1
|
Yu X, Zhang Y, Cogliati B, Klaassen CD, Kumar S, Cheng X, Bu P. Distinct bile acid alterations in response to a single administration of PFOA and PFDA in mice. Toxicology 2024; 502:153719. [PMID: 38181850 PMCID: PMC10922993 DOI: 10.1016/j.tox.2023.153719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/22/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs), a group of synthetic chemicals that were once widely used for industrial purposes and in consumer products, are widely found in the environment and in human blood due to their extraordinary resistance to degradation. Once inside the body, PFASs can activate nuclear receptors such as PPARα and CAR. The present study aimed to investigate the impact of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) on liver structure and functions, as well as bile acid homeostasis in mice. A single administration of 0.1 mmole/kg of PFDA, not PFOA, elevated serum ALT and bilirubin levels and caused cholestasis in WT mice. PFDA increased total and various bile acid species in serum but decreased them in the liver. Furthermore, in mouse livers, PFDA, not PFOA, down-regulated mRNA expression of uptake transporters (Ntcp, Oatp1a1, 1a4, 1b2, and 2b1) but induced efflux transporters (Bcrp, Mdr2, and Mrp2-4). In addition, PFDA, not PFOA, decreased Cyp7a1, 7b1, 8b1, and 27a1 mRNA expression in mouse livers with concomitant hepatic accumulation of cholesterol. In contrast, in PPARα-null mice, PFDA did not increase serum ALT, bilirubin, or total bile acids, but produced prominent hepatosteatosis; and the observed PFDA-induced expression changes of transporters and Cyps in WT mice were largely attenuated or abolished. In CAR-null mice, the observed PFDA-induced bile acid alterations in WT mice were mostly sustained. These results indicate that, at the dose employed, PFDA has more negative effects than PFOA on liver function. PPARα appears to play a major role in mediating most of PFDA-induced effects, which were absent or attenuated in PPARα-null mice. Lack of PPARα, however, exacerbated hepatic steatosis. Our findings indicate separated roles of PPARα in mediating the adaptive responses to PFDA: protective against hepatosteatosis but exacerbating cholestasis.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Youcai Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Bruno Cogliati
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave., New York, NY 10029, United States; Department of Pathology, School of Veterinary Medicine and Animal Science, University of Sao Paulo, 05508-270, Sao Paulo, Brazil
| | - Curtis D Klaassen
- University of Kansas Medical Center, Kansas City, KS 66103, United States
| | - Sanaya Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Xingguo Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Jamaica, NY 11439, United States.
| |
Collapse
|
2
|
TAN D, WANG J, ZHANG Q, QIN L, WANG Y, HE Y. The role of organic anion transport protein 1a4 in drug delivery and diseases: a review. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.114122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | | | - Lin QIN
- Zunyi Medical University, China
| | - Yuhe WANG
- Affiliated Hospital of Zunyi Medical University
| | - Yuqi HE
- Zunyi Medical University, China
| |
Collapse
|
3
|
Yu X, Zhang Y, Jia Z, Zhang A. Response to comment on "Nuclear receptor PXR targets AKR1B7 to protect mitochondrial metabolism and renal function in AKI". Sci Transl Med 2021; 13:13/593/eabf9849. [PMID: 33980579 DOI: 10.1126/scitranslmed.abf9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/23/2021] [Indexed: 11/02/2022]
Abstract
The nuclear pregnane X receptor protects against bilateral renal ischemia/reperfusion-induced acute kidney injury in mice.
Collapse
Affiliation(s)
- Xiaowen Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China. .,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
4
|
Effects of rifampicin on hepatic antioxidant enzymes in PXR and CAR double humanized mice. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Effect of Vitamin K-Mediated PXR Activation on Drug-Metabolizing Gene Expression in Human Intestinal Carcinoma LS180 Cell Line. Nutrients 2021; 13:nu13051709. [PMID: 34069974 PMCID: PMC8157877 DOI: 10.3390/nu13051709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
The pregnane X receptor (PXR) is the key regulator of our defense mechanism against foreign substances such as drugs, dietary nutrients, or environmental pollutants. Because of increased health consciousness, the use of dietary supplements has gradually increased, and most of them can activate PXR. Therefore, an analysis of the interaction between drugs and nutrients is important because altered levels of drug-metabolizing enzymes or transporters can remarkably affect the efficiency of a co-administered drug. In the present study, we analyzed the effect of vitamin K-mediated PXR activation on drug metabolism-related gene expression in intestine-derived LS180 cells via gene expression studies and western blotting analyses. We demonstrated that menaquinone 4 (MK-4), along with other vitamin Ks, including vitamin K1, has the potential to induce MDR1 and CYP3A4 gene expression. We showed that PXR knockdown reversed MK-4-mediated stimulation of these genes, indicating the involvement of PXR in this effect. In addition, we showed that the expression of MDR1 and CYP3A4 genes increased synergistically after 24 h of rifampicin and MK-4 co-treatment. Our study thus elucidates the importance of drug–nutrient interaction mediated via PXR.
Collapse
|
6
|
Jinhua W, Ying Z, Yuhua L. PXR-ABC drug transporters/CYP-mediated ursolic acid transport and metabolism in vitro and vivo. Arch Pharm (Weinheim) 2020; 353:e2000082. [PMID: 32628284 DOI: 10.1002/ardp.202000082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
The transporting kinetics and metabolic kinetics of ursolic acid were studied in transgenic cell models. Then, the pharmacokinetics features of ursolic acid and the expression of ATP-binding cassette transporters (ABC transporter) and cytochrome P450 (CYP) enzymes in tissues after pregnane X receptor (PXR) activation by 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN) were investigated in rats. After silencing of PXR in Caco2-siRNA-PXR cells, there was a decrease in the protein abundance of P-glycoprotein, breast cancer-resistant protein, multidrug resistance-associated protein 2 (MRP2), and CYP2C9. The apparent permeability (PDR) values of 10, 20, and 50 µM ursolic acid in Caco2 cells were 2.19 ± 0.44, 1.40 ± 0.17, and 1.25 ± 0.07, respectively, whereas in Caco2-siRNA-PXR cells, they were 1.85 ± 0.36, 1.24 ± 0.11, and 1.19 ± 0.04, respectively. PXR-RXRα would significantly activate ABC transporter expression in Caco2 cells. Compared with Caco2 cells, when the concentrations of ursolic acid were 10, 20, and 50 µM, the PDR values increased in Caco2-PXR-RXRα cells after PXR activation: 1.60 ± 0.31 versus 1.97 ± 0.21, 1.46 ± 0.08 versus 2.01 ± 0.19, and 1.32 ± 0.26 versus 2.09 ± 0.22, respectively. Simultaneously, PXR-RXRα would activate the expression of CYP2C9; metabolic kinetics of ursolic acid in CYP metabolizing enzyme lysate of Caco2 cells and Caco2-PXR-RXR cells was studied and it was found that the Km values were 81.99 ± 44.32 and 60.05 ± 29.62 µg/ml, and Vmax values were 3.77 ± 0.86 and 3.41 ± 0.96 µg · ml-1 · min-1 , respectively. However, in human CYP metabolizing recombinase, we found that both CYP2C9 and CYP34A were involved in the metabolism of ursolic acid. Vm and Km values for CYP3A4 and CYP2C9 were 3.57 ± 1.12 µg · ml-1 · min-1 and 81.71 ± 18.38 µg/ml, 3.85 ± 1.46 µg · ml-1 · min-1 and 62.18 ± 14.56 µg/ml, respectively. As a strong agonist for mouse pxr, PCN could significantly affect pharmacokinetics of ursolic acid in rats, and it showed discrepant effects on messenger RNA expression of cyp and transporters in tissues.
Collapse
Affiliation(s)
- Wen Jinhua
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhou Ying
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Yuhua
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Cheung KWK, van Groen BD, Spaans E, van Borselen MD, de Bruijn AC, Simons‐Oosterhuis Y, Tibboel D, Samsom JN, Verdijk RM, Smeets B, Zhang L, Huang S, Giacomini KM, de Wildt SN. A Comprehensive Analysis of Ontogeny of Renal Drug Transporters: mRNA Analyses, Quantitative Proteomics, and Localization. Clin Pharmacol Ther 2019; 106:1083-1092. [PMID: 31127606 PMCID: PMC6777991 DOI: 10.1002/cpt.1516] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Human renal membrane transporters play key roles in the disposition of renally cleared drugs and endogenous substrates, but their ontogeny is largely unknown. Using 184 human postmortem frozen renal cortical tissues (preterm newborns to adults) and a subset of 62 tissue samples, we measured the mRNA levels of 11 renal transporters and the transcription factor pregnane X receptor (PXR) with quantitative real‐time polymerase chain reaction, and protein abundance of nine transporters using liquid chromatography tandem mass spectrometry selective reaction monitoring, respectively. Expression levels of p‐glycoprotein, urate transporter 1, organic anion transporter 1, organic anion transporter 3, and organic cation transporter 2 increased with age. Protein levels of multidrug and toxin extrusion transporter 2‐K and breast cancer resistance protein showed no difference from newborns to adults, despite age‐related changes in mRNA expression. Multidrug and toxin extrusion transporter 1, glucose transporter 2, multidrug resistance‐associated protein 2, multidrug resistance‐associated protein 4 (MRP4), and PXR expression levels were stable. Using immunohistochemistry, we found that MRP4 localization in pediatric samples was similar to that in adult samples. Collectively, our study revealed that renal drug transporters exhibited different rates and patterns of maturation, suggesting that renal handling of substrates may change with age.
