1
|
Qiu CW, Shi M, Zhaxi Q, Feng X, Jia Y, Li C, Wu F. HvAIR12 confers aluminum tolerance in barley by H 2O 2-mediated activation of HvEXPA4 to facilitate aluminum detoxification and improve root growth. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138293. [PMID: 40239528 DOI: 10.1016/j.jhazmat.2025.138293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/29/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Aluminum (Al) toxicity is a major constraint on crop productivity in acid soils, with barley being particularly susceptible. In our previous transcriptomic analysis, we identified HvAIR12 (AUXIN INDUCED IN ROOT CULTURES), a novel gene that is specifically induced by Al in the roots of the Al-tolerant Tibetan wild barley accession XZ16. In this study, we performed comprehensive physiological, transgenic, and molecular analyses to explore the role of HvAIR12 in Al tolerance. HvAIR12 encodes a plasma membrane-bound protein and is predominantly expressed in the roots, with its expression being strongly upregulated by Al exposure. Knockdown of HvAIR12 resulted in significantly reduced root growth and increased Al accumulation, whereas overexpression of HvAIR12 elevated H2O2 levels in the apoplast and promoted root growth-effects that were reversible by H2O2 scavengers. RNA sequencing further revealed that overexpression of HvAIR12 led to the transcriptional activation of several expansin genes, including HvEXPA4 and HvEXPB2. Functional characterization of HvEXPA4 transgenic lines and gene silencing experiments in HvAIR12-overexpressing backgrounds confirmed that HvEXPA4 is an essential downstream target of HvAIR12, mitigating Al toxicity by modulating cell wall components. This study uncovers the novel role of HvAIR12 in regulating apoplastic H2O2 levels and its interaction with other Al tolerance-related genes. Our findings highlight that HvAIR12 promotes Al tolerance through H2O2-mediated activation of HvEXPA4, forming a regulatory pathway critical for Al exclusion and root elongation under Al stress. These results providing valuable molecular insights and promising target genes for breeding more resilient cereal crops for cultivation in acid soils.
Collapse
Affiliation(s)
- Cheng-Wei Qiu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Min Shi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Quncuo Zhaxi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China; Agricultural Technology Extension and Service Center of Lhasa, Lhasa, China
| | - Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yong Jia
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, State Agricultural Biotechnology Centre/Future Food Innovation Centre, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Cai XY, Tang HT, Wang YZ, Ul Haq I, Wang JD, Hou YM. Salivary effector SfPDI modulates plant defense responses to enhance foraging efficiency of Spodoptera frugiperda. Int J Biol Macromol 2025; 308:142548. [PMID: 40147661 DOI: 10.1016/j.ijbiomac.2025.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Research on the interactions between herbivorous insects and plants, facilitated by insect secretions, has increasingly emphasized species with chewing mandibles over time. However, the molecular mechanisms underlying the interaction between Spodoptera frugiperda and plants remain poorly understood. In this study, we identified a protein disulfide isomerase (SfPDI) from the salivary glands of S. frugiperda that regulates the interaction between S. frugiperda and plants. We found that SfPDI is highly expressed in the salivary glands of S. frugiperda and is secreted into plants as a secretory protein. The RNAi revealed that SfPDI contributes to the growth and development of S. frugiperda on host plants, while its overexpression in tobacco induces necrosis in tobacco leaves and triggers a burst of reactive oxygen species (ROS). Differentially expressed genes suggested that SfPDI may suppresses the expression of plant JA by positively regulating MYC2 and TIFYs and negatively regulating WRKYs. Notably, SfPDI may modulate these high expression of receptors (NB-LRR, GL-RLK, and RLK) lead to hypersensitive response (HR) cell death and the accumulation of lignification of plant. This study provides a foundation for further exploring insect-plant interaction mechanisms and a theoretical basis for developing insect-resistant germplasm and environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Xiang-Yun Cai
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua-Tao Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Zhou Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Inzamam Ul Haq
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Da Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - You-Ming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Zhang L, Gao C, Gao Y, Yang H, Jia M, Wang X, Zhang B, Zhou Y. New insights into plant cell wall functions. J Genet Genomics 2025:S1673-8527(25)00122-5. [PMID: 40287129 DOI: 10.1016/j.jgg.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
The plant cell wall is an extremely complicated natural nanoscale structure composed of cellulose microfibrils embedded in a matrix of noncellulosic polysaccharides, further reinforced by the phenolic compound lignins in some cell types. Such network formed by the interactions of multiscale polymers actually reflects functional form of cell wall to meet the requirements of plant cell functionalization. Therefore, how plants assemble cell wall functional structure is fundamental in plant biology and critical for crop trait formation and domestication as well. Due to the lack of effective analytical techniques to characterize this fundamental but complex network, it remains difficult to establish direct links between cell-wall genes and phenotypes. The roles of plant cell walls are often underestimated as indirect. Over the past decades, many genes involved in cell wall biosynthesis, modification, and remodeling have been identified. The application of a variety of state-of-the-art techniques has made it possible to reveal the fine cell wall networks and polymer interactions. Hence, many exciting advances in cell wall biology have been achieved in recent years. This review provides an updated overview of the mechanistic and conceptual insights in cell wall functionality, and prospects the opportunities and challenges in this field.
Collapse
Affiliation(s)
- Lanjun Zhang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxu Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihong Gao
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hanlei Yang
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meiru Jia
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Wang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- Laboratory of Advanced Breeding Technologies, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Turella S, He C, Zhao L, Banerjee S, Plouhinec L, Assiah Yao R, Nørgaard Kejlstrup MC, Grisel S, So Y, Annic B, Fanuel M, Haddad Momeni M, Bissaro B, Meier S, Morth JP, Dong S, Berrin JG, Abou Hachem M. Enzymatic oxidation of galacturonides from pectin breakdown contributes to stealth infection by Oomycota phytopathogens. Nat Commun 2025; 16:3467. [PMID: 40216756 PMCID: PMC11992081 DOI: 10.1038/s41467-025-58668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Phytophthora phytopathogens from Oomycota cause devastating crop losses and threaten food security. However, Phytophthora secreted proteins that interact with plant-hosts remain underexplored. Here, auxiliary activity family 7 (AA7) enzymes from Ascomycota and Oomycota phytopathogens were shown to oxidise pectin-derived galacturonic acid and/or oligogalacturonides (OGs). Unique mono-cysteinyl-FAD oxidases with positively-charged active sites, suited to oxidise OGs, were discovered in Phytophthora sojae. The P. sojae OG oxidase genes, prevalent in this genus, were co-transcribed with pectin-degradation counterparts during early infection of soybean. Single OG oxidase knockouts significantly decreased P. sojae biomass in planta, potentially linking OG oxidases to virulence. We propose that oxidation by AA7 enzymes impairs the elicitor activity of OGs, potentially contributing to stealth Oomycota infection. Oxidation of OGs unravels a previously unknown microbial mechanism that contributes to evade plant immune-response against pathogens. Our findings highlight a unique oxidase architecture and hitherto unexplored targets for bioprotection from major plant pathogens.
Collapse
Affiliation(s)
- Simone Turella
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Cheng He
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Zhao
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sanchari Banerjee
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Lauriane Plouhinec
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Roseline Assiah Yao
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | | | - Sacha Grisel
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Yunjeong So
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bastien Annic
- INRAE, UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
- INRAE, PROBE research infrastructure, BIBS Facility, Nantes, France
| | - Mathieu Fanuel
- INRAE, UR1268 Biopolymères Interactions Assemblages (BIA), Nantes, France
- INRAE, PROBE research infrastructure, BIBS Facility, Nantes, France
| | - Majid Haddad Momeni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Suomeng Dong
- State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
5
|
Salvati A, Diomaiuti A, Locci F, Gravino M, Gramegna G, Ilyas M, Benedetti M, Costantini S, De Caroli M, Castel B, Jones JDG, Cervone F, Pontiggia D, De Lorenzo G. Berberine bridge enzyme-like oxidases orchestrate homeostasis and signaling of oligogalacturonides in defense and upon mechanical damage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70150. [PMID: 40220003 PMCID: PMC11992967 DOI: 10.1111/tpj.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Plant immunity is triggered by endogenous elicitors known as damage-associated molecular patterns (DAMPs). Oligogalacturonides (OGs) are DAMPs released from the cell wall (CW) demethylated homogalacturonan during microbial colonization, mechanical or pest-provoked mechanical damage, and physiological CW remodeling. Berberine bridge enzyme-like (BBE-l) proteins named OG oxidases (OGOXs) oxidize and inactivate OGs to avoid deleterious growth-affecting hyper-immunity and possible cell death. Using OGOX1 over-expressing lines and ogox1/2 double mutants, we show that these enzymes determine the levels of active OGs vs. inactive oxidized products (ox-OGs). The ogox1/2-deficient plants have elevated levels of OGs, while plants overexpressing OGOX1 accumulate ox-OGs. The balance between OGs and ox-OGs affects disease resistance against Pseudomonas syringae pv. tomato, Pectobacterium carotovorum, and Botrytis cinerea depending on the microbial capacity to respond to OGs and metabolize ox-OGs. Gene expression upon plant infiltration with OGs reveals that OGOXs orchestrate OG signaling in defense as well as upon mechanical damage, pointing to these enzymes as apoplastic players in immunity and tissue repair.
