages: challenges, innovations, and the path to therapeutic breakthroughs. Front Immunol 2023; 14:1295684. [PMID: 38035068 PMCID: PMC10682717 DOI: 10.3389/fimmu.2023.1295684] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are integral to the tumor microenvironment (TME), influencing cancer progression significantly. Attracted by cancer cell signals, TAMs exhibit unparalleled adaptability, aligning with the dynamic tumor milieu. Their roles span from promoting tumor growth and angiogenesis to modulating metastasis. While substantial research has explored the fundamentals of TAMs, comprehending their adaptive behavior, and leveraging it for novel treatments remains challenging. This review delves into TAM polarization, metabolic shifts, and the complex orchestration of cytokines and chemokines determining their functions. We highlight the complexities of TAM-targeted research focusing on their adaptability and potential variability in therapeutic outcomes. Moreover, we discuss the synergy of integrating TAM-focused strategies with established cancer treatments, such as chemotherapy, and immunotherapy. Emphasis is laid on pioneering methods like TAM reprogramming for cancer immunotherapy and the adoption of single-cell technologies for precision intervention. This synthesis seeks to shed light on TAMs' multifaceted roles in cancer, pinpointing prospective pathways for transformative research and enhancing therapeutic modalities in oncology.
Collapse
Affiliation(s)
- Shengwen Shao
- Clinical Research Center, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Hepatobiliary Surgery, Liaobu Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
16
|
Kourie HR, Zouein J, Succar B, Mardirossian A, Ahmadieh N, Chouery E, Mehawej C, Jalkh N, kattan J, Nemr E. Genetic Polymorphisms Involved in Bladder Cancer: A Global Review. Oncol Rev 2023; 17:10603. [PMID: 38025894 PMCID: PMC10657888 DOI: 10.3389/or.2023.10603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Bladder cancer (BC) has been associated with genetic susceptibility. Single peptide polymorphisms (SNPs) can modulate BC susceptibility. A literature search was performed covering the period between January 2000 and October 2020. Overall, 334 articles were selected, reporting 455 SNPs located in 244 genes. The selected 455 SNPs were further investigated. All SNPs that were associated with smoking and environmental exposure were excluded from this study. A total of 197 genes and 343 SNPs were found to be associated with BC, among which 177 genes and 291 SNPs had congruent results across all available studies. These genes and SNPs were classified into eight different categories according to their function.
Collapse
Affiliation(s)
- Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph Zouein
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Bahaa Succar
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Avedis Mardirossian
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Nizar Ahmadieh
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Eliane Chouery
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Cybel Mehawej
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Nadine Jalkh
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Joseph kattan
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Elie Nemr
- Urology Department, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
17
|
Chandrasekar SA, Palaniyandi T, Parthasarathy U, Surendran H, Viswanathan S, Wahab MRA, Baskar G, Natarajan S, Ranjan K. Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers. Pathol Res Pract 2023; 248:154673. [PMID: 37453359 DOI: 10.1016/j.prp.2023.154673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Most essential pattern-recognition receptors regulating innate immune functions are toll-like receptors (TLRs). TLRs are characterized by lack of concurrent epithelial markers and are typically identified by their gene expressions. One major mechanism by which TLRs generate their effector functions is by triggering inflammatory responses. Activation of TLRs can impact initiation, advancement, and control of cancers by regulating the inflammatory microenvironment. Several TLRs have been implicated in human cancers and some of them are identified as cancer biomarkers as well; for example, TLRs 2, 3, 5 are expressed more frequently in most cancers. Knowing the upregulation and downregulation of the TLR genes in human cancers will be useful for the development of newer therapeutic targets which can disrupt the pathways associated with such deregulation. We present here the various TLRs and their functions in human lung, gastric, breast, prostate, oral, ovarian, colorectal, cervical, esophageal, bladder and hepatic cancers.
Collapse
Affiliation(s)
- Saran Aravinda Chandrasekar
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India; Department of Biomedical, School of Electronics Engineering (SENSE), VIT(Vellore Institute of Technology), Vellore 632014, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Udhayakumar Parthasarathy
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr.MGR Educational and Research Institute, Maduravoyal, Chennai, Tamil Nadu, India
| | - Sudhakar Natarajan
- Department of virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis (NIRT), Chetpet, Chennai 600031, Tamil Nadu, India
| | - Kishu Ranjan
- Department of Pathology, School of Medicine, Yale University, New Haven 06520, USA
| |
Collapse
|
18
|
Systems Drug Design for Muscle Invasive Bladder Cancer and Advanced Bladder Cancer by Genome-Wide Microarray Data and Deep Learning Method with Drug Design Specifications. Int J Mol Sci 2022; 23:ijms232213869. [PMID: 36430344 PMCID: PMC9692470 DOI: 10.3390/ijms232213869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Bladder cancer is the 10th most common cancer worldwide. Due to the lack of understanding of the oncogenic mechanisms between muscle-invasive bladder cancer (MIBC) and advanced bladder cancer (ABC) and the limitations of current treatments, novel therapeutic approaches are urgently needed. In this study, we utilized the systems biology method via genome-wide microarray data to explore the oncogenic mechanisms of MIBC and ABC to identify their respective drug targets for systems drug discovery. First, we constructed the candidate genome-wide genetic and epigenetic networks (GWGEN) through big data mining. Second, we applied the system identification and system order detection method to delete false positives in candidate GWGENs to obtain the real GWGENs of MIBC and ABC from their genome-wide microarray data. Third, we extracted the core GWGENs from the real GWGENs by selecting the significant proteins, genes and epigenetics via the principal network projection (PNP) method. Finally, we obtained the core signaling pathways from the corresponding core GWGEN through the annotations of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to investigate the carcinogenic mechanisms of MIBC and ABC. Based on the carcinogenic mechanisms, we selected the significant drug targets NFKB1, LEF1 and MYC for MIBC, and LEF1, MYC, NOTCH1 and FOXO1 for ABC. To design molecular drug combinations for MIBC and ABC, we employed a deep neural network (DNN)-based drug-target interaction (DTI) model with drug specifications. The DNN-based DTI model was trained by drug-target interaction databases to predict the candidate drugs for MIBC and ABC, respectively. Subsequently, the drug design specifications based on regulation ability, sensitivity and toxicity were employed as filter criteria for screening the potential drug combinations of Embelin and Obatoclax for MIBC, and Obatoclax, Entinostat and Imiquimod for ABC from their candidate drugs. In conclusion, we not only investigated the oncogenic mechanisms of MIBC and ABC, but also provided promising therapeutic options for MIBC and ABC, respectively.
