1
|
Danek PJ, Daniel WA. The Novel Atypical Antipsychotic Lurasidone Affects Cytochrome P450 Expression in the Liver and Peripheral Blood Lymphocytes. Int J Mol Sci 2023; 24:16796. [PMID: 38069119 PMCID: PMC10706667 DOI: 10.3390/ijms242316796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Lurasidone is a novel atypical antipsychotic drug acting on dopaminergic, serotonergic and noradrenergic receptors; it is applied for the long-term treatment of schizophrenia and depression in patients with bipolar disorders. We aimed at performing a comparative study on the influence of chronic treatment with lurasidone on the expression of cytochrome P450 enzymes in the liver and in peripheral blood lymphocytes, and to evaluate the relationship between changes in the expression of CYP enzymes in the two experimental models. The obtained results show a fairly similar expression pattern of the main CYP enzymes in the rat livers and lymphocytes, and they indicate that in the liver, lurasidone exerts an inhibitory effect on the activity, protein and mRNA levels of CYP2B1/2 (not CYP2B2 mRNA), CYP2C11 and CYP2E1, while in the case of CYP3A1 and CYP3A2, it causes enzyme induction. At the same time, lurasidone decreases the expression of CYP2B, CYP2C11 (CYP2C11 protein only) and CYP2E1 but increases that of CYP3A2 (not CYP3A1) in lymphocyte cells. In conclusion, chronic treatment with lurasidone simultaneously and in the same way influences the expression and activity of CYP2B, CYP2C11, CYP2E1 and CYP3A2 in the liver and peripheral blood lymphocytes of rats. Thus, the lymphocyte cytochrome P450 profile may be utilized as an indicator of the hepatic cytochrome P450 profile in further clinical studies with lurasidone, and lymphocytes may serve as easily available surrogates for examining the impact of new drugs and chronic in vivo treatments on CYP enzyme expression, as well as to estimate drug-drug interactions and toxicity risk.
Collapse
Affiliation(s)
| | - Władysława A. Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| |
Collapse
|
2
|
Wang F, Liu J, Hernandez R, Park SH, Lai YJ, Wang S, Blumberg B, Zhou C. Adipocyte-Derived PXR Signaling Is Dispensable for Diet-Induced Obesity and Metabolic Disorders in Mice. Drug Metab Dispos 2023; 51:1207-1215. [PMID: 37230767 PMCID: PMC10449100 DOI: 10.1124/dmd.123.001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Pregnane X receptor (PXR) is a xenobiotic receptor that can be activated by numerous chemicals including endogenous hormones, dietary steroids, pharmaceutical agents, and environmental chemicals. PXR has been established to function as a xenobiotic sensor to coordinately regulate xenobiotic metabolism by regulating the expression of many enzymes and transporters required for xenobiotic metabolism. Recent studies have implicated a potentially important role for PXR in obesity and metabolic disease beyond xenobiotic metabolism, but how PXR action in different tissues or cell types contributes to obesity and metabolic disorders remains elusive. To investigate the role of adipocyte PXR in obesity, we generated a novel adipocyte-specific PXR deficient mouse model (PXRΔAd). Notably, we found that loss of adipocyte PXR did not affect food intake, energy expenditure, and obesity in high-fat diet-fed male mice. PXRΔAd mice also had similar obesity-associated metabolic disorders including insulin resistance and hepatic steatosis as control littermates. PXR deficiency in adipocytes did not affect expression of key adipose genes in PXRΔAd mice. Our findings suggest that adipocyte PXR signaling may be dispensable in diet-induced obesity and metabolic disorders in mice. Further studies are needed to understand the role of PXR signaling in obesity and metabolic disorders in the future. SIGNIFICANCE STATEMENT: The authors demonstrate that deficiency of adipocyte pregnane X receptor (PXR) does not affect diet-induced obesity or metabolic disorders in mice and infers that adipocyte PXR signaling may not play a key role in diet-induced obesity. More studies are needed to understand the tissue-specific role of PXR in obesity.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Jingwei Liu
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Rebecca Hernandez
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Ying-Jing Lai
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Bruce Blumberg
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky (F.W., S.-H.P., S.W.); Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California (J.L., R.H., Y.-J.L., C.Z.); and Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California (B.B.)