Collapse
Affiliation(s)
- Ascenzo Salvati
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Alessandra Diomaiuti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Federica Locci
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Plant–Microbe InteractionsMax‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10Cologne50829Germany
| | - Matteo Gravino
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Crop GeneticsJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Giovanna Gramegna
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Environmental biologySapienza University of RomeRome00185Italy
| | - Muhammad Ilyas
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Manuel Benedetti
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'Aquila67100Italy
| | - Sara Costantini
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Present address:
Institute of Nanotechnology, National Research Council (CNR‐NANOTEC)Campus EcotekneLecce73100Italy
| | - Monica De Caroli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoCampus EcotekneLecce73100Italy
- NBFC National Biodiversity Future CenterPalermo90133Italy
| | - Baptiste Castel
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
- Present address:
Laboratoire de Recherche en Sciences Vegetales (LRSV)Université de Toulouse, CNRS, UPS24 chemin de Borde Rouge, Auzeville, BP42617Castanet Tolosan31326France
| | - Jonathan D. G. Jones
- The Sainsbury LaboratoryUniversity of East Anglia, Norwich Research ParkColney LaneNorwichNR4 7UHUK
| | - Felice Cervone
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| | - Giulia De Lorenzo
- Department of Biology and Biotechnologies'Charles Darwin' Sapienza University of RomeRome00185Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural HeritageSapienza University of RomeRomeItaly
| |
Collapse
|
6
|
Degli Esposti C, Guerrisi L, Peruzzi G, Giulietti S, Pontiggia D. Cell wall bricks of defence: the case study of oligogalacturonides. FRONTIERS IN PLANT SCIENCE 2025; 16:1552926. [PMID: 40201780 PMCID: PMC11975879 DOI: 10.3389/fpls.2025.1552926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025]
Abstract
The plant cell wall (CW) is more than a structural barrier; it serves as the first line of defence against pathogens and environmental stresses. During pathogen attacks or physical damage, fragments of the CW, known as CW-derived Damage-Associated Molecular Patterns (CW-DAMPs), are released. These molecular signals play a critical role in activating the plant's immune responses. Among CW-DAMPs, oligogalacturonides (OGs), fragments derived from the breakdown of pectin, are some of the most well-studied. This review highlights recent advances in understanding the functional and signalling roles of OGs, beginning with their formation through enzymatic CW degradation during pathogen invasion or mechanical injury. We discuss how OGs perception triggers intracellular signalling pathways that enhance plant defence and regulate interactions with microbes. Given that excessive OG levels can negatively impact growth and development, we also examine the regulatory mechanisms plants use to fine-tune their responses, avoiding immune overactivation or hyper- immunity. As natural immune modulators, OGs (and more generally CW-DAMPs), offer a promising, sustainable alternative to chemical pesticides by enhancing crop resilience without harming the environment. By strengthening plant defences and supporting eco-friendly agricultural practices, OGs hold great potential for advancing resilient and sustainable farming systems.
Collapse
Affiliation(s)
- Chiara Degli Esposti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Laura Guerrisi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giulia Peruzzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sarah Giulietti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Research Center for Applied Sciences for the Protection of the Environment and Cultural Heritage, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Giovannoni M, Scortica A, Scafati V, Piccirilli E, Sorio D, Benedetti M, Mattei B. The reducing end of cell wall oligosaccharides is critical for DAMP activity in Arabidopsis thaliana and can be exploited by oligosaccharide oxidases in the reduction of oxidized phenolics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109466. [PMID: 39793330 DOI: 10.1016/j.plaphy.2024.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025]
Abstract
The enzymatic hydrolysis of cell wall polysaccharides results in the production of oligosaccharides with nature of damage-associated molecular patterns (DAMPs) that are perceived by plants as danger signals. The in vitro oxidation of oligogalacturonides and cellodextrins by plant FAD-dependent oligosaccharide-oxidases (OSOXs) suppresses their elicitor activity in vivo, suggesting a protective role of OSOXs against a prolonged activation of defense responses potentially deleterious for plant health. However, OSOXs are also produced by phytopathogens and saprotrophs, complicating the understanding of their role in plant-microbe interactions. Here, we demonstrate the oxidation catalyzed by specific fungal OSOXs also converts the elicitor-active cello-tetraose and xylo-tetraose into elicitor-inactive forms, indicating that the oxidation state of cell wall oligosaccharides is crucial for their DAMP function, irrespective of whether the OSOX originates from fungi or plants. In addition, we also found that certain OSOXs can transfer the electrons from the reducing end of these oligosaccharides to oxidized phenolics (bi-phenoquinones) instead of molecular O2, highlighting an unexpected sub-functionalization of these enzymes. The activity of OSOXs may be crucial for a thorough understanding of cell wall metabolism since these enzymes can redirect the reducing power from sugars to phenolic components of the plant cell wall, an insight with relevant implications for plant physiology and biotechnology.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Emilia Piccirilli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy; University School for Advanced Studies IUSS Pavia, Pavia, 27100, Italy
| | - Daniela Sorio
- Centro Piattaforme Tecnologiche, University of Verona, 37134, Verona, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
8
|
Davière A, Voxeur A, Jolivet S, Lelas L, Vernhettes S, Soulié MC, Fagard M. Unravelling the interplay of nitrogen nutrition and the Botrytis cinerea pectin lyase BcPNL1 in modulating Arabidopsis thaliana susceptibility. Commun Biol 2025; 8:204. [PMID: 39922973 PMCID: PMC11807159 DOI: 10.1038/s42003-025-07642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
In this study, we investigated the interplay between nitrogen nutrition and the pectin degradation dynamics during Arabidopsis and Botrytis interaction. Our findings revealed that infected detached leaves from nitrogen-sufficient plants released more pectin lyase (PNL)-derived oligogalacturonides compared to nitrogen-deficient ones. We then focused on BcPNL1, the most highly expressed Botrytis PNL upon infection. Using mutant strains lacking BcPNL1, we observed reduced pathogenicity, a delay in germination and a lag in triggering the plant defense response. Additionally, in nitrogen-sufficient detached leaves, the elevated expression of jasmonic acid repressor genes observed upon infection with the wild-type strain was abolished with the mutants. These results linked the increased production of BcPNL-derived products to the increased expression of jasmonic acid repressor genes, contributing partially to the higher susceptibility of nitrogen-sufficient detached leaves. These findings could lay the foundation for new strategies aimed at reconciling both crop resistance to pathogens and the improvement of nitrogen nutrition.
Collapse
Affiliation(s)
- Antoine Davière
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France.
| | - Sylvie Jolivet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Luka Lelas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Ecole Doctorale 567 Sciences du Végétal, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Samantha Vernhettes
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Marie-Christine Soulié
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- Sorbonne Universités, UFR 927, Paris, France
| | - Mathilde Fagard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
9
|
Fuertes-Rabanal M, Rebaque D, Largo-Gosens A, Encina A, Mélida H. Cell walls, a comparative view of the composition of cell surfaces of plants, algae and microorganisms. JOURNAL OF EXPERIMENTAL BOTANY 2024:erae512. [PMID: 39705009 DOI: 10.1093/jxb/erae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/21/2024]
Abstract
While evolutionary studies indicate that the most ancient groups of organisms on Earth likely descended from a common wall-less ancestor, contemporary organisms lacking a carbohydrate-rich cell surface are exceedingly rare. By developing a cell wall to cover the plasma membrane, cells were able to withstand higher osmotic pressures, colonise new habitats and develop complex multicellular structures. This way, the cells of plants, algae and microorganisms are covered by a cell wall, which can generally be defined as a highly complex structure whose main framework is usually composed of carbohydrates. Rather than static structures, they are highly dynamic and serve a multitude of functions that modulate vital cellular processes, such as growth and interactions with neighbouring cells or the surrounding environment. Thus, despite its vital importance for many groups of life, it is striking that there are few comprehensive documents comparing the cell wall composition of these groups. Thus, the aim of this review was to compare the cell walls of plants with those of algae and microorganisms, paying particular attention to their polysaccharide components. It should be highlighted that, despite the important differences in composition, we have also found numerous common aspects and functionalities.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Diego Rebaque
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
- Universidad Politécnica de Madrid, Madrid, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
10
|
Fuertes-Rabanal M, Largo-Gosens A, Fischer A, Munzert KS, Carrasco-López C, Sánchez-Vallet A, Engelsdorf T, Mélida H. Linear β-1,2-glucans trigger immune hallmarks and enhance disease resistance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7337-7350. [PMID: 39225413 PMCID: PMC11630039 DOI: 10.1093/jxb/erae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Immune responses in plants are triggered by molecular patterns or elicitors, recognized by plant pattern recognition receptors. Such molecular patterns are the consequence of host-pathogen interactions, and the response cascade activated after their perception is known as pattern-triggered immunity (PTI). Glucans have emerged as key players in PTI, but the ability of certain glucans to stimulate defensive responses in plants remains understudied. This work focused on identifying novel glucan oligosaccharides as molecular patterns. The ability of various microorganism-derived glucans to trigger PTI responses was tested, revealing that specific microbial-derived molecules, such as short linear β-1,2-glucans, trigger this response in plants by increasing the production of reactive oxygen species (ROS), mitogen-activated protein kinase phosphorylation, and differential expression of defence-related genes in Arabidopsis thaliana. Pre-treatments with β-1,2-glucan trisaccharide (B2G3) improved Arabidopsis defence against bacterial and fungal infections in a hypersusceptible genotype. The knowledge generated was then transferred to the monocotyledonous model species maize and wheat, demonstrating that these plants also respond to β-1,2-glucans, with increased ROS production and improved protection against fungal infections following B2G3 pre-treatments. In summary, as with other β-glucans, plants perceive β-1,2-glucans as warning signals which stimulate defence responses against phytopathogens.