Collapse
|
19
|
Bao X, Wang W, Chen X, Feng Y, Xu X, Sun G, Li B, Liu X, Li Z, Yang J. Exploration of immune response mechanisms in cadmium and copper co-exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Immunol 2022; 13:963931. [PMID: 36211441 PMCID: PMC9538352 DOI: 10.3389/fimmu.2022.963931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
20
|
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. A Novel tiRNA-Gly-GCC-1 Promotes Progression of Urothelial Bladder Carcinoma and Directly Targets TLR4. Cancers (Basel) 2022; 14:cancers14194555. [PMID: 36230476 PMCID: PMC9558499 DOI: 10.3390/cancers14194555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Patients with urothelial bladder carcinoma (UBC) have a poor prognosis and a high risk of progression. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA, have been identified. In our previous study, we found differential expression profiles of tsRNAs in UBC. As a result, tiRNA-Gly-GCC-1 was significantly upregulated in UBC tissue and might target the predicted target gene toll-like receptor 4 (TLR4) to play a regulatory role in UBC. Here, after lentiviral transfection in UBC cell lines, the results showed down-regulation of tiRNA-Gly-GCC-1 could inhibit cell proliferation, migration and invasion, promote cell apoptosis, and affect the cell cycle. Besides, tiRNA-Gly-GCC-1 was found to inhibit TLR4 expression by directly targeting its 3′UTR. In summary, our study demonstrated that tiRNA-Gly-GCC-1 promotes the progression of UBC and directly targets TLR4. This study provides novel insights for future investigations to explore the mechanisms and therapeutic targets for UBC. Abstract Background: Patients with urothelial bladder carcinoma (UBC) have a poor prognosis and a high risk of progression. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA, have been identified. In our previous study, we found tiRNA-Gly-GCC-1 was significantly upregulated in UBC tissue and might target the predicted target gene toll-like receptor 4 (TLR4) to play a regulatory role in UBC. Thus, the aim of this study was to identify the functional roles of tiRNA-Gly-GCC-1 and the relationship between tiRNA-Gly-GCC-1 and TLR4. Methods: After lentiviral transfection in 5637 and T24 cell lines, quantitative reverse transcription-PCR, Cell Counting Kit-8, IncuCyte ZOOM™ live cell imaging, flow cytometry, Transwell assays, scratch assay, and luciferase assay were performed. Results: The results showed down-regulation of tiRNA-Gly-GCC-1 inhibits cell proliferation, migration and invasion, promotes cell apoptosis, and affects the cell cycle. Besides, tiRNA-Gly-GCC-1 was found to inhibit TLR4 expression by directly targeting its 3′UTR. Conclusions: Our study demonstrated that tiRNA-Gly-GCC-1 promotes the progression of UBC and directly targets TLR4. This study provides novel insights for future investigations to explore the mechanisms and therapeutic targets for UBC.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Correspondence: ; Tel.: +86-18810614607
| |
Collapse
|
21
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
22
|
Huang L, Ge X, Liu Y, Li H, Zhang Z. The Role of Toll-like Receptor Agonists and Their Nanomedicines for Tumor Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14061228. [PMID: 35745800 PMCID: PMC9230510 DOI: 10.3390/pharmaceutics14061228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023] Open
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors that play a critical role in innate and adaptive immunity. Toll-like receptor agonists (TLRa) as vaccine adjuvant candidates have become one of the recent research hotspots in the cancer immunomodulatory field. Nevertheless, numerous current systemic deliveries of TLRa are inappropriate for clinical adoption due to their low efficiency and systemic adverse reactions. TLRa-loaded nanoparticles are capable of ameliorating the risk of immune-related toxicity and of strengthening tumor suppression and eradication. Herein, we first briefly depict the patterns of TLRa, followed by the mechanism of agonists at those targets. Second, we summarize the emerging applications of TLRa-loaded nanomedicines as state-of-the-art strategies to advance cancer immunotherapy. Additionally, we outline perspectives related to the development of nanomedicine-based TLRa combined with other therapeutic modalities for malignancies immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Hui Li
- Correspondence: (H.L.); (Z.Z.)
| | | |
Collapse
|
23
|
Engin S, Barut EN, Yaşar YK, Soysal AÇ, Arıcı T, Kerimoğlu G, Kadıoğlu M, Sezen SF. Trimetazidine attenuates cyclophosphamide-induced cystitis by inhibiting TLR4-mediated NFκB signaling in mice. Life Sci 2022; 301:120590. [PMID: 35504331 DOI: 10.1016/j.lfs.2022.120590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
Abstract
AIM Cyclophosphamide (CP)-induced cystitis is a challenging clinical problem involving inflammation and dysfunction of bladder. Trimetazidine (TMZ) is an anti-anginal drug with anti-oxidant and anti-inflammatory properties. We aimed to investigate the protective effects of TMZ in CP-induced cystitis via inhibiting TLR4/NFκB signaling. MAIN METHODS Balb/c mice were administrated TMZ (10 or 20 mg/kg/day) intraperitoneally (i.p.) for 5 consecutive days before CP. On day 6, cystitis was induced by a single dose of CP (300 mg/kg, i.p.). Mesna (2-mercaptoethane sulfonate sodium; 30 mg/kg, i.p.) was administered 20 min before and at 4 and 8 h after the CP injection. After 24 h of cystitis induction, the bladders were removed for histopathological evaluation, contractility studies, biochemical analysis and western blotting. MTT assay was performed in a cancer cell line (MDA-MB-231) to evaluate the effect of TMZ on the cytotoxicity of CP. KEY FINDINGS CP-induced severe cystitis was confirmed by histological disturbances and the decrease in carbachol-evoked contractions of detrusor strips, which was partially improved by TMZ (20 mg/kg/day). SOD activity and GSH content were decreased whereas TNF-α and IL-1β levels were increased in the bladders of CP-treated mice, which were restored by TMZ or mesna. TMZ reduced the CP-induced increase in the protein expressions of caspase-3, TLR4 and phosphorylated-NFκB in bladder tissues. TMZ alone decreased the cell viability and TMZ also enhanced the cytotoxicity of CP. SIGNIFICANCE Our study provides the first preclinical evidence that TMZ attenuates CP-induced urotoxicity by enhancing anti-oxidant capacity and suppressing inflammation possibly via downregulating TLR4-mediated NFκB signaling while augmenting the cytotoxicity of CP.
Collapse
Affiliation(s)
- Seçkin Engin
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye.