| |
Collapse
|
3
|
Riddick DS. Fifty Years of Aryl Hydrocarbon Receptor Research as Reflected in the Pages of Drug Metabolism and Disposition. Drug Metab Dispos 2023; 51:657-671. [PMID: 36653119 DOI: 10.1124/dmd.122.001009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The induction of multiple drug-metabolizing enzymes by halogenated and polycyclic aromatic hydrocarbon toxicants is mediated by the aryl hydrocarbon receptor (AHR). This fascinating receptor also has natural dietary and endogenous ligands, and much is now appreciated about the AHR's developmental and physiologic roles, as well as its importance in cancer and other diseases. The past several years has witnessed increasing emphasis on understanding the multifaceted roles of the AHR in the immune system. Most would agree that the "discovery" of the AHR occurred in 1976, with the report of specific binding of a high affinity radioligand in mouse liver, just three years after the launch of the journal Drug Metabolism and Disposition (DMD) in 1973. Over the ensuing 50 years, the AHR and DMD have led parallel and often intersecting lives. The overall goal of this mini-review is to provide a decade-by-decade overview of major historical landmark discoveries in the AHR field and to highlight the numerous contributions made by publications appearing in the pages of DMD. It is hoped that this historical tour might inspire current and future research in the AHR field. SIGNIFICANCE STATEMENT: With the launch of Drug Metabolism and Disposition (DMD) in 1973 and the discovery of the aryl hydrocarbon receptor (AHR) in 1976, the journal and the receptor have led parallel and often intersecting lives over the past 50 years. Tracing the history of the AHR can reveal how knowledge in the field has evolved to the present and highlight the important contributions made by discoveries reported in DMD. This may inspire additional DMD papers reporting future AHR landmark discoveries.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Liu J, Hernandez R, Li X, Meng Z, Chen H, Zhou C. Pregnane X Receptor Mediates Atherosclerosis Induced by Dicyclohexyl Phthalate in LDL Receptor-Deficient Mice. Cells 2022; 11:1125. [PMID: 35406689 PMCID: PMC8997706 DOI: 10.3390/cells11071125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022] Open
Abstract
Plastic-associated endocrine disrupting chemicals (EDCs) have been implicated in the etiology of cardiovascular disease (CVD) in humans, but the underlying mechanisms remain elusive. Dicyclohexyl phthalate (DCHP) is a widely used phthalate plasticizer; whether and how exposure to DCHP elicits adverse effects in vivo is mostly unknown. We previously reported that DCHP is a potent ligand of the pregnane X receptor (PXR) which acts as a xenobiotic sensor to regulate xenobiotic metabolism. PXR also functions in macrophages to regulate atherosclerosis development in animal models. In the current study, LDL receptor-deficient mice with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) and their control littermates (PXRF/FLDLR-/-) were used to determine the impact of DCHP exposure on macrophage function and atherosclerosis. Chronic exposure to DCHP significantly increased atherosclerotic lesion area in the aortic root and brachiocephalic artery of PXRF/FLDLR-/- mice by 65% and 77%, respectively. By contrast, DCHP did not affect atherosclerosis development in PXRΔMyeLDLR-/- mice. Exposure to DCHP led to elevated expression of the scavenger receptor CD36 in macrophages and increased macrophage form cell formation in PXRF/FLDLR-/- mice. Our findings provide potential mechanisms underlying phthalate-associated CVD risk and will ultimately stimulate further investigations and mitigation of the adverse effects of plastic-associated EDCs on CVD risk in humans.
Collapse
Affiliation(s)
- Jingwei Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Rebecca Hernandez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Xiuchun Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Zhaojie Meng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (J.L.); (R.H.); (X.L.); (Z.M.)
| |
Collapse
|
5
|
Rogers RS, Parker A, Vainer PD, Elliott E, Sudbeck D, Parimi K, Peddada VP, Howe PG, D’Ambrosio N, Ruddy G, Stackable K, Carney M, Martin L, Osterholt T, Staudinger JL. The Interface between Cell Signaling Pathways and Pregnane X Receptor. Cells 2021; 10:cells10113262. [PMID: 34831484 PMCID: PMC8617909 DOI: 10.3390/cells10113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Highly expressed in the enterohepatic system, pregnane X receptor (PXR, NR1I2) is a well-characterized nuclear receptor (NR) that regulates the expression of genes in the liver and intestines that encode key drug metabolizing enzymes and drug transporter proteins in mammals. The net effect of PXR activation is to increase metabolism and clear drugs and xenobiotics from the body, producing a protective effect and mediating clinically significant drug interaction in patients on combination therapy. The complete understanding of PXR biology is thus important for the development of safe and effective therapeutic strategies. Furthermore, PXR activation is now known to specifically transrepress the inflammatory- and nutrient-signaling pathways of gene expression, thereby providing a mechanism for linking these signaling pathways together with enzymatic drug biotransformation pathways in the liver and intestines. Recent research efforts highlight numerous post-translational modifications (PTMs) which significantly influence the biological function of PXR. However, this thrust of research is still in its infancy. In the context of gene-environment interactions, we present a review of the recent literature that implicates PXR PTMs in regulating its clinically relevant biology. We also provide a discussion of how these PTMs likely interface with each other to respond to extracellular cues to appropriately modify PXR activity.