Collapse
Affiliation(s)
- Kit Wun Kathy Cheung
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation & ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
- Oak Ridge Institute for Science and Education (ORISE Fellow)Oak RidgeTennesseeUSA
| | - Bianca D. van Groen
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Edwin Spaans
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
- CDTS Consulting BV & SDD Consulting BVEtten‐LeurThe Netherlands
| | | | | | | | - Dick Tibboel
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | - Janneke N. Samsom
- Department of PediatricsErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
| | | | - Bart Smeets
- Department of PathologyRadboudumcNijmegenThe Netherlands
| | - Lei Zhang
- Office of Research and StandardsOffice of Generic DrugsCenter for Drug Evaluation & ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Shiew‐Mei Huang
- Office of Clinical PharmacologyOffice of Translational SciencesCenter for Drug Evaluation & ResearchUS Food and Drug AdministrationSilver SpringMarylandUSA
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Saskia N. de Wildt
- Intensive Care and Department of Pediatric SurgeryErasmus MC‐Sophia Children's HospitalRotterdamThe Netherlands
- Department of Pharmacology and ToxicologyRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
8
|
Kuno T, Hirayama-Kurogi M, Ito S, Ohtsuki S. Proteomic analysis of small intestinal epithelial cells in antibiotic-treated mice: Changes in drug transporters and metabolizing enzymes. Drug Metab Pharmacokinet 2019; 34:159-162. [DOI: 10.1016/j.dmpk.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/16/2018] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
|
9
|
Yamasaki Y, Kobayashi K, Chiba K. Effect of Pregnenolone 16α-Carbonitrile on the Expression of P-Glycoprotein in the Intestine, Brain and Liver of Mice. Biol Pharm Bull 2018; 41:972-977. [PMID: 29863087 DOI: 10.1248/bpb.b18-00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
P-Glycoprotein (P-gp), encoded by the MDR1 (ABCB1) gene in humans and by Mdr1a and Mdr1b genes in rodents, is a member of the superfamily of ATP-binding cassette transporters. Since P-gp is constitutively expressed in numerous tissues and exhibits a broad specificity in substrate recognition, it can play a crucial role in limiting the absorption and distribution of xenobiotics by decreasing their intracellular accumulation. The expression of P-gp is regulated by various nuclear receptors such as pregnane X receptor (PXR). Although the characterization of P-gp induction by PXR ligands is a crucial goal for predicting pharmacokinetics of drugs, findings regarding the induction of P-gp by PXR ligands in vivo are still controversial. In this study, we examined the effect of pregnenolone 16α-carbonitrile (PCN), a murine PXR ligand, on the expression of Mdr1a/1b mRNA and P-gp protein in the intestine, brain and liver of mice. The results showed that PCN increased the expression of both Mdr1a/1b mRNA and P-gp protein in the intestine and the brain. The present study provided the first evidence that P-gp is inducible by PCN in the large intestine. The results also showed that P-gp protein was induced by PCN in the cortex but not in the whole brain. On the other hand, PCN increased the expression of Mdr1a/1b mRNA in the liver, although no increase was observed in the expression of P-gp protein. These results suggested different effect of PCN on the expression of P-gp protein in the intestine, brain and liver of mice.
Collapse
Affiliation(s)
- Yuki Yamasaki
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
10
|
Jiraskova L, Cerveny L, Karbanova S, Ptackova Z, Staud F. Expression of Concentrative Nucleoside Transporters ( SLC28A) in the Human Placenta: Effects of Gestation Age and Prototype Differentiation-Affecting Agents. Mol Pharm 2018; 15:2732-2741. [PMID: 29782174 DOI: 10.1021/acs.molpharmaceut.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Equilibrative ( SLC29A) and concentrative ( SLC28A) nucleoside transporters contribute to proper placental development and mediate uptake of nucleosides/nucleoside-derived drugs. We analyzed placental expression of SLC28A mRNA during gestation. Moreover, we studied in choriocarcinoma-derived BeWo cells whether SLC29A and SLC28A mRNA levels can be modulated by activity of adenylyl cyclase, retinoic acid receptor activation, CpG islands methylation, or histone acetylation, using forskolin, all- trans-retinoic acid, 5-azacytidine, and sodium butyrate/sodium valproate, respectively. We found that expression of SLC28A1, SLC28A2, and SLC28A3 increases during gestation and reveals considerable interindividual variability. SLC28A2 was shown to be a dominant subtype in the first-trimester and term human placenta, while SLC28A1 exhibited negligible expression in the term placenta only. In BeWo cells, we detected mRNA of SLC28A2 and SLC28A3. Levels of the latter were affected by 5-azacytidine and all- trans-retinoic acid, while the former was modulated by sodium valproate (but not sodium butyrate), all- trans-retinoic acid, 5-azacytidine, and forskolin that caused 25-fold increase in SLC28A2 mRNA; we documented by analysis of syncytin-1 that the observed changes in SLC28A expression do not correlate with the morphological differentiation state of BeWo cells. Upregulated SLC28A2 mRNA was reflected in elevated uptake of [3H]-adenosine, high-affinity substrate of concentrative nucleoside transporter 2. Using KT-5720 and inhibitors of phosphodiesterases, we subsequently confirmed importance of cAMP/protein kinase A pathway in SLC28A2 regulation. On the other hand, SLC29A genes exhibited constitutive expression and none of the tested compounds increased SLC28A1 expression to detectable levels. In conclusion, we provide the first evidence that methylation status and activation of retinoic acid receptor affect placental SLC28A2 and SLC28A3 transcription and substrates of concentrative nucleoside transporter 2 might be taken up in higher extent in placentas with overactivated cAMP/protein kinase A pathway and likely in the term placenta.
Collapse
Affiliation(s)
- Lucie Jiraskova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Sara Karbanova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Zuzana Ptackova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| |
Collapse
|
11
|
Watanabe A, Marumo T, Kawarazaki W, Nishimoto M, Ayuzawa N, Ueda K, Hirohama D, Tanaka T, Yagi S, Ota S, Nagae G, Aburatani H, Kumagai H, Fujita T. Aberrant DNA methylation of pregnane X receptor underlies metabolic gene alterations in the diabetic kidney. Am J Physiol Renal Physiol 2018; 314:F551-F560. [DOI: 10.1152/ajprenal.00390.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic abnormalities have been suggested to mediate metabolic memory observed in diabetic complications. We have shown that epigenetic alterations may induce persistent phenotypic changes in the proximal tubules of the diabetic kidneys. In this study, we show that pregnane X receptor (PXR), a xenobiotic nuclear receptor, is epigenetically altered and upregulated and may have a possible function in the diabetic kidney. PXR has been shown to play a critical role in metabolic changes in obesity and diabetes; however, its distribution and function in the kidney are unknown. In the normal kidney, Pxr was selectively expressed in the proximal tubular cells with demethylation in the promoter DNA. In db/db mice, significant increases in Pxr mRNA, further demethylation of DNA, and stimulatory histone marks in the promoter were observed. Epigenetic changes are likely to play a causative role in PXR induction, since a DNA methyltransferase inhibitor increased PXR mRNA in cultured human proximal tubular cells. Administration of a PXR agonist increased mRNA levels of solute carrier organic anion transporter family member 2B1 ( Slco2b1), a xenobiotic transporter; response gene to complement 32 ( Rgc32), a molecule known to exert fibrotic effects in the kidney; and phosphoenolpyruvate carboxykinase 1 ( Pck1), a gluconeogenic enzyme in the kidney. The expressions of these genes were inhibited by PXR small interfering RNA in cultured proximal tubular cells. Increased mRNA levels of Slco2b1, Rgc32, and Pck1 were also observed in the kidney of db/db mice. These data indicate that PXR is upregulated in the diabetic kidney with aberrant epigenetic modifications and may modulate the course of diabetic kidney disease through the activation of these genes.
Collapse
Affiliation(s)
- Atsushi Watanabe
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
- Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan
| | - Takeshi Marumo
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | | | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Kohei Ueda
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Daigoro Hirohama
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, The University of Tokyo, Tokyo, Japan
| | - Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ota
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Mohandas S, Vairappan B. Role of pregnane X-receptor in regulating bacterial translocation in chronic liver diseases. World J Hepatol 2017; 9:1210-1226. [PMID: 29184608 PMCID: PMC5696604 DOI: 10.4254/wjh.v9.i32.1210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Bacterial translocation (BT) has been impeccably implicated as a driving factor in the pathogenesis of a spectrum of chronic liver diseases (CLD). Scientific evidence accumulated over the last four decades has implied that the disease pathologies in CLD and BT are connected as a loop in the gut-liver axis and exacerbate each other. Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor that is expressed ubiquitously along the gut-liver-axis. PXR has been intricately associated with the regulation of various mechanisms attributed in causing BT. The importance of PXR as the mechanistic linker molecule in the gut-liver axis and its role in regulating bacterial interactions with the host in CLD has not been explored. PubMed was used to perform an extensive literature search using the keywords PXR and bacterial translocation, PXR and chronic liver disease including cirrhosis. In an adequate expression state, PXR acts as a sensor for bile acid dysregulation and bacterial derived metabolites, and in response shapes the immune profile beneficial to the host. Activation of PXR could be therapeutic in CLD as it counter-regulates endotoxin mediated inflammation and maintains the integrity of intestinal epithelium. This review mainly focuses PXR function and its regulation in BT in the context of chronic liver diseases.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Dhanvantari Nagar, Pondicherry 605006, India
| |
Collapse
|
13
|
Forbes KP, Kouranova E, Tinker D, Janowski K, Cortner D, McCoy A, Cui X. Creation and Preliminary Characterization of Pregnane X Receptor and Constitutive Androstane Receptor Knockout Rats. Drug Metab Dispos 2017; 45:1068-1076. [PMID: 28716828 DOI: 10.1124/dmd.117.075788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/13/2017] [Indexed: 02/13/2025] Open
Abstract
The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are closely related transcription factors that regulate the expression of phase I (cytochrome P450s) and phase II metabolizing enzymes and transporter genes in response to stimulation from xenobiotics, including prescription drugs. PXR and CAR knockout and humanized mouse models have proven useful. However, the rat being bigger in size is a preferred model system for studying drug metabolism and pharmacokinetics. Here, we report the creation and preliminary characterization of PXR and CAR knockout rats and PXR/CAR double knockout rats. Whereas the expression of phase I and II enzymes and transporter genes were not upregulated by nuclear receptor-specific agonists pregnenlone-16α-carbonitrile and 1,4-bis-[2-(3,5-dichloropyridyloxy)] benzene in the knockout rats, confirming the disruption of respective nuclear receptor(s), our data demonstrate that PXR appears to suppress the basal expression levels of Cyp2b2, Cyp3a23/3a1, Cyp3a2, Cyp3a18, and Ugt2b1 genes, while CAR maintains Cyp2b2 and Ugt2b1 and suppresses Cyp3a9 basal expression levels. In wild-type rats, agonist binding of the nuclear receptors relieves the suppression, and target genes are expressed at levels comparable to knockout rats, with or without drug treatment. Overall, our findings are in good agreement with data obtained from human primary hepatocytes, nuclear receptor knockout cell lines, and mouse knockout models. We believe these models are a useful complement to their mouse counterparts for drug development and as importantly, for functional studies on metabolic pathways involving nuclear receptors.