| | - Elif Nur Barut
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye
| | - Yeşim Kaya Yaşar
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye; Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkiye
| | - Aysun Çelik Soysal
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Bülent Ecevit University, Zonguldak, Turkiye
| | - Tuğba Arıcı
- Başaksehir Cam and Sakura City Hospital, İstanbul, Turkiye
| | - Gökçen Kerimoğlu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Mine Kadıoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkiye
| | - Sena F Sezen
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkiye; Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkiye
| |
Collapse
|
24
|
Zhao Q, Yao Z, Chen L, He Y, Xie Z, Zhang H, Lin W, Chen F, Xie Q, Zhang X. Transcriptome-Wide Dynamics of m6A Methylation in Tumor Livers Induced by ALV-J Infection in Chickens. Front Immunol 2022; 13:868892. [PMID: 35529873 PMCID: PMC9072629 DOI: 10.3389/fimmu.2022.868892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Avian Leukosis Virus Subgroup J (ALV-J) is a tumorigenic virus with high morbidity and rapid transmission. N6-methyladenosine (m6A) is a common epigenetic modification that may be closely related to the pathogenicity of ALV-J. Currently, there are no reports on whether m6A modification is related to ALV-J induced tumor formation. In this study, we used methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to examine the differences in m6A methylation and gene expression in normal livers and ALV-J-induced tumor livers systematically, with functional enrichment and co-expression analysis. The results identified 6,541 m6A methylated peaks, mainly enriched in CDS, and more than 83% of the transcripts contained 1-2 m6A peaks. For RNA-seq, 1,896 and 1,757 differentially expressed mRNAs and lncRNAs were identified, respectively. Gene enrichment analysis indicated that they may be involved in biological processes and pathways such as immunology-related and apoptosis. Moreover, we identified 17 lncRNAs, commonly existing in differently expressed methylome and transcriptome. Through co-expression analysis, 126 differentially expressed lncRNAs, and 18 potentially m6A-related methyltransferases were finally identified and connected, suggesting that m6A modifications might affect gene expression of lncRNAs and play a role in ALV-J induced tumor formation. This study provides the first comprehensive description of the m6A expression profile in tumor livers induced by ALV-J infection in chickens, which provides a basis for studying the role of m6A modification in ALV-J induced tumorigenesis. This study provides clues for studying the epigenetic etiology and pathogenesis of ALV-J.
Collapse
Affiliation(s)
- Qiqi Zhao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Liyi Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Yaai He
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Huanmin Zhang
- United States Department of Agriculture (USDA), Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- *Correspondence: Qingmei Xie, ; Xinheng Zhang,
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- *Correspondence: Qingmei Xie, ; Xinheng Zhang,
| |
Collapse
|
25
|
Ackerman RS, Muncey AR, Aldawoodi NN, Kotha R, Getting REG. Cancer Immunotherapies: What the Perioperative Physician Needs to Know. Curr Oncol Rep 2022; 24:399-414. [PMID: 35141856 PMCID: PMC9056594 DOI: 10.1007/s11912-022-01202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Purpose of Review For patients with cancer, treatment may include combination therapy, including surgery and immunotherapy. Here, we review perioperative considerations for the patient prescribed immunotherapeutic agents. Recent Findings The perioperative period is a poignant moment in the journey of a patient with cancer, potentially deemed most influential compared to other moments in the care continuum. Several immunotherapeutic medications have been employed near the time of surgery to potentially increase effectiveness. Of the various drug classes, including immune checkpoint inhibitors, cytokines, toll-like receptor agonists, and oncolytic viruses, among others, several notable immune-related adverse effects were noted. They range from minor effects to more serious ones, such as renal failure, myocarditis, and tumor growth. Summary Surgery and immunotherapy are often employed in combination for primary treatment and prevention of cancer recurrence. Careful review and consideration of the pharmacokinetics, pharmacodynamics, and toxicities of immunotherapy benefit the perioperative physician and their patients.
Collapse
Affiliation(s)
- Robert S Ackerman
- Department of Anesthesiology, Duke University Medical Center, 134 Research Drive, Durham, NC, 27710, USA.
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Aaron R Muncey
- Department of Anesthesiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nasrin N Aldawoodi
- Department of Anesthesiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rohini Kotha
- Department of Anesthesiology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
26
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
27
|
Audisio A, Buttigliero C, Delcuratolo MD, Parlagreco E, Audisio M, Ungaro A, Di Stefano RF, Di Prima L, Turco F, Tucci M. New Perspectives in the Medical Treatment of Non-Muscle-Invasive Bladder Cancer: Immune Checkpoint Inhibitors and Beyond. Cells 2022; 11:357. [PMID: 35159167 PMCID: PMC8834622 DOI: 10.3390/cells11030357] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Non-muscle-invasive bladder cancer (NMIBC) is characterized by a high rate of cure, but also by a non-negligible probability of recurrence and risk progression to muscle-invasive disease. NMIBC management requires a proper local resection and staging, followed by a risk-based treatment with intravesical agents. For many years, the current gold standard treatment for patients with intermediate or high-risk disease is transurethral resection of the bladder (TURB) followed by intravesical bacillus Calmette-Guérin (BCG) instillations. Unfortunately, in about half of high-risk patients, intravesical BCG treatment fails and NMIBC persists or recurs early. While radical cystectomy remains the gold standard for these patients, new therapeutic targets are being individuated and studied. Radical cystectomy in fact can provide an excellent long-term disease control, but can deeply interfere with quality of life. In particular, the enhanced immune checkpoints expression shown in BCG-unresponsive patients and the activity of immune checkpoints inhibitors (ICIs) in advanced bladder cancer provided the rationale for testing ICIs in NMIBC. Recently, pembrolizumab has shown promising activity in BCG-unresponsive NMIBC patients, obtaining FDA approval. Meanwhile multiple novel drugs with alternative mechanisms of action have proven to be safe and effective in NMIBC treatment and others are under investigation. The aim of this review is to analyse and describe the clinical activity of new emerging drugs in BCG-unresponsive NMIBC focusing on immunotherapy results.
Collapse
Affiliation(s)
- Alessandro Audisio
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Consuelo Buttigliero
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Marco Donatello Delcuratolo
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Elena Parlagreco
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Marco Audisio
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Antonio Ungaro
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Rosario Francesco Di Stefano
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Lavinia Di Prima
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Fabio Turco
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, 10093 Turin, Italy; (A.A.); (M.D.D.); (E.P.); (M.A.); (A.U.); (R.F.D.S.); (L.D.P.); (F.T.)
| | - Marcello Tucci
- Department of Medical Oncology, Cardinal Massaia Hospital, 14100 Asti, Italy;
| |
Collapse
|
28
|
A diagnostic and prognostic value of blood-based circulating long non-coding RNAs in Thyroid, Pancreatic and Ovarian Cancer. Crit Rev Oncol Hematol 2022; 171:103598. [PMID: 35033662 DOI: 10.1016/j.critrevonc.2022.103598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/12/2022] Open
Abstract
Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70%, and specificity = 90.00%). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30% and specificity = 94.60%. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.