Collapse
Affiliation(s)
- María Fuertes-Rabanal
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Asier Largo-Gosens
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| | - Alicia Fischer
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Kristina S Munzert
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, Pozuelo de Alarcón(Madrid), Spain
| | - Timo Engelsdorf
- Department of Biology, Molecular Plant Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain
- Instituto de Biología Molecular, Genómica y Proteómica (INBIOMIC), Universidad de León, León, Spain
| |
Collapse
|
11
|
Vuong TV, Aghajohari M, Feng X, Woodstock AK, Nambiar DM, Sleiman ZC, Urbanowicz BR, Master ER. Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials. JACS AU 2024; 4:4044-4065. [PMID: 39610758 PMCID: PMC11600177 DOI: 10.1021/jacsau.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures. These enzymatic routes offer a precise way to tailor the properties of hemicelluloses for specific applications in biobased materials, contributing to the development of renewable alternatives to conventional materials derived from fossil fuels.
Collapse
Affiliation(s)
- Thu V. Vuong
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Mohammad Aghajohari
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Drive, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Xuebin Feng
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Amanda K. Woodstock
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Deepti M. Nambiar
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Zeina C. Sleiman
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Breeanna R. Urbanowicz
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Emma R. Master
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department
of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
12
|
Giovannoni M, Scafati V, Rodrigues Pousada RA, Benedetti M, De Lorenzo G, Mattei B. The Vacuolar H +-ATPase subunit C is involved in oligogalacturonide (OG) internalization and OG-triggered immunity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109117. [PMID: 39293143 DOI: 10.1016/j.plaphy.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In plants, the perception of cell wall fragments initiates signal transduction cascades that activate the immune response. Previous research on early protein dynamics induced by oligogalacturonides (OGs), pectin fragments acting as damage-associated molecular patterns (DAMPs), revealed significant phosphorylation changes in several proteins. Among them, the subunit C of the vacuolar H+-ATPase, known as DE-ETIOLATED 3 (DET3), was selected to elucidate its role in the OG-triggered immune response. The Arabidopsis det3 knockdown mutant exhibited defects in H2O2 accumulation, mitogen-activated protein kinases (MAPKs) activation, and induction of defense marker genes in response to OG treatment. Interestingly, the det3 mutant showed a higher basal resistance to the fungal pathogen Botrytis cinerea that, in turn, was completely reversed by the pre-treatment with OGs. Our results suggest a compromised ability of the det3 mutant to maintain a primed state over time, leading to a weaker defense response when the plant is later exposed to the fungal pathogen. Using fluorescently labelled OGs, we demonstrated that endocytosis of OGs was less efficient in the det3 mutant, implicating DET3 in the internalization process of OGs. This impairment aligns with the observed defect in the priming response in the det3 mutant, underscoring that proper internalization and signaling of OGs are crucial for initiating and maintaining a primed state in plant defense responses.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| |
Collapse
|
13
|
Lelas L, Rouffet J, Filachet A, Sechet J, Davière A, Desprez T, Vernhettes S, Voxeur A. A fungal phospholipase C involved in the degradation of plant glycosylinositol phosphorylceramides during Arabidopsis/Botrytis interaction. Commun Biol 2024; 7:1372. [PMID: 39438581 PMCID: PMC11496612 DOI: 10.1038/s42003-024-07064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the presence and significance of phosphorylated oligosaccharides that accumulate during the interaction between Arabidopsis thaliana and Botrytis cinerea, a necrotrophic fungus that poses a major threat to crops worldwide. While previous research has extensively characterized cell wall-derived molecules during fungal infection, the role of plasma membrane-derived ones remains unclear. Here, we reveal the discovery of inositol phosphate glycans (IPGs) released during infection, originating from plant sphingolipids, specifically glycosylinositol phosphorylceramides (GIPC). Advanced chromatography, mass spectrometry techniques and molecular biology were employed to identify these IPGs, and determine their origins. In addition to the well-characterized role of B. cinerea in releasing cell wall-degrading enzymes, this research suggests that B. cinerea's enzymatic machinery may also target the degradation of the plant plasma membrane. As a consequence of this, IPGs identical to those generated by the host plant are released, most likely due to activity of a putative phospholipase C that acts on GIPC plasma membrane lipids. These insights could pave the way for developing new strategies to enhance crop resistance by focusing on membrane integrity in addition to cell wall fortification.
Collapse
Affiliation(s)
- Luka Lelas
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Justine Rouffet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000, Angers, France
| | - Alexis Filachet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Julien Sechet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
- AlkInnov, Innovation for Life, 92100, Boulogne-Billancourt, France
| | - Antoine Davière
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thierry Desprez
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Samantha Vernhettes
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| |
Collapse
|
14
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
15
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
16
|
Del Corpo D, Coculo D, Greco M, De Lorenzo G, Lionetti V. Pull the fuzes: Processing protein precursors to generate apoplastic danger signals for triggering plant immunity. PLANT COMMUNICATIONS 2024; 5:100931. [PMID: 38689495 PMCID: PMC11371470 DOI: 10.1016/j.xplc.2024.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The apoplast is one of the first cellular compartments outside the plasma membrane encountered by phytopathogenic microbes in the early stages of plant tissue invasion. Plants have developed sophisticated surveillance mechanisms to sense danger events at the cell surface and promptly activate immunity. However, a fine tuning of the activation of immune pathways is necessary to mount a robust and effective defense response. Several endogenous proteins and enzymes are synthesized as inactive precursors, and their post-translational processing has emerged as a critical mechanism for triggering alarms in the apoplast. In this review, we focus on the precursors of phytocytokines, cell wall remodeling enzymes, and proteases. The physiological events that convert inactive precursors into immunomodulatory active peptides or enzymes are described. This review also explores the functional synergies among phytocytokines, cell wall damage-associated molecular patterns, and remodeling, highlighting their roles in boosting extracellular immunity and reinforcing defenses against pests.
Collapse
Affiliation(s)
- Daniele Del Corpo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Daniele Coculo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Marco Greco
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy
| | - Vincenzo Lionetti
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Bigini V, Sillo F, Giulietti S, Pontiggia D, Giovannini L, Balestrini R, Savatin DV. Oligogalacturonide application increases resistance to Fusarium head blight in durum wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3070-3091. [PMID: 38334507 DOI: 10.1093/jxb/erae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Fusariosis causes substantial yield losses in the wheat crop worldwide and compromises food safety because of the presence of toxins associated with the fungal disease. Among the current approaches to crop protection, the use of elicitors able to activate natural defense mechanisms in plants is a strategy gaining increasing attention. Several studies indicate that applications of plant cell-wall-derived elicitors, such as oligogalacturonides (OGs) derived from partial degradation of pectin, induce local and systemic resistance against plant pathogens. The aim of this study was to establish the efficacy of OGs in protecting durum wheat (Triticum turgidum subsp. durum), which is characterized by an extreme susceptibility to Fusarium graminearum. To evaluate the functionality of OGs, spikes and seedlings of cv. Svevo were inoculated with OGs, F. graminearum spores, and a co-treatment of both. Results demonstrated that OGs are active elicitors of wheat defenses, triggering typical immune marker genes and determining regulation of fungal genes. Moreover, bioassays on spikes and transcriptomic analyses on seedlings showed that OGs can regulate relevant physiological processes in Svevo with dose-dependent specificity. Thus, the OG sensing system plays an important role in fine tuning immune signaling pathways in durum wheat.
Collapse
Affiliation(s)
- Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Fabiano Sillo
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
| | - Daniela Pontiggia
- Department of Biology and biotechnologies 'Charles Darwin', Sapienza University of Rome, Ple Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Ple Aldo Moro, 5 00185 Rome, Italy
| | - Luca Giovannini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135, Torino, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
18
|
Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, Fernández-Calvo P, Gómez-Rubio E, Martín-Santamaría S. Plant cell wall-mediated disease resistance: Current understanding and future perspectives. MOLECULAR PLANT 2024; 17:699-724. [PMID: 38594902 DOI: 10.1016/j.molp.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Elena Gómez-Rubio
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
19
|
Singh D, Mathur S, Ranjan R. Pattern recognition receptors as potential therapeutic targets for developing immunological engineered plants. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:525-555. [PMID: 38762279 DOI: 10.1016/bs.apcsb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
There is an urgent need to combat pathogen infestations in crop plants to ensure food security worldwide. To counter this, plants have developed innate immunity mediated by Pattern Recognition Receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and damage- associated molecular patterns (DAMPs). PRRs activate Pattern-Triggered Immunity (PTI), a defence mechanism involving intricate cell-surface and intracellular receptors. The diverse ligand-binding ectodomains of PRRs, including leucine-rich repeats (LRRs) and lectin domains, facilitate the recognition of MAMPs and DAMPs. Pathogen resistance is mediated by a variety of PTI responses, including membrane depolarization, ROS production, and the induction of defence genes. An integral part of intracellular immunity is the Nucleotide-binding Oligomerization Domain, Leucine-rich Repeat proteins (NLRs) which recognize and respond to effectors in a potent manner. Enhanced understanding of PRRs, their ligands, and downstream signalling pathways has contributed to the identification of potential targets for genetically modified plants. By transferring PRRs across plant species, it is possible to create broad-spectrum resistance, potentially offering innovative solutions for plant protection and global food security. The purpose of this chapter is to provide an update on PRRs involved in disease resistance, clarify the mechanisms by which PRRs recognize ligands to form active receptor complexes and present various applications of PRRs and PTI in disease resistance management for plants.