Collapse
Affiliation(s)
- Robert S. Rogers
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Annemarie Parker
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Phill D. Vainer
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Elijah Elliott
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Dakota Sudbeck
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaushal Parimi
- Thomas Jefferson Independent Day School, Joplin, MO 64801, USA;
| | - Venkata P. Peddada
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Parker G. Howe
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Nick D’Ambrosio
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Gregory Ruddy
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Kaitlin Stackable
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Megan Carney
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Lauren Martin
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Thomas Osterholt
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
| | - Jeff L. Staudinger
- Division of Basic Sciences, Farber-McIntire Campus, College of Osteopathic Medicine, Kansas City University, Joplin, MO 64804, USA; (R.S.R.); (A.P.); (P.D.V.); (E.E.); (D.S.); (V.P.P.); (P.G.H.); (G.R.); (K.S.); (M.C.); (L.M.); (T.O.)
- Correspondence:
| |
Collapse
|
6
|
Vidali MS, Dailianis S, Vlastos D, Georgiadis P. PCB cause global DNA hypomethylation of human peripheral blood monocytes in vitro. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103696. [PMID: 34171487 DOI: 10.1016/j.etap.2021.103696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
We have recently reported significant associations between exposure to polychlorinated biphenyls (PCB) and alterations on genome-wide methylation of leukocyte DNA of healthy volunteers and provided evidence in support of an etiological link between the observed CpG methylation variations and chronic lymphocytic leukemia. The present study aimed to elucidate the effects of PCB in human lymphocytes' methylome in vitro. Therefore, U937 cells and human peripheral blood monocytes (PBMC) were exposed in vitro to the dioxin-like PCB-118, the non-dioxin-like PCB-153, and hexachlorobenzene (HCB) and thorough cytotoxicity, genotoxicity and global CpG methylation analyses were performed. All compounds currently tested did not show any consistent significant genotoxicity at all exposure periods and concentrations used. On the contrary, extensive dose-dependent hypomethylation was observed, even at low concentrations, in stimulated PBMC treated with PCB-118 and PCB-153 as well as a small but statistically significant hypomethylation in HCB-treated stimulated cells.
Collapse
Affiliation(s)
- Maria-Sofia Vidali
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece; Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Dimitris Vlastos
- Department of Environmental Engineering, University of Patras, GR-30100, Agrinio, Greece
| | - Panagiotis Georgiadis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas.Constantinou Av, GR-11635, Athens, Greece.
| |
Collapse
|
7
|
van der Plas A, Pouly S, Blanc N, Haziza C, de La Bourdonnaye G, Titz B, Hoeng J, Ivanov NV, Taranu B, Heremans A. Impact of switching to a heat-not-burn tobacco product on CYP1A2 activity. Toxicol Rep 2020; 7:1480-1486. [PMID: 33204648 PMCID: PMC7649435 DOI: 10.1016/j.toxrep.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cigarette smoking induces cytochrome P450 1A2 (CYP1A2) expression and activity, while smoking cessation normalizes the levels of this enzyme. The aim of this publication is to summarize the data on CYP1A2 gene expression and activity in preclinical and clinical studies on the Tobacco Heating System (THS), currently marketed as IQOS® with HEETs®, and to summarize the potential effects on CYP1A2 to be expected upon switching to reduced-risk products (RRPs). METHODS We summarized PMI's preclinical and clinical data on the effects of switching from cigarette smoking to THS. RESULTS Data from four preclinical mouse and rat studies showed that, upon either cessation of cigarette smoke exposure or switching to THS exposure, the upregulation of CYP1A2 observed with exposure to cigarette smoke reverted close to fresh-air levels. Data from four clinical studies yielded similar results on CYP1A2 activity within a time frame of five days. Furthermore, the effects of switching to THS were similar to those seen after smoking cessation. CONCLUSIONS Because smoking cessation and switching to either electronic cigarettes or THS seem to have similar effects on CYP1A2 activity, the same measures taken for patients treated with narrow therapeutic index drugs that are metabolized by CYP1A2 and who quit smoking should be recommended for those switching to RRPs.
Collapse
Affiliation(s)
- Angela van der Plas
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sandrine Pouly
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nicolas Blanc
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Christelle Haziza
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Bjorn Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V. Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Brindusa Taranu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Annie Heremans
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
8
|
Devanathan AS, Fallon JK, White NR, Schauer AP, Van Horne B, Blake K, Sykes C, Kovarova M, Adamson L, Remling-Mulder L, Luciw P, Garcia JV, Akkina R, Pirone JR, Smith PC, Kashuba ADM. Antiretroviral Penetration and Drug Transporter Concentrations in the Spleens of Three Preclinical Animal Models and Humans. Antimicrob Agents Chemother 2020; 64:e01384-20. [PMID: 32661005 PMCID: PMC7508597 DOI: 10.1128/aac.01384-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Adequate antiretroviral (ARV) concentrations in lymphoid tissues are critical for optimal antiretroviral therapy (ART). While the spleen contains 25% of the body's lymphocytes, there are minimal data on ARV penetration in this organ. This study quantified total and protein-unbound splenic ARV concentrations and determined whether drug transporters, sex, or infection status were modifiers of these concentrations in animal models and humans. Two humanized mice models (hu-HSC-Rag [n = 36; 18 HIV-positive (HIV+) and 18 HIV-negative (HIV-)] and bone marrow-liver-thymus [n = 13; 7 HIV+ and 6 HIV-]) and one nonhuman primate (NHP) model (rhesus macaque [n = 18; 10 SHIV+ and 8 SHIV-]) were dosed to steady state with ARV combinations. HIV+ human spleens (n = 14) from the National NeuroAIDS Tissue Consortium were analyzed postmortem (up to 24 h postdose). ARV concentrations were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS), drug transporter concentrations were measured with LC-MS proteomics, and protein binding in NHP spleens was determined by rapid equilibrium dialysis. Mice generally had the lowest splenic concentrations of the three species. Protein binding in splenic tissue was 6 to 96%, compared to 76 to 99% in blood plasma. NHPs had quantifiable Mrp4, Bcrp, and Ent1 concentrations, and humans had quantifiable ENT1 concentrations. None significantly correlated with tissue ARV concentrations. There was also no observable influence of infection status or sex. With these dosing strategies, NHP splenic penetration most closely resembled that of humans. These data can inform tissue pharmacokinetic scaling to humans to target HIV reservoirs by identifying important species-related differences.
