1
|
Liang G, Gao C, Wu J, Hu G, Li X, Liu L. Enhancing electron transfer efficiency in microbial electrochemical systems for bioelectricity and chemical production. BIORESOURCE TECHNOLOGY 2025; 428:132445. [PMID: 40147568 DOI: 10.1016/j.biortech.2025.132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Microbial electrochemical systems have emerged as promising platforms for chemical production and bioelectricity generation by utilizing cost-effective substrates. However, their performance is limited by the efficiency of both intracellular and extracellular electron transfer. This review systematically summarizes strategies to enhance electron transfer from a microbial perspective, including improvements in extracellular electron transfer, intracellular electron regeneration, and the establishment of electroactive microbial consortia. In addition, the working mechanisms and limitations of these strategies are analyzed. Furthermore, the potential applications of microbial electrochemical systems in bioelectricity production, chemical synthesis, and industrial-scale applications are explored. Finally, the current challenges of microbial electrochemical systems are discussed, and potential solutions are proposed to advance their practical applications.
Collapse
Affiliation(s)
- Guangjie Liang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Fu S, Ma K, Song X, Sun T, Chen L, Zhang W. Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes. Int J Mol Sci 2025; 26:3116. [PMID: 40243859 PMCID: PMC11989218 DOI: 10.3390/ijms26073116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, systems biology, and engineering principles to provide a powerful tool for elucidating photosynthetic mechanisms and rationally optimizing photosynthetic platforms. This review summarizes recent advancements in regulating photosynthesis in cyanobacteria and microalgae via synthetic biology, focusing on strategies to enhance light energy absorption, optimize electron transport chains, and improve carbon assimilation. Furthermore, we discuss key challenges in translating these genetic modifications to large-scale bioproduction, highlighting specific bottlenecks in strain stability, metabolic burden, and process scalability. Finally, we propose potential solutions, such as AI-assisted metabolic engineering, synthetic microbial consortia, and next-generation photobioreactor designs, to overcome these limitations. Overall, while synthetic biology holds great promise for enhancing photosynthetic efficiency in cyanobacteria and microalgae, further research is needed to refine genetic strategies and develop scalable production systems.
Collapse
Affiliation(s)
- Shujin Fu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyu Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Tao Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Li C, Du M, Han Y, Sun W, Chen Z, Liu Q, Zhu H, Zhao L, Li S, Wang J. Microalgae in health care and functional foods: β-glucan applications, innovations in drug delivery and synthetic biology. Front Pharmacol 2025; 16:1557298. [PMID: 40103595 PMCID: PMC11913682 DOI: 10.3389/fphar.2025.1557298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Microalgae are emerging as a key player in healthcare, functional foods, and sustainable biotech due to their capacity to produce bioactive compounds like β-glucans, omega-3 fatty acids, and antioxidants in an eco-friendly manner. This review comprehensively discusses the role of microalgae in healthcare and functional foods, focusing particularly on β-glucan therapeutics, drug delivery innovations, and synthetic biology applications. In healthcare, microalgae-derived compounds show immense promise for treating diseases, boosting immunity, and tackling oxidative stress. Euglena-derived paramylon, a type of β-glucan, has shown potential in various medical applications, including immunomodulation and anticancer therapy. Synthetic biology and bioprocess engineering are enhancing microalgae's therapeutic and nutritional value, with applications in drug delivery and personalized medicine. To maximize the potential of microalgae, further research and development are needed to address scalability, regulatory alignment, and consumer acceptance, with a focus on interdisciplinary collaboration and sustainable practices to align healthcare innovation with environmental conservation.
Collapse
Affiliation(s)
- Chao Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yujie Han
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wentao Sun
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Dou B, Li Y, Wang F, Chen L, Zhang W. Chassis engineering for high light tolerance in microalgae and cyanobacteria. Crit Rev Biotechnol 2025; 45:257-275. [PMID: 38987975 DOI: 10.1080/07388551.2024.2357368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Oxygenic photosynthesis in microalgae and cyanobacteria is considered an important chassis to accelerate energy transition and mitigate global warming. Currently, cultivation systems for photosynthetic microbes for large-scale applications encountered excessive light exposure stress. High light stress can: affect photosynthetic efficiency, reduce productivity, limit cell growth, and even cause cell death. Deciphering photoprotection mechanisms and constructing high-light tolerant chassis have been recent research focuses. In this review, we first briefly introduce the self-protection mechanisms of common microalgae and cyanobacteria in response to high light stress. These mechanisms mainly include: avoiding excess light absorption, dissipating excess excitation energy, quenching excessive high-energy electrons, ROS detoxification, and PSII repair. We focus on the species-specific differences in these mechanisms as well as recent advancements. Then, we review engineering strategies for creating high-light tolerant chassis, such as: reducing the size of the light-harvesting antenna, optimizing non-photochemical quenching, optimizing photosynthetic electron transport, and enhancing PSII repair. Finally, we propose a comprehensive exploration of mechanisms: underlying identified high light tolerant chassis, identification of new genes pertinent to high light tolerance using innovative methodologies, harnessing CRISPR systems and artificial intelligence for chassis engineering modification, and introducing plant photoprotection mechanisms as future research directions.
Collapse
Affiliation(s)
- Biyun Dou
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Yang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
5
|
Csepregi K, Rácz A, Czégény G, Hideg É. Possible lessons of a model experiment: To what extent can UV activate the production of leaf phenolics in indoor plant cultivation? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109333. [PMID: 39608338 DOI: 10.1016/j.plaphy.2024.109333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
Tobacco (Nicotiana tabacum L.) plants were grown outdoors (N°46.07, E°18.18) under either natural or UV-deprived sunlight for 25 days in the summer. High PAR resulted in high polyphenol content, which was selectively affected by solar UV-A and UV-B irradiation. Solar UV-A irradiation increased anthocyanins, but not flavonoids, in the epidermis, and this additional protection resulted in higher photochemical yields and lower NPQ. The simultaneous presence of UV-B overrode the effects of UV-A, increased epidermal flavonoids, and decreased anthocyanins. Leaves grown in full sunlight had the same photochemical yields of NPQ as those grown under a UV-excluding filter. A combination of these effects can falsely dismiss the effects of UV-B on outdoor photosynthesis. Phenolic acid content, corresponding to approximately 80% of phenolic compounds, did not depend on solar UV, and total flavonoids increased under full solar UV irradiation, but not under UV-A only. The polyphenol content in outdoor leaves also served as a reference point for an indoor experiment, which showed that even a short, 4-day exposure of low PAR grown plants to UV from an artificial source increased the amount of some, although not all, components close to or even above outdoor levels. In indoor leaves, a selective increase in quercetin glycosides (to 62-85% of outdoor levels) supports both enzymatic and non-enzymatic antioxidant functions, and the increase in crypto- and neochlorogenic acids (to 76% and 117% of outdoor levels, respectively) suggests a redistribution among biosynthesis pathways. These results demonstrate the potential and efficiency of cultivation systems without sunlight.
Collapse
Affiliation(s)
| | - Arnold Rácz
- Department of Plant Biology, University of Pécs, Hungary
| | - Gyula Czégény
- Department of Plant Biology, University of Pécs, Hungary
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Hungary.
| |
Collapse
|
6
|
Gates C, Ananyev G, Foflonker F, Bhattacharya D, Dismukes GC. Exceptional Quantum Efficiency Powers Biomass Production in Halotolerant Algae Picochlorum sp. . PHOTOSYNTHESIS RESEARCH 2024; 162:439-457. [PMID: 38329705 DOI: 10.1007/s11120-024-01075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
The green algal genus Picochlorum is of biotechnological interest because of its robust response to multiple environmental stresses. We compared the metabolic performance of P. SE3 and P. oklahomense to diverse microbial phototrophs and observed exceptional performance of photosystem II (PSII) in light energy conversion in both Picochlorum species. The quantum yield (QY) for O2 evolution is the highest of any phototroph yet observed, 32% (20%) by P. SE3 (P. okl) when normalized to total PSII subunit PsbA (D1) protein, and 80% (75%) normalized per active PSII, respectively. Three factors contribute: (1) an efficient water oxidizing complex (WOC) with the fewest photochemical misses of any organism; (2) faster reoxidation of reduced (PQH2)B in P. SE3 than in P. okl. (period-2 Fourier amplitude); and (3) rapid reoxidation of the plastoquinol pool by downstream electron carriers (Cyt b6f/PETC) that regenerates PQ faster in P. SE3. This performance gain is achieved without significant residue changes around the QB site and thus points to a pull mechanism involving faster PQH2 reoxidation by Cyt b6f/PETC that offsets charge recombination. This high flux in P. SE3 may be explained by genomically encoded plastoquinol terminal oxidases 1 and 2, whereas P. oklahomense has neither. Our results suggest two distinct types of PSII centers exist, one specializing in linear electron flow and the other in PSII-cyclic electron flow. Several amino acids within D1 differ from those in the low-light-descended D1 sequences conserved in Viridiplantae, and more closely match those in cyanobacterial high-light D1 isoforms, including changes near tyrosine Yz and a water/proton channel near the WOC. These residue changes may contribute to the exceptional performance of Picochlorum at high-light intensities by increasing the water oxidation efficiency and the electron/proton flux through the PSII acceptors (QAQB).
