1
|
Ye L, Zheng X, Yang Y, Lyu Y. Notch signaling pathway regulates the progression of fetal growth restriction through mediating immune dysfunction. Biomed Rep 2025; 23:111. [PMID: 40386306 PMCID: PMC12082063 DOI: 10.3892/br.2025.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/02/2025] [Indexed: 05/20/2025] Open
Abstract
Fetal growth restriction (FGR) is associated with an increased risk of neonatal morbidity and mortality, as well as the development of metabolic syndrome in adulthood. The present study investigated the regulatory mechanisms of Notch signaling in FGR progression. The expression levels of Notch1 and Jagged1 were determined using reverse transcription-quantitative PCR, western blotting, immunofluorescence staining and immunohistochemistry (IHC). ELISA was used to measure the concentrations of IL-10, IL-17 and IL-35 in serum and placental samples. ELISA and western blotting determined the inflammation- and angiogenesis-related cytokine levels. Th17, Treg and macrophage levels were determined using IHC and flow cytometry. Additionally, hematoxylin & eosin staining and TUNEL assay assessed placenta histology and trophoblast cell apoptosis. Significant trophoblast apoptosis was observed in the placenta of FGR pregnancies. The expression of Notch1 and Jagged1 in peripheral blood mononuclear cells and placental tissues of FGR pregnancies was significantly lower than in the control group. The FGR group exhibited a remarkable inflammation, anti-angiogenesis and immune dysfunction. In conclusion, the Notch signaling pathway mediates immune balance to regulate the development of FGR. These findings offer the potential for advancing innovative predictive, diagnostic and therapeutic approaches for FGR.
Collapse
Affiliation(s)
- Liyan Ye
- Department of Obstetrics, Jinhua Maternal and Child Health Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xiujuan Zheng
- Department of Obstetrics, Jinhua Maternal and Child Health Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Yali Yang
- Department of Obstetrics, Jinhua Maternal and Child Health Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Ying Lyu
- Department of Obstetrics, Jinhua Maternal and Child Health Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
2
|
Waye AA, Moeller J, Veiga-Lopez A. Epidermal growth factor receptor in placental health and disease: pathways, dysfunction, and chemical disruption. Toxicol Sci 2025; 205:11-27. [PMID: 39985453 PMCID: PMC12038240 DOI: 10.1093/toxsci/kfaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Formation of the placenta during gestation is required to support fetal growth and development. Derived from the placenta, trophoblast cells express nuclear and membrane-bound receptors. Among these receptors is the epidermal growth factor receptor (EGFR) which plays a key role in placental development. Activation of EGFR-mediated signaling in trophoblast cells regulates critical processes, such as proliferation, differentiation, invasion, and fusion during pregnancy, making it essential for normal placental formation. Dysfunction of EGFR in placental trophoblast cells has been associated with adverse pregnancy outcomes, including intrauterine growth restriction, preeclampsia, and preterm birth. Ubiquitous environmental chemicals, like polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, and bisphenols, have been reported to modulate EGFR signaling pathways, potentially contributing to placental dysfunction. This review explores the pivotal role of EGFR signaling in placental development and function, with a focus on how environmental chemicals interfere with EGFR-mediated pathways and placental cell functions as well as their implications for pregnancy outcomes. Findings presented herein underscore the need for further research into the effects of exposure to environmental chemicals on modulating EGFR signaling pathways in the context of placental health.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jacob Moeller
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
- The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
3
|
Rosario GX, Brown S, Karmakar S, Rumi MAK, Nayak NR. Super-Enhancers in Placental Development and Diseases. J Dev Biol 2025; 13:11. [PMID: 40265369 PMCID: PMC12015882 DOI: 10.3390/jdb13020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
The proliferation of trophoblast stem (TS) cells and their differentiation into multiple lineages are pivotal for placental development and functions. Various transcription factors (TFs), such as CDX2, EOMES, GATA3, TFAP2C, and TEAD4, along with their binding sites and cis-regulatory elements, have been studied for their roles in trophoblast cells. While previous studies have primarily focused on individual enhancer regions in trophoblast development and differentiation, recent attention has shifted towards investigating the role of super-enhancers (SEs) in different trophoblast cell lineages. SEs are clusters of regulatory elements enriched with transcriptional regulators, forming complex gene regulatory networks via differential binding patterns and the synchronized stimulation of multiple target genes. Although the exact role of SEs remains unclear, they are commonly found near master regulator genes for specific cell types and are implicated in the transcriptional regulation of tissue-specific stem cells and lineage determination. Additionally, super-enhancers play a crucial role in regulating cellular growth and differentiation in both normal development and disease pathologies. This review summarizes recent advances on SEs' role in placental development and the pathophysiology of placental diseases, emphasizing the potential for identifying SE-driven networks in the placenta to provide valuable insights for developing therapeutic strategies to address placental dysfunctions.
Collapse
Affiliation(s)
- Gracy X. Rosario
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| | - Samuel Brown
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Mohammad A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Nihar R. Nayak
- Department of Obstetrics and Gynecology, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (S.B.); (N.R.N.)
| |
Collapse
|
4
|
Duan WK, Shaha SZ, Garcia Rivas JF, Wilson BL, Patel KJ, Domingo IK, Riddell MR. Placental cytotrophoblast microvillar stabilization is required for cell-cell fusion. Development 2025; 152:dev204619. [PMID: 40213950 PMCID: PMC12045602 DOI: 10.1242/dev.204619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 05/03/2025]
Abstract
The placenta is an essential organ of pregnancy required for maternal-fetal transport and communication. The surface of the placenta facing the maternal blood is formed by a single giant multinucleate cell: the syncytiotrophoblast. The syncytiotrophoblast is formed and maintained via fusion of progenitor cytotrophoblasts. Cell-cell fusion is a tightly regulated process, and in non-trophoblastic cells is accompanied by stereotypical alterations in cell shape by cells that have attained fusion-competence. The most prominent feature is the formation of actin-based membrane protrusions, but whether stereotypic morphological changes occur in fusion-competent cytotrophoblasts has not been characterized. Using a human placental explant model and trophoblast organoids, we identify microvilliation as a morphological feature that is enriched prior to fusion of cytotrophoblasts. Disruption of microvilli using an inhibitor of the actin-membrane cross-linker protein ezrin blocked cytotrophoblast fusion in both models. We provide evidence that cytotrophoblast microvilli are enriched in early endosomes and a pro-fusogenic protein. Thus, we propose that the polarized assembly of microvillar domains is crucial for mediating efficient syncytiotrophoblast development.
Collapse
Affiliation(s)
- Wendy K. Duan
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Sumaiyah Z. Shaha
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Juan F. Garcia Rivas
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Bethan L. Wilson
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Khushali J. Patel
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Ivan K. Domingo
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Meghan R. Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
5
|
Zhou J, Sheridan M, Tian Y, Dahlgren K, Messler M, Peng T, Zhao A, Ezashi T, Schulz L, Ulery B, Roberts R, Schust D. Development of apical out trophoblast stem cell derived organoids to model early human pregnancy. iScience 2025; 28:112099. [PMID: 40129708 PMCID: PMC11930733 DOI: 10.1016/j.isci.2025.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/28/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
The development of trophoblast organoids has enabled investigation of placental physiology, disease, and early maternal-fetal interactions during a previously restricted stage of pregnancy. A key shortcoming in existing trophoblast organoid methodologies is the non-physiologic position of the syncytiotrophoblast (STB) within the inner portion of the organoid, which neither recapitulates in vivo placental villous morphology nor allows for facile modeling of STB exposure to the endometrium or the contents of the intervillous space. Here, we have successfully established apical-out human trophoblast stem cells (hTSC)-sourced organoids with STB forming on the surface of the organoid. These organoids can also be induced to give rise to the extravillous trophoblast (EVT) lineage, which invades into an extracellular matrix-based hydrogel. Compared to previous methods, our organoids more closely mimic developing human placental architecture, offering a novel platform to study normal and abnormal placental development and to model exposures to pharmaceuticals, pathogens, and environmental factors.
Collapse
Affiliation(s)
- J. Zhou
- Duke Obstetrics & Gynecology, Duke University School of Medicine, Durham, NC 27710, USA
| | - M.A. Sheridan
- Department of Obstetrics, Gynecology, and Women’s Health, School of Medicine, 1 Hospital Dr, University of Missouri, Columbia, MO 65212, USA
- Bond Life Science Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - Y. Tian
- Bond Life Science Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
| | - K.J. Dahlgren
- College of Engineering, University of Missouri, Lafferre Hall, W1024, Columbia, MO 65211, USA
| | - M. Messler
- College of Engineering, University of Missouri, Lafferre Hall, W1024, Columbia, MO 65211, USA
| | - T. Peng
- Department of Histology and Embryology, School of Basic Medcine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - A. Zhao
- Duke Obstetrics & Gynecology, Duke University School of Medicine, Durham, NC 27710, USA
| | - T. Ezashi
- Colorado Center for Reproductive Medicine, 10290 RidgeGate Circle, Lone Tree, CO 80124, USA
| | - L.C. Schulz
- Department of Obstetrics, Gynecology, and Women’s Health, School of Medicine, 1 Hospital Dr, University of Missouri, Columbia, MO 65212, USA
| | - B.D. Ulery
- College of Engineering, University of Missouri, Lafferre Hall, W1024, Columbia, MO 65211, USA
| | - R.M. Roberts
- Bond Life Science Center, University of Missouri, 1201 Rollins St, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, 503 S College Ave, Columbia, MO 65211, USA
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - D.J. Schust
- Duke Obstetrics & Gynecology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
6
|
Fasoulopoulos A, Varras M, Varra FN, Philippou A, Myoteri D, Varra VK, Kouroglou E, Gryparis A, Papadopetraki A, Vlachos I, Papadopoulos K, Koutsilieris M, Konstantinidou AE. Expression of the IGF‑1Ea isoform in human placentas from third trimester normal and idiopathic intrauterine growth restriction singleton pregnancies: Correlations with clinical and histopathological parameters. Mol Med Rep 2025; 31:69. [PMID: 39791214 PMCID: PMC11751665 DOI: 10.3892/mmr.2025.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 01/12/2025] Open
Abstract
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1. The aim of the present study was to investigate expression patterns of IGF‑1Ea isoform in IUGR placenta compared with appropriate for gestational age (AGA) pregnancies. Placental frozen tissues were collected from 13 AGA and 15 IUGR third trimester pregnancies for detection of IGF‑1Ea mRNA expression using reverse transcription‑quantitative PCR. Formalin‑fixed paraffin‑embedded samples from 15 AGA and 47 IUGR pregnancies were analyzed immunohistochemically for the identification and localization of the IGF‑1Ea peptide and comparison of clinical and histopathological parameters. To the best of our knowledge, the present study is the first to show IGF‑1Ea expression in third trimester human placenta. The results indicated that similar IGF‑1Ea mRNA expression levels were present in placental specimens from both groups. Cytoplasmic IGF‑1Ea expression was localized in the perivillous syncytiotrophoblast, extravillous trophoblast and endothelium of the villous and decidual vessels in both groups. No significant difference in the scores and intensity of IGF‑1Ea expression in perivillous syncytiotrophoblasts were noted in the IUGR vs. AGA pregnancies. Most IUGR cases showed negative IGF‑1Ea expression in the extravillous trophoblast, whereas AGA pregnancies showed predominantly positive immunostaining. A sex‑specific expression pattern was noted in the extravillous trophoblast, with negative IGF‑1Ea expression in the placentas of female IUGR cases. Additionally, positive immunostaining for IGF‑1Ea peptide in fetal villous and maternal decidual vessels, was more frequently observed in the IUGR group compared with AGA. In conclusion, no difference in total IGF‑1Ea mRNA placental expression was observed between IUGR and AGA pregnancies, likely due to heterogeneity of histological structures expressing this isoform. Negative IGF‑1Ea immunohistological expression in the extravillous trophoblast from IUGR placentas, associated with histological changes of maternal malperfusion, may reflect the involvement of this isoform in defective placentation. The presence of IGF‑1Ea peptide in the endothelium of the villous vessels in IUGR placentas may indicate a reactive autocrine regulation to compensate for malperfused villi in IUGR pregnancy by regulating angiogenesis and vasodilation. The observed sex differences in IGF‑1Ea expression between IUGR and AGA placentas may indicate interactions between sex hormones and selective IGF‑1 binding proteins in regulating IGF‑1Ea synthesis; however, this requires further elucidation.