Collapse
Affiliation(s)
- Aaron S Devanathan
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - John K Fallon
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Nicole R White
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Amanda P Schauer
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Brian Van Horne
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Kimberly Blake
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Craig Sykes
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Martina Kovarova
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | | - Paul Luciw
- University of California, Davis, Davis, California, USA
| | - J Victor Garcia
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Ramesh Akkina
- Colorado State University, Fort Collins, Colorado, USA
| | - Jason R Pirone
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Philip C Smith
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Angela D M Kashuba
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Sui Y, Meng Z, Park SH, Lu W, Livelo C, Chen Q, Zhou T, Zhou C. Myeloid-specific deficiency of pregnane X receptor decreases atherosclerosis in LDL receptor-deficient mice. J Lipid Res 2020; 61:696-706. [PMID: 32170024 DOI: 10.1194/jlr.ra119000122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
The pregnane X receptor (PXR) is a nuclear receptor that can be activated by numerous drugs and xenobiotic chemicals. PXR thereby functions as a xenobiotic sensor to coordinately regulate host responses to xenobiotics by transcriptionally regulating many genes involved in xenobiotic metabolism. We have previously reported that PXR has pro-atherogenic effects in animal models, but how PXR contributes to atherosclerosis development in different tissues or cell types remains elusive. In this study, we generated an LDL receptor-deficient mouse model with myeloid-specific PXR deficiency (PXRΔMyeLDLR-/-) to elucidate the role of macrophage PXR signaling in atherogenesis. The myeloid PXR deficiency did not affect metabolic phenotypes and plasma lipid profiles, but PXRΔMyeLDLR-/- mice had significantly decreased atherosclerosis at both aortic root and brachiocephalic arteries compared with control littermates. Interestingly, the PXR deletion did not affect macrophage adhesion and migration properties, but reduced lipid accumulation and foam cell formation in the macrophages. PXR deficiency also led to decreased expression of the scavenger receptor CD36 and impaired lipid uptake in macrophages of the PXRΔMyeLDLR-/- mice. Further, RNA-Seq analysis indicated that treatment with a prototypical PXR ligand affects the expression of many atherosclerosis-related genes in macrophages in vitro. These findings reveal a pivotal role of myeloid PXR signaling in atherosclerosis development and suggest that PXR may be a potential therapeutic target in atherosclerosis management.
Collapse
Affiliation(s)
- Yipeng Sui
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Zhaojie Meng
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Weiwei Lu
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536
| | - Christopher Livelo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Tong Zhou
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV 89557
| | - Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences,University of Kentucky, Lexington, KY 40536; Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521. mailto:
| |
Collapse
|
10
|
Dwivedi VP, Banerjee A, Das I, Saha A, Dutta M, Bhardwaj B, Biswas S, Chattopadhyay D. Diet and nutrition: An important risk factor in leprosy. Microb Pathog 2019; 137:103714. [PMID: 31493502 DOI: 10.1016/j.micpath.2019.103714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/09/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023]
Abstract
Leprosy, once considered as poor man's disease may cause severe neurological complications and physical disabilities. Classification of leprosy depends upon the cell mediated and humoral immune responses of the host, from tuberculoid to lepromatous stage. Current therapy to prevent the disease is not only very lengthy but also consists of expensive multiple antibiotics in combination. Treatment and the duration depend on the bacillary loads, from six months in paucibacillary to a year in multibacillary leprosy. Although as per WHO recommendations, these antibiotics are freely available but still out of reach to patients of many rural areas of the world. In this review, we have focused on the nutritional aspect during the multi-drug therapy of leprosy along with the role of nutrition, particularly malnutrition, on susceptibility of Mycobacterium leprae and development of clinical symptoms. We further discussed the diet plan for the patients and how diet plans can affect the immune responses during the disease.