Collapse
Affiliation(s)
- Colin Gates
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
- Department of Computational Biology and Molecular Biophysics Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Gennady Ananyev
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - Fatima Foflonker
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA, 30314, USA
| | - Debashish Bhattacharya
- Department of Computational Biology and Molecular Biophysics Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - G Charles Dismukes
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA.
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA.
| |
Collapse
|
7
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
8
|
Sharma A, Maurya N, Sundaram S. Investigation of the toxicity of Cr (VI) against cyanobacteria and the mechanism of tolerance of the cyanobacterial consortia: a quantum mechanical approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50478-50492. [PMID: 39096455 DOI: 10.1007/s11356-024-34589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Hexavalent chromium (Cr (VI)) is a heavy metal that is distributed globally and poses a significant threat to the environment through various mechanisms. It can react with soil and water, leading to severe environmental damage. In this study, the toxicity of Cr (VI) was investigated by analyzing two major cyanobacteria species, Nostoc commune and Anabaena variabilis, commonly found in soil along with their consortia. The findings revealed that the toxicity mechanisms of Cr (VI) differed in individual monocultures, with Cr (VI) competing with various components. However, when the cyanobacteria species were combined, i.e., in consortia, they demonstrated an impressive retention of their functioning even in Cr (VI) concentration at 10 ppm. The study also concluded that non-photochemical quenching played a critical role in minimizing Cr (VI) toxicity. Furthermore, the research examined the role of the S-cycle in the process. The quantum yield of electron flux revealed that the Cr (VI) was competing with Qa in A. variabilis and with Qb in N. commune, albeit the photosystem dysfunction is only visible in the latter. The mechanism seemed to be quantum tunneling alteration because of the Cr (VI) having different energized quantum wells. The consortia proved to be behaving in a better manner as compared to the control. Overall, this study reveals the mode of toxicity of Cr (VI) in these two important cyanobacterial strains as well as it also discusses the mechanism of tolerance of consortia against Cr (VI) toxicity.
Collapse
Affiliation(s)
- Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Neetu Maurya
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
| |
Collapse
|
9
|
Zhou Y, Chen X, Zhu Y, Pan X, Li W, Han J. Mechanisms of hormetic effects of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172856. [PMID: 38697534 DOI: 10.1016/j.scitotenv.2024.172856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 μg/L and 20.08 % by 15.78 μg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
| | - Xinyang Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
10
|
Lu H, Xiao Y, Liu Y, Zhang J, Zhao Y. Integrative Transcriptomics and Proteomics Analysis of a Cotton Mutant yl1 with a Chlorophyll-Reduced Leaf. PLANTS (BASEL, SWITZERLAND) 2024; 13:1789. [PMID: 38999629 PMCID: PMC11244299 DOI: 10.3390/plants13131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024]
Abstract
Leaf color mutants serve as ideal materials for studying photosynthesis, chlorophyll metabolism, and other physiological processes. Here, we identified a spontaneous yellow-leaf mutant (yl1) with chlorophyll-reduced leaves from G. hirsutum L. cv ZM24. Compare to wild type ZM24 with green leaves, yl1 exhibited patchy yellow leaves and reduced chlorophyll content. To further explore the mechanisms of the patchy yellow phenotype of the mutant plant, the transcriptomics and proteomics profiles were conducted for the mutant and wild types. A total of 9247 differentially expressed genes (DEGs) and 1368 differentially accumulated proteins (DAPs) were identified. Following gene ontology (GO) annotation and KEGG enrichment, the DEGs/DAPs were found to be significantly involved in multiple important pathways, including the obsolete oxidation-reduction process, photosynthesis, light-harvesting, the microtubule-based process, cell redox homeostasis, and the carbohydrate metabolic process. In photosynthesis and the light-harvesting pathway, a total of 39 DAPs/DEGs were identified, including 9 genes in the PSI, 7 genes in the PS II, 9 genes in the light-harvesting chlorophyll protein complex (LHC), 10 genes in the PsbP family, and 4 genes in the cytochrome b6/f complex. To validate the reliability of the omics data, GhPPD1, a DAPs in the PsbP family, was knocked down in cotton using the TRV-based VIGS system, and it was observed that the GhPPD1-silenced plants exhibited patchy yellow color, accompanied by a significant decrease in chlorophyll content. In conclusion, this study integrated transcriptomic and proteomic approaches to gain a deeper understanding of the mechanisms underlying the chlorophyll-reduced leaf phenotype.
Collapse
Affiliation(s)
- Hejun Lu
- Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuyang Xiao
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuxin Liu
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiachen Zhang
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Lab, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
11
|
Udaypal, Goswami RK, Mehariya S, Verma P. Advances in microalgae-based carbon sequestration: Current status and future perspectives. ENVIRONMENTAL RESEARCH 2024; 249:118397. [PMID: 38309563 DOI: 10.1016/j.envres.2024.118397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The advancement in carbon dioxide (CO2) sequestration technology has received significant attention due to the adverse effects of CO2 on climate. The mitigation of the adverse effects of CO2 can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO2 in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO2 sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO2 sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO2 sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO2 emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO2 sequestration and integrate value-added compound production, creating a green and economically profitable process.
Collapse
Affiliation(s)
- Udaypal
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
12
|
Zhan D, Liu Y, Yu N, Hao C. Photosynthetic response of Chlamydomonas reinhardtii and Chlamydomonas sp. 1710 to zinc toxicity. Front Microbiol 2024; 15:1383360. [PMID: 38650883 PMCID: PMC11033396 DOI: 10.3389/fmicb.2024.1383360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Zinc (Zn) is an essential trace element but can lead to water contamination and ecological deterioration when present in excessive amounts. Therefore, investigating the photosynthetic response of microalgae to Zn stress is of great significance. In this study, we assessed the photosynthetic responses of neutrophilic Chlamydomonas reinhardtii and acidophilic Chlamydomonas sp. 1710 to Zn exposure for 96 h. The specific growth rate (μ), chlorophyll-a (Chl-a) content, and chlorophyll fluorescence parameters were determined. The results demonstrated that Chlamydomonas sp. 1710 was much more tolerant to Zn than C. reinhardtii, with the half-maximal inhibitory concentration (IC50) values of 225.4 mg/L and 23.4 mg/L, respectively. The μ and Chl-a content of C. reinhardtii decreased in the presence of 15 mg/L Zn, whereas those of Chlamydomonas sp. 1710 were unaffected by as high as 100 mg/L Zn. Chlorophyll fluorescence parameters indicated that the regulation of energy dissipation, including non-photochemical quenching, played a crucial role in Zn stress resistance for both Chlamydomonas strains. However, in the case of C. reinhardtii, non-photochemical quenching was inhibited by 5 mg/L Zn in the first 48 h, whereas for Chlamydomonas sp. 1710, it remained unaffected under 100 mg/L Zn. Chlamydomonas sp. 1710 also exhibited a 20 times stronger capacity for regulating the electron transfer rate than C. reinhardtii under Zn stress. The light energy utilization efficiency (α) of Chlamydomonas sp. 1710 had the most highly non-linear correlation with μ, indicating the energy utilization and regulation process of Chlamydomonas sp. 1710 was well protected under Zn stress. Collectively, our findings demonstrate that the photosystem of Chlamydomonas sp. 1710 is much more resilient and tolerant than that of C. reinhardtii under Zn stress.