Collapse
Affiliation(s)
- Deeksha Singh
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
| | - Shivangi Mathur
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India
| | - Rajiv Ranjan
- Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-282005, India.
| |
Collapse
|
20
|
Baruah IK, Shao J, Ali SS, Schmidt ME, Meinhardt LW, Bailey BA, Cohen SP. Cacao pod transcriptome profiling of seven genotypes identifies features associated with post-penetration resistance to Phytophthora palmivora. Sci Rep 2024; 14:4175. [PMID: 38378988 PMCID: PMC10879190 DOI: 10.1038/s41598-024-54355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
The oomycete Phytophthora palmivora infects the fruit of cacao trees (Theobroma cacao) causing black pod rot and reducing yields. Cacao genotypes vary in their resistance levels to P. palmivora, yet our understanding of how cacao fruit respond to the pathogen at the molecular level during disease establishment is limited. To address this issue, disease development and RNA-Seq studies were conducted on pods of seven cacao genotypes (ICS1, WFT, Gu133, Spa9, CCN51, Sca6 and Pound7) to better understand their reactions to the post-penetration stage of P. palmivora infection. The pod tissue-P. palmivora pathogen assay resulted in the genotypes being classified as susceptible (ICS1, WFT, Gu133 and Spa9) or resistant (CCN51, Sca6 and Pound7). The number of differentially expressed genes (DEGs) ranged from 1625 to 6957 depending on genotype. A custom gene correlation approach identified 34 correlation groups. De novo motif analysis was conducted on upstream promoter sequences of differentially expressed genes, identifying 76 novel motifs, 31 of which were over-represented in the upstream sequences of correlation groups and associated with gene ontology terms related to oxidative stress response, defense against fungal pathogens, general metabolism and cell function. Genes in one correlation group (Group 6) were strongly induced in all genotypes and enriched in genes annotated with defense-responsive terms. Expression pattern profiling revealed that genes in Group 6 were induced to higher levels in the resistant genotypes. An additional analysis allowed the identification of 17 candidate cis-regulatory modules likely to be involved in cacao defense against P. palmivora. This study is a comprehensive exploration of the cacao pod transcriptional response to P. palmivora spread after infection. We identified cacao genes, promoter motifs, and promoter motif combinations associated with post-penetration resistance to P. palmivora in cacao pods and provide this information as a resource to support future and ongoing efforts to breed P. palmivora-resistant cacao.
Collapse
Affiliation(s)
- Indrani K Baruah
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- Statistics and Bioinformatics Group-Northeast Area, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Shahin S Ali
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
- ATCC (American Type Culture Collection), Gaithersburg, MD, 20877, USA
| | - Martha E Schmidt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Lyndel W Meinhardt
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Bryan A Bailey
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Stephen P Cohen
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, 20705, USA.
| |
Collapse
|
21
|
Winters NP, Wafula EK, Knollenberg BJ, Hämälä T, Timilsena PR, Perryman M, Zhang D, Sheaffer LL, Praul CA, Ralph PE, Prewitt S, Leandro-Muñoz ME, Delgadillo-Duran DA, Altman NS, Tiffin P, Maximova SN, dePamphilis CW, Marden JH, Guiltinan MJ. A combination of conserved and diverged responses underlies Theobroma cacao's defense response to Phytophthora palmivora. BMC Biol 2024; 22:38. [PMID: 38360697 PMCID: PMC10870529 DOI: 10.1186/s12915-024-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.
Collapse
Affiliation(s)
- Noah P Winters
- IGDP Ecology, The Pennsylvania State University, 422 Huck Life Sciences Building, University Park, PA, 16803, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Prakash R Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Melanie Perryman
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA
| | - Lena L Sheaffer
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sarah Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Siela N Maximova
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Claude W dePamphilis
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - James H Marden
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mark J Guiltinan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
22
|
Liu MCJ, Yeh FLJ, Yvon R, Simpson K, Jordan S, Chambers J, Wu HM, Cheung AY. Extracellular pectin-RALF phase separation mediates FERONIA global signaling function. Cell 2024; 187:312-330.e22. [PMID: 38157854 DOI: 10.1016/j.cell.2023.11.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The FERONIA (FER)-LLG1 co-receptor and its peptide ligand RALF regulate myriad processes for plant growth and survival. Focusing on signal-induced cell surface responses, we discovered that intrinsically disordered RALF triggers clustering and endocytosis of its cognate receptors and FER- and LLG1-dependent endocytosis of non-cognate regulators of diverse processes, thus capable of broadly impacting downstream responses. RALF, however, remains extracellular. We demonstrate that RALF binds the cell wall polysaccharide pectin. They phase separate and recruit FER and LLG1 into pectin-RALF-FER-LLG1 condensates to initiate RALF-triggered cell surface responses. We show further that two frequently encountered environmental challenges, elevated salt and temperature, trigger RALF-pectin phase separation, promiscuous receptor clustering and massive endocytosis, and that this process is crucial for recovery from stress-induced growth attenuation. Our results support that RALF-pectin phase separation mediates an exoskeletal mechanism to broadly activate FER-LLG1-dependent cell surface responses to mediate the global role of FER in plant growth and survival.
Collapse
Affiliation(s)
- Ming-Che James Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - Fang-Ling Jessica Yeh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Robert Yvon
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Kelly Simpson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Samuel Jordan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA
| | - James Chambers
- Light Microscopy Core Facility, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA.
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 N. Pleasant St., Lederle Graduate Tower, Amherst, MA 01003, USA; Molecular and Cell Biology Program, University of Massachusetts, Amherst, MA 01003, USA; Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
23
|
Bawin T, Didriksen A, Faehn C, Olsen S, Sørensen I, Rose JKC, Krause K. Cuscuta campestris fine-tunes gene expression during haustoriogenesis as an adaptation to different hosts. PLANT PHYSIOLOGY 2023; 194:258-273. [PMID: 37706590 PMCID: PMC10756757 DOI: 10.1093/plphys/kiad505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
The Cuscuta genus comprises obligate parasitic plants that have an unusually wide host range. Whether Cuscuta uses different infection strategies for different hosts or whether the infection strategy is mechanistically and enzymatically conserved remains unknown. To address this, we investigated molecular events during the interaction between field dodder (Cuscuta campestris) and two host species of the Solanum genus that are known to react differently to parasitic infection. We found that host gene induction, particularly of cell wall fortifying genes, coincided with a differential induction of genes for cell wall degradation in the parasite in the cultivated tomato (Solanum lycopersicum) but not in a wild relative (Solanum pennellii). This indicates that the parasite can adjust its gene expression in response to its host. This idea was supported by the increased expression of C. campestris genes encoding an endo-β-1,4-mannanase in response to exposure of the parasite to purified mono- and polysaccharides in a host-independent infection system. Our results suggest multiple key roles of the host cell wall in determining the outcome of an infection attempt.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Alena Didriksen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Corine Faehn
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| |
Collapse
|
24
|
Costantini S, Benedetti M, Pontiggia D, Giovannoni M, Cervone F, Mattei B, De Lorenzo G. Berberine bridge enzyme-like oxidases of cellodextrins and mixed-linked β-glucans control seed coat formation. PLANT PHYSIOLOGY 2023; 194:296-313. [PMID: 37590952 DOI: 10.1093/plphys/kiad457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Plants have evolved various resistance mechanisms to cope with biotic stresses that threaten their survival. The BBE23 member (At5g44360/BBE23) of the Arabidopsis berberine bridge enzyme-like (BBE-l) protein family (Arabidopsis thaliana) has been characterized in this paper in parallel with the closely related and previously described CELLOX (At4g20860/BBE22). In addition to cellodextrins, both enzymes, renamed here as CELLODEXTRIN OXIDASE 2 and 1 (CELLOX2 and CELLOX1), respectively, oxidize the mixed-linked β-1→3/β-1→4-glucans (MLGs), recently described as capable of activating plant immunity, reinforcing the view that the BBE-l family includes members that are devoted to the control of the homeostasis of potential cell wall-derived damage-associated molecular patterns (DAMPs). The 2 putatively paralogous genes display different expression profiles. Unlike CELLOX1, CELLOX2 is not expressed in seedlings or adult plants and is not involved in immunity against Botrytis cinerea. Both are instead expressed in a concerted manner in the seed coat during development. Whereas CELLOX2 is expressed mainly during the heart stage, CELLOX1 is expressed at the immediately later stage, when the expression of CELLOX2 decreases. Analysis of seeds of cellox1 and cellox2 knockout mutants shows alterations in the coat structure: the columella area is smaller in cellox1, radial cell walls are thicker in both cellox1 and cellox2, and the mucilage halo is reduced in cellox2. However, the coat monosaccharide composition is not significantly altered, suggesting an alteration of the organization of the cell wall, thus reinforcing the notion that the architecture of the cell wall in specific organs is determined not only by the dynamics of the synthesis/degradation of the main polysaccharides but also by its enzymatic oxidation.