Collapse
Affiliation(s)
- Apostolos Fasoulopoulos
- Fourth Obstetrics and Gynecology Department, ‘Elena Venizelou’ General Hospital of Athens, 11521 Athens, Greece
| | - Michail Varras
- Fourth Obstetrics and Gynecology Department, ‘Elena Venizelou’ General Hospital of Athens, 11521 Athens, Greece
| | - Fani-Niki Varra
- Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Anastasios Philippou
- Department of Physiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Myoteri
- Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Evgenia Kouroglou
- Fourth Obstetrics and Gynecology Department, ‘Elena Venizelou’ General Hospital of Athens, 11521 Athens, Greece
| | - Alexandros Gryparis
- Department of Speech and Language Therapy, University of Ioannina, 45500 Ioannina, Greece
| | - Argyro Papadopetraki
- Department of Physiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iakovos Vlachos
- Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Konstantinos Papadopoulos
- Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anastasia Evangelia Konstantinidou
- Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
- First Department of Pathology, Unit of Pediatric-Perinatal Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
8
|
Ansar M, Ali MA, Ali N, Haider Z, Latif A, Tazeen A, Fatima Z, Anjum MN. Ultrasound shear wave elastography of the placenta: a potential tool for early detection of fetal growth restriction. Clin Imaging 2024; 116:110329. [PMID: 39461252 DOI: 10.1016/j.clinimag.2024.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Sonographic placental elastography has recently been employed as a non-invasive tool to investigate the structural alterations associated with various conditions such as pre-eclampsia, gestational diabetes and fetal growth restriction (FGR). The study was conducted based on the hypothesis that the placental elasticity might differ with varying severity of FGR and with that of appropriate for gestational age (AGA) pregnancies. METHODS This study involved 121 pregnant women, with 54 in the normal group and 67 in the FGR group, which was defined as the fetal weight below the 10th percentile for gestational age. The FGR pregnancies were sub grouped into different stages based on the presence and extent of Doppler abnormalities. Shear-wave elastography was carried out to investigate the placental elasticity values, which were compared using the Kruskal-Wallis test. A P value of ≤0.05 was considered significant. RESULTS The placental elasticity differed significantly between pregnancies with and without FGR and among the different stages of FGR. There was a significant difference in PE (kPa) and SWV (m/s) among groups, with a p-value of 0.000001. PE and SWV in FGR pregnancies were significantly higher compared to AGA as a whole using t-test with p values of <0.0001. Doppler indices of umbilical, uterine and fetal middle cerebral arteries also correlated significantly with these. CONCLUSION The study suggests that placental elasticity values reflect structural alterations associated with FGR and could serve as a valuable tool in the early detection and staging of this condition.
Collapse
Affiliation(s)
- Muhammad Ansar
- University Institute of Radiological Sciences and Medical Imaging Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | | | - Noraiz Ali
- University Institute of Radiological Sciences and Medical Imaging Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Zeshan Haider
- University Institute of Radiological Sciences and Medical Imaging Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Aruj Latif
- University Institute of Radiological Sciences and Medical Imaging Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Anjum Tazeen
- University Institute of Radiological Sciences and Medical Imaging Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Zareen Fatima
- University Institute of Radiological Sciences and Medical Imaging Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan.
| | - Muhammad Nawaz Anjum
- University Institute of Radiological Sciences and Medical Imaging Technology, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| |
Collapse
|
9
|
Nieves C, Victoria da Costa Ghignatti P, Aji N, Bertagnolli M. Immune Cells and Infectious Diseases in Preeclampsia Susceptibility. Can J Cardiol 2024; 40:2340-2355. [PMID: 39304126 DOI: 10.1016/j.cjca.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
Preeclampsia is a severe pregnancy disorder, affecting approximately 10% of pregnancies worldwide, characterised by hypertension and proteinuria after the 20th week of gestation. The condition poses significant risks to both maternal and fetal health, including cardiovascular complications and impaired fetal development. Recent trends indicate a rising incidence of preeclampsia, correlating with factors such as advanced maternal age and cardiovascular comorbidities. Emerging evidence also highlights a notable increase in the association between autoimmune and infectious diseases with preeclampsia. Autoimmune conditions, such as type 1 diabetes and systemic lupus erythematosus, and infections triggered by global health challenges, including leptospirosis, Zika, toxoplasmosis, and Chagas disease, are now recognised as significant contributors to preeclampsia susceptibility by affecting placental formation and function. This review focuses on the immunologic mechanisms underpinning preeclampsia, exploring how immune system dysregulation and infectious triggers exacerbate the condition. It also discusses the pathologic mechanisms, including galectins, that preeclampsia shares with autoimmune and infectious diseases, and their significant risk for adverse pregnancy outcomes. We emphasise the necessity for accurate diagnosis and vigilant monitoring of immune and infectious diseases during pregnancy to optimise management and reduce risks. By raising awareness about these evolving risks and their impact on pregnancy, we aim to enhance diagnostic practices and preventive strategies, ultimately improving outcomes for pregnant women, especially in regions affected by environmental changes and endemic diseases.
Collapse
Affiliation(s)
- Cecilia Nieves
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| | - Paola Victoria da Costa Ghignatti
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Narjiss Aji
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Mariane Bertagnolli
- Cardiovascular Health Across the Lifespan Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Vornic I, Nesiu A, Ardelean AM, Todut OC, Pasare VC, Onel C, Raducan ID, Furau CG. Antioxidant Defenses, Oxidative Stress Responses, and Apoptosis Modulation in Spontaneous Abortion: An Immunohistochemistry Analysis of First-Trimester Chorionic Villi. Life (Basel) 2024; 14:1074. [PMID: 39337859 PMCID: PMC11432807 DOI: 10.3390/life14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) and apoptosis are critical factors in placental development and function. Their interplay influences trophoblast proliferation, differentiation, and invasion, as well as vascular development. An imbalance between these processes can lead to pregnancy-related disorders such as preeclampsia, intrauterine growth restriction, and even spontaneous abortion. Our study seeks to elucidate the associations between preventive antioxidant/protective OS response factors-glutathione (GSH), MutT Homolog 1 (MTH1), and apoptotic regulation modulators-tumor protein p53 and B-cell lymphoma (Bcl-2) transcripts, in the context of spontaneous abortion (30 samples) versus elective termination of pregnancy (20 samples), using immunohistochemistry (IHC) to determine their proteomic expression in chorionic villi within abortive fetal placenta tissue samples. Herein, comparative statistical analyses revealed that both OS response factors, GSH and MTH1, were significantly under-expressed in spontaneous abortion cases as compared to elective. Conversely, for apoptotic regulators, p53 expression was significantly higher in spontaneous abortion cases, whereas Bcl-2 expression was significantly lower in spontaneous abortion cases. These findings suggest that a strong pro-apoptotic signal is prevalent within spontaneous abortion samples, alongside reduced anti-apoptotic protection, depleted antioxidant defenses and compromised oxidative DNA damage prevention/repair, as compared to elective abortion controls. Herein, our hypothesis that OS and apoptosis are closely linked processes contributing to placental dysfunction and spontaneous abortion was thus seemingly corroborated. Our results further highlight the importance of maintaining redox homeostasis and apoptotic regulation for a successful pregnancy. Understanding the mechanisms underlying this interplay is essential for developing potential therapies to manage OS, promote placentation, and avoid unwanted apoptosis, ultimately improving pregnancy outcomes. Antioxidant supplementation, modulation of p53 activity, and the enhancement of DNA repair mechanisms may represent potential approaches to mitigate OS and apoptosis in the placenta. Further research is needed to explore these strategies and their efficacy in preventing spontaneous abortion.
Collapse
Affiliation(s)
- Ioana Vornic
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Alexandru Nesiu
- Discipline of Urology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Ana Maria Ardelean
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Oana Cristina Todut
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Victoria Cristina Pasare
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Cristina Onel
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Ionuț Daniel Raducan
- Doctoral School, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| | - Cristian George Furau
- Discipline of Gynecology, Faculty of Medicine, "Vasile Goldiș" Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania
| |
Collapse
|
11
|
Tanaka E, Koyanagi-Aoi M, Nakagawa S, Shimode S, Yamada H, Terai Y, Aoi T. Effect of a FOXO1 inhibitor on trophoblast differentiation from human pluripotent stem cells and ERV-associated gene expression. Regen Ther 2024; 26:729-740. [PMID: 39290630 PMCID: PMC11405643 DOI: 10.1016/j.reth.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction In human placental development, the trophectoderm (TE) appears in blastocysts on day 5 post-fertilization and develops after implantation into three types of trophoblast lineages: cytotrophoblast (CT), syncytiotrophoblast (ST), and extravillous trophoblast (EVT). CDX2/Cdx2 is expressed in the TE, and Cdx2 expression is upregulated by knockdown of Foxo1 in mouse ESCs. However, the significance of FOXO1 in trophoblast lineage differentiation during the early developmental period remains unclear. In this study, we examined the effect of FOXO1 inhibition on the differentiation of naive human induced pluripotent stem cells (iPSCs) into TE and trophoblast lineages. Methods We induced TE differentiation from naive iPSCs in the presence or absence of a FOXO1 inhibitor, and the resulting cells were subjected to trophoblast differentiation procedures without the FOXO1 inhibitor. The cells obtained in these processes were assessed for morphology, gene expression, and hCG secretion using phase-contrast microscopy, reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (RT-qPCR), RNA-seq, immunochromatography, and a chemiluminescent enzyme immunoassay. Results In the induction of trophoblast differentiation from naive iPSCs, treatment with a FOXO1 inhibitor resulted in the enhanced expression of TE markers, CDX2 and HAND1, but conversely decreased the expression of ST markers, such as ERVW1 (Syncytin-1) and GCM1, and an EVT marker, HLA-G. The proportion of cells positive for an early TE marker TACSTD2 and negative for a late TE marker ENPEP was higher in FOXO1 inhibitor-treated cells than in non-treated cells. The expressions of ERVW1 (Syncytin-1), ERVFRD-1 (Syncytin-2), and other endogenous retrovirus (ERV)-associated genes that have been reported to be expressed in trophoblasts were suppressed in the cells obtained by differentiating the TE cells treated with FOXO1 inhibitor. Conclusions Treatment with a FOXO1 inhibitor during TE induction from naive iPSCs promotes early TE differentiation but hinders the progression of differentiation into ST and EVT. The suppression of ERV-associated genes may be involved in this process.
Collapse
Affiliation(s)
- Erika Tanaka
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Japan
| | - Sayumi Shimode
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Hideto Yamada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Division of Signal Pathways, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-0013, Japan
| |
Collapse
|
12
|
Tang H, Li D, Peng J, Yang W, Zhang X, Li H. Potential Association of Gut Microbial Metabolism and Circulating mRNA Based on Multiomics Sequencing Analysis in Fetal Growth Restriction. Mediators Inflamm 2024; 2024:9986187. [PMID: 38716374 PMCID: PMC11074908 DOI: 10.1155/2024/9986187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 08/21/2024] Open
Abstract
Objective Fetal growth restriction (FGR) is a significant contributor to negative pregnancy and postnatal developmental outcomes. Currently, the exact pathological mechanism of FGR remains unknown. This study aims to utilize multiomics sequencing technology to investigate potential relationships among mRNA, gut microbiota, and metabolism in order to establish a theoretical foundation for diagnosing and understanding the molecular mechanisms underlying FGR. Methods In this study, 11 healthy pregnant women and nine pregnant women with FGR were divided into Control group and FGR group based on the health status. Umbilical cord blood, maternal serum, feces, and placental tissue samples were collected during delivery. RNA sequencing, 16S rRNA sequencing, and metabolomics methods were applied to analyze changes in umbilical cord blood circulating mRNA, fecal microbiota, and metabolites. RT-qPCR, ELISA, or western blot were used to detect the expression of top 5 differential circulating mRNA in neonatal cord blood, maternal serum, or placental tissue samples. Correlation between differential circulating mRNA, microbiota, and metabolites was analyzed by the Spearman coefficient. Results The top 5 mRNA genes in FGR were altered with the downregulation of TRIM34, DEFA3, DEFA1B, DEFA1, and QPC, and the upregulation of CHPT1, SMOX, FAM83A, GDF15, and NAPG in newborn umbilical cord blood, maternal serum, and placental tissue. The abundance of Bacteroides, Akkermansia, Eubacterium_coprostanoligenes_group, Phascolarctobacterium, Parasutterella, Odoribacter, Lachnospiraceae_UCG_010, and Dielma were significantly enriched in the FGR group. Metabolites such as aspartic acid, methionine, alanine, L-tryptophan, 3-methyl-2-oxovalerate, and ketoleucine showed notable functional alterations. Spearman correlation analysis indicated that metabolites like methionine and alanine, microbiota (Tyzzerella), and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) might play a role as mediators in the communication between the gut and circulatory system interaction in FGR. Conclusion Metabolites (METHIONINE, alanine) as well as microbiota (Tyzzerella) and circulating mRNA (TRIM34, SMOX, FAM83A, NAPG) were possible mediators that communicated the interaction between the gut and circulatory systems in FGR.