Collapse
Affiliation(s)
| | | | - Daniel Tinker
- Horizon Discovery Group Company, St. Louis, Missouri
| | | | - Doug Cortner
- Horizon Discovery Group Company, St. Louis, Missouri
| | - Aaron McCoy
- Horizon Discovery Group Company, St. Louis, Missouri
| | - Xiaoxia Cui
- Horizon Discovery Group Company, St. Louis, Missouri
| |
Collapse
|
14
|
Guo X, Yan M. Pregnane X Receptor Polymorphisms and Risk of Inflammatory Bowel Disease: A Meta-Analysis. Immunol Invest 2017; 46:566-576. [PMID: 28742404 DOI: 10.1080/08820139.2017.1322101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaolan Guo
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ming Yan
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Geriatric Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
15
|
Vispute SG, Bu P, Le Y, Cheng X. Activation of GR but not PXR by dexamethasone attenuated acetaminophen hepatotoxicities via Fgf21 induction. Toxicology 2017; 378:95-106. [PMID: 28088388 DOI: 10.1016/j.tox.2017.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/18/2022]
Abstract
Glucocorticoid receptor (GR) signaling is indispensable for cell growth and development, and plays important roles in drug metabolism. Fibroblast growth factor (Fgf) 21, an important regulator of glucose, lipid, and energy metabolism, plays a cytoprotective role by attenuating toxicities induced by chemicals such as dioxins, acetaminophen (APAP), and alcohols. The present study investigates the impact of dexamethasone (DEX)-activated GR on Fgf21 expression and how it affects the progression of APAP-induced hepatotoxicity. Our results showed that DEX dose/concentration- and time-dependently increased Fgf21 mRNA and protein expression in mouse liver as well as cultured mouse and human hepatoma cells. By using PXR-null mouse model, we demonstrated that DEX induced Fgf21 expression by a PXR-independent mechanism. In cultured mouse and human hepatoma cells, inhibition of GR signaling, by RU486 (Mifepristone) or GR silencing using GR-specific siRNA, attenuated DEX-induced Fgf21 expression. In addition, DEX increased luciferase reporter activity driven by the 3.0-kb mouse and human Fgf21/FGF21 gene promoter. Further, ChIP-qPCR assays demonstrated that DEX increased the binding of GR to the specific cis-regulatory elements located in the 3.0-kb mouse and human Fgf21/FGF21 gene promoter. Pretreatment of 2mg/kg DEX ameliorated APAP-induced liver injury in wild-type but not Fgf21-null mice. In conclusion, via GR activation, DEX induced Fgf21 expression in mouse liver and human hepatoma cells.
Collapse
Affiliation(s)
- Saurabh G Vispute
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Biological Sciences, College of Liberal Arts and Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Yuan Le
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Xingguo Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
16
|
Fallon JK, Smith PC, Xia CQ, Kim MS. Quantification of Four Efflux Drug Transporters in Liver and Kidney Across Species Using Targeted Quantitative Proteomics by Isotope Dilution NanoLC-MS/MS. Pharm Res 2016; 33:2280-8. [PMID: 27356525 DOI: 10.1007/s11095-016-1966-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE The expression levels of several efflux drug transporters in the liver and kidney were evaluated across species to address potential roles of the transporters in species dependent excretion of drugs and their metabolites. METHODS Four efflux transporters, namely MDR1/P-gp, BCRP/Bcrp, MRP2/Mrp2 and MRP3/Mrp3 in liver and kidney in three preclinical species and humans were quantified using targeted quantitative proteomics by isotope dilution nanoLC-MS/MS. RESULTS In liver, the level of P-gp was highest in monkey and lowest in rat. The concentration of BCRP/Bcrp was highest in dog followed by monkey. MRP2/Mrp2 level was highest in monkey and rat, whereas MRP3/Mrp3 levels were similar in human, monkey and dog. In the kidney, the concentrations of MDR1/P-gp in human and monkey were roughly 2 to 3-fold higher than in rat and dog. In rat, BCRP/Bcrp concentrations were substantially higher than in any of the other species. MRP2/Mrp2 concentrations were similar across species, whereas expression of MRP3/Mrp3 was highest in rat. CONCLUSION Overall, the results indicated that the pattern of hepatic and renal expression of the transporters was quite species dependent. This information should be helpful in the estimation of transport mediated drug and metabolites excretion in liver and kidney across species.
Collapse
Affiliation(s)
- John K Fallon
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Philip C Smith
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Cindy Q Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Mi-Sook Kim
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., 40 Landsdowne Street, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
17
|
Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicol Appl Pharmacol 2016; 303:45-57. [DOI: 10.1016/j.taap.2016.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/24/2022]
|
18
|
Benson EA, Eadon MT, Desta Z, Liu Y, Lin H, Burgess KS, Segar MW, Gaedigk A, Skaar TC. Rifampin Regulation of Drug Transporters Gene Expression and the Association of MicroRNAs in Human Hepatocytes. Front Pharmacol 2016; 7:111. [PMID: 27199754 PMCID: PMC4845040 DOI: 10.3389/fphar.2016.00111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/12/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Membrane drug transporters contribute to the disposition of many drugs. In human liver, drug transport is controlled by two main superfamilies of transporters, the solute carrier transporters (SLC) and the ATP Binding Cassette transporters (ABC). Altered expression of these transporters due to drug-drug interactions can contribute to differences in drug exposure and possibly effect. In this study, we determined the effect of rifampin on gene expression of hundreds of membrane transporters along with all clinically relevant drug transporters. METHODS In this study, primary human hepatocytes (n = 7 donors) were cultured and treated for 24 h with rifampin and vehicle control. RNA was isolated from the hepatocytes, mRNA expression was measured by RNA-seq, and miRNA expression was analyzed by Taqman OpenArray. The effect of rifampin on the expression of selected transporters was also tested in kidney cell lines. The impact of rifampin on the expression of 410 transporter genes from 19 different transporter gene families was compared with vehicle control. RESULTS Expression patterns of 12 clinically relevant drug transporter genes were changed by rifampin (FDR < 0.05). For example, the expressions of ABCC2, ABCB1, and ABCC3 were increased 1.9-, 1.7-, and 1.2-fold, respectively. The effects of rifampin on four uptake drug transporters (SLCO1B3, SLC47A1, SLC29A1, SLC22A9) were negatively correlated with the rifampin effects on specific microRNA expression (SLCO1B3/miR-92a, SLC47A1/miR-95, SLC29A1/miR-30d#, and SLC22A9/miR-20; r < -0.79; p < 0.05). Seven hepatic drug transporter genes (SLC22A1, SLC22A5, SLC15A1, SLC29A1, SLCO4C1, ABCC2, and ABCC4), whose expression was altered by rifampin in hepatocytes, were also present in a renal proximal tubular cell line, but in renal cells rifampin did not alter their gene expression. PXR expression was very low in the kidney cells; this may explain why rifampin induces gene expression in a tissue-specific manner. CONCLUSION Rifampin alters the expression of many of the clinically relevant hepatic drug transporters, which may provide a rational basis for understanding rifampin-induced drug-drug interactions reported in vivo. The relevance of its effect on many other transporters remains to be studied.
Collapse
Affiliation(s)
- Eric A Benson
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Michael T Eadon
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Hai Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Kimberly S Burgess
- Department of Pharmacology and Toxicology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Matthew W Segar
- Department of Medical and Molecular Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City and School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
19
|
MacLeod AK, McLaughlin LA, Henderson CJ, Wolf CR. Activation status of the pregnane X receptor influences vemurafenib availability in humanized mouse models. Cancer Res 2015; 75:4573-81. [PMID: 26363009 PMCID: PMC4634205 DOI: 10.1158/0008-5472.can-15-1454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022]
Abstract
Vemurafenib is a revolutionary treatment for melanoma, but the magnitude of therapeutic response is highly variable, and the rapid acquisition of resistance is frequent. Here, we examine how vemurafenib disposition, particularly through cytochrome P450-mediated oxidation pathways, could potentially influence these outcomes using a panel of knockout and transgenic humanized mouse models. We identified CYP3A4 as the major enzyme involved in the metabolism of vemurafenib in in vitro assays with human liver microsomes. However, mice expressing human CYP3A4 did not process vemurafenib to a greater extent than CYP3A4-null animals, suggesting that other pregnane X receptor (PXR)-regulated pathways may contribute more significantly to vemurafenib metabolism in vivo. Activation of PXR, but not of the closely related constitutive androstane receptor, profoundly reduced circulating levels of vemurafenib in humanized mice. This effect was independent of CYP3A4 and was negated by cotreatment with the drug efflux transporter inhibitor elacridar. Finally, vemurafenib strongly induced PXR activity in vitro, but only weakly induced PXR in vivo. Taken together, our findings demonstrate that vemurafenib is unlikely to exhibit a clinically significant interaction with CYP3A4, but that modulation of bioavailability through PXR-mediated regulation of drug transporters (e.g., by other drugs) has the potential to markedly influence systemic exposure and thereby therapeutic outcomes.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom
| | - Lesley A McLaughlin
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom
| | - Colin J Henderson
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom
| | - C Roland Wolf
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom.
| |
Collapse
|
20
|
Cheng X, Gu J, Klaassen CD. Adaptive hepatic and intestinal alterations in mice after deletion of NADPH-cytochrome P450 Oxidoreductase (Cpr) in hepatocytes. Drug Metab Dispos 2014; 42:1826-33. [PMID: 25147274 PMCID: PMC4201131 DOI: 10.1124/dmd.114.060053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/21/2014] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450) play an important role in first-pass metabolism in both the intestine and liver. NADPH-cytochrome P450 oxidoreductase (Cpr) is an essential electron transfer protein required for microsomal P450 activity. Mice with conditional knockout of Cpr in hepatocytes develop normally and survive even with complete loss of liver microsomal P450 activity. Our current studies were performed to determine whether alternative drug-metabolizing pathways increase in an attempt to maintain whole-body homeostasis. In addition to the liver, Cpr is mainly expressed in tissues such as lung, kidney, and gastrointestinal tract. In livers of H-Cpr-null mice, there is a marked increase in mRNA expression of phase I enzymes (Aldh1a1, 1a7, 3a2; Ces1b2, 2a6, and 2a12), antioxidant enzymes (Ho-1, Nqo1, and epoxide hydrolase), phase II enzymes (Ugt1a9; Gsta1/2, m3, m4, m6, t1, and t3; and Sult1a1 and 1d1), and drug transporters (Oatp1a4, Oct3, Mate1, Mdr1a, and Mrp3 and 4). In addition, glucuronide-conjugated bilirubin concentrations are doubled in serum of H-Cpr-null mice. Both constitutive androstane receptor (CAR) and nuclear factor erythroid 2-related factor 2 (Nrf2) protein in nuclei are higher in the livers of H-Cpr-null mice, indicating that CAR and Nrf2 are activated. In the small intestine of H-Cpr-null mice, mRNA expression of Cyp3a11 and Mdr1a, two genes critical for intestinal first-pass metabolism, are markedly up-regulated. In addition, nutrient (Pept1) and cholesterol (Npc1l1) transporters are induced in the small intestine of H-Cpr-null mice. In conclusion, in H-Cpr-null mice, adaptive regulation of alternative detoxification genes in liver and small intestine appear to partially compensate for the loss of microsomal P450 function in liver.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Jun Gu
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| | - Curtis D Klaassen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (C.D.K.)