Collapse
|
29
|
Zhang K, Xu PL, Li YJ, Dong S, Gao HF, Chen LY, Chen H, Chen Z. Comprehensive analysis of expression profile and prognostic significance of interferon regulatory factors in pancreatic cancer. BMC Genom Data 2022; 23:5. [PMID: 35012444 PMCID: PMC8751298 DOI: 10.1186/s12863-021-01019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly lethal disease and an increasing cause of cancer-associated mortality worldwide. Interferon regulatory factors (IRFs) play vital roles in immune response and tumor cellular biological processes. However, the specific functions of IRFs in PC and tumor immune response are far from systematically clarified. This study aimed to explorer the expression profile, prognostic significance, and biological function of IRFs in PC. RESULTS We observed that the levels of IRF2, 6, 7, 8, and 9 were elevated in tumor compared to normal tissues in PC. IRF7 expression was significantly associated with patients' pathology stage in PC. PC patients with high IRF2, low IRF3, and high IRF6 levels had significantly poorer overall survival. High mRNA expression, amplification and, deep deletion were the three most common types of genetic alterations of IRFs in PC. Low expression of IRF2, 4, 5, and 8 was resistant to most of the drugs or small molecules from Genomics of Drug Sensitivity in Cancer. Moreover, IRFs were positively correlated with the abundance of tumor infiltrating immune cells in PC, including B cells, CD8+ T cells, CD4+ T cells, macrophages, Neutrophil, and Dendritic cells. Functional analysis indicated that IRFs were involved in T cell receptor signaling pathway, immune response, and Toll-like receptor signaling pathway. CONCLUSIONS Our results indicated that certain IRFs could serve as potential therapeutic targets and prognostic biomarkers for PC patients. Further basic and clinical studies are needed to validate our findings and generalize the clinical application of IRFs in PC.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Pan-Ling Xu
- Chinese Integrative Medicine Oncology Department, First Affiliated Hospital of Anhui Medical University, Hefei, 230000 Anhui China
| | - Yu-Jie Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Shu Dong
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hui-Feng Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lian-Yu Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Hao Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
30
|
Cai H, Chen H, Huang Q, Zhu JM, Ke ZB, Lin YZ, Zheng QS, Wei Y, Xu N, Xue XY. Ubiquitination-Related Molecular Subtypes and a Novel Prognostic Index for Bladder Cancer Patients. Pathol Oncol Res 2021; 27:1609941. [PMID: 34776794 PMCID: PMC8585742 DOI: 10.3389/pore.2021.1609941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022]
Abstract
Objective: To develop and validate ubiquitination-related molecular subtypes and a novel prognostic index using ubiquitination-related genes (URGs) for patients with bladder cancer (BCa). Materials and Methods: We downloaded the clinical data and transcriptome data of BCa from TCGA and GEO database. Consensus clustering analysis was conducted to identify ubiquitination-related molecular subtypes for BCa. Besides, we performed univariate and multivariate Cox regression analysis to develop a novel prognostic URGs-related index for BCa. We conducted internal and external verification in TCGA cohort and GEO cohort, respectively. Furthermore, the associations of ubiquitination-related molecular subtypes and prognostic index with tumor immune environment were also investigated. Results: A total of four ubiquitination-related molecular subtypes of BCa were finally identified. These four molecular subtypes had significantly different clinical characteristics, prognosis, PD-L1 expression level and tumor microenvironment. Besides, we developed a novel prognostic index using six URGs (including HLA-A, TMEM129, UBE2D1, UBE2N, UBE2T and USP5). The difference in OS between high and low-risk group was statistically significant in training cohort, testing cohort, and validating cohort. The area under ROC curve (AUC) for OS prediction was 0.736, 0.723, and 0.683 in training cohort, testing cohort, and validating cohort, respectively. Multivariate survival analysis showed that this index was an independent predictor for OS. This prognostic index was especially suitable for subtype 1 and 3, older, male, high grade, AJCC stage III-IV, stage N0, stage T3-4 BCa patients. Conclusions: This study identified a total of four ubiquitination-related molecular subtypes with significantly different tumor microenvironment, prognosis, clinical characteristics and PD-L1 expression level. Besides, a novel ubiquitination-related prognostic index for BCa patients was developed and successfully verified, which performed well in predicting prognosis of BCa.
Collapse
Affiliation(s)
- Hai Cai
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qi Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yun-Zhi Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
31
|
Xun Y, Yang H, Kaminska B, You H. Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J Hematol Oncol 2021; 14:176. [PMID: 34715891 PMCID: PMC8555307 DOI: 10.1186/s13045-021-01191-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Glioma represents a fast proliferating and highly invasive brain tumor which is resistant to current therapies and invariably recurs. Despite some advancements in anti-glioma therapies, patients’ prognosis remains poor. Toll-like receptors (TLRs) act as the first line of defense in the immune system being the detectors of those associated with bacteria, viruses, and danger signals. In the glioma microenvironment, TLRs are expressed on both immune and tumor cells, playing dual roles eliciting antitumoral (innate and adaptive immunity) and protumoral (cell proliferation, migration, invasion, and glioma stem cell maintenance) responses. Up to date, several TLR-targeting therapies have been developed aiming at glioma bulk and stem cells, infiltrating immune cells, the immune checkpoint axis, among others. While some TLR agonists exhibited survival benefit in clinical trials, it attracts more attention when they are involved in combinatorial treatment with radiation, chemotherapy, immune vaccination, and immune checkpoint inhibition in glioma treatment. TLR agonists can be used as immune modulators to enhance the efficacy of other treatment, to avoid dose accumulation, and what brings more interests is that they can potentiate immune checkpoint delayed resistance to PD-1/PD-L1 blockade by upregulating PD-1/PD-L1 overexpression, thus unleash powerful antitumor responses when combined with immune checkpoint inhibitors. Herein, we focus on recent developments and clinical trials exploring TLR-based treatment to provide a picture of the relationship between TLR and glioma and their implications for immunotherapy.
Collapse
Affiliation(s)
- Yang Xun
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Hua Yang
- Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, 528000, Guangdong Province, China
| | - Bozena Kaminska
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.,Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Hua You
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou, 510095, China.
| |
Collapse
|
32
|
Xue L, Wu P, Zhao X, Jin X, Wang J, Shi Y, Yang X, She Y, Li Y, Li C. Using Immune-Related lncRNA Signature for Prognosis and Response to Immunotherapy in Cutaneous Melanoma. Int J Gen Med 2021; 14:6463-6475. [PMID: 34675614 PMCID: PMC8518697 DOI: 10.2147/ijgm.s335266] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous melanoma is a highly malignant skin tumor, and most patients have a poor prognosis. In recent years, immunotherapy has assumed an important role in the treatment of advanced cutaneous melanoma, but only a small percentage of patients benefit from immunotherapy. A growing number of studies have demonstrated that the prognosis of patients with cutaneous melanoma is closely related to long non-coding RNA and the tumor immune microenvironment. Methods We downloaded RNA expression data and immune-related gene lists of cutaneous melanoma patients separately from The Cancer Genome Atlas database and ImmPort website and identified immune-related lncRNAs by co-expression analysis. The prognostic model was constructed by applying least absolute shrinkage and selection operator regression, and all patients were classified into high- and low-risk groups according to the risk score of the model. We evaluated the differences between the two groups in terms of survival outcomes, immune infiltration, pathway enrichment, chemotherapeutic drug sensitivity and immune checkpoint gene expression to verify the impact of lncRNA signature on clinical prognosis and immunotherapy efficacy. Results By correlation analysis and LASSO regression analysis, we constructed an immune-related lncRNA prognostic model based on five lncRNA: HLA-DQB1-AS1, MIR205HG, RP11-643G5.6, USP30-AS1 and RP11-415F23.4. Based on this model, we plotted Kaplan-Meier survival curves and time-dependent ROC curves and analyzed its ability as an independent prognostic factor for cutaneous melanoma in combination with clinicopathological features. The results showed that these lncRNA signature was an independent prognostic factor of cutaneous melanoma with favorable prognostic ability. Our results also show a higher degree of immune infiltration, higher expression of immune checkpoint-associated genes, and better outcome of immunotherapy in the low-risk group of the lncRNA signature. Conclusion The 5 immune-related lncRNA signatures constructed in our study can predict the prognosis of cutaneous melanoma and contribute to the selection of immunotherapy.