Collapse
Affiliation(s)
- Di Zhan
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| | - Yue Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Na Yu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Chunbo Hao
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| |
Collapse
|
13
|
Xu P, Shao S, Qian J, Li J, Xu R, Liu J, Zhou W. Scale-up of microalgal systems for decarbonization and bioproducts: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 398:130528. [PMID: 38437968 DOI: 10.1016/j.biortech.2024.130528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The threat of global climate change presents a significant challenge for humanity. Microalgae-based carbon capture and utilization (CCU) technology has emerged as a promising solution to this global issue. This review aims to comprehensively evaluate the current advancements in scale-up of microalgae cultivation and its applications, specifically focusing on decarbonization from flue gases, organic wastewater remediation, and biogas upgrading. The study identifies critical challenges that need to be addressed during the scale-up process and evaluates the economic viability of microalgal CCU within the carbon market. Additionally, it analyzes the commercial status of microalgae-derived products and highlights those with high market demand. This review serves as a crucial resource for researchers, industry professionals, and policymakers to develop and implement innovative approaches to enhance the efficiency of microalgae-based CO2 utilization while addressing the challenges associated with the scale-up of microalgae technologies.
Collapse
Affiliation(s)
- Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd, Nanchang 330096, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
14
|
Cano M, Krishnan A, Karns DA, Likhogrud MA, Weissman JC, Posewitz MC. Cas9 deletion of lutein biosynthesis in the marine alga Picochlorum celeri reduces photosynthetic pigments while sustaining high biomass productivity. Front Bioeng Biotechnol 2024; 11:1332461. [PMID: 38274009 PMCID: PMC10808502 DOI: 10.3389/fbioe.2023.1332461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Domestication of algae for food and renewable biofuels remains limited by the low photosynthetic efficiencies of processes that have evolved to be competitive for optimal light capture, incentivizing the development of large antennas in light-limiting conditions, thus decreasing efficient light utilization in cultivated ponds or photobioreactors. Reducing the pigment content to improve biomass productivity has been a strategy discussed for several decades and the ability to reduce pigment significantly is now fully at hand thanks to the widespread use of genome editing tools. Picochlorum celeri is one of the fastest growing marine algae identified and holds particular promise for outdoor cultivation, especially in saline water and warm climates. We show that while chlorophyll b is essential to sustain high biomass productivities under dense cultivation, removing Picochlorum celeri's main carotenoid, lutein, leads to a decreased total chlorophyll content, higher a/b ratio, reduced functional LHCII cross section and higher maximum quantum efficiencies at lower light intensities, resulting in an incremental increase in biomass productivity and increased PAR-to-biomass conversion efficiency. These findings further strengthen the existing strategies to improve photosynthetic efficiency and biomass production in algae.
Collapse
Affiliation(s)
- Melissa Cano
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| | - Anagha Krishnan
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| | - Devin A. Karns
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| | - Maria A. Likhogrud
- ExxonMobil Technology and Engineering Company, Annandale, NJ, United States
| | - Joseph C. Weissman
- ExxonMobil Technology and Engineering Company, Annandale, NJ, United States
| | - Matthew C. Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
15
|
Sartori RB, Deprá MC, Dias RR, Fagundes MB, Zepka LQ, Jacob-Lopes E. The Role of Light on the Microalgae Biotechnology: Fundamentals, Technological Approaches, and Sustainability Issues. Recent Pat Biotechnol 2024; 18:22-51. [PMID: 38205773 DOI: 10.2174/1872208317666230504104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 01/12/2024]
Abstract
Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.
Collapse
Affiliation(s)
- Rafaela Basso Sartori
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariany Costa Deprá
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Rosangela Rodrigues Dias
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariane Bittencourt Fagundes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Leila Queiroz Zepka
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
16
|
Mutale-Joan C, El Arroussi H. Biotechnological strategies overcoming limitations to H. pluvialis-derived astaxanthin production and Morocco's potential. Crit Rev Food Sci Nutr 2023; 65:1404-1419. [PMID: 38145395 DOI: 10.1080/10408398.2023.2294163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Haematococcus pluvialis is the richest source of natural astaxanthin, but the production of H. pluvialis-derived astaxanthin is usually limited by its slow cell proliferation and astaxanthin accumulation. Efforts to enhance biomass productivity, astaxanthin accumulation, and extraction are ongoing. This review highlights different approaches that have previously been studied in microalgal species for enhanced biomass productivity, as well as optimized methods for astaxanthin accumulation and extraction, and how these methods could be combined to bypass the challenges limiting natural astaxanthin production, particularly in H. pluvialis, at all stages (biomass production, and astaxanthin accumulation and extraction). Biotechnological approaches, such as overexpressing low CO2 inducible genes, utilizing complementary carbon sources, CRISPR-Cas9 bioengineering, and the use of active compounds, for biomass productivity are outlined. Direct astaxanthin extraction from H. pluvialis zoospores and Morocco's potential for microalgal-based astaxanthin production are equally discussed. This review emphasizes the need to engineer an optimized H. pluvialis-derived astaxanthin production system combining two or more of these strategies for increased growth, and astaxanthin productivity, to compete in the larger, lower-priced market in aquaculture and nutraceutical sectors.
Collapse
Affiliation(s)
- Chanda Mutale-Joan
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
| | - Hicham El Arroussi
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
- AgroBioSciences (AgBS) program, Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
17
|
Rex M C, Mukherjee A. The comparative effects of visible light and UV-A radiation on the combined toxicity of P25 TiO 2 nanoparticles and polystyrene microplastics on Chlorella sp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122700-122716. [PMID: 37975986 DOI: 10.1007/s11356-023-30910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The ubiquitous presence of TiO2 nanoparticles (nTiO2) and microplastics (MPs) in marine ecosystems has raised serious concerns about their combined impact on marine biota. This study investigated the combined toxic effect of nTiO2 (1 mg/L) and NH2 and COOH surface functionalized polystyrene MPs (PSMPs) (2.5 and 10 mg/L) on Chlorella sp. All the experiments were carried out under both visible light and UV-A radiation conditions to elucidate the impact of light on the combined toxicity of these pollutants. Growth inhibition results indicated that pristine nTiO2 exhibited a more toxic effect (38%) under UV-A radiation when compared to visible light conditions (27%). However, no significant change in the growth inhibitory effects of pristine PSMPs was observed between visible light and UVA radiation conditions. The combined pollutants (nTiO2 + 10 mg/L PSMPs) under UV-A radiation exhibited more growth inhibition (nTiO2 + NH2 PSMPs 66%; nTiO2 + COOH PSMPs 50%) than under visible light conditions (nTiO2 + NH2 PSMPs 55%; TiO2 + COOH PSMPs 44%). Independent action modeling indicated that the mixture of nTiO2 with PSMPs (10 mg/L) exhibited an additive effect on the algal growth inhibition under both the light conditions. The photoactive nTiO2 promoted increased production of reactive oxygen species under UV-A exposure, resulting in cellular damage, lipid peroxidation, and impaired photosynthesis. The effects were more pronounced in case of the mixtures where PSMPs added to the oxidative stress. The toxic effects of the binary mixtures of nTiO2 and PSMPs were further confirmed through the field emission electron microscopy, revealing specific morphological abnormalities. This study provides valuable insights into the potential risks associated with the combination of nTiO2 and MPs in marine environments, considering the influence of environmentally relevant light conditions and the test medium.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | | |
Collapse
|
18
|
McQuillan JL, Cutolo EA, Evans C, Pandhal J. Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:166. [PMID: 37925447 PMCID: PMC10625216 DOI: 10.1186/s13068-023-02421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage. RESULTS Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics. Norflurazon- and high light-resistant C. reinhardtii mutants were screened to yield four mutant lines that produced significantly more lutein per cell compared to the CC-125 parental strain. Mutant 5 (Mut-5) exhibited a 5.4-fold increase in lutein content per cell, which to our knowledge is the highest fold increase of lutein in C. reinhardtii resulting from mutagenesis or metabolic engineering so far. Comparative proteomics of Mut-5 against its parental strain CC-125 revealed an increased abundance of light-harvesting complex-like proteins involved in photoprotection, among differences in pigment biosynthesis, central carbon metabolism, and translation. Further characterization of Mut-5 under varying light conditions revealed constitutive overexpression of the photoprotective proteins light-harvesting complex stress-related 1 (LHCSR1) and LHCSR3 and PSII subunit S regardless of light intensity, and increased accrual of total chlorophyll and carotenoids as light intensity increased. Although the photosynthetic efficiency of Mut-5 was comparatively lower than CC-125, the amplitude of non-photochemical quenching responses of Mut-5 was 4.5-fold higher than in CC-125 at low irradiance. CONCLUSIONS We used C. reinhardtii as a model green alga and identified light-harvesting complex-like proteins (among others) as potential metabolic engineering targets to enhance lutein accumulation in microalgae. These have the added value of imparting resistance to high light, although partially compromising photosynthetic efficiency. Further genetic characterization and engineering of Mut-5 could lead to the discovery of unknown players in photoprotective mechanisms and the development of a potent microalgal lutein production system.