| |
Collapse
|
21
|
Cheng X, Zhang Y, Klaassen CD. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum. J Pharmacol Exp Ther 2014; 351:105-13. [PMID: 25034404 PMCID: PMC4165027 DOI: 10.1124/jpet.114.216796] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/15/2014] [Indexed: 12/19/2022] Open
Abstract
NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (Y.Z., C.D.K.)
| | - Youcai Zhang
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (Y.Z., C.D.K.)
| | - Curtis D Klaassen
- Department of Pharmaceutical Sciences, St. John's University, Queens, New York (X.C.); and Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (Y.Z., C.D.K.)
| |
Collapse
|
22
|
Iida A, Ouchi S, Oda T, Aketagawa J, Ito Y, Takizawa Y, Tomita M, Hayashi M. RETRACTED ARTICLE: Changes of Absorptive and Secretory Transporting System of (1 → 3) β-D-glucan Based on Efflux Transporter in Indomethacin-induced Rat. Eur J Drug Metab Pharmacokinet 2014; 40:29-38. [DOI: 10.1007/s13318-014-0174-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
23
|
Paul KB, Thompson JT, Simmons SO, Vanden Heuvel JP, Crofton KM. Evidence for triclosan-induced activation of human and rodent xenobiotic nuclear receptors. Toxicol In Vitro 2013; 27:2049-60. [PMID: 23899473 DOI: 10.1016/j.tiv.2013.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/05/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
The bacteriostat triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) (TCS) decreases rat serum thyroxine via putative nuclear receptor (NR) interaction(s) and subsequent transcriptional up-regulation of hepatic catabolism and clearance. However, due to the evolutionary divergence of the constitutive androstane and pregnane-X receptors (CAR, PXR), TCS-mediated downstream effects may be species-dependent. To test the hypothesis that TCS activates xenobiotic NRs across species, cell-based NR reporter assays were employed to assess potential activation of rat, mouse, and human PXR, and rat, mouse, and three splice variants of human CAR. TCS activated hPXR, acted as an inverse agonist of hCAR1, and as a weak agonist of hCAR3. TCS failed to activate rPXR in full-length receptor reporter assays, and instead acted as a modest inverse agonist of rCAR. Consistent with the rat data, TCS also failed to activate mPXR and was a modest inverse agonist of mCAR. These data suggest that TCS may interact with multiple NRs, including hPXR, hCAR1, hCAR3, and rCAR in order to potentially affect hepatic catabolism. Overall these data support the conclusion that TCS may interact with NRs to regulate hepatic catabolism and downstream thyroid hormone homeostasis in both rat and human models, though perhaps by divergent mechanisms.
Collapse
Affiliation(s)
- Katie B Paul
- University of North Carolina at Chapel Hill, Curriculum in Toxicology, CB 7270, Chapel Hill, NC 27599, United States; Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States
| | | | | | | | | |
Collapse
|
24
|
Staudinger JL, Woody S, Sun M, Cui W. Nuclear-receptor-mediated regulation of drug- and bile-acid-transporter proteins in gut and liver. Drug Metab Rev 2013; 45:48-59. [PMID: 23330541 DOI: 10.3109/03602532.2012.748793] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adverse drug events (ADEs) are a common cause of patient morbidity and mortality and are classically thought to result, in part, from variation in expression and activity of hepatic enzymes of drug metabolism. It is now known that alterations in the expression of genes that encode drug- and bile-acid-transporter proteins in both the gut and liver play a previously unrecognized role in determining patient drug response and eventual clinical outcome. Four nuclear receptor (NR) superfamily members, including pregnane X receptor (PXR, NR1I2), constitutive androstane receptor (NR1I3), farnesoid X receptor (NR1H4), and vitamin D receptor (NR1I1), play pivotal roles in drug- and bile-acid-activated programs of gene expression to coordinately regulate drug- and bile-acid transport activity in the intestine and liver. This review focuses on the NR-mediated gene activation of drug and bile-acid transporters in these tissues as well as the possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeff L Staudinger
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | |
Collapse
|
25
|
Qiao E, Ji M, Wu J, Ma R, Zhang X, He Y, Zha Q, Song X, Zhu LW, Tang J. Expression of the PXR gene in various types of cancer and drug resistance. Oncol Lett 2013; 5:1093-1100. [PMID: 23599746 PMCID: PMC3628904 DOI: 10.3892/ol.2013.1149] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/02/2013] [Indexed: 01/13/2023] Open
Abstract
Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily of ligand-regulated transcription factors. PXR is a key xenobiotic receptor that regulates the expression of genes implicated in drug metabolism, detoxification and clearance, including drug metabolizing enzymes and transporters, suggesting that it is significant in the drug resistance of cancer cells. PXR is expressed in a wide range of tissues in the human body. Studies have demonstrated that PXR is expressed in a variety of tumor types, correlating not only with drug resistance but also with the cell proliferation, apoptosis and prognosis of cancer. The purpose of the present review is to provide a comprehensive review of PXR and its potential roles in multidrug resistance and the biological characteristics of PXR-positive tumors.
Collapse
Affiliation(s)
- Enqi Qiao
- Department of General Surgery, Jiangsu Cancer Hospital, Affiliated to Nanjing Medical University, Nanjing 210009
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aleksunes LM, Klaassen CD. Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-null mice. Drug Metab Dispos 2012; 40:1366-79. [PMID: 22496397 PMCID: PMC3382842 DOI: 10.1124/dmd.112.045112] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/11/2012] [Indexed: 02/06/2023] Open
Abstract
The transcription factors aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor α (PPARα), and nuclear factor erythroid 2-related factor 2 (Nrf2) regulate genes encoding drug-metabolizing enzymes and transporters in livers of mice after chemical activation. However, the specificity of their transcriptional regulation has not been determined systematically in vivo. The purpose of this study was to identify genes encoding drug-metabolizing enzymes and transporters altered by chemical activators in a transcription factor-dependent manner using wild-type and transcription factor-null mice. Chemical activators were administered intraperitoneally to mice once daily for 4 days. Livers were collected 24 h after the final dose, and total RNA was isolated for mRNA quantification of cytochromes P450, NAD(P)H quinone oxidoreductase 1 (Nqo1), aldehyde dehydrogenases (Aldhs), glutathione transferases (Gsts), sulfotransferases (Sults), UDP-glucuronosyltransferases (Ugts), organic anion-transporting polypeptides (Oatps), and multidrug resistance-associated proteins (Mrps). Pharmacological activation of each transcription factor leads to mRNA induction of drug metabolic and transport genes in livers of male and female wild-type mice, but no change in null mice: AhR (Cyp1a2, Nqo1, Aldh7a1, Ugt1a1, Ugt1a6, Ugt1a9, Ugt2b35, Sult5a1, Gstm3, and Mrp4), CAR (Cyp2b10, Aldh1a1, Aldh1a7, Ugt1a1, Ugt2b34, Sult1e1, Sult3a1, Sult5a1, Papps2, Gstt1, Gsta1, Gsta4, Gstm1-4, and Mrp2-4), PXR (Cyp3a11, Ugt1a1, Ugt1a5, Ugt1a9, Gsta1, Gstm1-m3, Oatp1a4, and Mrp3), PPARα (Cyp4a14, Aldh1a1, mGst3, Gstm4, and Mrp4), and Nrf2 (Nqo1, Aldh1a1, Gsta1, Gsta4, Gstm1-m4, mGst3, and Mrp3-4). Taken together, these data reveal transcription factor specificity and overlap in regulating hepatic drug disposition genes by chemical activators. Coordinated regulation of phase I, phase II, and transport genes by activators of transcription factors can have implications in development of pharmaceuticals as well as risk assessment of environmental contaminants.
Collapse
MESH Headings
- Aldehyde Dehydrogenase/genetics
- Aldehyde Dehydrogenase/metabolism
- Animals
- Constitutive Androstane Receptor
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Female
- Gene Expression Regulation, Enzymologic
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- Inactivation, Metabolic
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multidrug Resistance-Associated Proteins
- NAD(P)H Dehydrogenase (Quinone)/genetics
- NAD(P)H Dehydrogenase (Quinone)/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Organic Anion Transporters/genetics
- Organic Anion Transporters/metabolism
- PPAR alpha/genetics
- PPAR alpha/metabolism
- Pregnane X Receptor
- RNA, Messenger/genetics
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Sulfotransferases/genetics
- Sulfotransferases/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Lauren M Aleksunes
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA
| | | |
Collapse
|
27
|
Cui JY, Gunewardena SS, Yoo B, Liu J, Renaud HJ, Lu H, Zhong XB, Klaassen CD. RNA-Seq reveals different mRNA abundance of transporters and their alternative transcript isoforms during liver development. Toxicol Sci 2012; 127:592-608. [PMID: 22454430 PMCID: PMC3355312 DOI: 10.1093/toxsci/kfs107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/05/2012] [Indexed: 12/14/2022] Open
Abstract
During development, the maturation of liver transporters is essential for chemical elimination in newborns and children. One cannot compare the real abundance of transcripts by conventional messenger RNA (mRNA) profiling methods; in comparison, RNA-Seq provides a "true quantification" of transcript counts and an unbiased detection of novel transcripts. The purpose of this study was to compare the mRNA abundance of liver transporters and seek their novel transcripts during liver development. Livers from male C57BL/6J mice were collected at 12 ages from prenatal to adulthood. The transcriptome was determined by RNA-Seq, with transcript abundance estimated by Cufflinks. Among 498 known transporters, the ontogeny of 62 known critical xenobiotic transporters was examined in detail. The cumulative mRNAs of the uptake transporters increased more than the efflux transporters in livers after birth. A heatmap revealed three ontogenic patterns of these transporters, namely perinatal (reaching maximal expression before birth), adolescent (about 20 days), and adult enriched (about 60 days of age). Before birth, equilibrative nucleoside transporter 1 was the transporter with highest expression in liver (29%), followed by breast cancer resistance protein (Bcrp) (26%). Within 1 day after birth, the mRNAs of these two transporters decreased markedly, and Ntcp became the transporter with highest expression (52%). In adult liver, the transporters with highest expression were organic cation transporter 1 and Ntcp (23% and 22%, respectively). Three isoforms of Bcrp with alternate leading exons were identified (E1a, E1b, and E1c), with E1b being the major isoform. In conclusion, this study reveals the mRNA abundance of transporters in liver and demonstrates that the expression of liver transporters is both age and isoform specific.