Collapse
Affiliation(s)
- Hui Tang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Dan Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Jing Peng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Weitao Yang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xian Zhang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Hanmei Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Bulka CM, Rajkotwala HM, Eaves LA, Gardner AJ, Parsons PJ, Galusha AL, O'Shea TM, Fry RC. Placental cellular composition and umbilical cord tissue metal(loid) concentrations: A descriptive molecular epidemiology study leveraging DNA methylation. Placenta 2024; 147:28-30. [PMID: 38281400 DOI: 10.1016/j.placenta.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
The placenta is a mixture of cell types, which may regulate maternal-fetal transfer of exogenous chemicals or become altered in response to exposures. We leveraged placental DNA methylation to characterize major constituent cell types and applied compositional data analysis to test associations with non-essential metal(loid)s measured in paired umbilical cord tissue (N = 158). Higher proportions of syncytiotrophoblasts were associated with lower arsenic, whereas higher proportions of Hofbauer cells were associated with higher cadmium concentrations in umbilical cords. These findings suggest that placental cellular composition influences amounts of metal(loid)s transferred to the fetus or that prenatal exposures alter the placental cellular makeup.
Collapse
Affiliation(s)
- Catherine M Bulka
- College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Lauren A Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amaree J Gardner
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Aubrey L Galusha
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
14
|
Ao Z, Wu Z, Hu G, Gong T, Zhang C, Yang Z, Zhang Y. Implications for miR-339-5p regulation of trophoblast proliferation and migration in placentas associated with porcine intrauterine growth retardation using integrated transcriptome sequencing analysis. Theriogenology 2024; 216:127-136. [PMID: 38181538 DOI: 10.1016/j.theriogenology.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Placental dysfunction is considered as one of the main etiologies of fetal intrauterine growth retardation (IUGR). MicroRNAs (miRNAs) have been demonstrated to be a vital epigenetic modification involved in regulating the placental function and pregnancy outcomes in mammals. However, the mechanisms underlying placenta-specific miRNAs involved in the occurrence and development of pig IUGR remain unclear. In this work, we compared the placental morphologies of piglets with IUGR and normal birth weight (NBW) by using histomorphological analysis and performed a miRNA-mRNA integrative analysis of the gene expression profiles of IUGR and NBW placentas through RNA sequencing. We also investigated the role of differentially expressed ssc-miR-339-5p/GRIK3 through an in vitro experiment on porcine trophoblast cells (PTr2). IUGR piglets had significantly lower birth weight, placental weight, placental efficiency, and placental villus and capillary densities compared with the NBW piglets (P < 0.05). A total of 81 differentially expressed miRNAs and 726 differentially expressed genes in the placentas were screened out between the IUGR and NBW groups. The miRNA-mRNA interaction networks revealed the key core miRNA (ssc-miR-339-5p) and its corresponding target genes. Subsequently, we found that upregulation of ssc-miR-339-5p significantly inhibited the migration and proliferation of PTr2 cells (P < 0.05). The dual-luciferase reporter system showed that GRIK3 was the target gene of ssc-miR-339-5p, and the transcription level of GRIK3 may be negatively regulated by ssc-miR-339-5p. Additionally, overexpression of ssc-miR-339-5p significantly increased (P < 0.05) the mRNA expression levels of genes involved in the cytokine-cytokine receptor interaction pathway. These results indicate that ssc-miR-339-5p may affect the migration and proliferation of trophoblast cells by regulating the expression of GRIK3 and altering the placental inflammatory response, resulting in a suboptimal morphology and function of the placenta and the development of pig IUGR.
Collapse
Affiliation(s)
- Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhimin Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Guangling Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Caizai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Zhenqing Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
15
|
Zhou J, Sheridan MA, Tian Y, Dahlgren KJ, Messler M, Peng T, Ezashi T, Schulz LC, Ulery BD, Roberts RM, Schust DJ. Development of properly-polarized trophoblast stem cell-derived organoids to model early human pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560327. [PMID: 37873440 PMCID: PMC10592868 DOI: 10.1101/2023.09.30.560327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The development of human trophoblast stem cells (hTSC) and stem cell-derived trophoblast organoids has enabled investigation of placental physiology and disease and early maternal-fetal interactions during a stage of human pregnancy that previously had been severely restricted. A key shortcoming in existing trophoblast organoid methodologies is the non-physiologic position of the syncytiotrophoblast (STB) within the inner portion of the organoid, which neither recapitulates placental villous morphology in vivo nor allows for facile modeling of STB exposure to the endometrium or the contents of the intervillous space. Here we have successfully established properly-polarized human trophoblast stem cell (hTSC)-sourced organoids with STB forming on the surface of the organoid. These organoids can also be induced to give rise to the extravillous trophoblast (EVT) lineage with HLA-G + migratory cells that invade into an extracellular matrix-based hydrogel. Compared to previous hTSC organoid methods, organoids created by this method more closely mimic the architecture of the developing human placenta and provide a novel platform to study normal and abnormal human placental development and to model exposures to pharmaceuticals, pathogens and environmental insults. Motivation Human placental organoids have been generated to mimic physiological cell-cell interactions. However, those published models derived from human trophoblast stem cells (hTSCs) or placental villi display a non-physiologic "inside-out" morphology. In vivo , the placental villi have an outer layer of syncytialized cells that are in direct contact with maternal blood, acting as a conduit for gas and nutrient exchange, and an inner layer of progenitor, single cytotrophoblast cells that fuse to create the syncytiotrophoblast layer. Existing "inside-out" models put the cytotrophoblast cells in contact with culture media and substrate, making physiologic interactions between syncytiotrophoblast and other cells/tissues and normal and pathogenic exposures coming from maternal blood difficult to model. The goal of this study was to develop an hTSC-derived 3-D human trophoblast organoid model that positions the syncytiotrophoblast layer on the outside of the multicellular organoid. Graphical abstract
Collapse
|
16
|
Nancarrow L, Tempest N, Vinayagam S, Lane S, Drakeley AJ, Homburg R, Russell R, Hapangama DK. Implantation in the lower half of the uterine cavity and decreased trophoblastic thickness can predict subsequent miscarriage: a prospective cohort study. REPRODUCTION AND FERTILITY 2023; 4:e230044. [PMID: 37947770 PMCID: PMC10762594 DOI: 10.1530/raf-23-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023] Open
Abstract
Abstract Embryo implantation is vital for successful conception but remains to be fully understood. Trophoblast invasion is key for implantation, with anchorage and depth of placentation determined by its extent. There is a dearth of synchronous information regarding IVF, implantation site, and trophoblastic thickness (TT). Our aim was to determine whether pregnancy implantation site and TT, had an impact on outcomes of IVF pregnancies. This prospective observational study was undertaken at a tertiary referral UK fertility unit over 14 months, collecting data on implantation site and TT from three-dimensional (3D) images of the uterus following early pregnancy scan. Of the 300 women recruited, 277 (92%) had live births, 20 (7%) miscarried, 2 (0.7%) had stillbirths, and 1 (0.3%) had a termination. Significantly more pregnancies that resulted in miscarriage (7/20, 35%) were located in the lower uterine cavity when compared to ongoing pregnancies (15/277, 5%) (P < 0.01). TT was significantly higher in ongoing pregnancies when compared with those who miscarried (7.2 mm vs 5.5 mm; P < 0.01). Implantation in the lower half of the uterine cavity and decreased TT are significantly associated with an increased rate of miscarriage. Identification of those at risk should prompt increased monitoring with the aim of supporting these pregnancies. Lay summary Implantation of an embryo in the womb is vital for a successful pregnancy. We wanted to find out whether findings on an ultrasound scan in early pregnancy had an impact on outcomes of IVF pregnancies. Three hundred women were recruited to the study, 277 (92%) had live births and unfortunately 20 (7%) had a miscarriage, 2 (0.7%) had stillbirths, and 1 (0.3%) had a termination. Many more of the pregnancies that miscarried implanted in the lower part of the womb. The thickness of the infiltration of the pregnancy into the womb was significantly higher in the ongoing pregnancies. We concluded that implantation in the lower half of the womb and reduced infiltration of the pregnancy seen on scan are associated with an increased rate of miscarriage. We propose that when we identify those at risk, we should increase monitoring, with the aim of supporting these pregnancies.
Collapse
Affiliation(s)
- Lewis Nancarrow
- Centre for Women's Health Research, Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
| | - Nicola Tempest
- Centre for Women's Health Research, Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
- Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Suganthi Vinayagam
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
| | - Steven Lane
- Department of Biostatistics, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, University of Liverpool, UK
| | - Andrew J Drakeley
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
- Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Roy Homburg
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
| | - Richard Russell
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s NHS Foundation Trust, Liverpool, UK
- Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Dharani K Hapangama
- Centre for Women's Health Research, Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, Liverpool, UK
- Liverpool Women's NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
17
|
Zhang C, Guo Y, Yang Y, Du Z, Fan Y, Zhao Y, Yuan S. Oxidative stress on vessels at the maternal-fetal interface for female reproductive system disorders: Update. Front Endocrinol (Lausanne) 2023; 14:1118121. [PMID: 36967779 PMCID: PMC10036807 DOI: 10.3389/fendo.2023.1118121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Considerable evidence shows that oxidative stress exists in the pathophysiological process of female reproductive system diseases. At present, there have been many studies on oxidative stress of placenta during pregnancy, especially for preeclampsia. However, studies that directly focus on the effects of oxidative stress on blood vessels at the maternal-fetal interface and their associated possible outcomes are still incomplete and ambiguous. To provide an option for early clinical prediction and therapeutic application of oxidative stress in female reproductive system diseases, this paper briefly describes the composition of the maternal-fetal interface and the molecular mediators produced by oxidative stress, focuses on the sources of oxidative stress and the signaling pathways of oxidative stress at the maternal-fetal interface, expounds the adverse consequences of oxidative stress on blood vessels, and deeply discusses the relationship between oxidative stress and some pregnancy complications and other female reproductive system diseases.
Collapse
Affiliation(s)
- Chenlu Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaxin Guo
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaojin Du
- Reproductive Medical Center, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, China
| | - Yunhui Fan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| | - Suzhen Yuan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yin Zhao, ; Suzhen Yuan,
| |
Collapse
|
18
|
Madani J, Aghebati-Maleki L, Gharibeh N, Pourakbari R, Yousefi M. Fetus, as an allograft, evades the maternal immunity. Transpl Immunol 2022; 75:101728. [DOI: 10.1016/j.trim.2022.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
19
|
Tan JP, Liu X, Polo JM. Establishment of human induced trophoblast stem cells via reprogramming of fibroblasts. Nat Protoc 2022; 17:2739-2759. [PMID: 36241724 DOI: 10.1038/s41596-022-00742-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
During early mammalian embryonic development, trophoblast cells play an essential role in establishing cell-cell interactions at the maternal-fetal interface to ensure a successful pregnancy. In a recent study, we showed that human fibroblasts can be reprogrammed into induced trophoblast stem (iTS) cells by transcription factor-mediated nuclear reprogramming using the Yamanaka factors OCT4, KLF4, SOX2 and c-MYC (OKSM) and a selection of TS cell culture conditions. The derivation of TS cells from human blastocysts or first-trimester placenta can be limited by difficulties in obtaining adequate material as well as ethical implications. By contrast, the described approach allows the generation of iTS cells from the adult cells of individuals with diverse genetic backgrounds, which are readily accessible to many laboratories around the world. Here we describe a step-by-step protocol for the generation and establishment of human iTS cells directly from dermal fibroblasts using a non-integrative reprogramming method. The protocol consists of four main sections: (1) recovery of cryopreserved human dermal fibroblasts, (2) somatic cell reprogramming, (3) passaging of reprogramming intermediates and (4) derivation of iTS cell cultures followed by routine maintenance of iTS cells. These iTS cell lines can be established in 2-3 weeks and cultured long term over 50 passages. We also discuss several characterization methods that can be performed to validate the iTS cells derived using this approach. Our protocol allows researchers to generate patient-specific iTS cells to interrogate the trophoblast and placenta biology as well as their interactions with embryonic cells in health and diseases.