Collapse
Affiliation(s)
- Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Caroline Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
19
|
Krishnan A, Cano M, Karns DA, Burch TA, Likhogrud M, Aqui M, Bailey S, Verruto J, Lambert W, Kuzminov F, Naghipor M, Wang Y, Ebmeier CC, Weissman JC, Posewitz MC. Simultaneous CAS9 editing of cp SRP43, LHCA6, and LHCA7 in Picochlorum celeri lowers chlorophyll levels and improves biomass productivity. PLANT DIRECT 2023; 7:e530. [PMID: 37711644 PMCID: PMC10497401 DOI: 10.1002/pld3.530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
High cellular pigment levels in dense microalgal cultures contribute to excess light absorption. To improve photosynthetic yields in the marine microalga Picochlorum celeri, CAS9 gene editing was used to target the molecular chaperone cpSRP43. Depigmented strains (>50% lower chlorophyll) were generated, with proteomics showing attenuated levels of most light harvesting complex (LHC) proteins. Gene editing generated two types of cpSRP43 transformants with distinct lower pigment phenotypes: (i) a transformant (Δsrp43) with both cpSRP43 diploid alleles modified to encode non-functional polypeptides and (ii) a transformant (STR30309) with a 3 nt in-frame insertion in one allele at the CAS9 cut site (non-functional second allele), leading to expression of a modified cpSRP43. STR30309 has more chlorophyll than Δsrp43 but substantially less than wild type. To further decrease light absorption by photosystem I in STR30309, CAS9 editing was used to stack in disruptions of both LHCA6 and LHCA7 to generate STR30843, which has higher (5-24%) productivities relative to wild type in solar-simulating bioreactors. Maximal productivities required frequent partial harvests throughout the day. For STR30843, exemplary diel bioreactor yields of ~50 g m-2 day-1 were attained. Our results demonstrate diel productivity gains in P. celeri by lowering pigment levels.
Collapse
Affiliation(s)
- Anagha Krishnan
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Melissa Cano
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Devin A. Karns
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Tyson A. Burch
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Maria Likhogrud
- ExxonMobil Technology and Engineering CompanyAnnandaleNew JerseyUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Agustinus B, Gillam EMJ. Solar-powered P450 catalysis: Engineering electron transfer pathways from photosynthesis to P450s. J Inorg Biochem 2023; 245:112242. [PMID: 37187017 DOI: 10.1016/j.jinorgbio.2023.112242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
With the increasing focus on green chemistry, biocatalysis is becoming more widely used in the pharmaceutical and other chemical industries for sustainable production of high value and structurally complex chemicals. Cytochrome P450 monooxygenases (P450s) are attractive biocatalysts for industrial application due to their ability to transform a huge range of substrates in a stereo- and regiospecific manner. However, despite their appeal, the industrial application of P450s is limited by their dependence on costly reduced nicotinamide adenine dinucleotide phosphate (NADPH) and one or more auxiliary redox partner proteins. Coupling P450s to the photosynthetic machinery of a plant allows photosynthetically-generated electrons to be used to drive catalysis, overcoming this cofactor dependency. Thus, photosynthetic organisms could serve as photobioreactors with the capability to produce value-added chemicals using only light, water, CO2 and an appropriate chemical as substrate for the reaction/s of choice, yielding new opportunities for producing commodity and high-value chemicals in a carbon-negative and sustainable manner. This review will discuss recent progress in using photosynthesis for light-driven P450 biocatalysis and explore the potential for further development of such systems.
Collapse
Affiliation(s)
- Bernadius Agustinus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
21
|
Lin JY, Ng IS. Enhanced carbon capture, lipid and lutein production in Chlamydomonas reinhardtii under meso-thermophilic conditions using chaperone and CRISPRi system. BIORESOURCE TECHNOLOGY 2023:129340. [PMID: 37343802 DOI: 10.1016/j.biortech.2023.129340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Microalgae are widely recognized as a promising bioresource for producing renewable fuels and chemicals. Microalgal biorefinery has tremendous potential for incorporation into circular bioeconomy, including sustainability, cascading use, and waste reduction. In this study, genetic engineering was used to enhance the growth, lipid and lutein productivity of Chlamydomonas reinhardtii including strains of CC400, PY9, pCHS, and PG. Notably, CRISPRi mediated on phosphoenolpyruvate carboxylase (PEPC1) gene to down-regulate the branch pathway from glycolysis to partitioning more carbon flux to lipid was explored under meso-thermophilic condition. The best chassis PGi, which has overexpressed chaperone GroELS and applied CRISPRi resulting in the highest biomass of 2.56 g/L and also boosted the lipids and lutein with 893 and 23.5 mg/L, respectively at 35 °C. Finally, all strains with CRISPRi exhibited higher transcriptional levels of the crucial genes from photosynthesis, starch, lipid and lutein metabolism, thus reaching a CO2 assimilation of 1.087 g-CO2/g-DCW in mixotrophic condition.
Collapse
Affiliation(s)
- Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
22
|
Abideen Z, Ansari R, Hasnain M, Flowers TJ, Koyro HW, El-Keblawy A, Abouleish M, Khan MA. Potential use of saline resources for biofuel production using halophytes and marine algae: prospects and pitfalls. FRONTIERS IN PLANT SCIENCE 2023; 14:1026063. [PMID: 37332715 PMCID: PMC10272829 DOI: 10.3389/fpls.2023.1026063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/20/2023] [Indexed: 06/20/2023]
Abstract
There exists a global challenge of feeding the growing human population of the world and supplying its energy needs without exhausting global resources. This challenge includes the competition for biomass between food and fuel production. The aim of this paper is to review to what extent the biomass of plants growing under hostile conditions and on marginal lands could ease that competition. Biomass from salt-tolerant algae and halophytes has shown potential for bioenergy production on salt-affected soils. Halophytes and algae could provide a bio-based source for lignoceelusic biomass and fatty acids or an alternative for edible biomass currently produced using fresh water and agricultural lands. The present paper provides an overview of the opportunities and challenges in the development of alternative fuels from halophytes and algae. Halophytes grown on marginal and degraded lands using saline water offer an additional material for commercial-scale biofuel production, especially bioethanol. At the same time, suitable strains of microalgae cultured under saline conditions can be a particularly good source of biodiesel, although the efficiency of their mass-scale biomass production is still a concern in relation to environmental protection. This review summaries the pitfalls and precautions for producing biomass in a way that limits environmental hazards and harms for coastal ecosystems. Some new algal and halophytic species with great potential as sources of bioenergy are highlighted.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Raziuddin Ansari
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Timothy J. Flowers
- Department of Evolution Behaviour and Environment, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Hans-Werner Koyro
- Institute of Plant Ecology, Research Centre for Bio Systems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abouleish
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammed Ajmal Khan
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, Pakistan
| |
Collapse
|
23
|
Li R, He Y, Chen J, Zheng S, Zhuang C. Research Progress in Improving Photosynthetic Efficiency. Int J Mol Sci 2023; 24:ijms24119286. [PMID: 37298238 DOI: 10.3390/ijms24119286] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Photosynthesis is the largest mass- and energy-conversion process on Earth, and it is the material basis for almost all biological activities. The efficiency of converting absorbed light energy into energy substances during photosynthesis is very low compared to theoretical values. Based on the importance of photosynthesis, this article summarizes the latest progress in improving photosynthesis efficiency from various perspectives. The main way to improve photosynthetic efficiency is to optimize the light reactions, including increasing light absorption and conversion, accelerating the recovery of non-photochemical quenching, modifying enzymes in the Calvin cycle, introducing carbon concentration mechanisms into C3 plants, rebuilding the photorespiration pathway, de novo synthesis, and changing stomatal conductance. These developments indicate that there is significant room for improvement in photosynthesis, providing support for improving crop yields and mitigating changes in climate conditions.