Collapse
Affiliation(s)
| | - Sumedha S. Gunewardena
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Byunggil Yoo
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jie Liu
- Department of Internal Medicine
| | | | - Hong Lu
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York 13210
| | - Xiao-bo Zhong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | | |
Collapse
|
28
|
Cui JY, Aleksunes LM, Tanaka Y, Fu ZD, Guo Y, Guo GL, Lu H, Zhong XB, Klaassen CD. Bile acids via FXR initiate the expression of major transporters involved in the enterohepatic circulation of bile acids in newborn mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G979-96. [PMID: 22268101 PMCID: PMC3362079 DOI: 10.1152/ajpgi.00370.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/12/2012] [Indexed: 02/06/2023]
Abstract
The enterohepatic circulation (EHC) of bile acids (BAs) plays a pivotal role in facilitating lipid absorption. Therefore, initiation of the EHC in newborns is of crucial importance for lipid absorption from milk. The purpose of this study was to determine at what age BA transporters in liver are expressed, and the mechanism for their initiation. Serum and liver samples were collected from C57BL/6 mice at 2 days before birth and various postnatal ages. Messenger RNA assays revealed a dramatic increase at birth in the expression of the BA transporters (Ntcp, Bsep, Mrp4, Ostβ), as well as the phospholipid floppase Mdr2 in mouse liver, with the highest expression at 1 day of age. The mRNA expression of the ileal BA transporters (Ostα and Ostβ) also markedly increased at birth. Meanwhile, taurine-conjugated cholic acid markedly increased in both serum and liver of newborns, correlated with upregulation of the classic pathway of BA biosynthesis in newborn liver. The mRNA levels of the major BA sensors, FXR and PXR, were increased at 1 day of age, and their prototypical target genes were upregulated in liver. The mRNA expression of transporters involved in the EHC of BAs was similar in wild-type and PXR-null mice. In contrast, in FXR-null mice, the "day 1 surge" pattern of Ntcp, Bsep, Ostβ, and Mdr2 was blocked in newborn mouse liver, and the induction of Ostα and Ostβ was also abolished in ileums of FXR-null mice. In conclusion, at birth, BAs from the classic pathway of synthesis trigger the induction of transporters involved in EHC of BAs in mice, through activation of the nuclear receptor FXR.
Collapse
Affiliation(s)
- Julia Yue Cui
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tovar-Palacio C, Torres N, Diaz-Villaseñor A, Tovar AR. The role of nuclear receptors in the kidney in obesity and metabolic syndrome. GENES AND NUTRITION 2012; 7:483-98. [PMID: 22532116 DOI: 10.1007/s12263-012-0295-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/02/2012] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcriptional regulators of several key aspects of renal physiology and pathophysiology. As such, nuclear receptors control a large variety of metabolic processes, including kidney lipid metabolism, drug clearance, inflammation, fibrosis, cell differentiation, and oxidative stress. Derangement of nuclear receptor regulation, that is, mainly due to obesity may induce metabolic syndrome, may contribute to the pathogenesis and progression of chronic renal disease and may result in end-stage renal disease. This places nuclear receptors at the forefront of novel therapeutic approaches for a broad range of kidney disorders and diseases, including glomerulosclerosis, tubulointerstitial disease, renal lipotoxicity, kidney fibrosis, and hypertension. This review focuses on the importance of the transcription factors peroxisome proliferator-activated receptor alpha, peroxisome proliferator-activated receptor beta, peroxisome proliferator-activated receptor gamma, liver X receptors, farnesoid X receptor, and the pregnane X receptor/steroid and xenobiotic receptor (PXR) on the physiology and pathophysiology of renal diseases associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Claudia Tovar-Palacio
- Department of Nephrology and Mineral Metabolism, National Medical Science and Nutrition Institute, Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, 14000, Mexico, D.F., Mexico,
| | | | | | | |
Collapse
|
30
|
Nem D, Baranyai D, Qiu H, Gödtel-Armbrust U, Nestler S, Wojnowski L. Pregnane X receptor and yin yang 1 contribute to the differential tissue expression and induction of CYP3A5 and CYP3A4. PLoS One 2012; 7:e30895. [PMID: 22292071 PMCID: PMC3264657 DOI: 10.1371/journal.pone.0030895] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 12/23/2011] [Indexed: 11/19/2022] Open
Abstract
The hepato-intestinal induction of the detoxifying enzymes CYP3A4 and CYP3A5 by the xenosensing pregnane X receptor (PXR) constitutes a key adaptive response to oral drugs and dietary xenobiotics. In contrast to CYP3A4, CYP3A5 is additionally expressed in several, mostly steroidogenic organs, which creates potential for induction-driven disturbances of the steroid homeostasis. Using cell lines and mice transgenic for a CYP3A5 promoter we demonstrate that the CYP3A5 expression in these organs is non-inducible and independent from PXR. Instead, it is enabled by the loss of a suppressing yin yang 1 (YY1)-binding site from the CYP3A5 promoter which occurred in haplorrhine primates. This YY1 site is conserved in CYP3A4, but its inhibitory effect can be offset by PXR acting on response elements such as XREM. Taken together, the loss of YY1 binding site from promoters of the CYP3A5 gene lineage during primate evolution may have enabled the utilization of CYP3A5 both in the adaptive hepato-intestinal response to xenobiotics and as a constitutively expressed gene in other organs. Our results thus constitute a first description of uncoupling induction from constitutive expression for a major detoxifying enzyme. They also suggest an explanation for the considerable tissue expression differences between CYP3A5 and CYP3A4.
Collapse
Affiliation(s)
- Dieudonné Nem
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dorothea Baranyai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Huan Qiu
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ute Gödtel-Armbrust
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sebastian Nestler
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
31
|
Glas J, Seiderer J, Fischer D, Tengler B, Pfennig S, Wetzke M, Beigel F, Olszak T, Weidinger M, Göke B, Ochsenkühn T, Folwaczny M, Müller-Myhsok B, Diegelmann J, Czamara D, Brand S. Pregnane X receptor (PXR/NR1I2) gene haplotypes modulate susceptibility to inflammatory bowel disease. Inflamm Bowel Dis 2011; 17:1917-24. [PMID: 21830270 DOI: 10.1002/ibd.21562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND The pregnane X receptor (PXR/NR1I2) is an important regulator of xenobiotic metabolism and intestinal integrity. However, there are controversial studies on the role of PXR/NR1I2 in inflammatory bowel disease (IBD). We therefore initiated the largest analysis to date on PXR/NR1I2 gene variants in IBD patients. METHODS Genomic DNA from 2823 individuals of Caucasian origin including 859 patients with Crohn's disease (CD), 464 patients with ulcerative colitis (UC), and 1500 healthy, unrelated controls was analyzed for eight PXR/NR1I2 single nucleotide polymorphisms (SNPs) (rs12721602 (-25564), rs3814055 (-25385), rs1523128 (-24756), rs1523127 (-24381), rs45610735 = p.Gly36Arg (+106), rs6785049 (+7635), rs2276707 (+8055), and rs3814057 (+11156)). In addition, detailed haplotype and genotype-phenotype analyses were performed. RESULTS The PXR/NR1I2 SNP rs2276707 was weakly associated with UC susceptibility (P = 0.01; odds ratio [OR] 1.27 [1.06-1.52]). None of the other PXR/NR1I2 SNPs were associated with UC or CD susceptibility. However, several rare PXR/NR1I2 haplotypes were highly associated with CD susceptibility. In CD, the strongest disease association was found for a haplotype consisting of the SNPs rs12721602-rs3814055-rs1523128-rs1523127-rs12721607-rs6785049-rs2276707-rs3814057 (omnibus P-value: 6.50 × 10(-15)) which was found in two separate cohorts (cohort I = discovery cohort: CD: n = 492, controls: n = 793; P = 4.51 × 10(-17); Bonferroni corrected: P = 1.27 × 10(-15); cohort II = replication cohort: CD: n = 367, controls: n = 707; P = 7.12 × 10(-4); P(corr) = 1.99 × 10(-2)). CONCLUSIONS Several PXR/NR1I2 haplotypes contribute to CD susceptibility, suggesting a role for PXR in the IBD pathogenesis of a certain patient subcohort. Given the accumulating evidence for an important role of PXR in intestinal inflammation, further analyses are required to investigate the functional and pharmacogenetic implications of these PXR/NR1I2 gene variants in IBD.
Collapse
Affiliation(s)
- Jürgen Glas
- Department of Human Genetics, RWTH Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Jacquet N, Maire MA, Rast C, Bonnard M, Vasseur P. Perfluorooctanoic acid (PFOA) acts as a tumor promoter on Syrian hamster embryo (SHE) cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2537-2549. [PMID: 22828883 DOI: 10.1007/s11356-012-0968-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 05/04/2012] [Indexed: 06/01/2023]
Abstract
Perfluorooctane sulfonate (PFOS) (C(8)F(17)SO(3)) and perfluorooctanoic acid (PFOA) (C(8)HF(15)O(2)) are synthetic chemicals widely used in industrial applications for their hydrophobic and oleophobic properties. They are persistent, bioaccumulative, and toxic to mammalian species. Their widespread distribution on earth and contamination of human serum raised concerns about long-term side effects. They are suspected to be carcinogenic through a nongenotoxic mode of action, a mechanism supported by recent findings that PFOS induced cell transformation but no genotoxicity in Syrian hamster embryo (SHE) cells. In the present study, we evaluated carcinogenic potential of PFOA using the cell transformation assay on SHE cells. The chemical was applied alone or in combination with a nontransformant concentration of benzo[a]pyrene (BaP, 0.4 μM) in order to detect PFOA ability to act as tumor initiator or tumor promoter. The results showed that PFOA tested alone in the range 3.7 × 10(-5) to 300 μM did not induce SHE cell transformation frequency in a 7-day treatment. On the other side, the combination BaP/PFOA induced cell transformation at all PFOA concentrations tested, which revealed synergistic effects. No genotoxicity of PFOA on SHE cells was detected using the comet assay after 5 and 24 h of exposure. No significant increase in DNA breakage was found in BaP-initiated cells exposed to PFOA in a 7-day treatment. The whole results showed that PFOA acts as a tumor promoter and a nongenotoxic carcinogen. Cell transformation in initiated cells was observed at concentrations equivalent to the ones found in human serum of nonoccupationally and occupationally exposed populations. An involvement of PFOA in increased incidence of cancer recorded in occupationally exposed population cannot be ruled out.