Collapse
Affiliation(s)
- Sara Costantini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Pontiggia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
25
|
Yu L, Wang X, Tang C, Wang H, Rabbani Nasab H, Kang Z, Wang J. Genome-Wide Characterization of Berberine Bridge Enzyme Gene Family in Wheat ( Triticum aestivum L.) and the Positive Regulatory Role of TaBBE64 in Response to Wheat Stripe Rust. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19986-19999. [PMID: 38063491 DOI: 10.1021/acs.jafc.3c06280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Berberine bridge enzymes (BBEs), functioning as carbonate oxidases, enhance disease resistance in Arabidopsis and tobacco. However, the understanding of BBEs' role in monocots against pathogens remains limited. This study identified 81 TaBBEs with FAD_binding_4 and BBE domains. Phylogenetic analysis revealed a separation of the BBE gene family between monocots and dicots. Notably, RNA-seq showed TaBBE64's significant induction by both pathogen-associated molecular pattern treatment and Puccinia striiformis f. sp. tritici (Pst) infection at early stages. Subcellular localization revealed TaBBE64 at the cytoplasmic membrane. Knocking down TaBBE64 compromised wheat's Pst resistance, reducing reactive oxygen species and promoting fungal growth, confirming its positive role. Molecular docking and enzyme activity assays confirmed TaBBE64's glucose oxidation to produce H2O2. Since Pst relies on living wheat cells for carbohydrate absorption, TaBBE64's promotion of glucose oxidation limits fungal growth and resists pathogen infection. This study sheds light on BBEs' role in wheat resistance against biotrophic fungi.
Collapse
Affiliation(s)
- Ligang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Huiqing Wang
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi 830006, Xinjiang, P. R. China
| | - Hojjatollah Rabbani Nasab
- Plant Protection Research Department, Agricultural and Natural Resources Research and Education Centre of Golestan Province, Agricultural Research Education and Extension Organization (AREEO), Gorgan 999067, Iran
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| |
Collapse
|
26
|
Wanke A, van Boerdonk S, Mahdi LK, Wawra S, Neidert M, Chandrasekar B, Saake P, Saur IML, Derbyshire P, Holton N, Menke FLH, Brands M, Pauly M, Acosta IF, Zipfel C, Zuccaro A. A GH81-type β-glucan-binding protein enhances colonization by mutualistic fungi in barley. Curr Biol 2023; 33:5071-5084.e7. [PMID: 37977140 DOI: 10.1016/j.cub.2023.10.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/06/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
Cell walls are important interfaces of plant-fungal interactions, acting as robust physical and chemical barriers against invaders. Upon fungal colonization, plants deposit phenolics and callose at the sites of fungal penetration to prevent further fungal progression. Alterations in the composition of plant cell walls significantly impact host susceptibility. Furthermore, plants and fungi secrete glycan hydrolases acting on each other's cell walls. These enzymes release various sugar oligomers into the apoplast, some of which activate host immunity via surface receptors. Recent characterization of cell walls from plant-colonizing fungi has emphasized the abundance of β-glucans in different cell wall layers, which makes them suitable targets for recognition. To characterize host components involved in immunity against fungi, we performed a protein pull-down with the biotinylated β-glucan laminarin. Thereby, we identified a plant glycoside hydrolase family 81-type glucan-binding protein (GBP) as a β-glucan interactor. Mutation of GBP1 and its only paralog, GBP2, in barley led to decreased colonization by the beneficial root endophytes Serendipita indica and S. vermifera, as well as the arbuscular mycorrhizal fungus Rhizophagus irregularis. The reduction of colonization was accompanied by enhanced responses at the host cell wall, including an extension of callose-containing cell wall appositions. Moreover, GBP mutation in barley also reduced fungal biomass in roots by the hemibiotrophic pathogen Bipolaris sorokiniana and inhibited the penetration success of the obligate biotrophic leaf pathogen Blumeria hordei. These results indicate that GBP1 is involved in the establishment of symbiotic associations with beneficial fungi-a role that has potentially been appropriated by barley-adapted pathogens.
Collapse
Affiliation(s)
- Alan Wanke
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sarah van Boerdonk
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Lisa Katharina Mahdi
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Stephan Wawra
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Miriam Neidert
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Balakumaran Chandrasekar
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Pia Saake
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Nicholas Holton
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Mathias Brands
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK; Institute of Plant and Microbial Biology, University of Zurich, and Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Alga Zuccaro
- Institute for Plant Sciences, University of Cologne, Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
27
|
Dewangan BP, Gupta A, Sah RK, Das S, Kumar S, Bhattacharjee S, Pawar PAM. Xylobiose treatment triggers a defense-related response and alters cell wall composition. PLANT MOLECULAR BIOLOGY 2023; 113:383-400. [PMID: 37991689 DOI: 10.1007/s11103-023-01391-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023]
Abstract
Plant cell wall-derived oligosaccharides, i.e., damage-associated molecular patterns (DAMPs), could be generated after pathogen attack or during normal plant development, perceived by cell wall receptors, and can alter immunity and cell wall composition. Therefore, we hypothesised that xylo-oligosaccharides (XOS) could act as an elicitor and trigger immune responses. To test this, we treated Arabidopsis with xylobiose (XB) and investigated different parameters. XB-treatment significantly triggered the generation of reactive oxygen species (ROS), activated MAPK protein phosphorylation, and induced callose deposition. The combination of XB (DAMP) and flg22 a microbe-associated molecular pattern (MAMP) further enhanced ROS response and gene expression of PTI marker genes. RNA sequencing analysis revealed that more genes were differentially regulated after 30 min compared to 24 h XB-treated leaves, which correlated with ROS response. Increased xylosidase activity and soluble xylose level after 30 min and 3 h of XB-treatment were observed which might have weakened the DAMP response. However, an increase in total cell wall sugar and a decrease in uronic acid level was observed at both 30 min and 24 h. Additionally, arabinose, rhamnose, and xylose levels were increased in 30 min, and glucose was increased in 24 h compared to mock-treated leaves. The level of jasmonic acid, abscisic acid, auxin, and cytokinin were also affected after XB treatment. Overall, our data revealed that the shortest XOS can act as a DAMP, which triggers the PTI response and alters cell wall composition and hormone level.
Collapse
Affiliation(s)
- Bhagwat Prasad Dewangan
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Arunima Gupta
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Rajan Kumar Sah
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Sandeep Kumar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Saikat Bhattacharjee
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
28
|
Rebaque D, López G, Sanz Y, Vilaplana F, Brunner F, Mélida H, Molina A. Subcritical water extraction of Equisetum arvense biomass withdraws cell wall fractions that trigger plant immune responses and disease resistance. PLANT MOLECULAR BIOLOGY 2023; 113:401-414. [PMID: 37129736 PMCID: PMC10730674 DOI: 10.1007/s11103-023-01345-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Plant cell walls are complex structures mainly made up of carbohydrate and phenolic polymers. In addition to their structural roles, cell walls function as external barriers against pathogens and are also reservoirs of glycan structures that can be perceived by plant receptors, activating Pattern-Triggered Immunity (PTI). Since these PTI-active glycans are usually released upon plant cell wall degradation, they are classified as Damage Associated Molecular Patterns (DAMPs). Identification of DAMPs imply their extraction from plant cell walls by using multistep methodologies and hazardous chemicals. Subcritical water extraction (SWE) has been shown to be an environmentally sustainable alternative and a simplified methodology for the generation of glycan-enriched fractions from different cell wall sources, since it only involves the use of water. Starting from Equisetum arvense cell walls, we have explored two different SWE sequential extractions (isothermal at 160 ºC and using a ramp of temperature from 100 to 160 ºC) to obtain glycans-enriched fractions, and we have compared them with those generated with a standard chemical-based wall extraction. We obtained SWE fractions enriched in pectins that triggered PTI hallmarks in Arabidopsis thaliana such as calcium influxes, reactive oxygen species production, phosphorylation of mitogen activated protein kinases and overexpression of immune-related genes. Notably, application of selected SWE fractions to pepper plants enhanced their disease resistance against the fungal pathogen Sclerotinia sclerotiorum. These data support the potential of SWE technology in extracting PTI-active fractions from plant cell wall biomass containing DAMPs and the use of SWE fractions in sustainable crop production.
Collapse
Affiliation(s)
- Diego Rebaque
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón (Madrid), Campus de Montegancedo UPM, Madrid, 28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, 28040, Spain
- PlantResponse Inc, Centro de Empresas, Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Madrid, Spain
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón (Madrid), Campus de Montegancedo UPM, Madrid, 28223, Spain
| | - Yolanda Sanz
- PlantResponse Inc, Centro de Empresas, Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Francisco Vilaplana
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Frèderic Brunner
- PlantResponse Inc, Centro de Empresas, Campus de Montegancedo UPM, 28223-Pozuelo de Alarcón (Madrid), Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón (Madrid), Campus de Montegancedo UPM, Madrid, 28223, Spain.
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, León, Spain.