Collapse
Affiliation(s)
- Ruiqi Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ying He
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Junyu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaoyan Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Xu P, Li J, Qian J, Wang B, Liu J, Xu R, Chen P, Zhou W. Recent advances in CO 2 fixation by microalgae and its potential contribution to carbon neutrality. CHEMOSPHERE 2023; 319:137987. [PMID: 36720412 DOI: 10.1016/j.chemosphere.2023.137987] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Many countries and regions have set their schedules to achieve the carbon neutrality between 2030 and 2070. Microalgae are capable of efficiently fixing CO2 and simultaneously producing biomass for multiple applications, which is considered one of the most promising pathways for carbon capture and utilization. This work reviews the current research on microalgae CO2 fixation technologies and the challenges faced by the related industries and government agencies. The technoeconomic analysis indicates that cultivation is the major cost factor. Use of waste resources such as wastewater and flue gas can significantly reduce the costs and carbon footprints. The life cycle assessment has identified fossil-based electricity use as the major contributor to the global warming potential of microalgae-based CO2 fixation approach. Substantial efforts and investments are needed to identify and bridge the gaps among the microalgae strain development, cultivation conditions and systems, and use of renewable resources and energy.
Collapse
Affiliation(s)
- Peilun Xu
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jun Qian
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Bang Wang
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Rui Xu
- Jiangxi Ganneng Co., Ltd., Nanchang, 330096, China
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN, 55108, USA.
| | - Wenguang Zhou
- School of Resources and Environment, And Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
25
|
Abstract
Biological pigment-protein complexes (PPCs) exhibit a remarkable ability to tune the optical properties of biological excitons (bioexcitons) through specific pigment-protein interactions. While such fine-tuning allows natural systems (e.g., photosynthetic proteins) to carry out their native functions with near-optimal performance, native function itself is often suboptimal for applications such as biofuel production or quantum technology development. This perspective offers a look at near-term prospects for the rational reoptimization of PPC bioexcitons for new functions using site-directed mutagenesis. The primary focus is on the "structure-spectrum" challenge of understanding the relationships between structural features and spectroscopic properties. While recent examples demonstrate that site-directed mutagenesis can be used to tune nearly all key bioexciton parameters (e.g., site energies, interpigment couplings, and electronic-vibrational interactions), critical challenges remain before we achieve truly rational design of bioexciton properties.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Jiang L, Liu CY, Cui G, Huang LT, Yu XL, Sun YF, Tong HY, Zhou GW, Yuan XC, Hu YS, Zhou WL, Aranda M, Qian PY, Huang H. Rapid shifts in thermal reaction norms and tolerance of brooded coral larvae following parental heat acclimation. Mol Ecol 2023; 32:1098-1116. [PMID: 36528869 DOI: 10.1111/mec.16826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Thermal priming of reef corals can enhance their heat tolerance; however, the legacy effects of heat stress during parental brooding on larval resilience remain understudied. This study investigated whether preconditioning adult coral Pocillopora damicornis to high temperatures (29°C and 32°C) could better prepare their larvae for heat stress. Results showed that heat-acclimated adults brooded larvae with reduced symbiont density and shifted thermal performance curves. Reciprocal transplant experiments demonstrated higher bleaching resistance and better photosynthetic and autotrophic performance in heat-exposed larvae from acclimated adults compared to unacclimated adults. RNA-seq revealed strong cellular stress responses in larvae from heat-acclimated adults that could have been effective in rescuing host cells from stress, as evidenced by the widespread upregulation of genes involved in cell cycle and mitosis. For symbionts, a molecular coordination between light harvesting, photoprotection and carbon fixation was detected in larvae from heat-acclimated adults, which may help optimize photosynthetic activity and yield under high temperature. Furthermore, heat acclimation led to opposing regulations of symbiont catabolic and anabolic pathways and favoured nutrient translocation to the host and thus a functional symbiosis. Notwithstanding, the improved heat tolerance was paralleled by reduced light-enhanced dark respiration, indicating metabolic depression for energy saving. Our findings suggest that adult heat acclimation can rapidly shift thermal tolerance of brooded coral larvae and provide integrated physiological and molecular evidence for this adaptive plasticity, which could increase climate resilience. However, the metabolic depression may be maladaptive for long-term organismal performance, highlighting the importance of curbing carbon emissions to better protect corals.
Collapse
Affiliation(s)
- Lei Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Cheng-Yue Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guoxin Cui
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lin-Tao Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Lei Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - You-Fang Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hao-Ya Tong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Guo-Wei Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Xiang-Cheng Yuan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| | - Yi-Si Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wen-Liang Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Manuel Aranda
- Biological and Environmental Sciences and Engineering Division, Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Department of Ocean Science and Hong Kong Branch (HKB) of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Hong Kong, China
| | - Hui Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology (SCSIO), Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,CAS-HKUST Sanya Joint Laboratory of Marine Science Research, Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Ocean Eco-Environmental Engineering, SCSIO, Sanya, China.,Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
27
|
Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. Int J Mol Sci 2023; 24:ijms24031898. [PMID: 36768215 PMCID: PMC9915242 DOI: 10.3390/ijms24031898] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Even though sunlight energy far outweighs the energy required by human activities, its utilization is a key goal in the field of renewable energies. Microalgae have emerged as a promising new and sustainable feedstock for meeting rising food and feed demand. Because traditional methods of microalgal improvement are likely to have reached their limits, genetic engineering is expected to allow for further increases in the photosynthesis and productivity of microalgae. Understanding the mechanisms that control photosynthesis will enable researchers to identify targets for genetic engineering and, in the end, increase biomass yield, offsetting the costs of cultivation systems and downstream biomass processing. This review describes the molecular events that happen during photosynthesis and microalgal productivity through genetic engineering and discusses future strategies and the limitations of genetic engineering in microalgal productivity. We highlight the major achievements in manipulating the fundamental mechanisms of microalgal photosynthesis and biomass production, as well as promising approaches for making significant contributions to upcoming microalgal-based biotechnology.
Collapse
|
28
|
Hou HJM, Najafpour MM, Allakhverdiev SI, Govindjee G. Editorial: Current challenges in photosynthesis: From natural to artificial, volume II. FRONTIERS IN PLANT SCIENCE 2023; 13:1113693. [PMID: 36684774 PMCID: PMC9850143 DOI: 10.3389/fpls.2022.1113693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Harvey J. M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL, United States
| | - Mohammad M. Najafpour
- Department of Chemistry, Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - Suleyman I. Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Govindjee Govindjee
- Department of Biochemistry, and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Biology, and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
29
|
Leister D. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. MOLECULAR PLANT 2023; 16:4-22. [PMID: 35996755 DOI: 10.1016/j.molp.2022.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis is central to life on Earth, employing sunlight, water, and carbon dioxide to produce chemical energy and oxygen. It is generally accepted that boosting its efficiency offers one promising way to increase crop yields under agronomically realistic conditions. Since the components, structure, and regulatory mechanisms of the light reactions of photosynthesis are well understood, concepts for enhancing the process have been suggested and partially tested. These approaches vary in complexity, from targeting single components to comprehensive redesign of the whole process on the scales from single cells or tissues to whole canopies. Attempts to enhance light utilization per leaf, by decreasing pigmentation, increasing levels of photosynthetic proteins, prolonging the lifespan of the photosynthetic machinery, or massive reconfiguration of the photosynthetic machinery and the incorporation of nanomaterials, are discussed in this review first. Secondly, strategies intended to optimize the acclimation of photosynthesis to changes in the environment are presented, including redesigning mechanisms to dissipate excess excitation energy (e.g., non-photochemical quenching) or reduction power (e.g., flavodiiron proteins). Moreover, schemes for improving acclimation, inspired by natural or laboratory-induced adaptation, are introduced. However, all these endeavors are still in an early exploratory phase and/or have not resulted in the desired outcome, largely because photosynthesis is embedded within large networks of closely interacting cellular and metabolic processes, which can vary among species and even cultivars. This explains why integrated, systems-wide approaches are required to achieve the breakthroughs required for effectively increasing crop yields.