Collapse
Affiliation(s)
- Jia Ping Tan
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Institute for Advanced Study, Hangzhou, China.
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.
- Adelaide Centre for Epigenetics, Faculty of Medicine Nursing and Medical Sciences, The University of Adelaide, Adelaide, Australia.
- The South Australian Immunogenomics Cancer Institute, Faculty of Medicine Nursing and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
20
|
Altered Cord Blood Lipid Concentrations Correlate with Birth Weight and Doppler Velocimetry of Fetal Vessels in Human Fetal Growth Restriction Pregnancies. Cells 2022; 11:cells11193110. [PMID: 36231072 PMCID: PMC9562243 DOI: 10.3390/cells11193110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Fetal growth restriction (FGR) is associated with short- and long-term morbidity, often with fetal compromise in utero, evidenced by abnormal Doppler velocimetry of fetal vessels. Lipids are vital for growth and development, but metabolism in FGR pregnancy, where fetuses do not grow to full genetic potential, is poorly understood. We hypothesize that triglyceride concentrations are increased in placentas and that important complex lipids are reduced in cord plasma from pregnancies producing the smallest babies (birth weight < 5%) and correlate with ultrasound Dopplers. Dopplers (umbilical artery, UA; middle cerebral artery, MCA) were assessed longitudinally in pregnancies diagnosed with estimated fetal weight (EFW) < 10% at ≥29 weeks gestation. For a subset of enrolled women, placentas and cord blood were collected at delivery, fatty acids were extracted and targeted lipid class analysis (triglyceride, TG; phosphatidylcholine, PC; lysophosphatidylcholine, LPC; eicosanoid) performed by LCMS. For this sub-analysis, participants were categorized as FGR (Fenton birth weight, BW ≤ 5%) or SGA "controls" (Fenton BW > 5%). FGRs (n = 8) delivered 1 week earlier (p = 0.04), were 29% smaller (p = 0.002), and had 133% higher UA pulsatility index (PI, p = 0.02) than SGAs (n = 12). FGR plasma TG, free arachidonic acid (AA), and several eicosanoids were increased (p < 0.05); docosahexaenoic acid (DHA)-LPC was decreased (p < 0.01). Plasma TG correlated inversely with BW (p < 0.05). Plasma EET, non-esterified AA, and DHA correlated inversely with BW and directly with UA PI (p < 0.05). Placental DHA-PC and AA-PC correlated directly with MCA PI (p < 0.05). In fetuses initially referred for inadequate fetal growth (EFW < 10%), those with BW ≤ 5% demonstrated distinctly different cord plasma lipid profiles than those with BW > 5%, which correlated with Doppler PIs. This provides new insights into fetal lipidomic response to the FGR in utero environment. The impact of these changes on specific processes of growth and development (particularly fetal brain) have not been elucidated, but the relationship with Doppler PI may provide additional context for FGR surveillance, and a more targeted approach to nutritional management of these infants.
Collapse
|
21
|
Davenport BN, Wilson RL, Jones HN. Interventions for placental insufficiency and fetal growth restriction. Placenta 2022; 125:4-9. [PMID: 35414477 PMCID: PMC10947607 DOI: 10.1016/j.placenta.2022.03.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 01/16/2023]
Abstract
Pregnancy complications adversely impact both mother and/or fetus throughout the lifespan. Fetal growth restriction (FGR) occurs when a fetus fails to reach their intrauterine potential for growth, it is the second highest leading cause of infant mortality, and leads to increased risk of developing non-communicable diseases in later life due 'fetal programming'. Abnormal placental development, growth and/or function underlies approximately 75% of FGR cases and there is currently no treatment save delivery, often prematurely. We previously demonstrated in a murine model of FGR that nanoparticle mediated, intra-placental human IGF-1 gene therapy maintains normal fetal growth. Multiple models of FGR currently exist reflecting the etiologies of human FGR and have been used by us and others to investigate the development of in utero therapeutics as discussed here. In addition to the in vivo models discussed herein, utilizing human models including in vitro (Choriocarcinoma cell lines and primary trophoblasts) and ex vivo (term villous fragments and placenta cotyledon perfusion) we have demonstrated robust nanoparticle uptake, transgene expression, nutrient transporter regulation without transfer to the fetus. For translational gene therapy application in the human placenta, there are multiple avenues that require investigation including syncytial uptake from the maternal circulation, transgene expression, functionality and longevity of treatment, impact of treatment on the mother and developing fetus. The potential impact of treating the placenta during gestation is high, wide-ranging across pregnancy complications, and may offer reduced risk of developing associated cardio-metabolic diseases in later life impacting at both an individual and societal level.
Collapse
Affiliation(s)
- Baylea N Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Rebecca L Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States
| | - Helen N Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, United States.
| |
Collapse
|
22
|
Gyselaers W, Lees C. Maternal Low Volume Circulation Relates to Normotensive and Preeclamptic Fetal Growth Restriction. Front Med (Lausanne) 2022; 9:902634. [PMID: 35755049 PMCID: PMC9218216 DOI: 10.3389/fmed.2022.902634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
This narrative review summarizes current evidence on the association between maternal low volume circulation and poor fetal growth. Though much work has been devoted to the study of cardiac output and peripheral vascular resistance, a low intravascular volume may explain why high vascular resistance causes hypertension in women with preeclampsia (PE) that is associated with fetal growth restriction (FGR) and, at the same time, presents with normotension in FGR itself. Normotensive women with small for gestational age babies show normal gestational blood volume expansion superimposed upon a constitutionally low intravascular volume. Early onset preeclampsia (EPE; occurring before 32 weeks) is commonly associated with FGR, and poor plasma volume expandability may already be present before conception, thus preceding gestational volume expansion. Experimentally induced low plasma volume in rodents predisposes to poor fetal growth and interventions that enhance plasma volume expansion in FGR have shown beneficial effects on intrauterine fetal condition, prolongation of gestation and birth weight. This review makes the case for elevating the maternal intravascular volume with physical exercise with or without Nitric Oxide Donors in FGR and EPE, and evaluating its role as a potential target for prevention and/or management of these conditions.
Collapse
Affiliation(s)
- Wilfried Gyselaers
- Department of Obstetrics, Ziekenhuis Oost Limburg, Genk, Belgium.,Department of Physiology, Hasselt University, Hasselt, Belgium
| | - Christoph Lees
- Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom.,Department of Metabolism, Digestion and Reproduction, Institute for Reproductive and Developmental Biology, Imperial College London, London, United Kingdom.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium.,Centre for Fetal Care, Queen Charlotte's and Chelsea Hospital, London, United Kingdom
| |
Collapse
|
23
|
Hong J, Jiang M, Guo L, Lin J, Wang Y, Tang H, Liu X. Prenatal exposure to triphenyl phosphate activated PPARγ in placental trophoblasts and impaired pregnancy outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119039. [PMID: 35192884 DOI: 10.1016/j.envpol.2022.119039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The health risks of triphenyl phosphate (TPhP) have increased since its widespread application. Using placental trophoblast cell line JEG-3, we demonstrated that TPhP could induce endoplasmic reticulum stress (ERS) and cell apoptosis through PPARγ-mediated lipid metabolism. However, the developmental toxicity of TPhP through the placenta is not known. In this study, prenatal TPhP exposure to mice was investigated. Pregnant mice were orally exposed to TPhP (1 and 5 mg/kg) from embryonic day 0 (E0) until delivery. The results showed that TPhP could accumulate in placenta and impair pregnancy outcomes. After exposure, at E18, placental hormone chorionic gonadotrophin and testosterone levels were significantly decreased, but progesterone and estradiol levels were significantly increased, and placental angiogenesis was activated in the low-dose exposure group. While, in the high-dose exposure group, only estradiol levels were significantly increased. Different with the effect on hormone level or angiogenesis, TPhP significantly increased PPARγ and its regulated lipid transport proteins FABP, FATP, and CD36, and induced lipid accumulation in placental trophoblasts of both low- and high-exposure group. RNA-seq analysis of the placenta identified differentially expressed genes that were mainly involved in the ERS and MAPK signaling pathways. Western blot analysis verified that the protein levels related to ERS stress and apoptosis were significantly increased. To further confirm the role of PPARγ in TPhP mediated placental toxicity, pregnant mice were orally exposed to TPhP (1 mg/kg) or TPhP (1 mg/kg) + GW9662 (PPARγ inhibitor, 2 mg/kg) from E0 until delivery. The results showed that GW9662 could ameliorate the effect of TPhP on placental lipid accumulation, ERS and cell apoptosis, suggesting that PPARγ mediated the placental toxicity of TPhP. Overall, our results indicated that prenatal TPhP exposure impaired pregnancy outcomes, at least partly through PPARγ regulated function of trophoblast.
Collapse
Affiliation(s)
- Jiabin Hong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Mengzhu Jiang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Lihao Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Juntong Lin
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Huanwen Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| |
Collapse
|
24
|
Jackson WM, Santos HP, Hartwell HJ, Gower WA, Chhabra D, Hagood JS, Laughon MM, Payton A, Smeester L, Roell K, O’Shea TM, Fry RC. Differential placental CpG methylation is associated with chronic lung disease of prematurity. Pediatr Res 2022; 91:1428-1435. [PMID: 34857876 PMCID: PMC9160210 DOI: 10.1038/s41390-021-01868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/26/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chronic lung disease (CLD) is the most common pulmonary morbidity in extremely preterm infants. It is unclear to what extent prenatal exposures influence the risk of CLD. Epigenetic variation in placenta DNA methylation may be associated with differential risk of CLD, and these associations may be dependent upon sex. METHODS Data were obtained from a multi-center cohort of infants born extremely preterm (<28 weeks' gestation) and an epigenome-wide approach was used to identify associations between placental DNA methylation and CLD (n = 423). Associations were evaluated using robust linear regression adjusting for covariates, with a false discovery rate of 0.05. Analyses stratified by sex were used to assess differences in methylation-CLD associations. RESULTS CLD was associated with differential methylation at 49 CpG sites representing 46 genes in the placenta. CLD was associated with differential methylation of probes within genes related to pathways involved in fetal lung development, such as p53 signaling and myo-inositol biosynthesis. Associations between CpG methylation and CLD differed by sex. CONCLUSIONS Differential placental methylation within genes with key roles in fetal lung development may reflect complex cell signaling between the placenta and fetus which mediate CLD risk. These pathways appear to be distinct based on fetal sex. IMPACT In extremely preterm infants, differential methylation of CpG sites within placental genes involved in pathways related to cell signaling, oxidative stress, and trophoblast invasion is associated with chronic lung disease of prematurity. DNA methylation patterns associated with chronic lung disease were distinctly based on fetal sex, suggesting a potential mechanism underlying dimorphic phenotypes. Mechanisms related to fetal hypoxia and placental myo-inositol signaling may play a role in fetal lung programming and the developmental origins of chronic lung disease. Continued research of the relationship between the placental epigenome and chronic lung disease could inform efforts to ameliorate or prevent this condition.
Collapse
Affiliation(s)
- Wesley M. Jackson
- Department of Pediatrics, School of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Hudson P. Santos
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC.,Biobehavioral Laboratory, School of Nursing, The University of North Carolina, Chapel Hill, NC
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC
| | - William Adam Gower
- Department of Pediatrics, School of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Divya Chhabra
- Department of Pediatrics, University of California, San Diego, CA
| | - James S. Hagood
- Department of Pediatrics, School of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Matthew M. Laughon
- Department of Pediatrics, School of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Alexis Payton
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC.,Institute for Environmental Health Solutions, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC.,Institute for Environmental Health Solutions, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC
| | - Kyle Roell
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC.,Institute for Environmental Health Solutions, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC
| | - T. Michael O’Shea
- Department of Pediatrics, School of Medicine, The University of North Carolina, Chapel Hill, NC
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC.,Institute for Environmental Health Solutions, Gilling School of Global Public Health, The University of North Carolina, Chapel Hill, NC
| |
Collapse
|
25
|
Wan J, Yu Q, Luo J, Zhang L, Ruan Z. Effects of ferulic acid on the growth performance, antioxidant capacity, and intestinal development of piglets with intrauterine growth retardation. J Anim Sci 2022; 100:6570824. [PMID: 35439319 PMCID: PMC9115905 DOI: 10.1093/jas/skac144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/14/2022] Open
Abstract
Neonates with intrauterine growth retardation (IUGR) are prone to suffer from delayed postnatal growth and development during the early stages of life. Ferulic acid (FA) is a phenolic compound that is abundantly present in fruits and vegetables and has various health benefits. Hence, we explored whether FA supplementation could favorably affect the growth performance, antioxidant capacity, and intestinal development of piglets with IUGR. In total, eight normal-birth-weight (NBW) piglets and 16 piglets with IUGR (age, 7 d) were assigned to be fed either basic formula milk (NBW and IUGR groups, respectively) or basic formula milk supplemented with 100 mg/kg FA (IUGR + FA group) for 21 d. At necropsy, the serum and intestinal tissues were collected. FA supplementation increased (P < 0.05) the feed conversion ratio and serum total superoxide dismutase and catalase activities in piglets with IUGR. Moreover, FA supplementation elevated (P < 0.05) the duodenal lactase and maltase activities, jejunal villus height and jejunal maltase activity but reduced (P < 0.05) the duodenal crypt depth and duodenal and jejunal cell apoptosis, cleaved cysteinyl aspartic acid protease-3 (caspase-3) content and cleaved caspase-9 content in piglets with IUGR. In summary, FA supplementation could elevate antioxidant capacity and facilitate intestinal development, thus resulting in increased feed efficiency in piglets with IUGR.