Collapse
Affiliation(s)
- Ling Xue
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Pingfan Wu
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Xiaowen Zhao
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Department of Pathology, The 940th Hospital of the Joint Logistic Support of the People's Liberation Army, Lanzhou, 730050, People's Republic of China
| | - Xiaojie Jin
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Jingjing Wang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yuxiang Shi
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Xiaojing Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Yali She
- Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Yaling Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China.,Provincial-Level Key Laboratory of Molecular Medicine of Major Diseases and Study on Prevention and Treatment of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, People's Republic of China
| | - Changtian Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
33
|
Farooq M, Batool M, Kim MS, Choi S. Toll-Like Receptors as a Therapeutic Target in the Era of Immunotherapies. Front Cell Dev Biol 2021; 9:756315. [PMID: 34671606 PMCID: PMC8522911 DOI: 10.3389/fcell.2021.756315] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors, which are activated by foreign and host molecules in order to initiate the immune response. They play a crucial role in the regulation of innate immunity, and several studies have shown their importance in bacterial, viral, and fungal infections, autoimmune diseases, and cancers. The consensus view from an immunological perspective is that TLR agonists can serve either as a possible therapeutic agent or as a vaccine adjuvant toward cancers or infectious diseases and that TLR inhibitors may be a promising approach to the treatment of autoimmune diseases, some cancers, bacterial, and viral infections. These notions are based on the fact that TLR agonists stimulate the secretion of proinflammatory cytokines and in general, the development of proinflammatory responses. Some of the TLR-based inhibitory agents have shown to be efficacious in preclinical models and have now entered clinical trials. Therefore, TLRs seem to hold the potential to serve as a perfect target in the era of immunotherapies. We offer a perspective on TLR-based therapeutics that sheds light on their usefulness and on combination therapies. We also highlight various therapeutics that are in the discovery phase or in clinical trials.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Suwon, South Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
- S&K Therapeutics, Suwon, South Korea
| |
Collapse
|
34
|
Jeong S, Choi Y, Kim K. Engineering Therapeutic Strategies in Cancer Immunotherapy via Exogenous Delivery of Toll-like Receptor Agonists. Pharmaceutics 2021; 13:1374. [PMID: 34575449 PMCID: PMC8466827 DOI: 10.3390/pharmaceutics13091374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
As a currently spotlighted method for cancer treatment, cancer immunotherapy has made a lot of progress in recent years. Among tremendous cancer immunotherapy boosters available nowadays, Toll-like receptor (TLR) agonists were specifically selected, because of their effective activation of innate and adaptive immune cells, such as dendritic cells (DCs), T cells, and macrophages. TLR agonists can activate signaling pathways of DCs to express CD80 and CD86 molecules, and secrete various cytokines and chemokines. The maturation of DCs stimulates naïve T cells to differentiate into functional cells, and induces B cell activation. Although TLR agonists have anti-tumor ability by activating the immune system of the host, their drawbacks, which include poor efficiency and remarkably short retention time in the body, must be overcome. In this review, we classify and summarize the recently reported delivery strategies using (1) exogenous TLR agonists to maintain the biological and physiological signaling activities of cargo agonists, (2) usage of multiple TLR agonists for synergistic immune responses, and (3) co-delivery using the combination with other immunomodulators or stimulants. In contrast to naked TLR agonists, these exogenous TLR delivery strategies successfully facilitated immune responses and subsequently mediated anti-tumor efficacy.
Collapse
Affiliation(s)
| | | | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 22012, Korea; (S.J.); (Y.C.)
| |
Collapse
|
35
|
Yu S, Wang S, Sun X, Wu Y, Zhao J, Liu J, Yang D, Jiang Y. ST8SIA1 inhibits the proliferation, migration and invasion of bladder cancer cells by blocking the JAK/STAT signaling pathway. Oncol Lett 2021; 22:736. [PMID: 34429775 PMCID: PMC8371960 DOI: 10.3892/ol.2021.12997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BLCA) is the most common malignant tumor of the urinary system, with distant metastasis of the tumor being the main cause of death. The identification of an effective biomarker may provide a novel direction for BLCA diagnosis and treatment. The aim of the present study was to screen the BLCA-related genes involved in sialyl transferase (ST) dysregulation and to investigate the functional mechanisms of α-2,8-ST1 (ST8SIA1) in BLCA cells. Data from The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases suggested that the mRNA expression levels of ST8SIA1 were decreased in BLCA tissues compared with normal tissues, which was also demonstrated using immunohistochemistry and western blot analysis. The expression levels of ST8SIA1 were negatively associated with the pathological grade and invasiveness of BLCA. Western blot analysis revealed that the expression levels of ST8SIA1 were lower in BLCA cell lines than in a normal urothelial cell line. CCK-8, flow cytometry, wound healing, colony formation and Transwell assays indicated that ST8SIA1 overexpression attenuated the proliferation, migration and invasion of T24 and 5637 BLCA cells. Further experiments revealed that ST8SIA1 could inhibit the phosphorylation of Janus kinase (JAK)2 and STAT3, as well as decrease the expression levels of JAK/STAT pathway-targeting signal molecules, including MMP2, proliferating cell nuclear antigen, cyclin D1 and Bcl2 in two BLCA cell lines. In conclusion, to the best of our knowledge, the present study was the first to indicate that the antitumor effect of ST8SIA1 in BLCA cells was mediated by the JAK/STAT signaling pathway, and the results provided a novel target for the diagnosis and treatment of BLCA.
Collapse
Affiliation(s)
- Shengjin Yu
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| | - Shidan Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian, Liaoning 116044, P.R. China
| | - Xiaoxin Sun
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian, Liaoning 116044, P.R. China.,College of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yinshuang Wu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian, Liaoning 116044, P.R. China
| | - Jun Zhao
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Junqiang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Jiang
- Institute of Molecular Medicine, Medical College of Eastern Liaoning University, Dandong, Liaoning 118000, P.R. China
| |
Collapse
|
36
|
de Queiroz NMGP, Marinho FV, de Araujo ACVSC, Fahel JS, Oliveira SC. MyD88-dependent BCG immunotherapy reduces tumor and regulates tumor microenvironment in bladder cancer murine model. Sci Rep 2021; 11:15648. [PMID: 34341449 PMCID: PMC8329301 DOI: 10.1038/s41598-021-95157-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/21/2021] [Indexed: 12/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) is the only FDA approved first line therapy for patients with nonmuscle invasive bladder cancer. The purpose of this study is to better understand the role of innate immune pathways involved in BCG immunotherapy against murine bladder tumor. We first characterized the immunological profile induced by the MB49 mouse urothelial carcinoma cell line. MB49 cells were not able to activate an inflammatory response (TNF-α, IL-6, CXCL-10 or IFN-β) after the stimulus with different agonists or BCG infection, unlike macrophages. Although MB49 cells are not able to induce an efficient immune response, BCG treatment could activate other cells in the tumor microenvironment (TME). We evaluated BCG intratumoral treatment in animals deficient for different innate immune molecules (STING-/-, cGAS-/-, TLR2-/-, TLR3-/-, TLR4-/-, TLR7-/-, TLR9-/-, TLR3/7/9-/-, MyD88-/-, IL-1R-/-, Caspase1/11-/-, Gasdermin-D-/- and IFNAR-/-) using the MB49 subcutaneous mouse model. Only MyD88-/- partially responded to BCG treatment compared to wild type (WT) mice, suggesting a role played by this adaptor molecule. Additionally, BCG intratumoral treatment regulates cellular infiltrate in TME with an increase of inflammatory macrophages, neutrophils and CD8+ T lymphocytes, suggesting an immune response activation that favors tumor remission in WT mice but not in MyD88-/-. The experiments using MB49 cells infected with BCG and co-cultured with macrophages also demonstrated that MyD88 is essential for an efficient immune response. Our data suggests that BCG immunotherapy depends partially on the MyD88-related innate immune pathway.