Collapse
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University (LMU) Munich, Martinsried-Planegg, D-82152 Munich, Germany.
| |
Collapse
|
30
|
Deepika C, Wolf J, Roles J, Ross I, Hankamer B. Sustainable Production of Pigments from Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 183:171-251. [PMID: 36571616 DOI: 10.1007/10_2022_211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pigments are intensely coloured compounds used in many industries to colour other materials. The demand for naturally synthesised pigments is increasing and their production can be incorporated into circular bioeconomy approaches. Natural pigments are produced by bacteria, cyanobacteria, microalgae, macroalgae, plants and animals. There is a huge unexplored biodiversity of prokaryotic cyanobacteria which are microscopic phototrophic microorganisms that have the ability to capture solar energy and CO2 and use it to synthesise a diverse range of sugars, lipids, amino acids and biochemicals including pigments. This makes them attractive for the sustainable production of a wide range of high-value products including industrial chemicals, pharmaceuticals, nutraceuticals and animal-feed supplements. The advantages of cyanobacteria production platforms include comparatively high growth rates, their ability to use freshwater, seawater or brackish water and the ability to cultivate them on non-arable land. The pigments derived from cyanobacteria and microalgae include chlorophylls, carotenoids and phycobiliproteins that have useful properties for advanced technical and commercial products. Development and optimisation of strain-specific pigment-based cultivation strategies support the development of economically feasible pigment biorefinery scenarios with enhanced pigment yields, quality and price. Thus, this chapter discusses the origin, properties, strain selection, production techniques and market opportunities of cyanobacterial pigments.
Collapse
Affiliation(s)
- Charu Deepika
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Juliane Wolf
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - John Roles
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ian Ross
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
31
|
Wang Z, Zhang Y, Zhang S, Ge M, Zhang H, Wang S, Chen Z, Li S, Yang C. Natural xylose-derived carbon dots towards efficient semi-artificial photosynthesis. J Colloid Interface Sci 2023; 629:12-21. [PMID: 36150244 DOI: 10.1016/j.jcis.2022.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Photosynthesis by plants stores sunlight into chemicals and drives CO2 fixation into sugars with low biomass conversion efficiency due to the unoptimized solar spectrum utilization and various chemical conversion possibilities that follow H2O oxidation. Expanding the solar spectrum utilization and optimizing the charge transfer pathway of photosynthesis is critical to improving the conversion efficiency. Here, a group of carbon dots (CDs) with distinct content of sp2 CC domain are prepared by one-step carbonization of natural xylose, which penetrated natural chloroplasts and integrated with the grana thylakoid to promote in vitro photosynthesis. Structural characterization and electrochemical results reveal the positive impact of graphitization degree on the electron transport capacity of CDs. Classic Hill reaction and ATP production demonstrate the enhanced photosynthetic activity resulting from the CDs-mediated electron transfer of photosystem II. In-depth studies of the structure-function relationship prove the synergistic effect of intensified biotic-abiotic interaction between CDs and chloroplast, lower charge transfer resistance, and extended light absorption. This work posts a promising method to optimize electron transport and improve natural photosynthesis using artificial interventions.
Collapse
Affiliation(s)
- Zirui Wang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yahui Zhang
- Chinese Academy of Forestry, Research Institute of Wood Industry, Xiang Shan Road, Haidian, 100091 Beijing China.
| | - Siyu Zhang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Min Ge
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhijun Chen
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shujun Li
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Chenhui Yang
- Engineering Research Center of Advanced Wooden Materials and Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
32
|
Suarez JV, Mudd EA, Day A. A Chloroplast-Localised Fluorescent Protein Enhances the Photosynthetic Action Spectrum in Green Algae. Microorganisms 2022; 10:microorganisms10091770. [PMID: 36144372 PMCID: PMC9504678 DOI: 10.3390/microorganisms10091770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 10/29/2022] Open
Abstract
Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon-optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.
Collapse
Affiliation(s)
- Julio V. Suarez
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carr. Transpeninsular 3917, Ensenada 22860, Mexico
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| | - Elisabeth A. Mudd
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Anil Day
- School of Biological Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (J.V.S.); (A.D.); Tel.: +44-161-275-3913 (A.D.)
| |
Collapse
|
33
|
Gabrielyan DA, Sinetova MA, Gabel BV, Gabrielian AK, Markelova AG, Rodionova MV, Bedbenov VS, Shcherbakova NV, Los DA. Cultivation of Chlorella sorokiniana IPPAS C-1 in Flat-Panel Photobioreactors: From a Laboratory to a Pilot Scale. Life (Basel) 2022; 12:life12091309. [PMID: 36143346 PMCID: PMC9506280 DOI: 10.3390/life12091309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/23/2022] Open
Abstract
Flat-panel photobioreactors are effective systems for microalgae cultivation. This paper presents the growth characteristics of the microalgae Chlorella sorokiniana IPPAS C-1 as a result of three-stage scale-up cultivation in a specially designed cultivation system. First, C. sorokiniana was grown aseptically in 250 mL glass vessels; then, it was diluted and inoculated into a 5-liter flat-panel horizontal photobioreactor; and, at the last stage, the culture was diluted and inoculated into a 70-liter flat-panel vertical photobioreactor. In the presented cycle, the cultured biomass increased by 326 times in 13 days (from 0.6 to 195.6 g dw), with a final biomass concentration of 2.8 g dw L−1. The modes of semi-continuous cultivation were considered. The biomass harvest and dilution of the suspension were carried out either every day or every 3–4 days. For C. sorokiniana IPPAS C-1, a conversion coefficient of optical density values to dry biomass (g L−1) was refined through a factor of 0.33. The key parameters of the photobioreactors tested in this work are discussed.
Collapse
|
34
|
Sørensen M, Andersen-Ranberg J, Hankamer B, Møller BL. Circular biomanufacturing through harvesting solar energy and CO 2. TRENDS IN PLANT SCIENCE 2022; 27:655-673. [PMID: 35396170 DOI: 10.1016/j.tplants.2022.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Using synthetic biology, it is now time to expand the biosynthetic repertoire of plants and microalgae by utilizing the chloroplast to augment the production of desired high-value compounds and of oil-, carbohydrate-, or protein-enriched biomass based on direct harvesting of solar energy and the consumption of CO2. Multistream product lines based on separate commercialization of the isolated high-value compounds and of the improved bulk products increase the economic potential of the light-driven production system and accelerate commercial scale up. Here we outline the scientific basis for the establishment of such green circular biomanufacturing systems and highlight recent results that make this a realistic option based on cross-disciplinary basic and applied research to advance long-term solutions.
Collapse
Affiliation(s)
- Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Andersen-Ranberg
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Hankamer
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
35
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
36
|
Shankar U, Lenka SK, Leigh Ackland M, Callahan DL. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement. Biotechnol Bioeng 2022; 119:2031-2045. [PMID: 35441370 DOI: 10.1002/bit.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
Microalgae are important renewable feedstock to produce biodiesel and high-value chemicals. Different wavelengths of light influence the growth and metabolic activities of algae. Recent research has identified the light-sensing proteins called photoreceptors that respond to blue or red light. Structural elucidations of algal photoreceptors have gained momentum over recent years. These include channelrhodopsins, PHOT proteins, animal-like cryptochromes, blue-light sensors utilizing flavin-adenine dinucleotide (BLUF) proteins. Pulsing light has also been investigated as a means to optimize energy inputs into bioreactors. This review summarizes the current structural and functional basis of photoreceptor modulation to optimize the growth, production of carotenoids and other high-value metabolites from microalgae. The review also encompasses novel photobioreactor designs that implement different light regimes including light wavelengths and time to optimize algal growth and desired metabolite profiles for high-value products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uttara Shankar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - M Leigh Ackland
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
37
|
Perin G, Gambaro F, Morosinotto T. Knowledge of Regulation of Photosynthesis in Outdoor Microalgae Cultures Is Essential for the Optimization of Biomass Productivity. FRONTIERS IN PLANT SCIENCE 2022; 13:846496. [PMID: 35444673 PMCID: PMC9014180 DOI: 10.3389/fpls.2022.846496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Microalgae represent a sustainable source of biomass that can be exploited for pharmaceutical, nutraceutical, cosmetic applications, as well as for food, feed, chemicals, and energy. To make microalgae applications economically competitive and maximize their positive environmental impact, it is however necessary to optimize productivity when cultivated at a large scale. Independently from the final product, this objective requires the optimization of biomass productivity and thus of microalgae ability to exploit light for CO2 fixation. Light is a highly variable environmental parameter, continuously changing depending on seasons, time of the day, and weather conditions. In microalgae large scale cultures, cell self-shading causes inhomogeneity in light distribution and, because of mixing, cells move between different parts of the culture, experiencing abrupt changes in light exposure. Microalgae evolved multiple regulatory mechanisms to deal with dynamic light conditions that, however, are not adapted to respond to the complex mixture of natural and artificial fluctuations found in large-scale cultures, which can thus drive to oversaturation of the photosynthetic machinery, leading to consequent oxidative stress. In this work, the present knowledge on the regulation of photosynthesis and its implications for the maximization of microalgae biomass productivity are discussed. Fast mechanisms of regulations, such as Non-Photochemical-Quenching and cyclic electron flow, are seminal to respond to sudden fluctuations of light intensity. However, they are less effective especially in the 1-100 s time range, where light fluctuations were shown to have the strongest negative impact on biomass productivity. On the longer term, microalgae modulate the composition and activity of the photosynthetic apparatus to environmental conditions, an acclimation response activated also in cultures outdoors. While regulation of photosynthesis has been investigated mainly in controlled lab-scale conditions so far, these mechanisms are highly impactful also in cultures outdoors, suggesting that the integration of detailed knowledge from microalgae large-scale cultivation is essential to drive more effective efforts to optimize biomass productivity.