Collapse
Affiliation(s)
- Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arindam Banerjee
- Rafi Ahmed Dental College, Govt of West Bengal, Moulalai, Kolkata, 7600014, India
| | - Indraneel Das
- Declibac Technologies Private Limited, 24 B, Lake Road, Kolkata, 700 029, India
| | - Aparajita Saha
- Nutri-Diet Kolkata, 34A Charu Avenue, Kolkata, 700033, India
| | - Malabika Dutta
- Department of Dietetics, Kothari Medical Center, 8/3 Alipore Road, Kolkata, 700027, India
| | - Bhavya Bhardwaj
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Saptarshi Biswas
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi, 590010, India; ICMR-Virus Unit, ID & BG Hospital, General Block 4, 57 Dr Suresh C Banerjee Road, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
11
|
Hasan F, Katiyar T, Maurya SS, Yadav V, Yadav S, Pandey R, Mehrotra D, Hadi R, Singh S, Bhatt ML, Parmar D. Similarities in mRNA expression of peripheral blood drug metabolizing enzymes and cancer marker genes with biopsy samples of head and neck cancer patients. Biomarkers 2019; 24:574-583. [PMID: 31002268 DOI: 10.1080/1354750x.2019.1609090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Purpose: To develop peripheral blood mRNA expression profiles of drug metabolizing enzymes (DMEs) as a surrogate to monitor tobacco induced head and neck squamous cell carcinoma (HNSCC), attempts were made to investigate (i) similarities in alterations with the cancer marker genes in biopsy samples and (ii) if alterations similar to that seen in biopsy samples are reflected in peripheral blood. Methods: Total RNA from eight soft gingival tissues and eight biopsy samples of HNSCC patients and total DNA and RNA from blood of healthy controls (n = 150) and HNSCC patients (n = 150) was processed for expression and genotyping studies. Blood from patients receiving chemo-radiotherapy was processed for follow-up study. Results: qRT-PCR revealed significant increase in mRNA expression of DMEs in biopsy and blood samples of HNSCC patients when compared to controls. Similar alterations were observed in cancer marker genes in these samples. Patients with variant genotypes of DMEs showed greater magnitude of alterations in mRNA expression when compared to wild type controls. Responders of chemo-radiotherapy showed significant decline in induction of mRNA expression of DMEs and cancer marker genes Conclusions: The data suggest that peripheral blood expression profiles could be used to monitor tobacco-induced HNSCC as well as the treatment response.
Collapse
Affiliation(s)
- Feza Hasan
- a Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Lucknow , India.,b School of Dental Sciences, Department of Biochemistry, Babu Banarsi Das University , Lucknow , India
| | - Tridiv Katiyar
- a Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Lucknow , India.,b School of Dental Sciences, Department of Biochemistry, Babu Banarsi Das University , Lucknow , India
| | - Shailendra S Maurya
- a Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Lucknow , India
| | - Vinay Yadav
- a Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Lucknow , India
| | - Sanjay Yadav
- a Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Lucknow , India
| | - Rahul Pandey
- c Department of Radiotherapy & Department of Oral and Maxillofacial Surgery, King George's Medical University , Lucknow , India
| | - Divya Mehrotra
- c Department of Radiotherapy & Department of Oral and Maxillofacial Surgery, King George's Medical University , Lucknow , India
| | - Rahat Hadi
- d Department of Radiation Oncology, Dr. Ram Manohar Lohia Institute of Medical Sciences , Lucknow , India
| | - Sudhir Singh
- c Department of Radiotherapy & Department of Oral and Maxillofacial Surgery, King George's Medical University , Lucknow , India
| | - Madan L Bhatt
- c Department of Radiotherapy & Department of Oral and Maxillofacial Surgery, King George's Medical University , Lucknow , India
| | - Devendra Parmar
- a Developmental Toxicology Laboratory, System Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR) , Lucknow , India
| |
Collapse
|
12
|
Prokop J, Anzenbacher P, Mrkvicová E, Pavlata L, Zapletalová I, Šťastník O, Martinek P, Kosina P, Anzenbacherová E. In vivo evaluation of effect of anthocyanin-rich wheat on rat liver microsomal drug-metabolizing cytochromes P450 and on biochemical and antioxidant parameters in rats. Food Chem Toxicol 2018; 122:225-233. [DOI: 10.1016/j.fct.2018.10.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
13
|
Fuccelli R, Rosignoli P, Servili M, Veneziani G, Taticchi A, Fabiani R. Genotoxicity of heterocyclic amines (HCAs) on freshly isolated human peripheral blood mononuclear cells (PBMC) and prevention by phenolic extracts derived from olive, olive oil and olive leaves. Food Chem Toxicol 2018; 122:234-241. [PMID: 30321573 DOI: 10.1016/j.fct.2018.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 01/31/2023]
Abstract
In this study we investigated the genotoxic potential of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, (PhIP); 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline, (IQ); 2-amino-3,8-dimethyl-imidazo[4,5-f]quinoxaline, (MeIQx) and 2-amino-3,4,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (DiMeIQx) on human freshly isolated peripheral blood mononuclear cells (PBMC) by the comet assay. The preventive ability of three different phenolic extracts derived from olive (O-PE), virgin olive oil (OO-PE) and olive leaf (OL-PE) on PhIP induced DNA damage was also investigated. PhIP and IQ induced a significant DNA damage at the lowest concentration tested (100 μM), while the genotoxic effect of MeIQx and DiMeIQx become apparent only in the presence of DNA repair inhibitors Cytosine b-D-arabinofuranoside and Hydroxyurea (AraC/HU). The inclusion of metabolic activation (S9-mix) in the culture medium increased the genotoxicity of all HCAs tested. All three phenolic extracts showed an evident DNA damage preventive activity in a very low concentration range (0.1-1.0 μM of phenols) which could be easily reached in human tissues "in vivo" under a regular intake of virgin olive oil. These data further support the observation that consumption of olive and virgin olive oil may prevent the initiation step of carcinogenesis. The leaf waste could be an economic and simple source of phenolic compounds to be used as food additives or supplements.