Collapse
Affiliation(s)
- Nina M G P de Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabio V Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Carolina V S C de Araujo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia S Fahel
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, BA, 31270-901, Brazil.
| |
Collapse
|
37
|
Lu JL, Xia QD, Sun Y, Xun Y, Hu HL, Liu CQ, Sun JX, Xu JZ, Hu J, Wang SG. Toll-Like Receptor 4 as a Favorable Prognostic Marker in Bladder Cancer: A Multi-Omics Analysis. Front Cell Dev Biol 2021; 9:651560. [PMID: 34141706 PMCID: PMC8204102 DOI: 10.3389/fcell.2021.651560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background The toll-like receptor 4 (TLR4) agonist, Bacille Calmette-Guérin, has exhibited gratifying effects in treating bladder cancer. The study aims to explore the expression pattern, prognostic value, and potential mechanism of TLR4 in bladder cancer. Methods The transcriptome file from the GSE13507 dataset in the Gene Expression Omnibus database and the promoter methylation file from the bladder cancer dataset in The Cancer Genome Atlas database were downloaded for analysis. The prognostic value of the TLRs was assessed by univariate Cox regression. Immunohistochemistry was applied to verify the expression of TLR4 in bladder cancer. The drug response is estimated through the R package “pRRophetic.” The CIBERSORT algorithm was carried out to estimate the infiltrating immune cells of samples. Gene Set Enrichment Analysis (GSEA) was performed to identify the pathways involved under varied TLR4 expression levels. Results TLR4 is decreased in tumor tissues compared with surrounding tumor tissues or normal tissue, which is also positively correlated to the overall survival rate (hazard ratio [HR] = 0.38) and cancer-specific survival rate (HR = 0.15) of patients with bladder cancer. Low expression of TLR4 is observed in tumors with malignant performance (high pathological grade, higher tumor stage, and progression). Patients with low TLR4 levels are more sensitive to gemcitabine rather than cisplatin. The promoter methylation level of TLR4 is positively associated with TLR4 expression (P < 0.001). The cg14629571 methylation site largely contributes to the overall methylation level. The CIBERSORT analysis shows that high TLR4 expression is associated with lower levels of plasma cells, M0 macrophages, and M1 macrophages. The GSEA results indicate that the TGF-β pathway and apoptosis are activated in high TLR4 bladder cancer, while G2M checkpoint and E2F targets pathways are enriched in low TLR4 bladder cancer. Conclusion This research discusses the abnormal expression and prognostic value of TLR4 in bladder cancer. The TLR4 expression can effectively predict oncological outcomes and drug sensitivity of bladder cancer patients. TLR4 is also associated with infiltrating immune cell variation and cancer pathway dysregulation. The results provide a novel prognostic marker and potential drug targets for bladder cancer.
Collapse
Affiliation(s)
- Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-Long Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Qian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Behzadi P, García-Perdomo HA, Karpiński TM. Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021; 2021:9914854. [PMID: 34195298 PMCID: PMC8181103 DOI: 10.1155/2021/9914854] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIM Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). METHODS AND MATERIALS To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. RESULTS Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. CONCLUSION TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Herney Andrés García-Perdomo
- Division of Urology. Department of Surgery, School of Medicine, UROGIV Research Group, Universidad del Valle, Cali, Colombia
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
39
|
Wu H, Zhang Z, Xiao XY, Zhang ZY, Gao SL, Lu C, Zuo L, Zhang LF. Toll-like receptor 2 (TLR2) is a candidate prognostic factor in testicular germ cell tumors as well as an indicator of immune function in the tumor microenvironment. Bioengineered 2021; 12:1939-1951. [PMID: 34002664 PMCID: PMC8806693 DOI: 10.1080/21655979.2021.1927560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Testicular cancer is the most common malignant tumor in young men, and its incidence has increased in recent years. The tumor microenvironment (TME) plays a crucial role in the development and progression of tumors; however, the TME of testicular germ cell tumor (TGCT) is poorly understood. In this study, we downloaded information for 156 TGCT cases from The Cancer Genome Atlas (TCGA) database, used the ESTIMATE method to determine immune and stromal scores, and used CIBERSORT to calculate the proportion of tumor-infiltrating immune cells (TICs). The differentially expressed genes were subjected to a COX regression analysis and used for the construction of a protein–protein interaction (PPI) network. Toll-like receptor 2 (TLR2) was identified as a predictive marker by combining the results of the Cox regression analysis and PPI network. A survival analysis showed that TLR2 was positively correlated with TGCT survival. A gene set enrichment analysis indicated that genes in the high TLR2 expression group were enriched for cell adhesion molecules (CAMs) and the chemokine signaling pathway, and genes in the low TLR2 expression group were mainly enriched in the spliceosome. Regarding proportions of TICs, naive B cells and follicular helper T cells were negatively correlated with the expression of TLR2. This suggests that as TLR2 expression increases, the immunocompetence of the TME decreases. The expression of TLR2 may affect the prognosis of TGCT, suggesting that this locus can be used as a prognostic factor for TGCT.
Collapse
Affiliation(s)
- Hao Wu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Dalian Medical University, Dalian, China
| | - Ze Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Dalian Medical University, Dalian, China
| | | | - Zi-Yi Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.,Dalian Medical University, Dalian, China
| | - Sheng-Lin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Lu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Li-Feng Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
40
|
Mirouse A, Vigneron C, Llitjos JF, Chiche JD, Mira JP, Mokart D, Azoulay E, Pène F. Sepsis and Cancer: An Interplay of Friends and Foes. Am J Respir Crit Care Med 2020; 202:1625-1635. [PMID: 32813980 DOI: 10.1164/rccm.202004-1116tr] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sepsis and cancer share a number of pathophysiological features, and both result from the inability of the host's immune system to cope with the initial insult (tissue invasion by pathogens and malignant cell transformation, respectively). The common coexistence of both disorders and the profound related alterations in immune homeostasis raise the question of their mutual impact on each other's course. This translational review aims to discuss the interactions between cancer and sepsis supported by clinical data and the translation to experimental models. The dramatic improvement in cancer has come at a cost of increased risks of life-threatening infectious complications. Investigating the long-term outcomes of sepsis survivors has revealed an unexpected susceptibility to cancer long after discharge from the ICU. Nonetheless, it is noteworthy that an acute septic episode may harbor antitumoral properties under particular circumstances. Relevant double-hit animal models have provided clues to whether and how bacterial sepsis may impact malignant tumor growth. In sequential sepsis-then-cancer models, postseptic mice exhibited accelerated tumor growth. When using reverse cancer-then-sepsis models, bacterial sepsis applied to mice with cancer conversely resulted in inhibition or even regression of tumor growth. Experimental models thus highlight dual effects of sepsis on tumor growth, mostly depending on the sequence of insults, and allow deciphering the immune mechanisms and their relation with microorganisms.