Collapse
|
38
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
39
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
40
|
Sawant KR, Savvashe P, Pal D, Sarnaik A, Lali A, Pandit R. Progressive transitional studies of engineered Synechococcus from laboratory to outdoor pilot-scale cultivation for production of ethylene. BIORESOURCE TECHNOLOGY 2021; 341:125852. [PMID: 34479144 DOI: 10.1016/j.biortech.2021.125852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial research is impeded by the substantial discrepancies between laboratory studies and outdoor performances, despite successful demonstrations of genetically engineered strains for array of compounds. Therefore, evaluation of adaptive responses is necessary to achieve outdoor scale-up cultivation of cyanobacteria. Under current study, cyanobacterium Synechococcus elongatusPCC7942 engineered for ethylene biosynthesis, was gradually acclimatised, ensuring sustained and progressive transition from laboratory to outdoor conditions. Bubble size of 4.9 ± 0.2 mm and air-flow rate of 0.05 vvm in BG11 supplemented with 5 g/L bicarbonate giving mass transfer coefficient (KLa) of 10.48 h-1 yielded highest specific growth rate (0.24 h-1) with the transformants. At the 100 L photobioreactor scale, ethylene productivity of 1.5 mL.L-1.h-1 was achieved. A comprehensive investigation on photosynthetic responses of the transformants adapted to the outdoor conditions exhibited interesting photosynthetic electron transport regulations, involving antenna density modulation in response to diurnal and dynamic light transitions, indicating successful transition.
Collapse
Affiliation(s)
- Kaustubh R Sawant
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Prashant Savvashe
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India; Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Divyani Pal
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Aditya Sarnaik
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India; Chemical Engineering Department, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Arvind Lali
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Reena Pandit
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
41
|
Microalgal photosynthetic inhibition and mixotrophic growth in Post Hydrothermal Liquefaction Wastewater (PHW). ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
The Arabidopsis Accessions Selection Is Crucial: Insight from Photosynthetic Studies. Int J Mol Sci 2021; 22:ijms22189866. [PMID: 34576029 PMCID: PMC8465966 DOI: 10.3390/ijms22189866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Natural genetic variation in photosynthesis is strictly associated with the remarkable adaptive plasticity observed amongst Arabidopsis thaliana accessions derived from environmentally distinct regions. Exploration of the characteristic features of the photosynthetic machinery could reveal the regulatory mechanisms underlying those traits. In this study, we performed a detailed characterisation and comparison of photosynthesis performance and spectral properties of the photosynthetic apparatus in the following selected Arabidopsis thaliana accessions commonly used in laboratories as background lines: Col-0, Col-1, Col-2, Col-8, Ler-0, and Ws-2. The main focus was to distinguish the characteristic disparities for every accession in photosynthetic efficiency that could be accountable for their remarkable plasticity to adapt. The biophysical and biochemical analysis of the thylakoid membranes in control conditions revealed differences in lipid-to-protein contribution, Chlorophyll-to-Carotenoid ratio (Chl/Car), and xanthophyll cycle pigment distribution among accessions. We presented that such changes led to disparities in the arrangement of the Chlorophyll-Protein complexes, the PSI/PSII ratio, and the lateral mobility of the thylakoid membrane, with the most significant aberrations detected in the Ler-0 and Ws-2 accessions. We concluded that selecting an accession suitable for specific research on the photosynthetic process is essential for optimising the experiment.
Collapse
|
43
|
Slocombe SP, Huete-Ortega M, Kapoore RV, Okurowska K, Mair A, Day JG, Stanley MS, Vaidyanathan S. Enabling large-scale production of algal oil in continuous output mode. iScience 2021; 24:102743. [PMID: 34278255 PMCID: PMC8264157 DOI: 10.1016/j.isci.2021.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022] Open
Abstract
Large-scale algal oil production requires continuous outputs and a trade-off between growth and oil content. Two unrelated marine algae (Nannochloropsis oceanica [CCAP 849/10] and Chlorella vulgaris [CCAP 211/21A]) that showed high oil production under batch culture were studied under controlled semicontinuous cultivation conditions. Three essential attributes maximized oil productivity: (i) downregulation of cell size to maximize light absorption under N limitation; (ii) low nutrient-depletion thresholds to trigger oil induction; (iii) a means of carbohydrate suppression in favor of oil. N. oceanica responded better to input N/P variations and is more suited to continuous oil production. A low N/P ratio was effective in both suppressing carbohydrate and reducing cell size concomitant with oil production. In C. vulgaris, nutrient starvation thresholds for oil were higher and carbohydrate was preferentially induced, which impeded stress-level optimization for oil. These differences, which impact continuous oil production at scale, are driven by species adaptation to specific marine habitats. VIDEO ABSTRACT VIDEO ABSTRACT
Collapse
Affiliation(s)
- Stephen P. Slocombe
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - Maria Huete-Ortega
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| | - Rahul Vijay Kapoore
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| | - Katarzyna Okurowska
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| | - Alison Mair
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - John G. Day
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - Michele S. Stanley
- The Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - Seetharaman Vaidyanathan
- Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, ChELSI Institute, The University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
44
|
Levin G, Kulikovsky S, Liveanu V, Eichenbaum B, Meir A, Isaacson T, Tadmor Y, Adir N, Schuster G. The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1260-1277. [PMID: 33725388 DOI: 10.1111/tpj.15232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Although light is the driving force of photosynthesis, excessive light can be harmful. One of the main processes that limits photosynthesis is photoinhibition, the process of light-induced photodamage. When the absorbed light exceeds the amount that is dissipated by photosynthetic electron flow and other processes, damaging radicals are formed that mostly inactivate photosystem II (PSII). Damaged PSII must be replaced by a newly repaired complex in order to preserve full photosynthetic activity. Chlorella ohadii is a green microalga, isolated from biological desert soil crusts, that thrives under extreme high light and is highly resistant to photoinhibition. Therefore, C. ohadii is an ideal model for studying the molecular mechanisms underlying protection against photoinhibition. Comparison of the thylakoids of C. ohadii cells that were grown under low light versus extreme high light intensities found that the alga employs all three known photoinhibition protection mechanisms: (i) massive reduction of the PSII antenna size; (ii) accumulation of protective carotenoids; and (iii) very rapid repair of photodamaged reaction center proteins. This work elucidated the molecular mechanisms of photoinhibition resistance in one of the most light-tolerant photosynthetic organisms, and shows how photoinhibition protection mechanisms evolved to marginal conditions, enabling photosynthesis-dependent life in severe habitats.