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón (Madrid), Campus de Montegancedo UPM, Madrid, 28223, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, 28040, Spain.
| |
Collapse
|
29
|
Ordaz NA, Nagalakshmi U, Boiteux LS, Atamian HS, Ullman DE, Dinesh-Kumar SP. The Sw-5b NLR Immune Receptor Induces Early Transcriptional Changes in Response to Thrips and Mechanical Modes of Inoculation of Tomato spotted wilt orthotospovirus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:705-715. [PMID: 37432156 DOI: 10.1094/mpmi-03-23-0032-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Norma A Ordaz
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Ugrappa Nagalakshmi
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| | - Leonardo S Boiteux
- National Center for Vegetable Crops Research (CNPH), Embrapa Hortaliças, Brasilia-DF, Brazil
| | - Hagop S Atamian
- Biological Sciences program, Schmid College of Science & Technology, Chapman University, Orange, CA 92866, U.S.A
| | - Diane E Ullman
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616, U.S.A
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
30
|
Shu LJ, Kahlon PS, Ranf S. The power of patterns: new insights into pattern-triggered immunity. THE NEW PHYTOLOGIST 2023; 240:960-967. [PMID: 37525301 DOI: 10.1111/nph.19148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023]
Abstract
The plant immune system features numerous immune receptors localized on the cell surface to monitor the apoplastic space for danger signals from a broad range of plant colonizers. Recent discoveries shed light on the enormous complexity of molecular signals sensed by these receptors, how they are generated and removed to maintain cellular homeostasis and immunocompetence, and how they are shaped by host-imposed evolutionary constraints. Fine-tuning receptor sensing mechanisms at the molecular, cellular and physiological level is critical for maintaining a robust but adaptive host barrier to commensal, pathogenic, and symbiotic colonizers alike. These receptors are at the core of any plant-colonizer interaction and hold great potential for engineering disease resistance and harnessing beneficial microbiota to keep crops healthy.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
31
|
Jiang S, Pan L, Zhou Q, Xu W, He F, Zhang L, Gao H. Analysis of the apoplast fluid proteome during the induction of systemic acquired resistance in Arabidopsis thaliana. PeerJ 2023; 11:e16324. [PMID: 37876907 PMCID: PMC10592298 DOI: 10.7717/peerj.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023] Open
Abstract
Background Plant-pathogen interactions occur in the apoplast comprising the cell wall matrix and the fluid in the extracellular space outside the plasma membrane. However, little is known regarding the contribution of the apoplastic proteome to systemic acquired resistance (SAR). Methods Specifically, SAR was induced by inoculating plants with Pst DC3000 avrRps4. The apoplast washing fluid (AWF) was collected from the systemic leaves of the SAR-induced or mock-treated plants. A label free quantitative proteomic analysis was performed to identified the proteins related to SAR in AWF. Results A total of 117 proteins were designated as differentially accumulated proteins (DAPs), including numerous pathogenesis-related proteins, kinases, glycosyl hydrolases, and redox-related proteins. Functional enrichment analyses shown that these DAPs were mainly enriched in carbohydrate metabolic process, cell wall organization, hydrogen peroxide catabolic process, and positive regulation of catalytic activity. Comparative analysis of proteome data indicated that these DAPs were selectively enriched in the apoplast during the induction of SAR. Conclusions The findings of this study indicate the apoplastic proteome is involved in SAR. The data presented herein may be useful for future investigations on the molecular mechanism mediating the establishment of SAR.
Collapse
Affiliation(s)
- Shuna Jiang
- College of Survey and Planning, Shangqiu Normal University, Shangqiu, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Wenjie Xu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Fuge He
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Lei Zhang
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
32
|
Gollan PJ, Grebe S, Roling L, Grimm B, Spetea C, Aro E. Photosynthetic and transcriptome responses to fluctuating light in Arabidopsis thylakoid ion transport triple mutant. PLANT DIRECT 2023; 7:e534. [PMID: 37886682 PMCID: PMC10598627 DOI: 10.1002/pld3.534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023]
Abstract
Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.
Collapse
Affiliation(s)
- Peter J. Gollan
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Steffen Grebe
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Optics of Photosynthesis Laboratory, Institute for Atmospheric and Earth System Research (INAR)/Forest Sciences, Viikki Plant Science Center (ViPS)University of HelsinkiHelsinkiFinland
| | - Lena Roling
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Cornelia Spetea
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Eva‐Mari Aro
- Department of Life Technologies, Molecular Plant BiologyUniversity of TurkuTurkuFinland
| |
Collapse
|
33
|
Gogoi A, Lysøe E, Eikemo H, Stensvand A, Davik J, Brurberg MB. Comparative Transcriptome Analysis Reveals Novel Candidate Resistance Genes Involved in Defence against Phytophthora cactorum in Strawberry. Int J Mol Sci 2023; 24:10851. [PMID: 37446029 DOI: 10.3390/ijms241310851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Crown rot, caused by Phytophthora cactorum, is a devastating disease of strawberry. While most commercial octoploid strawberry cultivars (Fragaria × ananassa Duch) are generally susceptible, the diploid species Fragaria vesca is a potential source of resistance genes to P. cactorum. We previously reported several F. vesca genotypes with varying degrees of resistance to P. cactorum. To gain insights into the strawberry defence mechanisms, comparative transcriptome profiles of two resistant genotypes (NCGR1603 and Bukammen) and a susceptible genotype (NCGR1218) of F. vesca were analysed by RNA-Seq after wounding and subsequent inoculation with P. cactorum. Differential gene expression analysis identified several defence-related genes that are highly expressed in the resistant genotypes relative to the susceptible genotype in response to P. cactorum after wounding. These included putative disease resistance (R) genes encoding receptor-like proteins, receptor-like kinases, nucleotide-binding sites, leucine-rich repeat proteins, RPW8-type disease resistance proteins, and 'pathogenesis-related protein 1'. Seven of these R-genes were expressed only in the resistant genotypes and not in the susceptible genotype, and these appeared to be present only in the genomes of the resistant genotypes, as confirmed by PCR analysis. We previously reported a single major gene locus RPc-1 (Resistance to Phytophthora cactorum 1) in F. vesca that contributed resistance to P. cactorum. Here, we report that 4-5% of the genes (35-38 of ca 800 genes) in the RPc-1 locus are differentially expressed in the resistant genotypes compared to the susceptible genotype after inoculation with P. cactorum. In particular, we identified three defence-related genes encoding wall-associated receptor-like kinase 3, receptor-like protein 12, and non-specific lipid-transfer protein 1-like that were highly expressed in the resistant genotypes compared to the susceptible one. The present study reports several novel candidate disease resistance genes that warrant further investigation for their role in plant defence against P. cactorum.
Collapse
Affiliation(s)
- Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Erik Lysøe
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Håvard Eikemo
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Jahn Davik
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| |
Collapse
|
34
|
Zhang H, Zhou J, Kou X, Liu Y, Zhao X, Qin G, Wang M, Qian G, Li W, Huang Y, Wang X, Zhao Z, Li S, Wu X, Jiang L, Feng X, Zhu JK, Li L. Syntaxin of plants71 plays essential roles in plant development and stress response via regulating pH homeostasis. FRONTIERS IN PLANT SCIENCE 2023; 14:1198353. [PMID: 37342145 PMCID: PMC10277689 DOI: 10.3389/fpls.2023.1198353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
SYP71, a plant-specific Qc-SNARE with multiple subcellular localization, is essential for symbiotic nitrogen fixation in nodules in Lotus, and is implicated in plant resistance to pathogenesis in rice, wheat and soybean. Arabidopsis SYP71 is proposed to participate in multiple membrane fusion steps during secretion. To date, the molecular mechanism underlying SYP71 regulation on plant development remains elusive. In this study, we clarified that AtSYP71 is essential for plant development and stress response, using techniques of cell biology, molecular biology, biochemistry, genetics, and transcriptomics. AtSYP71-knockout mutant atsyp71-1 was lethal at early development stage due to the failure of root elongation and albinism of the leaves. AtSYP71-knockdown mutants, atsyp71-2 and atsyp71-3, had short roots, delayed early development, and altered stress response. The cell wall structure and components changed significantly in atsyp71-2 due to disrupted cell wall biosynthesis and dynamics. Reactive oxygen species homeostasis and pH homeostasis were also collapsed in atsyp71-2. All these defects were likely resulted from blocked secretion pathway in the mutants. Strikingly, change of pH value significantly affected ROS homeostasis in atsyp71-2, suggesting interconnection between ROS and pH homeostasis. Furthermore, we identified AtSYP71 partners and propose that AtSYP71 forms distinct SNARE complexes to mediate multiple membrane fusion steps in secretory pathway. Our findings suggest that AtSYP71 plays an essential role in plant development and stress response via regulating pH homeostasis through secretory pathway.
Collapse
Affiliation(s)
- Hailong Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Jingwen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yuqi Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guochen Qin
- Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Peking University, Weifang, China
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wen Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongshun Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaoting Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoqian Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Lixi Jiang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
35
|
Zhou L, Ma Y, Zhong S, Cao J, Luo Y, Qu G. Phytohormone ethylene mediates oligogalacturonic acid-induced growth inhibition in tomato etiolated seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111643. [PMID: 36805420 DOI: 10.1016/j.plantsci.2023.111643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and immunity are tightly interconnected. Oligogalacturonic acids (OGs) are pectic fragments and have been well investigated in plant immunity as a damage-associated molecular pattern. However, little is known regarding how OGs affect plant growth. Here, we reveal that OGs inhibit the growth of intact etiolated seedling by using the horticultural crop tomato as a model. This inhibitory effect is partially suppressed by the action of ethylene biosynthesis inhibitors, or the gene silencing of SlACS2, an essential rate-limiting enzyme for ethylene biosynthesis, suggesting that SlACS2-mediated ethylene production promotes OG-induced growth inhibition. Furthermore, OGs treatment elevates the SlACS2 protein phosphorylation, and its decrease by the kinase inhibitor K252a partially rescue OG-induced growth inhibition, indicating that SlACS2 phosphorylation involves in OG-induced growth inhibition. Moreover, the mitogen-activated protein kinase SlMPK3 could be activated by OGs treatment and can directly phosphorylate SlACS2 in vitro, and the bimolecular fluorescence complementation combining with the yeast two-hybrid assay shows that SlMPK3 interacts with SlACS2, indicating that SlMPK3 may participate in modulating the OG-induced SlACS2 phosphorylation and growth inhibition. Our results reveal a regulatory mechanism at both the transcriptional and post-transcriptional levels by which OGs inhibit the growth of intact plant seedlings.