Collapse
Affiliation(s)
- Jin Wan
- International Institute of Food Innovation, Nanchang University, Nanchang 330200, Jiangxi, People's Republic of China
| | - Qiong Yu
- College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | - Li Zhang
- College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, People's Republic of China
| | - Zheng Ruan
- International Institute of Food Innovation, Nanchang University, Nanchang 330200, Jiangxi, People's Republic of China.,College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, People's Republic of China
| |
Collapse
|
26
|
Filardi T, Catanzaro G, Grieco GE, Splendiani E, Trocchianesi S, Santangelo C, Brunelli R, Guarino E, Sebastiani G, Dotta F, Morano S, Ferretti E. Identification and Validation of miR-222-3p and miR-409-3p as Plasma Biomarkers in Gestational Diabetes Mellitus Sharing Validated Target Genes Involved in Metabolic Homeostasis. Int J Mol Sci 2022; 23:ijms23084276. [PMID: 35457094 PMCID: PMC9028517 DOI: 10.3390/ijms23084276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM) causes both maternal and fetal adverse outcomes. The deregulation of microRNAs (miRNAs) in GDM suggests their involvement in GDM pathogenesis and complications. Exosomes are extracellular vesicles (EVs) of endosomal origin, released via exocytosis into the extracellular compartment. Through EVs, miRNAs are delivered in distant target cells and are able to affect gene expression. In this study, miRNA expression was analyzed to find new miRNAs that could improve GDM classification and molecular characterization. MiRNA were profiled in total plasma and EVs in GDM patients and normal glucose tolerance (NGT) women. Samples were collected at third trimester of gestation from two diabetes centers. MiRNA expression was profiled in a discovery cohort using the multiplexed NanoString nCounter Human v3 miRNA. Validation analysis was performed in a second independent cohort using RT-qPCR. A set of miRNAs resulted to be differentially expressed (DE) in total plasma and EVs in GDM. Among them, total plasma miR-222-3p and miR-409-3p were validated in the independent cohort. MiR-222-3p levels correlated with fasting plasma glucose (FPG) (p < 0.001) and birth weight (p = 0.012), whereas miR-409-3p expression correlated with FPG (p < 0.001) and inversely with gestational age (p = 0.001). The major validated target genes of the deregulated miRNAs were consistently linked to type 2 diabetes and GDM pathophysiology. MiR-222-3p and miR-409-3p are two circulating biomarkers that could improve GDM classification power and act in the context of the molecular events leading to the metabolic alterations observed in GDM.
Collapse
Affiliation(s)
- Tiziana Filardi
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
- Correspondence:
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (G.S.); (F.D.)
- Fondazione Umberto di Mario, Toscana Life Sciences, 53100 Siena, Italy
| | - Elena Splendiani
- Department of Molecular Medicine, “Sapienza” University, 00161 Rome, Italy; (E.S.); (S.T.)
| | - Sofia Trocchianesi
- Department of Molecular Medicine, “Sapienza” University, 00161 Rome, Italy; (E.S.); (S.T.)
| | - Carmela Santangelo
- Center for Gender-Specific Medicine, Gender Specific Prevention and Health Unit, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Roberto Brunelli
- Maternal and Child Health and Urological Sciences, “Sapienza” University, 00161 Rome, Italy;
| | - Elisa Guarino
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (G.S.); (F.D.)
- Fondazione Umberto di Mario, Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (G.S.); (F.D.)
- Fondazione Umberto di Mario, Toscana Life Sciences, 53100 Siena, Italy
- UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
| | - Susanna Morano
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, “Sapienza” University, 00161 Rome, Italy; (T.F.); (S.M.); (E.F.)
| |
Collapse
|
27
|
Hefetz L, Ben-Haroush Schyr R, Bergel M, Arad Y, Kleiman D, Israeli H, Samuel I, Azulai S, Haran A, Levy Y, Sender D, Rottenstreich A, Ben-Zvi D. Maternal antagonism of Glp1 reverses the adverse outcomes of sleeve gastrectomy on mouse offspring. JCI Insight 2022; 7:156424. [PMID: 35393955 PMCID: PMC9057621 DOI: 10.1172/jci.insight.156424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Mothers that underwent bariatric surgery are at higher risk for delivering a small-for-gestational age (SGA) infant. This phenomenon is attributed to malabsorption and rapid weight loss following surgery. We compared pregnancy outcomes in lean mice that underwent sham surgery or sleeve gastrectomy (SG). SG led to a reduction in glucose levels and an increase in postprandial levels of glucagon-like peptide 1 (Glp1) without affecting mice weight during pregnancy. Pups of SG-operated mice (SG pups) were born SGA. The placenta and pancreas of the pups were not affected by SG, although a high-fat diet caused hepatic steatosis and glucose intolerance in male SG pups. Treatment with a Glp1 receptor antagonist during pregnancy normalized the birth weight of SG pups and diminished the adverse response to a high-fat diet without affecting glucose levels of pregnant mice. The antagonist did not affect the birth weight of pups of sham-operated mice. Our findings link elevated Glp1 signaling, rather than weight loss, to the increased prevalence of SGA births following bariatric surgery with metabolic consequences for the offspring. The long-term effects of bariatric surgery on the metabolic health of offspring of patients require further investigation.
Collapse
Affiliation(s)
- Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Medical Corps, Israel Defense Forces, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yhara Arad
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Military Medicine and Tzameret, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Medical Corps, Israel Defense Forces, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Itia Samuel
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shira Azulai
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Arnon Haran
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yovel Levy
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dana Sender
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology and.,Faculty of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute of Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
28
|
Influence of Maternal Region of Birth on Placental Pathology of Babies Born Small. CHILDREN 2022; 9:children9030388. [PMID: 35327760 PMCID: PMC8947328 DOI: 10.3390/children9030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
Background: Placental pathology is a common antecedent factor in infants born small for gestational age. Maternal region of birth can influence rates of SGA. Aims: To determine the association of maternal region of birth on placental pathology in babies that are born small, comparing a South Asian born population with Australia and New Zealand born women. Materials and methods: A retrospective cohort study was conducted at Monash Health, the largest public health service in Victoria. Mother-baby pairs above 34 weeks’ gestation and birth weight less than 10th centile born in 2016 were included. Placental pathology reports and medical records were reviewed. Statistical analyses of placental and selected neonatal outcomes data were performed. Results: Three hundred and eleven small for gestational age babies were included in this study, of which 171 were born to South Asian mothers and 140 to Australian and New Zealand mothers. There were no significant differences in gestational age at birth between the groups (38.7 (1.6) vs. 38.3 (1.7) weeks, p = 0.06). Placental pathology (macroscopic and microscopic) data comparisons showed no significant differences between the two groups (81% major abnormality in both groups). This was despite South Asian small for gestational age babies being less likely to require admission to a special care nursery or neonatal intensive care unit (35 vs. 41%, p = 0.05), or have a major congenital abnormality (2.3 vs. 4.3%, p = 0.04). Conclusion: In this observational study, maternal region of birth did not have an influence on placental pathology of babies born small, despite some differences in neonatal outcomes.
Collapse
|
29
|
Moreno-Fernandez J, Ochoa JJ, De Paco Matallana C, Caño A, Martín-Alvarez E, Sanchez-Romero J, Toledano JM, Puche-Juarez M, Prados S, Ruiz-Duran S, Diaz-Meca L, Carrillo MP, Diaz-Castro J. COVID-19 during Gestation: Maternal Implications of Evoked Oxidative Stress and Iron Metabolism Impairment. Antioxidants (Basel) 2022; 11:184. [PMID: 35204067 PMCID: PMC8868249 DOI: 10.3390/antiox11020184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 has reached pandemic proportions worldwide, with considerable consequences for both health and the economy. In pregnant women, COVID-19 can alter the metabolic environment, iron metabolism, and oxygen supply of trophoblastic cells, and therefore have a negative influence on essential mechanisms of fetal development. The purpose of this study was to investigate, for the first time, the effects of COVID-19 infection during pregnancy with regard to the oxidative/antioxidant status in mothers' serum and placenta, together with placental iron metabolism. Results showed no differences in superoxide dismutase activity and placental antioxidant capacity. However, antioxidant capacity decreased in the serum of infected mothers. Catalase activity decreased in the COVID-19 group, while an increase in 8-hydroxy-2'-deoxyguanosine, hydroperoxides, 15-FT-isoprostanes, and carbonyl groups were recorded in this group. Placental vitamin D, E, and Coenzyme-Q10 also showed to be increased in the COVID-19 group. As for iron-related proteins, an up-regulation of placental DMT1, ferroportin-1, and ferritin expression was recorded in infected women. Due to the potential role of iron metabolism and oxidative stress in placental function and complications, further research is needed to explain the pathogenic mechanism of COVID-19 that may affect pregnancy, so as to assess the short-term and long-term outcomes in mothers' and infants' health.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Clinical Medicine and Public Health Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
| | - Catalina De Paco Matallana
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (L.D.-M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Africa Caño
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain; (A.C.); (S.P.)
| | - Estefania Martín-Alvarez
- Unit of Neonatology, Pediatric Service, Hospital Universitario Materno-Infantil Virgen de las Nieves, 18014 Granada, Spain;
| | - Javier Sanchez-Romero
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (L.D.-M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Sonia Prados
- Department of Obstetrics and Gynaecology, San Cecilio Universitary Hospital, 18071 Granada, Spain; (A.C.); (S.P.)
| | - Susana Ruiz-Duran
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (S.R.-D.); (M.P.C.)
| | - Lucia Diaz-Meca
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario ‘Virgen de la Arrixaca’, El Palmar, 30120 Murcia, Spain; (J.S.-R.); (L.D.-M.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - María Paz Carrillo
- Department of Obstetrics & Gynaecology, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (S.R.-D.); (M.P.C.)
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.-F.); (J.M.T.); (M.P.-J.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria (IBS), 18012 Granada, Spain
| |
Collapse
|
30
|
Xiong YW, Feng YJ, Wei T, Zhang X, Tan LL, Zhang J, Dai LM, Zhu HL, Zhou GX, Liu WB, Liu ZQ, Xu XF, Gao L, Zhang C, Wang Q, Xu DX, Wang H. miR-6769b-5p targets CCND-1 to regulate proliferation in cadmium-treated placental trophoblasts: Association with the impairment of fetal growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113109. [PMID: 34953275 DOI: 10.1016/j.ecoenv.2021.113109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Environmental cadmium (Cd) is positively associated with placental impairment and fetal growth retardation. Nevertheless, its potential mechanisms remain unclear. microRNAs (miRNAs) are known to influence placental development and fetal growth. This work was aimed to determine which miRNAs are involved in Cd-impaired placental and fetal development based on the mRNA and miRNA expression profiles analysis. As a result, gestational Cd exposure deceased fetal and placental weight, and reduced the protein level of PCNA in human and mouse placentae. Furthermore, the results of mRNA microarray showed that Cd-downregulated mRNAs were predictively correlated with several biological processes, including cell proliferation, differentiation and motility. In addition, the results of miRNA microarray and qPCR assay demonstrated that Cd significantly increased the level of miR-6769b-5p, miR-146b-5p and miR-452-5p. Integrated analysis of Cd-upregulated miRNAs predicted target genes and Cd-downregulated mRNAs found that overlapping mRNAs, such as CCND1, CDK13, RINT1 and CDC26 were also significantly associated with cell proliferation. Further experiments showed that miR-6769b-5p inhibitor, but not miR-146b-5p and miR-452-5p, markedly reversed Cd-downregulated the expression of proliferation-related mRNAs, and thereby restored Cd-decreased the proteins level of CCND1 and PCNA in human placental trophoblasts. Dual luciferase reporter assay further revealed that miR-6769b-5p directly targets CCND1. Finally, the case-control study demonstrated that increased miR-6769b-5p level and impaired cell proliferation were observed in small-for-gestational-age human placentae. In conclusion, miR-6769b-5p targets CCND-1 to regulate proliferation in Cd-treated placental trophoblasts, which is associated with the impairment of fetal growth. Our findings imply that placental miR-6769b-5p may be used as an epigenetic marker for environmental pollutants-caused fetal growth restriction and its late-onset chronic diseases.