Collapse
Affiliation(s)
- Adrien Mirouse
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Clara Vigneron
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Jean-François Llitjos
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Jean-Daniel Chiche
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Jean-Paul Mira
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| | - Djamel Mokart
- Réanimation Polyvalente, Département d'Anesthésie et de Réanimation, Institut Paoli Calmettes, Marseille, France
| | - Elie Azoulay
- Université de Paris, Paris, France.,Médecine Intensive et Réanimation, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Frédéric Pène
- Université de Paris, Paris, France.,Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France.,Médecine Intensive et Réanimation, Hôpital Cochin, AP-HP Centre, Paris, France; and
| |
Collapse
|
41
|
Ossick MV, Assalin HB, Kiehl IGA, Salustiano ACC, Rocha GZ, Ferrari KL, Linarelli MCB, Degasperi G, Reis LO. Carcinogenesis and Bacillus Calmette-Guérin (BCG) Intravesical Treatment of Non-Muscle-Invasive Bladder Cancer under Tryptophan and Thymine Supplementation. Nutr Cancer 2020; 73:2687-2694. [PMID: 33287590 DOI: 10.1080/01635581.2020.1856389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 10/05/2020] [Accepted: 11/05/2020] [Indexed: 01/14/2023]
Abstract
PURPOSE Evaluate tryptophan and thymine (TT) impact on carcinogenesis and intravesical BCG bladder cancer treatment. METHODS After identification of TT in vitro inhibitory effect in multiple cancer cell cultures, bladder cancer animal model was induced by MNU intravesical instillations and randomized into four groups: Control (n = 9), BCG (n = 9), TT (n = 7), and BCG + TT (n = 8). BCG groups received intravesical 106 CFU BCG in 0.2 ml saline for 6 consecutive weeks and TT groups received 1 g/kg (1:1) of TT via daily gavage. After 15 wk of protocol, animals were euthanized and the urinary bladders submitted to histopathology, immunohistochemistry, and Western blotting. RESULTS Urothelial cancer was identified in 100%, 85.7%, 44.5%, and 37.5% of Control, TT, BCG, and BCG + TT groups, respectively. Cell proliferation marked by nuclear Ki-67 was higher in the Control compared to animals in the other groups (P = 0.03). BCG, TT, and BCG + TT groups showed proliferative cell decline and TLR4/5 labeling increase in the urothelium. BCG decreased the urothelial VEGF labeling, even in TT association. CONCLUSION TT inhibit urothelial carcinogenesis and potentiate the intravesical BCG in the treatment of bladder cancer by reducing cell proliferation and activating TLRs.
Collapse
Affiliation(s)
- Marina V Ossick
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Heloisa B Assalin
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Isis G A Kiehl
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Ana C C Salustiano
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Guilherme Zweig Rocha
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Karen L Ferrari
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
| | - Maria C B Linarelli
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| | - Giovanna Degasperi
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| | - Leonardo O Reis
- Department of UroScience, School of Medical Sciences, University of Campinas, Unicamp, Campinas, São Paulo, Brazil
- Department of UroScience, Pontifical Catholic University of Campinas (PUC-Campinas), Campinas, São Paulo, Brazil
| |
Collapse
|
42
|
Mirzaei S, Gholami MH, Mahabady MK, Nabavi N, Zabolian A, Banihashemi SM, Haddadi A, Entezari M, Hushmandi K, Makvandi P, Samarghandian S, Zarrabi A, Ashrafizadeh M, Khan H. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomed Pharmacother 2020; 133:111077. [PMID: 33378975 DOI: 10.1016/j.biopha.2020.111077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Effective cancer therapy requires identification of signaling networks and investigating their potential role in proliferation and invasion of cancer cells. Among molecular pathways, signal transducer and activator of transcription 3 (STAT3) has been of importance due to its involvement in promoting proliferation, and invasion of cancer cells, and mediating chemoresistance. In the present review, our aim is to reveal role of STAT3 pathway in bladder cancer (BC), as one of the leading causes of death worldwide. In respect to its tumor-promoting role, STAT3 is able to enhance the growth of BC cells via inhibiting apoptosis and cell cycle arrest. STAT3 also contributes to metastasis of BC cells via upregulating of MMP-2 and MMP-9 as well as genes in the EMT pathway. BC cells obtain chemoresistance via STAT3 overexpression and its inhibition paves the way for increasing efficacy of chemotherapy. Different molecular pathways such as KMT1A, EZH2, DAB2IP and non-coding RNAs including microRNAs and long non-coding RNAs can function as upstream mediators of STAT3 that are discussed in this review article.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- IstitutoItaliano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, OrtaMahalle, ÜniversiteCaddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|
43
|
Ohadian Moghadam S, Mansori K, Nowroozi MR, Afshar D, Abbasi B, Nowroozi A. Association of human papilloma virus (HPV) infection with oncological outcomes in urothelial bladder cancer. Infect Agent Cancer 2020; 15:52. [PMID: 32874199 PMCID: PMC7456036 DOI: 10.1186/s13027-020-00318-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Bladder cancer is one of the leading causes of cancer death in adults worldwide. There are various risk factors described for the bladder cancer development including genetic background as well as environmental exposure. Currently, infectious agents such as human papilloma virus (HPV) has also been linked to bladder cancer risk. The current study aimed to evaluate the potential correlation between HPV infection and the oncological outcome in urothelial bladder cancer. Methods Totally 106 tissue samples of histopathologically confirmed transitional cell carcinoma (TCC) of the urinary bladder were included in this study. The presence of high risk (types 16 and 18) and low risk (types 11 and 6) types of HPV was evaluated using polymerase chain reaction (PCR) followed by in situ hybridization. Results Out of 106 bladder cancer patients, a total of 24 cases (22.6%) were positive HPV infection. The most common type of HPV detected was type 16 followed by types 11 and 18, and 6. According to independent T-test results, there was a significant association between mean age and HPV infection (P = 0.015). Moreover, our findings showed a significant relation between infection with HPV and tumor stage, tumor grade, muscle invasion of the tumor, as well as tumor recurrence. The results of Chi-square Test indicated that there is significant statistical association between types of HPV and tumor grade (P-Value = 0.044). Conclusion Our findings indicated that a family history of cancer and HPV infection can be potential independent predictive factors for tumor recurrence in bladder cancer. Overall, the results of this study strongly indicate a significant relationship between HPV infection and an aggravated outcome of the disease and a higher risk of recurrence in patients with bladder cancer.