Collapse
Affiliation(s)
- Raffaela Fuccelli
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy
| | - Patrizia Rosignoli
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy
| | - Maurizio Servili
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy
| | - Gianluca Veneziani
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy
| | - Agnese Taticchi
- Department of Agricultural, Food and Environmental Science (Food Science and Technology Unit), via S. Costanzo, 06126, Perugia, University of Perugia, Italy.
| | - Roberto Fabiani
- Department of Chemistry, Biology and Biotechnology (Biochemistry and Molecular Biology Unit), via del Giochetto, 06126, Perugia, University of Perugia, Italy.
| |
Collapse
|
14
|
Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, McGarrah P, Potter DA. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Rev 2018; 37:409-423. [DOI: 10.1007/s10555-018-9749-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Elentner A, Schmuth M, Yannoutsos N, Eichmann TO, Gruber R, Radner FPW, Hermann M, Del Frari B, Dubrac S. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response. J Invest Dermatol 2017; 138:109-120. [PMID: 28927887 PMCID: PMC6217923 DOI: 10.1016/j.jid.2017.07.846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/29/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022]
Abstract
The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis.
Collapse
Affiliation(s)
- Andreas Elentner
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Schmuth
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaos Yannoutsos
- Gene Regulation and Immunology Laboratory, Department of Cell Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Robert Gruber
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Franz P W Radner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martin Hermann
- KMT Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Del Frari
- Department of Plastic, Reconstructive and Esthetic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes. Int J Mol Sci 2017; 18:ijms18061249. [PMID: 28604595 PMCID: PMC5486072 DOI: 10.3390/ijms18061249] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/19/2023] Open
Abstract
After being absorbed, drugs distribute in the body in part to reach target tissues, in part to be disposed in tissues where they do not exert clinically-relevant effects. Therapeutically-relevant effects are usually terminated by drug metabolism and/or elimination. The role that has been traditionally ascribed to the spleen in these fundamental pharmacokinetic processes was definitely marginal. However, due to its high blood flow and to the characteristics of its microcirculation, this organ would be expected to be significantly exposed to large, new generation drugs that can hardly penetrate in other tissues with tight endothelial barriers. In the present review, we examine the involvement of the spleen in the disposition of monoclonal antibodies, nanoparticles and exosomes and the possible implications for their therapeutic efficacy and toxicity. The data that we will review lead to the conclusion that a new role is emerging for the spleen in the pharmacokinetics of new generation drugs, hence suggesting that this small, neglected organ will certainly deserve stronger attention by pharmacologists in the future.
Collapse
|
17
|
Effner R, Hiller J, Eyerich S, Traidl-Hoffmann C, Brockow K, Triggiani M, Behrendt H, Schmidt-Weber CB, Buters JTM. Cytochrome P450s in human immune cells regulate IL-22 and c-Kit via an AHR feedback loop. Sci Rep 2017; 7:44005. [PMID: 28276465 PMCID: PMC5343665 DOI: 10.1038/srep44005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/02/2017] [Indexed: 02/08/2023] Open
Abstract
The mechanisms how environmental compounds influence the human immune system are unknown. The environmentally sensitive transcription factor aryl hydrocarbon receptor (AHR) has immune-modulating functions and responds to small molecules. Cytochrome P4501 enzymes (CYP1) act downstream of the AHR and metabolize small molecules. However, it is currently unknown whether CYP1 activity is relevant for immune modulation. We studied the interdependence of CYP1 and AHR in human primary immune cells using pharmacological methods. CYP1 inhibition increased the expression levels of the stem cell factor receptor (c-Kit) and interleukin (IL)-22 but decreased IL-17. Single cell analyses showed that CYP1 inhibition especially promoted CD4+ helper T (Th) cells that co-express c-Kit and IL-22 simultaneously. The addition of an AHR antagonist reversed all these effects. In addition to T cells, we screened other human immune cells for CYP and found cell-specific fingerprints, suggesting that similar mechanisms are present in multiple immune cells. We describe a feedback loop yet unknown in human immune cells where CYP1 inhibition resulted in an altered AHR-dependent immune response. This mechanism relates CYP1-dependent metabolism of environmental small molecules to human immunity.