Collapse
Affiliation(s)
- Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Jie Feng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xiang Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Li-Min Dai
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Guo-Xiang Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zi-Qi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, China
| | - Xiao-Feng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, China.
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
31
|
Pathological Role of Reactive Oxygen Species on Female Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:201-220. [PMID: 36472824 DOI: 10.1007/978-3-031-12966-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress (OS), a clinical predicament characterized by a shift in homeostatic imbalance among prooxidant molecules embracing reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with antioxidant defenses, has been established to play an indispensable part in the pathophysiology of subfertility in both human males and females. ROS are highly reactive oxidizing by-products generated during critical oxygen-consuming processes or aerobic metabolism. A healthy body system has its own course of action to maintain the equilibrium between prooxidants and antioxidants with an efficient defense system to fight against ROS. But when ROS production crosses its threshold, the disturbance in homeostatic balance results in OS. Besides their noxious effects, literature studies have depicted that controlled and adequate ROS concentrations exert physiologic functions, especially that gynecologic OS is an important mediator of conception in females. Yet the impact of ROS on oocytes and reproductive functions still needs a strong attestation for further analysis because the disruption in prooxidant and antioxidant balance leads to abrupt ROS generation initiating multiple reproductive diseases such as polycystic ovary syndrome (PCOS), endometriosis, and unexplained infertility in addition to other impediments in pregnancy such as recurrent pregnancy loss, spontaneous abortion, and preeclampsia. The current article elucidates the skeptical state of affairs created by ROS that influences female fertility.
Collapse
|
32
|
Jovanović Krivokuća M, Vilotić A, Nacka-Aleksić M, Pirković A, Ćujić D, Legner J, Dekanski D, Bojić-Trbojević Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int J Mol Sci 2021; 23:69. [PMID: 35008499 PMCID: PMC8744741 DOI: 10.3390/ijms23010069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
Galectins are a family of conserved soluble proteins defined by an affinity for β-galactoside structures present on various glycoconjugates. Over the past few decades, galectins have been recognized as important factors for successful implantation and maintenance of pregnancy. An increasing number of studies have demonstrated their involvement in trophoblast cell function and placental development. In addition, several lines of evidence suggest their important roles in feto-maternal immune tolerance regulation and angiogenesis. Changed or dysregulated galectin expression is also described in pregnancy-related disorders. Although the data regarding galectins' clinical relevance are still at an early stage, evidence suggests that some galectin family members are promising candidates for better understanding pregnancy-related pathologies, as well as predicting biomarkers. In this review, we aim to summarize current knowledge of galectins in early pregnancy as well as in pregnancy-related pathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Žanka Bojić-Trbojević
- Institute for Application of Nuclear Energy Department for Biology of Reproduction, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (M.J.K.); (A.V.); (M.N.-A.); (A.P.); (D.Ć.); (J.L.); (D.D.)
| |
Collapse
|
33
|
Pathare-Ingawale P, Chavan-Gautam P. The balance between cell survival and death in the placenta: Do neurotrophins have a role? Syst Biol Reprod Med 2021; 68:3-12. [PMID: 34615417 DOI: 10.1080/19396368.2021.1980132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Neurotrophins (NT) are a closely related family of growth factors, which regulate the nervous system's development, maintenance, and function. Although NTs have been well studied in neuronal cells, they are also expressed in the placenta. Despite their suggested role in regulating fetoplacental development, their precise functional significance in the placenta remains elusive. NT activate two different classes of receptors. These include the Trk, tropomyosin-related kinase family of high-affinity tropomyosin-related kinase receptors, which induces cell survival, and the p75NTR, p75 neurotrophin receptor, a member of the tumor necrosis factor(TNF) receptor superfamily, which induces apoptosis in neuronal cells. Mature NT molecule results from proteolysis of a biologically active precursor form called pro-neurotrophins (pro-NT) by the intracellular proprotein convertase or furin. Pro-NTs have a regulatory role in determining cell survival and apoptosis. Here, we review the literature on the expression and functions of NTs and their receptors in the placenta and discuss their possible role in placental tissue development and apoptosis. The possible implications of imbalance in pro-NT and mature-NT levels for fetoplacental development are also discussed.Abbreviations AGE/ALEs: Advanced glycation/lipoxidation end products; Bax: Bcl 2 Associated X; Bcl-2: B-cell lymphoma 2; BDNF: Brain-derived neurotrophic factor; FAS/FASL: Fas cell surface death receptor/ ligand; IUGR: Intrauterine growth restriction; JNK: c-Jun amino-terminal kinase; MAP: mitogen-activated protein k; mRNA: Messenger ribonucleic acid; NGF: Nerve growth factor; NT: Neurotrophins; NRAGE: Neurotrophin receptor-interacting MAGE homolog; NRIF: Neurotrophin receptor interacting factor; PE: Preeclampsia; PI3k: Phosphoinositide 3- kinase; PLC: Phospholipase C; p75NTR: p75 neurotrophin receptor; Pro-NT: Pro-neurotrophins; PTB: Preterm birth; p53: Tumor protein p53; TNF: Tumor necrosis factor; TRAF: TNFR-associated factors; Trk: Tropomyosin-related kinase; siRNA: small interfering ribonucleic acid.
Collapse
Affiliation(s)
| | - Preeti Chavan-Gautam
- Interdisciplinary School of Health Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
34
|
Dall'Asta A, Kumar S. Prelabor and intrapartum Doppler ultrasound to predict fetal compromise. Am J Obstet Gynecol MFM 2021; 3:100479. [PMID: 34496306 DOI: 10.1016/j.ajogmf.2021.100479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
According to current estimates, over 20% of the 4 million neonatal deaths occurring globally every year are related to intrapartum hypoxic complications that happen as a result of uterine contractions against a background of inadequate placental function. Most of such intrapartum complications occur among apparently uncomplicated term pregnancies. Available evidence suggests that current risk-assessment strategies do not adequately identify many of the fetuses vulnerable to periods of intermittent hypoxia that characterize human labor. In this review, we discuss the data available on Doppler ultrasound for the evaluation of placental function before and during labor in appropriately grown fetuses; we also discuss the current strategies for ultrasound-based risk stratification, the physiology of intrapartum compromise, and the potential future treatments to prevent fetal distress in labor and reduce perinatal complications related to birth asphyxia.
Collapse
Affiliation(s)
- Andrea Dall'Asta
- Obstetrics and Gynecology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy (Dr Dall'Asta); Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom (Dr Dall'Asta).
| | - Sailesh Kumar
- Mater Research Institute, University of Queensland, Queensland, Australia (Dr Kumar); Faculty of Medicine, The University of Queensland, Queensland, Australia (Dr Kumar)
| |
Collapse
|
35
|
Saw SN, Dai Y, Yap CH. A Review of Biomechanics Analysis of the Umbilical-Placenta System With Regards to Diseases. Front Physiol 2021; 12:587635. [PMID: 34475826 PMCID: PMC8406807 DOI: 10.3389/fphys.2021.587635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Placenta is an important organ that is crucial for both fetal and maternal health. Abnormalities of the placenta, such as during intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are common, and an improved understanding of these diseases is needed to improve medical care. Biomechanics analysis of the placenta is an under-explored area of investigation, which has demonstrated usefulness in contributing to our understanding of the placenta physiology. In this review, we introduce fundamental biomechanics concepts and discuss the findings of biomechanical analysis of the placenta and umbilical cord, including both tissue biomechanics and biofluid mechanics. The biomechanics of placenta ultrasound elastography and its potential in improving clinical detection of placenta diseases are also discussed. Finally, potential future work is listed.
Collapse
Affiliation(s)
- Shier Nee Saw
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yichen Dai
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Jee B, Dhar R, Singh S, Karmakar S. Heat Shock Proteins and Their Role in Pregnancy: Redefining the Function of "Old Rum in a New Bottle". Front Cell Dev Biol 2021; 9:648463. [PMID: 33996811 PMCID: PMC8116900 DOI: 10.3389/fcell.2021.648463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It's well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.
Collapse
Affiliation(s)
- Babban Jee
- Department of Health Research, Ministry of Health and Family Welfare, Government of India, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
37
|
Ali MM, Khater SA, Fayed AA, Sabry D, Ibrahim SF. Apoptotic endocrinal toxic effects of perchlorate in human placental cells. Toxicol Rep 2021; 8:863-870. [PMID: 33948439 PMCID: PMC8079966 DOI: 10.1016/j.toxrep.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/22/2021] [Accepted: 04/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Perchlorate is a strong oxidizing agent and has many adverse health effects. This study investigated the potential oxidative, apoptotic, and endocrinal toxic effects of perchlorate in human placenta-derived mesenchymal stem cells (HP-MSCs). METHODS HP-MSCs were treated with two doses of perchlorate (5 and 15 μg/L) for three days. The perchlorate's effects were detected by histopathological examination, aromatase/CYP19 A1 activity, reactive oxygen species production (ROS), and Caspase-3 expression. RESULTS The highest perchlorate concentration (15 μg/L) caused significant placental histopathological changes. The placental cell viability was significantly affected by a significant increase in ROS generation; caspase-3 expression, and a significant reduction of CYP 19 activity. Despite the slight induction effect of the lowest perchlorate concentration (5 μg/L) on caspase 3 expression, CYP 19 activity, and ROS generation, it did not affect placental cellular viability. CONCLUSION This study suggested that perchlorate could modulate aromatase activity and placental cytotoxicity. The continuous monitoring of the actual perchlorate exposure is needed and could be cost-effective.
Collapse
Affiliation(s)
- Mona M. Ali
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Forensic Medicine and Clinical Toxicology, Taif University, Saudi Arabia
| | - Sarah A. Khater
- Forensic Medicine and Clinical Toxicology- Misr University for Science and Technology, Egypt
| | - Amel Ahmed Fayed
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
- Medical Biochemistry and Molecular Biology Departement, Faculty of Medicine, Badr University, Egypt
| | - Samah F. Ibrahim
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Cairo University, Egypt
- Clinical Department, College of Medicine, Princess Nourah bint Abdulrahman University, Saudi Arabia
| |
Collapse
|
38
|
Betancourt DM, Llana MN, Sarnacki SH, Cerquetti MC, Monzalve LS, Pustovrh MC, Giacomodonato MN. Salmonella Enteritidis foodborne infection induces altered placental morphometrics in the murine model. Placenta 2021; 109:11-18. [PMID: 33915480 DOI: 10.1016/j.placenta.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Salmonella foodborne disease during pregnancy causes a significant fetal loss in domestic livestock and preterm birth, chorioamnionitis and miscarriage in humans. These complications could be associated with alterations in placental structure. This study was aimed to determine how a low dose of Salmonella Enteritidis during late gestation affects placental histomorphometric in mice. METHODS We used a self-limiting enterocolitis murine model. BALB/c pregnant animals received a low dose of Salmonella Enteritidis (3-4 x 102 CFU/mouse) on gestational day (GD) 15. At day 3 post infection bacterial loads, serum cytokines expression and placental histomorphometrics parameters were analyzed. RESULTS We found that a sub-lethal infection with Salmonella induced a significant drop in fetal weight -to-placental weight-ratio and an increase in the placental coefficient. After bacterial inoculation maternal organs were colonized, inducing placental morphometric alterations, including increased placental thickness, reduced surface area, and diminished major and minor diameters. Also, foci of necrosis accompanied by acute leukocyte infiltration in decidual zone, reduction of vascular spaces and vascular congestion in labyrinth zone, were also evident in placentas from infected females on GD 18. Our data shows that placentas from infected mothers are phenotypically different from control ones. Furthermore, expression of IFN-gamma and IL-6 was up regulated in response to Salmonella in maternal serum. DISCUSSION Our findings demonstrate that a low dose of Salmonella during late gestation alters the placental morphometry leading to negative consequences on pregnancy outcome such as significant reduction in fetal body weight.