Collapse
Affiliation(s)
- Solmaz Ohadian Moghadam
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, 1419733141 Iran
| | - Kamyar Mansori
- Department of Epidemiology and Biostatistics, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Reza Nowroozi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, 1419733141 Iran
| | - Davoud Afshar
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behzad Abbasi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, 1419733141 Iran
| | - Ali Nowroozi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Keshavarz Blvd, Tehran, 1419733141 Iran
| |
Collapse
|
44
|
Hu C, Wang Y, Liu C, Shen R, Chen B, Sun K, Rao H, Ye L, Ye J, Tian S. Systematic Profiling of Alternative Splicing for Sarcoma Patients Reveals Novel Prognostic Biomarkers Associated with Tumor Microenvironment and Immune Cells. Med Sci Monit 2020; 26:e924126. [PMID: 32683393 PMCID: PMC7388651 DOI: 10.12659/msm.924126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Alternative splicing (AS) events is a novel biomarker of tumor prognosis, but the role of AS events in sarcoma patients remains unclear. Material/Methods RNA-seq and clinicopathologic data of the sarcoma cohort were extracted from the TCGA database and data on AS events were downloaded from the TCGASpliceSeq database. Univariate Cox analysis, LASSO regression analysis, and multivariate Cox analysis were performed to determine the overall survival (OS)- and disease-free survival (DFS)-related AS events. Two nomograms were developed based on the independent variables, and subgroup analysis was performed. The area under the curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the nomograms. Then, we used the CIBERSORT and ESTIMATE package to determine the immune cell proportion and tumor microenvironment (TME) score, respectively. The associations between AS events-based clusters and TME and immune cells were studied. Results We identified 1945 and 1831 AS events as OS- and DFS-related AS events, respectively. Two nomograms based on the AS events and clinical data were established and the AUCs of nomograms ranged from 0.807 to 0.894. The calibration curve and DCA showed excellent performance of nomograms. In addition, the results indicated the distinct relationships between AS events-based clusters and OS, DFS, immune score, stromal score, and 10 immune cells. Conclusions Our study indicated that AS events are novel prognostic biomarkers for sarcoma patients that may be associated with the TME and immune cells.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Yuanhe Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Chuan Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Rui Shen
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Bo Chen
- Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Kang Sun
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Huili Rao
- Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Lin Ye
- Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Jianjun Ye
- Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Shaoqi Tian
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
45
|
A Review on Coronavirus Disease 2019 (COVID-19) in Pediatric Patients. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2020. [DOI: 10.5812/pedinfect.104225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Context: A series of unexplained pneumonia cases were first reported as of December 2019, in Wuhan, China. Official names have been announced for the novel human coronavirus responsible for the pneumonia outbreak in China, and the disease it causes has been announced Coronavirus Disease 2019 (COVID-19). Despite great efforts worldwide to control the SARS-CoV-2 outbreak, the spread of the virus has recently reached a pandemic. Currently, infection prevention and control of this virus are the primary concerns for public health officials and professionals. In this review, the current status of epidemiology, diagnosis, and potential treatment options of SARS-CoV-2 infection in children and the possible reasons for milder presentations of COVID-19 in children than in adults were discussed to provide an insight into the further characterization of COVID-19 in children. Evidence Acquisition: The most recent evidence about the clinical features and potential reasons for the non-susceptibility of children to SARS-CoV-2 infection have been provided in the present narrative review. A systematic search was performed in some databases/search engines, including ISI Web of Science, Scopus, PubMed, and Google Scholar. Then, the relevant published articles were reviewed. The keywords utilized for finding related articles were Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), pediatric, COVID-19, treatment, Angiotensin-Converting Enzyme 2 (ACE2), clinical feature, coronavirus, and pneumonia. Results: Based on the findings, respiratory infections caused by the virus are more frequent in children aged five years or younger than in other age groups. However, the currently available data suggest that COVID-19 infection in children seems to be uncommon. Moreover, in the case of infection with SARS-CoV-2, the disease presentation is frequently milder than in adults and the overall burden in children was reported to be relatively low. Conclusions: Several explanations have been suggested to justify the milder symptoms in children than in adults, including differences in immunity systems of children and adults and differences in ACE2 expression as a receptor for virus attachment. Moreover, while children tend to present mild symptoms of infection, their role in the spread of the disease in the community should not be ignored.
Collapse
|
46
|
Ohadian Moghadam S, Momeni SA. Human microbiome and prostate cancer development: current insights into the prevention and treatment. Front Med 2020; 15:11-32. [PMID: 32607819 DOI: 10.1007/s11684-019-0731-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
The huge communities of microorganisms that symbiotically colonize humans are recognized as significant players in health and disease. The human microbiome may influence prostate cancer development. To date, several studies have focused on the effect of prostate infections as well as the composition of the human microbiome in relation to prostate cancer risk. Current studies suggest that the microbiota of men with prostate cancer significantly differs from that of healthy men, demonstrating that certain bacteria could be associated with cancer development as well as altered responses to treatment. In healthy individuals, the microbiome plays a crucial role in the maintenance of homeostasis of body metabolism. Dysbiosis may contribute to the emergence of health problems, including malignancy through affecting systemic immune responses and creating systemic inflammation, and changing serum hormone levels. In this review, we discuss recent data about how the microbes colonizing different parts of the human body including urinary tract, gastrointestinal tract, oral cavity, and skin might affect the risk of developing prostate cancer. Furthermore, we discuss strategies to target the microbiome for risk assessment, prevention, and treatment of prostate cancer.
Collapse
Affiliation(s)
| | - Seyed Ali Momeni
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Putting the Brakes on Tumorigenesis with Natural Products of Plant Origin: Insights into the Molecular Mechanisms of Actions and Immune Targets for Bladder Cancer Treatment. Cells 2020; 9:cells9051213. [PMID: 32414171 PMCID: PMC7290334 DOI: 10.3390/cells9051213] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/22/2022] Open
Abstract
Bladder cancer is the 10th most commonly diagnosed cancer worldwide. Although the incidence in men is 4 times higher than that in women, the diagnoses are worse for women. Over the past 30 years, the treatment for bladder cancer has not achieved a significant positive effect, and the outlook for mortality rates due to muscle-invasive bladder cancer and metastatic disease is not optimistic. Phytochemicals found in plants and their derivatives present promising possibilities for cancer therapy with improved treatment effects and reduced toxicity. In this study, we summarize the promising natural products of plant origin with anti-bladder cancer potential, and their anticancer mechanisms—especially apoptotic induction—are discussed. With the developments in immunotherapy, small-molecule targeted immunotherapy has been promoted as a satisfactory approach, and the discovery of novel small molecules against immune targets for bladder cancer treatment from products of plant origin represents a promising avenue of research. It is our hope that this could pave the way for new ideas in the fields of oncology, immunology, phytochemistry, and cell biology, utilizing natural products of plant origin as promising drugs for bladder cancer treatment.
Collapse
|