Collapse
Affiliation(s)
- Renate Effner
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Julia Hiller
- Chair and Institute of Environmental Medicine (UNIKA-T), Technische Universität München and Helmholtz Center Munich, Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Claudia Traidl-Hoffmann
- Chair and Institute of Environmental Medicine (UNIKA-T), Technische Universität München and Helmholtz Center Munich, Munich, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Knut Brockow
- Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Salerno, Italy
| | - Heidrun Behrendt
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Jeroen T. M. Buters
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
18
|
Bellamri M, Le Hegarat L, Vernhet L, Baffet G, Turesky RJ, Langouët S. Human T lymphocytes bioactivate heterocyclic aromatic amines by forming DNA adducts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:656-667. [PMID: 27801952 PMCID: PMC5123841 DOI: 10.1002/em.22059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 05/06/2023]
Abstract
Heterocyclic aromatic amines (HAA) are formed in cooked meat, poultry and fish but also arise in tobacco smoke and exhaust gases. HAA are potential human carcinogens, which require metabolic activation to exert their genotoxicity. Human tissues can bioactivate HAA to produce reactive intermediates that bind to DNA. HAA DNA adduct formation occurs in human hepatocytes; however, the potential of HAA to form DNA adducts has not been investigated in human T lymphocytes. In this study, we investigated the ability of human T lymphocytes activated with PMA/Ionomycin or CD3/CD28 to express functional CYP1 activity and bioactivate three major HAA: 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and 2-amino-9H-pyrido[2,3-b]indole (AαC) to form DNA adducts. Adducts were measured by ultraperformance liquid chromatography-electrospray ionization/multistage scan mass spectrometry. The highest level of DNA adducts occurred for AαC (16 adducts per 109 nucleotides), followed by PhIP (9 adducts per 109 nucleotides). In contrast, DNA adducts formed from MeIQx and the structurally related aromatic amine 4-aminobiphenyl, a known human carcinogen, were below the limit of detection (< 3 adducts per 109 nucleotides). Moreover, we demonstrate that AαC is a potent inducer of CYP1A1 and CYP1B1 activity through a transcriptional mechanism involving the AhR pathway. Overall, our results highlight the capacity of activated human T lymphocytes to more efficiently bioactivate AαC to form DNA adducts than other prominent HAA or 4-ABP. Environ. Mol. Mutagen. 57:656-667, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Medjda Bellamri
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Ludovic Le Hegarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Laurent Vernhet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
| | - Georges Baffet
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiology Research Building, University of Minnesota, 2231 6th Street, Minneapolis, Minnesota 55455, United States
| | - Sophie Langouët
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, UMS 3480 Biosit, F-35043 Rennes, France
- Correspondence should be addressed to: Dr. Sophie Langouët, Institut National de la Santé et de la Recherche Médicale (Inserm), U1085, Institut de Recherche en Santé Environnement et Travail (IRSET), Université de Rennes 1, 2 avenue du Pr L Bernard,, F-35043 Rennes, France. Tel: 02 23 23 48 06;
| |
Collapse
|
19
|
Zhong S, Han W, Hou C, Liu J, Wu L, Liu M, Liang Z, Lin H, Zhou L, Liu S, Tang L. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis. AAPS JOURNAL 2016; 19:203-214. [PMID: 27681103 DOI: 10.1208/s12248-016-9990-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
Cytochrome P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) play important roles in the metabolism of exogenous and endogenous compounds. The gene transcription of CYPs and UGTs can be enhanced or reduced by transcription factors (TFs). This study aims to explore novel TFs involved in the regulatory network of human hepatic UGTs/CYPs. Correlations between the transcription levels of 683 key TFs and CYPs/UGTs in three different human liver expression profiles (n = 640) were calculated first. Supervised weighted correlation network analysis (sWGCNA) was employed to define hub genes among the selected TFs. The relationship among 17 defined TFs, CYPs/UGTs expression, and activity were evaluated in 30 liver samples from Chinese patients. The positive controls (e.g., PPARA, NR1I2, NR1I3) and hub TFs (NFIA, NR3C2, and AR) in the GreysWGCNA Module were significantly and positively associated with CYPs/UGTs expression. And the cancer- or inflammation-related TFs (TEAD4, NFKB2, and NFKB1) were negatively associated with mRNA expression of CYP2C9/CYP2E1/UGT1A9. Furthermore, the effect of NR1I2, NR1I3, AR, TEAD4, and NFKB2 on CYP450/UGT1A gene transcription translated into moderate influences on enzyme activities. To our knowledge, this is the first study to integrate Gene Expression Omnibus (GEO) datasets and supervised weighted correlation network analysis (sWGCNA) for defining TFs potentially related to CYPs/UGTs. We detected several novel TFs involved in the regulatory network of hepatic CYPs and UGTs in humans. Further validation and investigation may reveal their exact mechanism of CYPs/UGTs regulation.