Collapse
Affiliation(s)
- Diana M Betancourt
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | - Mariángeles Noto Llana
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | - Sebastián H Sarnacki
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | - M Cristina Cerquetti
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| | | | - María C Pustovrh
- Departamento de Morfología, Facultad de Salud, Universidad Del Valle, Cali, Colombia.
| | - Mónica N Giacomodonato
- Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-UBA-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, UBA, Buenos Aires, Argentina.
| |
Collapse
|
39
|
Flouri D, Darby JRT, Holman SL, Perumal SR, David AL, Morrison JL, Melbourne A. Magnetic resonance imaging of placentome development in the pregnant Ewe. Placenta 2021; 105:61-69. [PMID: 33549925 PMCID: PMC7611430 DOI: 10.1016/j.placenta.2021.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Novel imaging measurements of placental development are difficult to validate due to the invasive nature of gold-standard procedures. Animal studies have been important in validation of magnetic resonance imaging (MRI) measurements in invasive preclinical studies, as they allow for controlled experiments and analysis of multiple time-points during pregnancy. This study characterises the longitudinal diffusion and perfusion properties of sheep placentomes using MRI, measurements that are required for future validation studies. METHODS Pregnant ewes were anaesthetised for a MRI session on a 3T scanner. Placental MRI was used to classify placentomes morphologically into three types based on their shape and size at two gestational ages. To validate classification accuracy, placentome type derived from MRI data were compared with placentome categorisation results after delivery. Diffusion-Weighted MRI and T2-relaxometry were used to measure a broad range of biophysical properties of the placentomes. RESULTS MRI morphological classification results showed consistent gestational age changes in placentome shape, as supported by post-delivery gold standard data. The mean apparent diffusion coefficient was significantly higher at 110 days gestation than at late gestation (~140 days; term, 150 days). Mean T2 was higher at mid gestation (152.2 ± 58.1 ms) compared to late gestation (127.8 ms ± 52.0). Significantly higher perfusion fraction was measured in late gestation placentomes that also had a significantly higher fractional anisotropy when compared to the earlier gestational age. DISCUSSION We report baseline measurements of techniques common in placental MRI for the sheep placenta. These measurements are essential to support future validation measurements of placental MRI techniques.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Stacey L Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Sunthara R Perumal
- South Australian Health & Medical Research Institute, Preclinical, Imaging & Research Laboratories, Adelaide, Australia
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, London, United Kingdom; NIHR Biomedical Research Centre, University College London Hospitals, London, United Kingdom
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
40
|
Cheah FC, Lai CH, Tan GC, Swaminathan A, Wong KK, Wong YP, Tan TL. Intrauterine Gardnerella vaginalis Infection Results in Fetal Growth Restriction and Alveolar Septal Hypertrophy in a Rabbit Model. Front Pediatr 2021; 8:593802. [PMID: 33553066 PMCID: PMC7862757 DOI: 10.3389/fped.2020.593802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/16/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Gardnerella vaginalis (GV) is most frequently associated with bacterial vaginosis and is the second most common etiology causing intrauterine infection after Ureaplasma urealyticum. Intrauterine GV infection adversely affects pregnancy outcomes, resulting in preterm birth, fetal growth restriction, and neonatal pneumonia. The knowledge of how GV exerts its effects is limited. We developed an in vivo animal model to study its effects on fetal development. Materials and Methods: A survival mini-laparotomy was conducted on New Zealand rabbits on gestational day 21 (28 weeks of human pregnancy). In each dam, fetuses in the right uterine horn received intra-amniotic 0.5 × 102 colony-forming units of GV injections each, while their littermate controls in the left horn received sterile saline injections. A second laparotomy was performed seven days later. Assessment of the fetal pups, histopathology of the placenta and histomorphometric examination of the fetal lung tissues was done. Results: Three dams with a combined total of 12 fetuses were exposed to intra-amniotic GV, and 9 fetuses were unexposed. The weights of fetuses, placenta, and fetal lung were significantly lower in the GV group than the saline-inoculated control group [mean gross weight, GV (19.8 ± 3.8 g) vs. control (27.9 ± 1.7 g), p < 0.001; mean placenta weight, GV (5.5 ± 1.0 g) vs. control (6.5 ± 0.7 g), p = 0.027; mean fetal lung weight, GV (0.59 ± 0.11 g) vs. control (0.91 ± 0.08 g), p = 0.002. There was a two-fold increase in the multinucleated syncytiotrophoblasts in the placenta of the GV group than their littermate controls (82.9 ± 14.9 vs. 41.6 ± 13.4, p < 0.001). The mean alveolar septae of GV fetuses was significantly thicker than the control (14.8 ± 2.8 μm vs. 12.4 ± 3.8 μm, p = 0.007). Correspondingly, the proliferative index in the interalveolar septum was 1.8-fold higher in the GV group than controls (24.9 ± 6.6% vs. 14.2 ± 2.9%, p = 0.011). The number of alveoli and alveolar surface area did not vary between groups. Discussion: Low-dose intra-amniotic GV injection induces fetal growth restriction, increased placental multinucleated syncytiotrophoblasts and fetal lung re-modeling characterized by alveolar septal hypertrophy with cellular proliferative changes. Conclusion: This intra-amniotic model could be utilized in future studies to elucidate the acute and chronic effects of GV intrauterine infections.
Collapse
Affiliation(s)
- Fook-Choe Cheah
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Chee Hoe Lai
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Anushia Swaminathan
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Kon Ken Wong
- Department of Microbiology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Tian-Lee Tan
- Department of Pediatrics, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral L-glutamine rescues fructose-induced poor fetal outcome by preventing placental triglyceride and uric acid accumulation in Wistar rats. Heliyon 2020; 6:e05863. [PMID: 33426346 PMCID: PMC7777114 DOI: 10.1016/j.heliyon.2020.e05863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/08/2020] [Accepted: 12/23/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Metabolic adaptation of pregnant mothers is crucial for placental development and fetal growth/survival. However, evidence exists that indiscriminate consumption of fructose-enriched drink (FED) during pregnancy disrupts maternal-fetal metabolic tolerance with attendant adverse fetal outcomes. Glutamine supplementation (GLN) has been shown to exert a modulatory effect in metabolic disorders. Nevertheless, the effects of GLN on FED-induced poor fetal outcome, and in particular the impacts on placental uric acid/lipid accumulation are unknown. The present study was conducted to test the hypothesis that oral GLN improves fetal outcome by attenuating placental lipid accumulation and uric acid synthesis in pregnant rats exposed to FED. MATERIALS AND METHODS Pregnant Wistar rats (160-180 g) were randomly allotted to control, GLN, FED and FED + GLN groups (6 rats/group). The groups received vehicle by oral gavage, glutamine (1 g/kg) by oral gavage, fructose (10%; w/v) and fructose + glutamine, respectively, through gestation. RESULTS Data showed that FED during pregnancy caused placental inefficiency, reduced fetal growth, and caused insulin resistance with correspondent increase in fasting blood glucose and plasma insulin. FED also resulted in an increased placental triglyceride, total cholesterol and de novo uric acid synthesis by activating adenosine deaminase and xanthine oxidase activities. Moreover, FED during pregnancy led to increased lipid peroxidation, lactate production with correspondent decreased adenosine and glucose-6-phosphate dehydrogenase-dependent antioxidant defense. These alterations were abrogated by GLN supplementation. CONCLUSION These findings implicate that high FED intake during pregnancy causes poor fetal outcome via defective placental uric acid/triglyceride-dependent mechanism. The findings also suggest that oral GLN improves fetal outcome by ameliorating placental defects through suppression of uric acid/triglyceride accumulation.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
| |
Collapse
|
42
|
Weatherall EL, Avilkina V, Cortes-Araya Y, Dan-Jumbo S, Stenhouse C, Donadeu FX, Esteves CL. Differentiation Potential of Mesenchymal Stem/Stromal Cells Is Altered by Intrauterine Growth Restriction. Front Vet Sci 2020; 7:558905. [PMID: 33251256 PMCID: PMC7676910 DOI: 10.3389/fvets.2020.558905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Consistency in clinical outcomes is key to the success of therapeutic Mesenchymal Stem/Stromal cells (MSCs) in regenerative medicine. MSCs are used to treat both humans and companion animals (horses, dogs, and cats). The properties of MSC preparations can vary significantly with factors including tissue of origin, donor age or health status. We studied the effects of developmental programming associated with intrauterine growth restriction (IUGR) on MSC properties, particularly related to multipotency. IUGR results from inadequate uterine capacity and placental insufficiency of multifactorial origin. Both companion animals (horses, dogs, cats) and livestock (pigs, sheep, cattle) can be affected by IUGR resulting in decreased body size and other associated changes that can include, alterations in musculoskeletal development and composition, and increased adiposity. Therefore, we hypothesized that this dysregulation occurs at the level of MSCs, with the cells from IUGR animals being more prone to differentiate into adipocytes and less to other lineages such as chondrocytes and osteocytes compared to those obtained from normal animals. IUGR has consequences on health and performance in adult life and in the case of farm animals, on meat quality. In humans, IUGR is linked to increased risk of metabolic (type 2 diabetes) and other diseases (cardiovascular), later in life. Here, we studied porcine MSCs where IUGR occurs spontaneously, and shows features that recapitulate human IUGR. We compared the properties of adipose-derived MSCs from IUGR (IUGR-MSCs) and Normal (Normal-MSCs) new-born pig littermates. Both MSC types grew clonally and expressed typical MSC markers (CD105, CD90, CD44) at similar levels. Importantly, tri-lineage differentiation capacity was significantly altered by IUGR. IUGR-MSCs had higher adipogenic capacity than Normal-MSCs as evidenced by higher adipocyte content and expression of the adipogenic transcripts, PPARγ and FABP4 (P < 0.05). A similar trend was observed for fibrogenesis, where, upon differentiation, IUGR-MSCs expressed significantly higher levels of COL1A1 (P < 0.03) than Normal-MSCs. In contrast, chondrogenic and osteogenic potential were decreased in IUGR-MSCs as shown by a smaller chondrocyte pellet and osteocyte staining, and lower expression of SOX9 (P < 0.05) and RUNX2 (P < 0.02), respectively. In conclusion, the regenerative potential of MSCs appears to be determined prenatally in IUGR and this should be taken into account when selecting cell donors in regenerative therapy programmes both in humans and companion animals.
Collapse
Affiliation(s)
- Emma L Weatherall
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Viktorija Avilkina
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Yennifer Cortes-Araya
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Susan Dan-Jumbo
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Claire Stenhouse
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| | - Francesc X Donadeu
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom.,The Euan Macdonald Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Cristina L Esteves
- The Roslin Institute and The Royal (DICK) School of Veterinary Studies (R(D)SVS), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Ghaneifar Z, Yousefi Z, Tajik F, Nikfar B, Ghalibafan F, Abdollahi E, Momtazi-Borojeni AA. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life 2020; 72:2572-2583. [PMID: 33107698 DOI: 10.1002/iub.2399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/13/2023]
Abstract
Pregnancy complications including preeclampsia, preterm birth, intrauterine growth restriction, and gestational diabetes are the main adverse reproductive outcomes. Excessive inflammation and oxidative stress play crucial roles in the pathogenesis of pregnancy disorders. Curcumin, the main polyphenolic compound derived from Curcuma longa, is mainly known by its anti-inflammatory and antioxidant properties. There are in vitro and in vivo reports revealing the preventive and ameliorating effects of curcumin against pregnancy complications. Here, we aimed to seek mechanisms underlying the modulatory effects of curcumin on dysregulated inflammatory and oxidative responses in various pregnancy complications.