Collapse
Affiliation(s)
- Leilei Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yingxuan Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
36
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
37
|
Scortica A, Scafati V, Giovannoni M, Benedetti M, Mattei B. Radical cation scavenging activity of berberine bridge enzyme-like oligosaccharide oxidases acting on short cell wall fragments. Sci Rep 2023; 13:4123. [PMID: 36914850 PMCID: PMC10011498 DOI: 10.1038/s41598-023-31335-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Oligogalacturonide-oxidases (OGOXs) and cellodextrin-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide-oxidases (OSOXs) that oxidize, respectively, oligogalacturonides (OGs) and cellodextrins (CDs), thereby inactivating their elicitor nature and concomitantly releasing H2O2. Little is known about the physiological role of OSOX activity. By using an ABTS·+-reduction assay, we identified a novel reaction mechanism through which the activity of OSOXs on cell wall oligosaccharides scavenged the radical cation ABTS·+ with an efficiency dependent on the type and length of the oxidized oligosaccharide. In contrast to the oxidation of longer oligomers such as OGs (degree of polymerization from 10 to 15), the activity of OSOXs on short galacturonan- and cellulose-oligomers (degree of polymerization ≤ 4) successfully counteracted the radical cation-generating activity of a fungal laccase, suggesting that OSOXs can generate radical cation scavenging activity in the apoplast with a power proportional to the extent of degradation of the plant cell wall, with possible implications for redox homeostasis and defense against oxidative stress.
Collapse
Affiliation(s)
- Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
38
|
Bullones A, Castro AJ, Lima-Cabello E, Alché JDD, Luque F, Claros MG, Fernandez-Pozo N. OliveAtlas: A Gene Expression Atlas Tool for Olea europaea. PLANTS (BASEL, SWITZERLAND) 2023; 12:1274. [PMID: 36986964 PMCID: PMC10053119 DOI: 10.3390/plants12061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The olive (Olea europaea L.) is an ancient crop of great importance in the Mediterranean basin due to the production of olive oil and table olives, which are important sources of fat and have benefits for human health. This crop is expanding and increasing its production worldwide and five olive genomes have recently been sequenced, representing a wild olive and important cultivars in terms of olive oil production, intensive agriculture, and adaptation to the East Asian climate. However, few bioinformatic and genomic resources are available to assist olive research and breeding, and there are no platforms to query olive gene expression data. Here, we present OliveAtlas, an interactive gene expression atlas for olive with multiple bioinformatics tools and visualization methods, enabling multiple gene comparison, replicate inspection, gene set enrichment, and data downloading. It contains 70 RNA-seq experiments, organized in 10 data sets representing the main olive plant organs, the pollen germination and pollen tube elongation process, and the response to a collection of biotic and abiotic stresses, among other experimental conditions. OliveAtlas is a web tool based on easyGDB with expression data based on the 'Picual' genome reference and gene annotation.
Collapse
Affiliation(s)
- Amanda Bullones
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Málaga (UMA), 29010 Málaga, Spain
| | - Antonio Jesús Castro
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Elena Lima-Cabello
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Imaging Laboratory (BReMAP), Estación Experimental del Zaidín (CSIC), 18008 Granada, Spain
| | - Francisco Luque
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva, Departamento de Biología Experimental, Universidad de Jaén (UJA), 23071 Jaén, Spain
| | - Manuel Gonzalo Claros
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Institute of Biomedical Research in Málaga (IBIMA), IBIMA-RARE, 29010 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), 29071 Málaga, Spain
| | - Noe Fernandez-Pozo
- Institute for Mediterranean and Subtropical Horticulture “La Mayora” (IHSM-CSIC-UMA), 29010 Málaga, Spain
| |
Collapse
|
39
|
Martín-Dacal M, Fernández-Calvo P, Jiménez-Sandoval P, López G, Garrido-Arandía M, Rebaque D, Del Hierro I, Berlanga DJ, Torres MÁ, Kumar V, Mélida H, Pacios LF, Santiago J, Molina A. Arabidopsis immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:833-850. [PMID: 36582174 DOI: 10.1111/tpj.16088] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 05/20/2023]
Abstract
The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked β-1,3/β-1,4-glucans (MLGs; e.g. β-1,4-D-(Glc)2 -β-1,3-D-Glc, MLG43) and cellulose (e.g. β-1,4-D-(Glc)3 , CEL3). The mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin oligosaccharides (e.g. β-1,4-d-(GlcNAc)6 , CHI6), which involve several receptor kinase proteins (RKs) with LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by CHI6. igp1-igp4 are altered in three RKs - AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4) - with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECD-RKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant KD = 1.19 ± 0.03 μm) and cellopentaose (KD = 1.40 ± 0.01 μM), but not to MLG43, supporting its function as a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are components of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and downstream PTI activation in Arabidopsis.
Collapse
Affiliation(s)
- Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Pedro Jiménez-Sandoval
- University of Lausanne (UNIL), Biophore Building, Départament de Biologie Moléculaire Végétale (DBMV), UNIL Sorge, CH-1015, Lausanne, Switzerland
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - María Garrido-Arandía
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Diego Rebaque
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Irene Del Hierro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Varun Kumar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Julia Santiago
- University of Lausanne (UNIL), Biophore Building, Départament de Biologie Moléculaire Végétale (DBMV), UNIL Sorge, CH-1015, Lausanne, Switzerland
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
40
|
Frezzini M, Scortica A, Capone M, Narzi D, Benedetti M, Angelucci F, Mattei B, Guidoni L. Molecular dynamics simulations and kinetic measurements provide insights into the structural requirements of substrate size-dependent specificity of oligogalacturonide oxidase 1 (OGOX1). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:315-325. [PMID: 36455304 DOI: 10.1016/j.plaphy.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Oligogalacturonides (OGs) are pectin fragments released from the breakdown of the homogalacturonan during pathogenesis that act as Damage-Associated Molecular Patterns. OG-oxidase 1 (OGOX1) is an Arabidopsis berberine bridge enzyme-like (BBE-l) oligosaccharide oxidase that oxidizes OGs, impairing their elicitor activity and concomitantly releasing H2O2. The OG-oxidizing activity of OGOX1 is markedly pH-dependent, with optimum pH around 10, and is higher towards OGs with a degree of polymerization higher than two. Here, the molecular determinants of OGOX1 responsible for the binding of OGs with different lengths have been investigated through molecular dynamics simulations and enzyme kinetics studies. OGOX1 was simulated in complex with OGs with different degree of polymerization such as di-, tri-, tetra- and penta-galacturonide, in water solution at alkaline pH. Our simulations revealed that, among the four OGOX1/OG combinations, the penta-galacturonide (OG5) showed the best conformation in the active site to be efficiently oxidized by OGOX1. The optimal conformation can be stabilized by salt-bridges formed between the carboxyl groups of OG5 and five positively charged amino acids of OGOX1, highly conserved in all OGOX paralogs. Our results suggest that these interactions limit the mobility of OG5 as well as longer OGs, contributing to maintain the terminal monomer of OGs in the optimal orientation in order to be oxidized by the enzyme. In accordance with these results, the enzyme efficiency (Kcat/KM) of OGOX1 on OG5 (40.04) was found to be significantly higher than that on OG4 (13.05) and OG3 (0.6).