Collapse
Affiliation(s)
- N Jacquet
- Laboratory Interactions Ecotoxicology Biodiversity Ecosystems, University Paul Verlaine, CNRS UMR 7146, Rue du General Delestraint, 57070, Metz, France.
| | | | | | | | | |
Collapse
|
33
|
Prevoo B, Miller DS, van de Water FM, Wever KE, Russel FGM, Flik G, Masereeuw R. Rapid, nongenomic stimulation of multidrug resistance protein 2 (Mrp2) activity by glucocorticoids in renal proximal tubule. J Pharmacol Exp Ther 2011; 338:362-71. [PMID: 21515814 PMCID: PMC3126637 DOI: 10.1124/jpet.111.179689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/21/2011] [Indexed: 12/21/2022] Open
Abstract
In renal proximal tubule, multidrug resistance protein 2 (Mrp2) actively transports many organic anions into urine, including drugs and metabolic wastes. Upon exposure to nephrotoxicants or during endotoxemia, both Mrp2 activity and expression are up-regulated. This may result from induced de novo synthesis of Mrp2 or post-transcriptional events involving specific signaling pathways. Here, we investigated glucocorticoid signaling to Mrp2 in killifish renal proximal tubules, a model system in which transport activity can be measured using a fluorescent substrate and confocal imaging. Exposure of tubules to dexamethasone rapidly increased Mrp2-mediated fluorescein methotrexate transport. Other glucocorticoid receptor (GR) ligands, cortisol and triamcinolone acetonide, also stimulated Mrp2-mediated transport. The GR antagonist, mifepristone 17β-hydroxy-11β-[4-dimethylamino phenyl]-17α-[1-propynyl]estra-4,9-dien-3-one (RU486), abolished stimulation by all three ligands, whereas the mineralocorticoid receptor antagonist, spironolactone, was ineffective. Consistent with action through a nongenomic mechanism, dexamethasone stimulation of Mrp2-mediated transport was insensitive to cycloheximide and actinomycin D, and immunohistochemistry revealed no alterations in Mrp2 expression at the luminal membrane. (9S-(9α,10β,12α))-2,3,9,10,11,12-hexahydro-10-hydroxy-10-(methoxycarbonyl)-9-methyl-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocin-1-one (K252a), an inhibitor of the tyrosine receptor kinase subfamily, reduced the dexamethasone effect, as did the specific hepatocyte growth factor receptor (c-Met) tyrosine kinase inhibitor, (2R)-1-[[5-[(Z)-[5-[[(2,6-dichlorophenyl)methyl]sulfonyl]-1,2-dihydro-2-oxo-3H-indol-3-ylidene]methyl]-2,4-dimethyl-1H-pyrrol-3-yl]carbonyl]-2-(1-pyrrolidinylmethyl)pyrrolidine (PHA-665752). Hepatocyte growth factor (HGF), an endogenous ligand for c-Met, stimulated Mrp2-mediated transport. This effect was reversed by PHA-665752 but not by RU486. Inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK 1/2) also abolished the effects of dexamethasone and HGF. Our results disclose a novel mechanism by which glucocorticoids acting through GR, c-Met, and MEK1/2 cause rapid, nongenomic stimulation of Mrp2-mediated transport in renal proximal tubules. This up-regulation may be nephroprotective, enhancing efflux of metabolic wastes and toxicants during cell and tissue stress.
Collapse
Affiliation(s)
- Brigitte Prevoo
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre/Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Gahir SS, Piquette-Miller M. Gestational and pregnane X receptor-mediated regulation of placental ATP-binding cassette drug transporters in mice. Drug Metab Dispos 2011; 39:465-71. [PMID: 21127142 DOI: 10.1124/dmd.110.034983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette (ABC) drug transporters in the placenta are involved in controlling the exchange of endogenous and exogenous moieties. Pregnane X receptor (PXR) is a nuclear receptor that regulates the hepatic expression of several key ABC transporters, but it is unclear whether PXR is involved in the regulation of these transporters in the placenta. This study explores the role of PXR in the regulation of placental drug transporters. The placental mRNA expression of Mdr1a, Bcrp, and Mrp1, 2, and 3 was examined in PXR knockout (-/-), heterozygote (+/-), and wild-type (+/+) mice by quantitative PCR. The impact of PXR activation was examined in pregnant pregnane-16α-carbonitrile (PCN)-treated mice. Compared with that in controls, the basal expression of Mdr1a, Bcrp, Mrp1, and Mrp2 was significantly higher in (+/-) and (-/-) mice. Alterations in the expression of mdr1a, bcrp, and mrp1, 2, and 3 between gestational day (GD) 10 and GD 17 was dissimilar between (+/+) and (-/-) mice. Although PCN treatment induced maternal and fetal hepatic expression of Cyp3a11; placental expression of transporters were not significantly changed. Overall, our results suggest a repressive role of PXR in the basal expression of several placental transporters and a tissue-specific induction of these target genes after PXR activation.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Female
- Gene Expression Regulation, Developmental/drug effects
- Liver/drug effects
- Liver/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Placenta/drug effects
- Placenta/metabolism
- Pregnancy
- Pregnancy Proteins/genetics
- Pregnancy Proteins/metabolism
- Pregnane X Receptor
- Pregnenolone Carbonitrile/pharmacology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Receptors, Steroid/agonists
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Sarabjit S Gahir
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
35
|
Zhang YKJ, Guo GL, Klaassen CD. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS One 2011; 6:e16683. [PMID: 21346810 PMCID: PMC3035620 DOI: 10.1371/journal.pone.0016683] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/31/2010] [Indexed: 12/30/2022] Open
Abstract
Background Diurnal fluctuation of bile acid (BA) concentrations in the enterohepatic system of mammals has been known for a long time. Recently, BAs have been recognized as signaling molecules beyond their well-established roles in dietary lipid absorption and cholesterol homeostasis. Methods and Results The current study depicted diurnal variations of individual BAs detected by ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) in serum and livers collected from C57BL/6 mice fed a regular chow or a chow containing cholestyramine (resin). Circadian rhythms of mRNA of vital BA-related nuclear receptors, enzymes, and transporters in livers and ilea were determined in control- and resin-fed mice, as well as in farnesoid X receptor (FXR) null mice. The circadian profiles of BAs showed enhanced bacterial dehydroxylation during the fasting phase and efficient hepatic reconjugation of BAs in the fed phase. The resin removed more than 90% of BAs with β-hydroxy groups, such as muricholic acids and ursodeoxycholic acid, from serum and livers, but did not exert as significant influence on CA and CDCA in both compartments. Both resin-fed and FXR-null mouse models indicate that BAs regulate their own biosynthesis through the FXR-regulated ileal fibroblast growth factor 15. BA flux also influences the daily mRNA levels of multiple BA transporters. Conclusion BA concentration and composition exhibit circadian variations in mouse liver and serum, which influences the circadian rhythms of BA metabolizing genes in liver and ileum. The diurnal variations of BAs appear to serve as a signal that coordinates daily nutrient metabolism in mammals.
Collapse
Affiliation(s)
- Yu-Kun Jennifer Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Grace L. Guo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Lu H, Gonzalez FJ, Klaassen C. Alterations in hepatic mRNA expression of phase II enzymes and xenobiotic transporters after targeted disruption of hepatocyte nuclear factor 4 alpha. Toxicol Sci 2010; 118:380-90. [PMID: 20935164 DOI: 10.1093/toxsci/kfq280] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4a) is a liver-enriched master regulator of liver function. HNF4a is important in regulating hepatic expression of certain cytochrome P450s. The purpose of this study was to use mice lacking HNF4a expression in liver (HNF4a-HNull) to elucidate the role of HNF4a in regulating hepatic expression of phase II enzymes and transporters in mice. Compared with male wild-type mice, HNF4a-HNull male mouse livers had (1) markedly lower messenger RNAs (mRNAs) encoding the uptake transporters sodium taurocholate cotransporting polypeptide, organic anion transporting polypeptide (Oatp) 1a1, Oatp2b1, organic anion transporter 2, sodium phosphate cotransporter type 1, sulfate anion transporter 1, sodium-dependent vitamin C transporter 1, the phase II enzymes Uridine 5'-diphospho (UDP)-glucuronosyltransferase (Ugt) 2a3, Ugt2b1, Ugt3a1, Ugt3a2, sulfotransferase (Sult) 1a1, Sult1b1, Sult5a1, the efflux transporters multidrug resistance-associated protein (Mrp) 6, and multidrug and toxin extrusion 1; (2) moderately lower mRNAs encoding Oatp1b2, organic cation transporter (Oct) 1, Ugt1a5, Ugt1a9, glutathione S-transferase (Gst) m4, Gstm6, and breast cancer resistance protein; but (3) higher mRNAs encoding Oatp1a4, Octn2, Ugt1a1, Sult1e1, Sult2a2, Gsta4, Gstm1-m3, multidrug resistance protein (Mdr) 1a, Mrp3, and Mrp4. Hepatic signaling of nuclear factor E2-related factor 2 and pregnane X receptor appear to be activated in HNF4a-HNull mice. In conclusion, HNF4a deficiency markedly alters hepatic mRNA expression of a large number of phase II enzymes and transporters, probably because of the loss of HNF4a, which is a transactivator and a determinant of gender-specific expression and/or adaptive activation of signaling pathways important in hepatic regulation of these phase II enzymes and transporters.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | |
Collapse
|
37
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
38
|
Holthoewer D, Hiemke C, Schmitt U. Induction of Drug Transporters Alters Disposition of Risperidone - A Study in Mice. Pharmaceutics 2010; 2:258-274. [PMID: 27721355 PMCID: PMC3986720 DOI: 10.3390/pharmaceutics2020258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 11/30/2022] Open
Abstract
Pharmacokinetic interactions, e.g. modulation of drug transporters like P-glycoprotein at the blood-brain barrier, can be a reason for treatment non-response. This study focuses on the influence of induction of drug transporters on the disposition of the antipsychotic drugs risperidone and 9-hydroxyrisperidone. Brain and serum concentrations of risperidone and its active metabolite 9-hydroxyrisperidone, which are known P-glycoprotein substrates, were measured after drug transporter induction with rifampicin, dexamethasone or 5-pregnene-3beta-ol-20-on-16alpha-carbonitrile using high performance liquid chromatography. Disposition of risperidone and 9-hydroxyrisperidone was dramatically decreased in mouse brain and serum after drug transporter induction. The metabolism of risperidone was also affected.