Collapse
Affiliation(s)
- Zahra Ghaneifar
- Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Tajik
- Faculty of medicine, Azad University of Tehran, Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghalibafan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Guo Y, Lu Y, Wang J, Zhu L, Liu X. Dysregulated ion channels and transporters activate endoplasmic reticulum stress in rat kidney of fetal growth restriction. Life Sci 2020; 259:118276. [PMID: 32798560 DOI: 10.1016/j.lfs.2020.118276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
AIMS The mechanisms underlying the fetal origin of renal disease remains unknown. This study aimed to investigate the profiles of ion channel and transporter proteins in the fetal kidney in fetal growth restriction (FGR)rats, and to explore their association with the fetal origin of renal disease. MAIN METHODS An FGR rat model was developed by administration of a low-protein diet. Then 367 differentially expressed proteins (DEPs) from quantitative proteome analysis were subjected to Ingenuity Pathway Analysis. 22 DEPs associated with ion channels/transporters were evaluated in the fetal kidney. Na+/H+ exchanger1(NHE1) and its downstream unfolded protein response (UPR) pathway were investigated. Furthermore, overexpression of NHE1 were achieved via plasmid transfection to evaluate the potential influence on the UPR pathway and cell apoptosis in human proximal tubular epithelial cell line HK2 cells. KEY FINDINGS Findings were as follows: 1) In the FGR fetal kidney, aquaporin 2/4, solute carrier (SLC) 8a1, 33a1, etc. were downregulated, whereas other transporters including SLC 2a1, 4a1, 9a1, 29a3, etc. were upregulated. 2) NHE1 mRNA levels were markedly elevated in the FGR fetus. Further investigation revealed an increase in the UPR pathway regulators. 3) In vitro study showed that NHE1 overexpression in HK2 cells significantly induced expression of the endoplasmic reticulum stress (ERS) regulators and led to a decrease in the anti-apoptotic potential. SIGNIFICANCE We speculate that maternal protein malnutrition causes dysregulation of ion channels/transporters in the fetal kidney. Upregulated NHE1 may activate the UPR pathway and induce cell apoptosis thus leading to impairment of kidney function.
Collapse
Affiliation(s)
- Yanyan Guo
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Yan Lu
- Department of human resource, Shengjing Hospital of China Medical University, China
| | - Jun Wang
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Liangliang Zhu
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Xiaomei Liu
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
45
|
Aughwane R, Mufti N, Flouri D, Maksym K, Spencer R, Sokolska M, Kendall G, Atkinson D, Bainbridge A, Deprest J, Vercauteren T, Ourselin S, David AL, Melbourne A. Magnetic resonance imaging measurement of placental perfusion and oxygen saturation in early-onset fetal growth restriction. BJOG 2020; 128:337-345. [PMID: 32603546 PMCID: PMC7613436 DOI: 10.1111/1471-0528.16387] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2020] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We hypothesised that a multi-compartment magnetic resonance imaging (MRI) technique that is sensitive to fetal blood oxygenation would identify changes in placental blood volume and fetal blood oxygenation in pregnancies complicated by early-onset fetal growth restriction (FGR). DESIGN Case-control study. SETTING London, UK. POPULATION Women with uncomplicated pregnancies (estimated fetal weight [EFW] >10th centile for gestational age [GA] and normal maternal and fetal Doppler ultrasound, n = 12) or early-onset FGR (EFW <3rd centile with or without abnormal Doppler ultrasound <32 weeks GA, n = 12) were studied. METHODS All women underwent MRI examination. Using a multi-compartment MRI technique, we quantified fetal and maternal blood volume and feto-placental blood oxygenation. MAIN OUTCOME MEASURES Disease severity was stratified according to Doppler pulsatility index and the relationship to the MRI parameters was investigated, including the influence of GA at scan. RESULTS The FGR group (mean GA 27+5 weeks, range 24+2 to 33+6 weeks) had a significantly lower EFW compared with the control group (mean GA 29+1 weeks; -705 g, 95% CI -353 to -1057 g). MRI-derived feto-placental oxygen saturation was higher in controls compared with FGR (75 ± 9.6% versus 56 ± 16.2%, P = 0.02, 95% CI 7.8-30.3%). Feto-placental oxygen saturation estimation correlated strongly with GA at scan in controls (r = -0.83). CONCLUSION Using a novel multimodal MRI protocol we demonstrated reduced feto-placental blood oxygen saturation in pregnancies complicated by early-onset FGR. The degree of abnormality correlated with disease severity defined by ultrasound Doppler findings. Gestational age-dependent changes in oxygen saturation were also present in normal pregnancies. TWEETABLE ABSTRACT MRI reveals differences in feto-placental oxygen saturation between normal and FGR pregnancy that is associated with disease severity.
Collapse
Affiliation(s)
- R Aughwane
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - N Mufti
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - D Flouri
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - K Maksym
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - R Spencer
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,University of Leeds, Leeds, UK
| | - M Sokolska
- Medical Physics, University College Hospital, London, UK
| | - G Kendall
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - D Atkinson
- Centre for Medical Imaging, University College London, London, UK
| | - A Bainbridge
- Medical Physics, University College Hospital, London, UK
| | - J Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK.,University Hospital KU Leuven, Leuven, Belgium
| | - T Vercauteren
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - S Ourselin
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| | - A L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,University Hospital KU Leuven, Leuven, Belgium.,NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - A Melbourne
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK.,Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,School of Biomedical Engineering and Imaging, Kings College London, London, UK
| |
Collapse
|
46
|
Zhang S, Wu Z, Heng J, Tian M, Chen J, Chen F, Guan W. L-carnitine increases cell proliferation and amino acid transporter expression via the activation of insulin-like growth factor I signaling pathway in rat trophoblast cells. Food Sci Nutr 2020; 8:3298-3307. [PMID: 32724594 PMCID: PMC7382193 DOI: 10.1002/fsn3.1607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
Early embryo implantation and development is primarily determined by the homeostasis between cellular apoptosis and proliferation as well as placental nutrient transporters. Recent studies showed that L-carnitine enhances female reproductive performance. However, the potential function of L-carnitine on placenta is largely unknown. In our study, primary rat trophoblast cells were separated and cultured for 12 hr in medium containing various concentrations of L-carnitine (0, 1, 10, and 50 mM). Placenta trophoblast cells treated with 50 mM L-carnitine increased the proportion of cells in S phase of the cell cycle (p < .05). In addition, live cell percentage was increased when treated with either 10 mM or 50 mM L-carnitine, which was accompanied with decreased necrotic cells, late apoptotic cells, and early apoptotic cells (p < .05). Compared with the control treatment, the mRNA expression of insulin-like growth factor I (IGF-1) and insulin-like growth factor I receptor (IGF-1R) was higher in rat placenta trophoblasts treated with either 10 mM or 50 mM L-carnitine (p < .05). Similarly, sodium-dependent neutral amino acid transporter (SNAT)-1 and SNAT2 were up-regulated in both mRNA and protein levels when trophoblast cells were treated with 50 mM L-carnitine (p < .05). Inhibiting downstream targets (Akt or ERK signaling pathways) of IGF-1 signaling pathway partially blocked the effect the L-carnitine-induced increase in protein abundances of SNAT1 and SNAT2. Collectively, our data showed protective role of L-carnitine on placenta trophoblast cells through the involvement of IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Jinghui Heng
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition ControlCollege of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
- College of Animal Science and National Engineering Research Center for Breeding Swine IndustrySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
47
|
Non-Coding RNA: Role in Gestational Diabetes Pathophysiology and Complications. Int J Mol Sci 2020; 21:ijms21114020. [PMID: 32512799 PMCID: PMC7312670 DOI: 10.3390/ijms21114020] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance that develops in the second or third trimester of pregnancy. GDM can lead to short-term and long-term complications both in the mother and in the offspring. Diagnosing and treating this condition is therefore of great importance to avoid poor pregnancy outcomes. There is increasing interest in finding new markers with potential diagnostic, prognostic and therapeutic utility in GDM. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs, are critically involved in metabolic processes and their dysregulated expression has been reported in several pathological contexts. The aberrant expression of several circulating or placenta-related ncRNAs has been linked to insulin resistance and β-cell dysfunction, the key pathophysiological features of GDM. Furthermore, significant associations between altered ncRNA profiles and GDM-related complications, such as macrosomia or trophoblast dysfunction, have been observed. Remarkably, the deregulation of ncRNAs, which might be linked to a detrimental intrauterine environment, can lead to changes in the expression of target genes in the offspring, possibly contributing to the development of long-term GDM-related complications, such as metabolic and cardiovascular diseases. In this review, all the recent findings on ncRNAs and GDM are summarized, particularly focusing on the molecular aspects and the pathophysiological implications of this complex relationship.
Collapse
|
48
|
State-of-the-Art and Prospective of Nanotechnologies for Smart Reproductive Management of Farm Animals. Animals (Basel) 2020; 10:ani10050840. [PMID: 32414174 PMCID: PMC7278443 DOI: 10.3390/ani10050840] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Many biotechnological assisted reproductive techniques (ART) are currently used to control the reproductive processes of farm animals. Nowadays, smart ART that considers technique efficiency, animal welfare, cost efficiency and environmental health are developed. Recently, the nanotechnology revolution has pervaded all scientific fields including the reproduction of farm animals, facilitating certain improvements in this field. Nanotechnology could be used to improve and overcome many technical obstacles that face different ART. For example, semen purification and semen preservation processes have been developed using different nanomaterials and techniques, to obtain semen doses with high sperm quality. Additionally, nanodrugs delivery could be applied to fabricate several sex hormones (steroids or gonadotrophins) used in the manipulation of the reproductive cycle. Nanofabricated hormones have new specific biological properties, increasing their bioavailability. Applying nanodrugs delivery techniques allow a reduction in hormone dose and improves hormone kinetics in animal body, because of protection from natural biological barriers (e.g., enzymatic degradation). Additionally, biodegradable nanomaterials could be used to fabricate hormone-loaded devices that are made from non-degradable materials, such as silicon and polyvinyl chloride-based matrixes, which negatively impact environmental health. This review discusses the role of nanotechnology in developing some ART outcomes applied in the livestock sector, meeting the concept of smart production.
Collapse
|
49
|
Rasheedy R, El Bishry G, Tarek R. Maternal low molecular weight heparin versus sildenafil citrate for fetal growth restriction: a randomized, parallel groups, open-label clinical trial. J Perinatol 2020; 40:715-723. [PMID: 31695136 DOI: 10.1038/s41372-019-0544-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To compare the effect of sildenafil citrate (SC) and low molecular weight heparin (LMWH) on neonatal birth weight (BW) and the fetoplacental blood flow in pregnancies with FGR. STUDY DESIGN A parallel groups, randomized clinical trial was conducted at a university hospital, between June 2017 and September 2018, involving 100 pregnant women with placental mediated FGR between 28 and 35 weeks of gestation who were randomly assigned to receive either SC or LMWH started at FGR diagnosis till delivery. RESULTS The neonatal BW in LMWH group was higher than SC group (p < 0.000) with a longer time from randomization till delivery, LMWH group had significant improvement in Ut A PI, UA PI, and MCA PI compared with SC treated group with p values 0.005, <0.000001, and 0.014, respectively. CONCLUSION The neonatal BW, time from randomization to delivery, and fetoplacental blood flow indices were significantly better with LMWH use compared with SC.
Collapse
Affiliation(s)
- R Rasheedy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - G El Bishry
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - R Tarek
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
50
|
Low First Trimester Pregnancy-Associated Plasma Protein-A Levels Are Not Associated with an Increased Risk of Intrapartum Fetal Compromise or Adverse Neonatal Outcomes: A Retrospective Cohort Study. J Clin Med 2020; 9:jcm9041108. [PMID: 32294920 PMCID: PMC7230680 DOI: 10.3390/jcm9041108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to assess if women with a low first trimester maternal pregnancy-associated plasma protein-A (PAPP-A) level are at increased risk of emergency cesarean (EmCS) for intrapartum fetal compromise (IFC) and/or adverse neonatal outcomes. This was a retrospective cohort study performed at Mater Mother’s Hospital, Brisbane, Australia, between 2016 and 2018. All women with a singleton, euploid, non-anomalous fetus with a documented PAPP-A level measured between 10 +0 and 13 +6 weeks gestation during the study period were included. Data were extracted from the institution’s perinatal database and dichotomized according to PAPP-A level (≤0.4 Multiples of Medium (MoM) vs. >0.4 MoM). The primary outcomes were EmCS-IFC and a composite of severe adverse neonatal outcomes (SCNO). Nine thousand sixty-one pregnancies were included, 3.3% with a PAPP-A ≤ 0.4 MoM. Low maternal PAPP-A was not associated with an increased risk of EmCS-IFC (adjusted odds ratio (aOR) 0.77, 95% confidence interval (CI) 0.24–2.46, p = 0.66) or SCNO (aOR 0.65, 95% CI 0.39–1.07, p = 0.09). Low PAPP-A was associated with increased odds of pre-eclampsia, preterm birth and birthweight < 10th centile. In conclusion, low maternal PAPP-A level is not associated with an increased risk of EmCS IFC or adverse neonatal outcomes despite greater odds of low-birthweight infants and preterm birth.
Collapse
|