Collapse
Affiliation(s)
- Mario Frezzini
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Matteo Capone
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Daniele Narzi
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| | - Leonardo Guidoni
- Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
| |
Collapse
|
41
|
Swaminathan S, Lionetti V, Zabotina OA. Plant Cell Wall Integrity Perturbations and Priming for Defense. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243539. [PMID: 36559656 PMCID: PMC9781063 DOI: 10.3390/plants11243539] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 05/13/2023]
Abstract
A plant cell wall is a highly complex structure consisting of networks of polysaccharides, proteins, and polyphenols that dynamically change during growth and development in various tissues. The cell wall not only acts as a physical barrier but also dynamically responds to disturbances caused by biotic and abiotic stresses. Plants have well-established surveillance mechanisms to detect any cell wall perturbations. Specific immune signaling pathways are triggered to contrast biotic or abiotic forces, including cascades dedicated to reinforcing the cell wall structure. This review summarizes the recent developments in molecular mechanisms underlying maintenance of cell wall integrity in plant-pathogen and parasitic interactions. Subjects such as the effect of altered expression of endogenous plant cell-wall-related genes or apoplastic expression of microbial cell-wall-modifying enzymes on cell wall integrity are covered. Targeted genetic modifications as a tool to study the potential of cell wall elicitors, priming of signaling pathways, and the outcome of disease resistance phenotypes are also discussed. The prime importance of understanding the intricate details and complete picture of plant immunity emerges, ultimately to engineer new strategies to improve crop productivity and sustainability.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Olga A. Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
42
|
Acharya U, Das T, Ghosh Z, Ghosh A. Defense Surveillance System at the Interface: Response of Rice Towards Rhizoctonia solani During Sheath Blight Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1081-1095. [PMID: 36000178 DOI: 10.1094/mpmi-07-22-0153-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sheath blight of rice caused by necrotrophic plant pathogen Rhizoctonia solani is one of the most common fungal diseases of rice leading to significant yield loss. Among the defense responses exhibited by the host plants towards fungal infections, those functional within the apoplast contribute significantly. Here, we have studied apoplastic defense response of rice towards R. solani during sheath blight infection. The transcriptome of R. solani-infected rice plants was compared with that of uninfected rice, to identify the set of defense genes that undergo differential expression and code for proteins with a predicted N-terminal signal peptide. Significant changes in the stress-responsive, molecular signal perception, protein modification, and metabolic process pathways represented by a group of differentially expressed genes were observed. Our data also revealed two secreted protease inhibitors from rice that exhibit increased expression during R. solani infection and induce disease resistance when expressed in Nicotiana benthamiana. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Udita Acharya
- Division of Plant Biology, Bose Institute, Kolkata, India
| | - Troyee Das
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Zhumur Ghosh
- Division of Bioinformatics, Bose Institute, Kolkata, India
| | - Anupama Ghosh
- Division of Plant Biology, Bose Institute, Kolkata, India
| |
Collapse
|
43
|
Scortica A, Giovannoni M, Scafati V, Angelucci F, Cervone F, De Lorenzo G, Benedetti M, Mattei B. Berberine Bridge Enzyme-like Oligosaccharide Oxidases Act as Enzymatic Transducers Between Microbial Glycoside Hydrolases and Plant Peroxidases. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:881-886. [PMID: 35704684 DOI: 10.1094/mpmi-05-22-0113-ta] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oligogalacturonide (OG)-oxidase 1 (OGOX1) and cellodextrin (CD)-oxidase (CELLOX) are plant berberine bridge enzyme-like oligosaccharide oxidases that oxidize OGs and CDs, cell-wall fragments with the nature of damage-associated molecular patterns. The oxidation of OGs and CDs attenuates their elicitor activity and concomitantly releases H2O2. By using a multiple enzyme-based assay, we demonstrate that the H2O2 generated downstream of the combined action between a fungal polygalacturonase and OGOX1 or an endoglucanase and CELLOX can be directed by plant peroxidases (PODs) either towards a reaction possibly involved in plant defense, such as the oxidation of monolignol or a reaction possibly involved in a developmental event, such as the oxidation of auxin (indole-3-acetic acid), pointing to OGOX1 and CELLOX as enzymatic transducers between microbial glycoside hydrolases and plant PODs. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Anna Scortica
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Valentina Scafati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Felice Cervone
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
44
|
Chen Q, Li J, Liu G, Lu X, Chen K, Tian J, Liang C. A Berberine Bridge Enzyme-Like Protein, GmBBE-like43, Confers Soybean's Coordinated Adaptation to Aluminum Toxicity and Phosphorus Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:947986. [PMID: 36003807 PMCID: PMC9393741 DOI: 10.3389/fpls.2022.947986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and are two major limiting factors for crop production in acid soils. The purpose of this study was to characterize the function of GmBBE-like43, a berberine bridge enzyme-like protein-encoding gene, in soybean (Glycine max) adaptation to Al and low P stresses. Present quantitative real-time PCR (qRT-PCR) assays confirmed the phosphate (Pi)-starvation enhanced and Al-stress up-regulated expression pattern of GmBBE-like43 in soybean roots. Meanwhile, the expression of a GmBBE-like43-GFP chimera in both common bean hairy roots and tobacco leaves demonstrated its cell wall localization. Moreover, both transgenic Arabidopsis and soybean hairy roots revealed the function of GmBBE-like43 in promoting root growth under both Al and low P stresses. GmBBE-like43-overexpression also resulted in more H2O2 production on transgenic soybean hairy root surface with oligogalacturonides (OGs) application and antagonized the effects of Al on the expression of two SAUR-like genes. Taken together, our results suggest that GmBBE-like43 might be involved in the soybean's coordinated adaptation to Al toxicity and Pi starvation through modulation of OGs-oxidation in the cell wall.
Collapse
|
45
|
Baez LA, Tichá T, Hamann T. Cell wall integrity regulation across plant species. PLANT MOLECULAR BIOLOGY 2022; 109:483-504. [PMID: 35674976 PMCID: PMC9213367 DOI: 10.1007/s11103-022-01284-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Tereza Tichá
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
46
|
Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth C, Feussner I, Vlot AC, Wiermer M, Haughn G, Ischebeck T. Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against Botrytis cinerea. PLANT PHYSIOLOGY 2022; 189:1794-1813. [PMID: 35485198 PMCID: PMC9237713 DOI: 10.1093/plphys/kiac165] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 05/15/2023]
Abstract
Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.
Collapse
Affiliation(s)
| | - Robert McGee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
| | | | - Kornelia Bauer
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- UMK Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
- Freie Universität Berlin, Institute of Biology, Dahlem Centre of Plant Sciences, Biochemistry of Plant-Microbe Interactions, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
47
|
Plant immunity by damage-associated molecular patterns (DAMPs). Essays Biochem 2022; 66:459-469. [PMID: 35612381 DOI: 10.1042/ebc20210087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Recognition by plant receptors of microbe-associated molecular patterns (MAMPs) and pathogenicity effectors activates immunity. However, before evolving the capacity of perceiving and responding to MAMPs and pathogenicity factors, plants, like animals, must have faced the necessity to protect and repair the mechanical wounds used by pathogens as an easy passage into their tissue. Consequently, plants evolved the capacity to react to damage-associated molecular patterns (DAMPs) with responses capable of functioning also in the absence of pathogens. DAMPs include not only primarily cell wall (CW) fragments but also extracellular peptides, nucleotides and amino acids that activate both local and long-distance systemic responses and, in some cases, prime the subsequent responses to MAMPs. It is conceivable that DAMPs and MAMPs act in synergy to activate a stronger plant immunity and that MAMPs exploit the mechanisms and transduction pathways traced by DAMPs. The interest for the biology and mechanism of action of DAMPs, either in the plant or animal kingdom, is expected to substantially increase in the next future. This review focuses on the most recent advances in DAMPs biology, particularly in the field of CW-derived DAMPs.
Collapse
|
48
|
Ollivier R, Glory I, Cloteau R, Le Gallic JF, Denis G, Morlière S, Miteul H, Rivière JP, Lesné A, Klein A, Aubert G, Kreplak J, Burstin J, Pilet-Nayel ML, Simon JC, Sugio A. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1511-1528. [PMID: 35192006 DOI: 10.1007/s00122-022-04050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE A genome-wide association study for pea resistance against a pea-adapted biotype and a non-adapted biotype of the aphid, Acyrthosiphon pisum, identified a genomic region conferring resistance to both biotypes. In a context of reduced insecticide use, the development of cultivars resistant to insect pests is crucial for an integrated pest management. Pea (Pisum sativum) is a crop of major importance among cultivated legumes, for the supply of dietary proteins and nitrogen in low-input cropping systems. However, yields of the pea crop have become unstable due to plant parasites. The pea aphid (Acyrthosiphon pisum) is an insect pest species forming a complex of biotypes, each one adapted to feed on one or a few related legume species. This study aimed to identify resistance to A. pisum and the underlying genetic determinism by examining a collection of 240 pea genotypes. The collection was screened against a pea-adapted biotype and a non-adapted biotype of A. pisum to characterize their resistant phenotype. Partial resistance was observed in some pea genotypes exposed to the pea-adapted biotype. Many pea genotypes were completely resistant to non-adapted biotype, but some exhibited partial susceptibility. A genome-wide association study, using pea exome-capture sequencing data, enabled the identification of the major-effect quantitative trait locus ApRVII on the chromosome 7. ApRVII includes linkage disequilibrium blocks significantly associated with resistance to one or both of the two aphid biotypes studied. Finally, we identified candidate genes underlying ApRVII that are potentially involved in plant-aphid interactions and marker haplotypes linked with aphid resistance. This study sets the ground for the functional characterization of molecular pathways involved in pea defence to the aphids but also is a step forward for breeding aphid-resistant cultivars.
Collapse
Affiliation(s)
- Rémi Ollivier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Romuald Cloteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Gaëtan Denis
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Anthony Klein
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Grégoire Aubert
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.
| |
Collapse
|
49
|
Dora S, Terrett OM, Sánchez-Rodríguez C. Plant-microbe interactions in the apoplast: Communication at the plant cell wall. THE PLANT CELL 2022; 34:1532-1550. [PMID: 35157079 PMCID: PMC9048882 DOI: 10.1093/plcell/koac040] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/29/2022] [Indexed: 05/20/2023]
Abstract
The apoplast is a continuous plant compartment that connects cells between tissues and organs and is one of the first sites of interaction between plants and microbes. The plant cell wall occupies most of the apoplast and is composed of polysaccharides and associated proteins and ions. This dynamic part of the cell constitutes an essential physical barrier and a source of nutrients for the microbe. At the same time, the plant cell wall serves important functions in the interkingdom detection, recognition, and response to other organisms. Thus, both plant and microbe modify the plant cell wall and its environment in versatile ways to benefit from the interaction. We discuss here crucial processes occurring at the plant cell wall during the contact and communication between microbe and plant. Finally, we argue that these local and dynamic changes need to be considered to fully understand plant-microbe interactions.
Collapse
|
50
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|