Collapse
Affiliation(s)
- David Holthoewer
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Strasse 8, 55101 Mainz, Germany.
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Strasse 8, 55101 Mainz, Germany.
| | - Ulrich Schmitt
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Strasse 8, 55101 Mainz, Germany.
| |
Collapse
|
39
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 582] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
40
|
Cheng X, Klaassen CD. Tissue distribution, ontogeny, and hormonal regulation of xenobiotic transporters in mouse kidneys. Drug Metab Dispos 2009; 37:2178-85. [PMID: 19679677 PMCID: PMC2774986 DOI: 10.1124/dmd.109.027177] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 08/12/2009] [Indexed: 12/12/2022] Open
Abstract
Kidneys play important roles in the elimination of numerous endogenous and exogenous chemicals. In recent years, at least 37 xenobiotic transporters have been identified in mammalian kidneys. Although much progress has been made, information on 14 of these transporters (ATP-binding cassette [Abc] a1, apical sodium bile acid transporter [Asbt], breast cancer resistance protein, concentrative nucleoside transporter 1, equilibrative nucleoside transporter [Ent] 2, Ent3, sodium-phosphate cotransporter [Npt] 1, Npt2a, Npt2b, Npt2c, organic anion transporter [Oat] 5, organic anion-transporting polypeptide [Oatp] 4c1, peptide transporter 2, and uric acid transporter [Urat] 1) in kidneys is quite limited. Therefore, the purpose of the present study was to examine the tissue distribution, ontogeny, and hormonal regulation of these 14 transporters in kidneys of mice. Other than in kidneys, Npt2b is also highly expressed in liver and lung, Npt2c in liver and colon, Asbt in ileum, and Abca1 in liver, lung, testis, ovary, and placenta of mice. Most of these (13 of 14) transporters are lowly expressed in mouse kidneys until 15 days of age, which in part contributes to the immaturity of excretory function in fetal and newborn kidneys. One exception is Ent2, which is highly expressed before birth and gradually decreases after birth until reaching adult levels at 15 days of age. Gender-divergent expression of male-predominant (Urat1 and Oatp4c1) and female-predominant (Oat5) transporters in mouse kidneys is primarily due to stimulatory effects of androgens and estrogens, respectively. In conclusion, the mRNA expression of xenobiotic transporters in kidneys is determined by tissue, age, and sex hormones.
Collapse
Affiliation(s)
- Xingguo Cheng
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
41
|
Csanaky IL, Aleksunes LM, Tanaka Y, Klaassen CD. Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice. Am J Physiol Gastrointest Liver Physiol 2009; 297:G419-33. [PMID: 19497955 PMCID: PMC2739828 DOI: 10.1152/ajpgi.90728.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enterohepatic recirculation of bile acids (BAs) is important in several physiological processes. Although there has been considerable research on liver regeneration after two-thirds partial hepatectomy (PHx), little is known about how the liver protects itself against BA toxicity during regeneration. In this study, various BAs in plasma and liver, the composition of micelle-forming bile constituents, as well as gene expression of the main hepatobiliary transporters were quantified in sham-operated and PHx mice 24 and 48 h after surgery. PHx did not influence the hepatic concentrations of taurine-conjugated BAs (T-BA) but increased the concentration of glycine-conjugated (G-BA) and unconjugated BAs. Total BA excretion (microg x min(-1) x g liver wt(-1)) increased 2.4-fold and was accompanied by a 55% increase in bile flow after PHx. The plasma concentrations of T-BAs (402-fold), G-BAs (17-fold), and unconjugated BAs (500-fold) increased. The mRNA and protein levels of the BA uptake transporter Ntcp were unchanged after PHx, whereas the canalicular Bsep protein increased twofold at 48 h. The basolateral efflux transporter Mrp3 was induced at the mRNA (2.6-fold) and protein (3.1-fold) levels after PHx, which may contribute to elevated plasma BA and bilirubin levels. Biliary phospholipid excretion was nearly doubled in PHx mice, most likely owing to increased mRNA expression of the phospholipid transporter, Mdr2. In conclusion, the remnant liver after PHx excretes 2.5-fold more BAs and three times more phospholipids per gram liver than the sham-operated mouse liver. Upregulation of phospholipid transport may be important in protecting the biliary tract from BA toxicity during PHx.
Collapse
Affiliation(s)
- Iván L. Csanaky
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren M. Aleksunes
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuji Tanaka
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
42
|
Xu C, Wang X, Staudinger JL. Regulation of tissue-specific carboxylesterase expression by pregnane x receptor and constitutive androstane receptor. Drug Metab Dispos 2009; 37:1539-47. [PMID: 19359405 PMCID: PMC2698945 DOI: 10.1124/dmd.109.026989] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 04/08/2009] [Indexed: 12/19/2022] Open
Abstract
The liver- and intestine-enriched carboxylesterase 2 (CES2) enzyme catalyzes the hydrolysis of several clinically important anticancer agents administered as prodrugs. For example, irinotecan, a carbamate prodrug used in the treatment of colorectal cancer, is biotransformed in vivo by CES2 in intestine and liver, thereby producing a potent topoisomerase I inhibitor. Pregnane X receptor (PXR) and constitutive androstane receptor (CAR), two members of the nuclear receptor superfamily of ligand-activated transcription factors, mediate gene activation in response to xenobiotic stress. Together, these receptors comprise a protective response in mammals that coordinately regulate hepatic transport, metabolism, and elimination of numerous xenobiotic compounds. In the present study, microarray analysis was used to identify PXR target genes in duodenum in mice. Here, we show that a gene encoding a member of the CES2 subtype of liver- and intestine-enriched CES enzymes, called Ces6, is induced after treatment with pregnenolone 16alpha-carbonitrile in a PXR-dependent manner in duodenum and liver in mice. Treatment of mice with the CAR activator 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene also induced expression of Ces6 in duodenum and liver in a CAR-dependent manner, whereas treatment with phenobarbital produced induction of Ces6 exclusively in liver. These data identify a key role for PXR and CAR in regulating the drug-inducible expression and activity of an important CES enzyme in vivo. Future studies should focus on determining whether these signaling pathways governing drug-inducible CES expression in intestine and liver are conserved in humans.
Collapse
Affiliation(s)
- Chenshu Xu
- Pharmacology and Toxicology, University of Kansas, 1251 Wescoe Hall Drive, 5038a Malott Hall, Lawrence, KS 66045, USA
| | | | | |
Collapse
|
43
|
Congiu M, Mashford ML, Slavin JL, Desmond PV. Coordinate regulation of metabolic enzymes and transporters by nuclear transcription factors in human liver disease. J Gastroenterol Hepatol 2009; 24:1038-44. [PMID: 19638083 DOI: 10.1111/j.1440-1746.2009.05800.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND It has been hypothesised, mainly from studies with animal models of liver disease, that the transport of substrates for metabolic enzymes and their subsequent metabolism and elimination in hepatic bile or blood is co-ordinated, but there is little information on this process in diseased human liver. METHODS In this study we have measured by reverse transcription polymerase chain reaction (RT-PCR) major genes involved in drug metabolism from UDP-glucuronosyltransferases (UGT1A1, UGT1A6, UGT1A9, and UGT2B4) and cytochrome P450 (CYP) families (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4), transport (OATP-C, MRP2, MRP3, and MDR1) and major transcription factors (PXR, CAR, HNF1alpha, HNF4alpha, RXR, and AHR) involved in their regulation. Liver biopsy tissue from patients with viral hepatitis was scored for inflammation and fibrosis by the METAVIR system, and separated into groups with mild (A0-1; F0-1, n = 20) or severe (A2-3; F3-4, n = 19) liver disease. Correlation analysis (Spearman rank-test, P < 0.05) was used to identify metabolic enzymes and transporters which shared significant correlation with transcription factors. RESULTS Our results show an extensive correlation between transcription factors, transporters, and metabolic enzymes. An unexpected finding was that this was substantially greater in the severely diseased liver. Cross-talk between transcription factors was markedly increased in tissue from patients with severe liver disease, particularly between CAR, HNF4alpha, and PXR. CONCLUSION Our results support the hypothesis of co-ordinate regulation of metabolic enzymes and transporters in diseased human liver, as part of a widespread co-ordinated process under the control of nuclear receptor transcription factors.
Collapse
Affiliation(s)
- Mario Congiu
- Department of Gastroenterology, St. Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
44
|
Cui YJ, Aleksunes LM, Tanaka Y, Goedken MJ, Klaassen CD. Compensatory induction of liver efflux transporters in response to ANIT-induced liver injury is impaired in FXR-null mice. Toxicol Sci 2009; 110:47-60. [PMID: 19407337 DOI: 10.1093/toxsci/kfp094] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Alpha-naphthyl isothiocyanate (ANIT) is a hepatotoxicant that produces acute intrahepatic cholestasis in rodents. Farnesoid X receptor (FXR) and pregnane X receptor (PXR) are two major bile acid sensors in liver. The purpose of this study was to characterize the regulation of hepatic transporters by FXR and PXR during ANIT-induced liver injury. Wild-type, FXR-null, and PXR-null mice were administered ANIT (75 mg/kg, po) and evaluated 48 h later for hepatotoxicity and messenger RNA (mRNA) expression of basolateral uptake (sodium taurocholate-cotransporting polypeptide, organic anion transporting polypeptide [Oatp] 1a1, Oatp1a4, Oatp1b2) and efflux transporters (organic solute transporter [Ost] alpha, Ostbeta, multidrug resistance-associated protein [Mrp] 3, Mrp4), as well as canalicular transporters (bile salt export pump [Bsep], Mrp2, multidrug resistance protein 2 [Mdr2], ATPase, class I, type 8B, member 1 [Atp8b1]). Livers from wild-type and PXR-null mice had comparable multifocal necrosis 48 h after ANIT. However, ANIT-treated FXR-null mice have fewer and smaller necrotic foci than wild-type mice but had scattered single-cell hepatocyte necrosis throughout the liver. Serum alanine transaminase, alkaline phosphatase (ALP), and direct bilirubin were increased in all genotypes, with higher ALP levels in FXR-null mice. Serum and liver unconjugated bile acids were higher in ANIT-treated FXR-null mice than the other two genotypes. ANIT induced mRNA expression of Mdr2, Bsep, and Atp8b1 in wild-type and PXR-null mice but failed to upregulate these genes in FXR-null mice. mRNA expression of uptake transporters declined in livers of all genotypes following ANIT treatment. ANIT increased Ostbeta and Mrp3 mRNA in livers of wild-type and PXR-null mice but did not alter Ostbeta mRNA in FXR-null mice. In conclusion, FXR deficiency enhances susceptibility of mice to ANIT-induced liver injury, likely a result of impaired induction of hepatobiliary efflux transporters and subsequent hepatic accumulation of unconjugated bile acids.