Collapse
Affiliation(s)
- Guy Levin
- Faculty of Biology, Technion, Haifa, 32000, Israel
| | | | | | | | - Ayala Meir
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Tal Isaacson
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, Agricultural Research Organization, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Noam Adir
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
- Schulich Faculty of Chemistry, Technion, Haifa, 32000, Israel
| | - Gadi Schuster
- Faculty of Biology, Technion, Haifa, 32000, Israel
- Grand Technion Energy Program, Technion, Haifa, 32000, Israel
| |
Collapse
|
45
|
Kumari K, Samantaray S, Sahoo D, Tripathy BC. Nitrogen, phosphorus and high CO 2 modulate photosynthesis, biomass and lipid production in the green alga Chlorella vulgaris. PHOTOSYNTHESIS RESEARCH 2021; 148:17-32. [PMID: 33813714 DOI: 10.1007/s11120-021-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/26/2021] [Indexed: 05/28/2023]
Abstract
Climate change could impact nutrient bioavailability in aquatic environment. To understand the interaction of nutrient bioavailability and elevated CO2, Chlorella vulgaris cells were grown in ambient air or 5% CO2 in different concentrations of nitrogen and phosphorus in a photobioreactor. The chlorophyll content, photosynthesis and respiration rates increased in 5% CO2 to support higher biomass production. The nutrient limitation in the growth media resulted in reduced photosynthetic rates of the algal cells and their PSI, PSII, and whole chain electron transport rates and biomass production. Conversely, their lipid content increased partly due to upregulation of expression of several lipid biosynthesis genes. The order of downregulation of photosynthesis and upregulation in lipid production due to nutrient limitation was in the order of N > P. The N-50 and 5% CO2 culture had only 10% reduction in biomass and 32% increase in lipids having 85% saturated fat required for efficient biofuel production. This growth condition is ideal for generation of biodiesel required to reduce the consumption of fossil fuel and combat global warming.
Collapse
Affiliation(s)
- Kanchan Kumari
- Department of Botany, University of Delhi, Delhi, 110007, India
| | | | - Dinabandhu Sahoo
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Department of Biotechnology, Sharda University, Knowledge Park 3, Greater Noida, 201306, Uttar Pradesh, India.
| |
Collapse
|
46
|
Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Meena RK, Reddy KS, Gautam R, Maddela S, Reddy AR, Gudipalli P. Improved photosynthetic characteristics correlated with enhanced biomass in a heterotic F 1 hybrid of maize (Zea mays L.). PHOTOSYNTHESIS RESEARCH 2021; 147:253-267. [PMID: 33555518 DOI: 10.1007/s11120-021-00822-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/15/2021] [Indexed: 05/13/2023]
Abstract
Heterosis is a phenomenon wherein F1 hybrid often displays phenotypic superiority and surpasses its parents in terms of growth and agronomic traits. Investigations on the physiological and biochemical properties of the heterotic F1 hybrid are important to uncover the mechanisms underlying heterosis in plants. In the present study, the photosynthetic capacity of a heterotic F1 hybrid of Zea mays L. (DHM 117) that exhibited a higher growth rate and increased biomass was compared with its parental inbreds at vegetative and reproductive stages in the field during 2017 and 2018. The net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (E) as well as foliar carbohydrates were higher in F1 hybrid than parental inbreds at vegetative and reproductive stages. An increase in total chlorophyll content along with better chlorophyll a fluorescence characteristics including effective quantum yield of photosystem II (ΔF/Fm'), maximum quantum yield of PSII (Fv/Fm), photochemical quenching (qp) and decreased non-photochemical quenching (NPQ) was observed in F1 hybrid than the parental inbreds. Further, the expression of potential genes related to C4 photosynthesis was considerably upregulated in F1 hybrid than the parental inbreds during vegetative and reproductive stages. Moreover, the F1 hybrid exhibited distinct heterosis in yield with 63% and 62% increase relative to parental inbreds during 2017 and 2018. We conclude that improved photosynthetic efficiency associated with increased foliar carbohydrates could have contributed to higher growth rate, biomass and yield in the F1 hybrid.
Collapse
Affiliation(s)
- Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Kanubothula Sitarami Reddy
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Surender Maddela
- Institute of Biotechnology, Prof. Jayashankar Telangana State Agricultural University, Hyderabad, 500 030, Telangana, India
| | - Attipalli Ramachandra Reddy
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, Telangana, India
| | - Padmaja Gudipalli
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, Telangana, India.
| |
Collapse
|
48
|
Slattery RA, Ort DR. Perspectives on improving light distribution and light use efficiency in crop canopies. PLANT PHYSIOLOGY 2021; 185:34-48. [PMID: 33631812 PMCID: PMC8133579 DOI: 10.1093/plphys/kiaa006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/03/2020] [Indexed: 05/22/2023]
Abstract
Plant stands in nature differ markedly from most seen in modern agriculture. In a dense mixed stand, plants must vie for resources, including light, for greater survival and fitness. Competitive advantages over surrounding plants improve fitness of the individual, thus maintaining the competitive traits in the gene pool. In contrast, monoculture crop production strives to increase output at the stand level and thus benefits from cooperation to increase yield of the community. In choosing plants with higher yields to propagate and grow for food, humans may have inadvertently selected the best competitors rather than the best cooperators. Here, we discuss how this selection for competitiveness has led to overinvestment in characteristics that increase light interception and, consequently, sub-optimal light use efficiency in crop fields that constrains yield improvement. Decades of crop canopy modeling research have provided potential strategies for improving light distribution in crop canopies, and we review the current progress of these strategies, including balancing light distribution through reducing pigment concentration. Based on recent research revealing red-shifted photosynthetic pigments in algae and photosynthetic bacteria, we also discuss potential strategies for optimizing light interception and use through introducing alternative pigment types in crops. These strategies for improving light distribution and expanding the wavelengths of light beyond those traditionally defined for photosynthesis in plant canopies may have large implications for improving crop yield and closing the yield gap.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Plant Biology & Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication:
| |
Collapse
|
49
|
Wu G, Ma L, Sayre RT, Lee CH. Identification of the Optimal Light Harvesting Antenna Size for High-Light Stress Mitigation in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:505. [PMID: 32499795 PMCID: PMC7243658 DOI: 10.3389/fpls.2020.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/03/2020] [Indexed: 05/10/2023]
Abstract
One of the major constraints limiting biomass production in autotrophs is the low thermodynamic efficiency of photosynthesis, ranging from 1 to 4%. Given the absorption spectrum of photosynthetic pigments and the spectral distribution of sunlight, photosynthetic efficiencies as high as 11% are possible. It is well-recognized that the greatest thermodynamic inefficiencies in photosynthesis are associated with light absorption and conversion of excited states into chemical energy. This is due to the fact that photosynthesis light saturates at one quarter full sunlight intensity in plants resulting in the dissipation of excess energy as heat, fluorescence and through the production of damaging reactive oxygen species. Recently, it has been demonstrated that it is possible to adjust the size of the light harvesting antenna over a broad range of optical cross sections through targeted reductions in chlorophyll b content, selectively resulting in reductions of the peripheral light harvesting antenna size, especially in the content of Lhcb3 and Lhcb6. We have examined the impact of alterations in light harvesting antenna size on the amplitude of photoprotective activity and the evolutionary fitness or seed production in Camelina grown at super-saturating and sub-saturating light intensities to gain an understanding of the driving forces that lead to the selection for light harvesting antenna sizes best fit for a range of light intensities. We demonstrate that plants having light harvesting antenna sizes engineered for the greatest photosynthetic efficiency also have the greatest capacity to mitigate high light stress through non-photochemical quenching and reduction of reactive oxygen associated damage. Under sub-saturating growth light intensities, we demonstrate that the optimal light harvesting antenna size for photosynthesis and seed production is larger than that for plants grown at super-saturating light intensities and is more similar to the antenna size of wild-type plants. These results suggest that the light harvesting antenna size of plants is designed to maximize fitness under low light conditions such as occurs in shaded environments and in light competition with other plants.
Collapse
Affiliation(s)
- Guangxi Wu
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Pebble Labs, Los Alamos, NM, United States
- New Mexico Consortium, Los Alamos, NM, United States
| | - Lin Ma
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Pebble Labs, Los Alamos, NM, United States
- New Mexico Consortium, Los Alamos, NM, United States
| | - Richard T. Sayre
- Pebble Labs, Los Alamos, NM, United States
- New Mexico Consortium, Los Alamos, NM, United States
- *Correspondence: Richard T. Sayre,
| | - Choon-Hwan Lee
- Department of Molecular Biology, Pusan National University, Busan, South Korea
- Pebble Labs, Los Alamos, NM, United States
- New Mexico Consortium, Los Alamos, NM, United States
- Choon-Hwan Lee,
| |
Collapse
|