Collapse
Affiliation(s)
- Yue J Cui
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
45
|
A new model for studying tissue-specific mdr1a gene expression in vivo by live imaging. Proc Natl Acad Sci U S A 2009; 106:5394-9. [PMID: 19282474 DOI: 10.1073/pnas.0807343106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance continues to be a major impediment to successful chemotherapy in cancer patients. One cause of multidrug resistance is enhanced expression of the mdr1 gene, but the precise factors and physiological conditions controlling mdr1 expression are not entirely known. To gain a better understanding of mdr1 transcriptional regulation, we created a unique mouse model that allows noninvasive bioimaging of mdr1 gene expression in vivo and in real time. The model uses a firefly luciferase (fLUC) gene inserted by homologous recombination into the murine mdr1a genetic locus. The inserted fLUC gene is preceded by a neo expression cassette flanked by loxP sites, so that Cre-mediated recombination is required to configure the fLUC gene directly under the control of the endogenous mdr1a promoter. We now demonstrate that the mdr1a.fLUC knock-in is a faithful reporter for mdr1a expression in naive animals, in which fLUC mRNA levels and luminescence intensities accurately parallel endogenous mdr1a mRNA expression. We also demonstrate xenobiotic-inducible regulation of mdr1a.fLUC expression in real time, in parallel with endogenous mdr1a expression, resulting in a more detailed understanding of the kinetics of mdr1a gene induction. This mouse model demonstrates the feasibility of using bioimaging coupled with Cre/loxP conditional knock-in to monitor regulated gene expression in vivo. It represents a unique tool with which to study the magnitude and kinetics of mdr1a induction under a variety of physiologic, pharmacologic, genetic, and environmental conditions.
Collapse
|
46
|
Zhang YKJ, Yeager RL, Klaassen CD. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos 2009; 37:106-15. [PMID: 18838502 PMCID: PMC2683654 DOI: 10.1124/dmd.108.024174] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/02/2008] [Indexed: 11/22/2022] Open
Abstract
Temporal coordination of hepatic drug-processing gene (DPG) expression facilitates absorption, biotransformation, and excretion of exogenous and endogenous compounds. To further elucidate the circadian rhythm of hepatic DPG expression, male C57BL/6 mice were subjected to a standard 12-h light/dark cycle, and livers were collected at 2:00, 6:00, and 10:00 AM and 2:00, 6:00, and 10:00 PM. The mRNAs of hepatic phase I enzymes (cytochromes P450, aldehyde dehydrogenases, and carboxylesterases), phase II enzymes (glucuronosyltransferases, sulfotransferases, and glutathione S-transferases), uptake and efflux transporters, and transcription factors were quantified. Messenger RNAs of various genes were graphed across time of day and compared by hierarchical clustering. In general, the mRNA of phase I enzymes increased during the dark phase, whereas the mRNAs of most phase II enzymes and transporters reached maximal levels during the light phase. The majority of hepatic transcription factors exhibited expression peaks either before or after the onset of the dark phase. During the same time period, the negative clock regulator gene Rev-Erbalpha and the hepatic clock-controlled gene Dbp also reached mRNA expression peaks. Considering their important role in xenobiotic metabolism, hepatic transcription factors, such as constitutive androstane receptor, pregnane X receptor, aryl hydrocarbon receptor, and peroxisomal proliferator activated receptor alpha, may be involved in coupling the hepatic circadian clock to environmental cues. Taken together, these data demonstrate that the circadian expression of the DPG battery and transcription factors contribute to the temporal detoxification cycle in the liver.
Collapse
Affiliation(s)
- Yu-Kun Jennifer Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
47
|
Cui YJ, Cheng X, Weaver YM, Klaassen CD. Tissue distribution, gender-divergent expression, ontogeny, and chemical induction of multidrug resistance transporter genes (Mdr1a, Mdr1b, Mdr2) in mice. Drug Metab Dispos 2009; 37:203-10. [PMID: 18854377 PMCID: PMC2683659 DOI: 10.1124/dmd.108.023721] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 10/09/2008] [Indexed: 01/12/2023] Open
Abstract
Multidrug resistance (Mdr) transporters are ATP-binding cassette transporters that efflux amphipathic cations from cells and protect tissues from xenobiotics. Unfortunately, Mdr transporters also efflux anticancer drugs from some tumor cells, resulting in multidrug resistance. There are two groups of Mdrs in mice: group I includes Mdr1a and Mdr1b that transport xenobiotics, whereas group II is Mdr2, a flipase that facilitates phospholipid excretion into bile. Little is known about the regulation of Mdr genes in vivo. The purpose of this study was to determine tissue distribution, gender differences, ontogeny, and chemical induction of Mdrs in mice. The mRNA of Mdr1a is highest in gastrointestinal tract, Mdr1b in ovary and placenta, and Mdr2 in liver. Both Mdr1a and Mdr1b in kidney show female-predominant expression patterns due to repression by androgens. The ontogeny of mouse Mdr1a in duodenum and brain as well as Mdr1b in brain, kidney, and liver all share a similar developmental pattern: low expression at birth, followed by a gradual increase to mature levels at approximately 30 days of age. In contrast, Mdr2 mRNA in liver is markedly up-regulated at birth, which returns to low levels by 5 days of age and then gradually increases to mature levels. None of the Mdrs in liver are readily inducible by any class of microsomal enzyme inducers. In conclusion, the three Mdr transporters in mice are expressed in a tissue-specific and age-dependent pattern, there are gender differences in expression, and Mdr transporters are inducible by only a few microsomal enzyme inducers.
Collapse
Affiliation(s)
- Yue Julia Cui
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160-7417, USA
| | | | | | | |
Collapse
|
48
|
Stanley LA, Horsburgh BC, Ross J, Scheer N, Wolf CR. Drug transporters: gatekeepers controlling access of xenobiotics to the cellular interior. Drug Metab Rev 2009; 41:27-65. [PMID: 19514970 DOI: 10.1080/03602530802605040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this paper, we evaluate methodologies and null mouse models used to study drug transporter function in vitro and in vivo. P-glycoprotein and MRP null mice have been used to examine many aspects of xenobiotic distribution and bioavailability. Their advantage over conventional models is that they allow the exclusion of transporters from a particular process; however, they cannot be used to study the activity of the transporter that has been deleted. Use of humanized mice permits a logical progression from phenomena in wild-type mice via the effects of removing the mouse transporter to the consequences of replacing it with its human counterpart.
Collapse
|
49
|
Sandanaraj E, Lal S, Selvarajan V, Ooi LL, Wong ZW, Wong NS, Ang PCS, Lee EJD, Chowbay B. PXR pharmacogenetics: association of haplotypes with hepatic CYP3A4 and ABCB1 messenger RNA expression and doxorubicin clearance in Asian breast cancer patients. Clin Cancer Res 2008; 14:7116-26. [PMID: 18981011 DOI: 10.1158/1078-0432.ccr-08-0411] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To characterize pregnane X receptor (PXR) polymorphic variants in healthy Asian populations [Chinese, Malay and Indian (n=100 each)], and to investigate the association between PXR haplotypes and hepatic mRNA expression of PXR and its downstream target genes, CYP3A4 and ABCB1, as well as their influence on the clearance of doxorubicin in Asian breast cancer patients. EXPERIMENTAL DESIGN PXR genotyping was done by direct DNA sequencing, and PXR haplotypes and haplotype clusters were derived by expectation-maximization algorithm. Genotype-phenotype correlations were done using Mann-Whitney U test and Kruskal-Wallis test. RESULTS Significant interethnic variations were observed in PXR pharmacogenetics among the three Asian ethnic groups. The expression of PXR mRNA in liver tissues harboring the PXR*1B haplotype clusters was 4-fold lower compared with the non-PXR*1B (*1A + *1C) haplotype clusters [PXR*1B versus PXR*1A; P=0.015; PXR*1B versus PXR*1C; P=0.023]. PXR*1B-bearing liver tissues were associated with significantly lower expression of CYP3A4 (PXR*1B versus non-PXR*1B, P=0.030) and ABCB1 (PXR*1B versus non-PXR*1B, P=0.060) compared with non-PXR*1B-bearing liver tissues. Doxorubicin clearance in breast cancer patients harboring the PXR*1B haplotypes was significantly lower compared with patients carrying the non-PXR*1B haplotypes [PXR*1B versus non-PXR*1B, CL/BSA (L h(-1) m(-2)): 20.84 (range, 8.68-29.24) versus 24.85 (range, 13.80-55.66), P=0.022]. CONCLUSIONS This study showed that PXR*1B was associated with reduced hepatic mRNA expression of PXR and its downstream targets, CYP3A4 and ABCB1. Genotype-phenotype correlates in breast cancer patients showed PXR*1B to be significantly associated with lower doxorubicin clearance, suggesting that PXR haplotype constitution could be important in influencing interindividual and interethnic variations in disposition of its putative drug substrates.
Collapse
Affiliation(s)
- Edwin Sandanaraj
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Stahl S, Davies MR, Cook DI, Graham MJ. Nuclear hormone receptor-dependent regulation of hepatic transporters and their role in the adaptive response in cholestasis. Xenobiotica 2008; 38:725-77. [DOI: 10.1080/00498250802105593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|