Collapse
Affiliation(s)
- Shilong Zhong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Weichao Han
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chuqi Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junjin Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lili Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Menghua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Liang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haoming Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lan Tang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of New Drug Screening, Department of Biopharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
|
21
|
Rana M, Devi S, Gourinath S, Goswami R, Tyagi RK. A comprehensive analysis and functional characterization of naturally occurring non-synonymous variants of nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1183-1197. [PMID: 26962022 DOI: 10.1016/j.bbagrm.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
Pregnane & Xenobiotic Receptor (PXR) acts as a xenosensing transcriptional regulator of many drug metabolizing enzymes and transporters of the 'detoxification machinery' that coordinate in elimination of xenobiotics and endobiotics from the cellular milieu. It is an accepted view that some individuals or specific populations display considerable differences in their ability to metabolize different drugs, dietary constituents, herbals etc. In this context we speculated that polymorphisms in PXR gene might contribute to variability in cytochrome P450 (CYP450) metabolizing enzymes of phase I, drug metabolizing components of phase II and efflux components of the detoxification machinery. Therefore, in this study, we have undertaken a comprehensive functional analysis of seventeen naturally occurring non-synonymous variants of human PXR. When compared, we observed that some of the PXR SNP variants exhibit distinct functional and dynamic responses on parameters which included transcriptional function, sub-cellular localization, mitotic chromatin binding, DNA-binding properties and other molecular interactions. One of the unique SNP located within the DNA-binding domain of PXR was found to be functionally null and distinct on other parameters. Similarly, some of the non-synonymous SNPs in PXR imparted reduced transactivation function as compared to wild type PXR. Interestingly, PXR is reported to be a mitotic chromatin binding protein and such an association has been correlated to an emerging concept of 'transcription memory' and altered transcription output. In view of the observations made herein our data suggest that some of the natural PXR variants may have adverse physiological consequences owing to its influence on the expression levels and functional output of drug-metabolizing enzymes and transporters. The present study is expected to explain not only the observed inter-individual responses to different drugs but may also highlight the mechanistic details and importance of PXR in drug clearance, drug-drug interactions and diverse metabolic disorders. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Manjul Rana
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneeta Devi
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Samudrala Gourinath
- School of Life-Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravinder Goswami
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
22
|
Zhou C. Novel functions of PXR in cardiometabolic disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1112-1120. [PMID: 26924429 DOI: 10.1016/j.bbagrm.2016.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/17/2022]
Abstract
Cardiometabolic disease emerges as a worldwide epidemic and there is urgent need to understand the molecular mechanisms underlying this chronic disease. The chemical environment to which we are exposed has significantly changed in the past few decades and recent research has implicated its contribution to the development of many chronic human diseases. However, the mechanisms of how exposure to chemicals contributes to the development of cardiometabolic disease are poorly understood. Numerous chemicals have been identified as ligands for the pregnane X receptor (PXR), a nuclear receptor functioning as a xenobiotic sensor to coordinately regulate xenobiotic metabolism via transcriptional regulation of xenobiotic-detoxifying enzymes and transporters. In the past decade, the function of PXR in the regulation of xenobiotic metabolism has been extensively studied by many laboratories and the role of PXR as a xenobiotic sensor has been well-established. The identification of PXR as a xenobiotic sensor has provided an important tool for the study of new mechanisms through which xenobiotic exposure impacts human chronic diseases. Recent studies have revealed novel and unexpected roles of PXR in modulating obesity, insulin sensitivity, lipid homeostasis, atherogenesis, and vascular functions. These studies suggest that PXR signaling may contribute significantly to the pathophysiological effects of many known xenobiotics on cardiometabolic disease in humans. The discovery of novel functions of PXR in cardiometabolic disease not only contributes to our understanding of "gene-environment interactions" in predisposing individuals to chronic diseases but also provides strong evidence to inform future risk assessment for relevant chemicals. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Changcheng Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
He ZX, Chen XW, Zhou ZW, Zhou SF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev 2015; 47:470-519. [PMID: 26574146 DOI: 10.3109/03602532.2015.1101131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With only 1.3-4.3% in total hepatic CYP content, human CYP2D6 can metabolize more than 160 drugs. It is a highly polymorphic enzyme and subject to marked inhibition by a number of drugs, causing a large interindividual variability in drug clearance and drug response and drug-drug interactions. The expression and activity of CYP2D6 are regulated by a number of physiological, pathological and environmental factors at transcriptional, post-transcriptional, translational and epigenetic levels. DNA hypermethylation and histone modifications can repress the expression of CYP2D6. Hepatocyte nuclear factor-4α binds to a directly repeated element in the promoter of CYP2D6 and thus regulates the expression of CYP2D6. Small heterodimer partner represses hepatocyte nuclear factor-4α-mediated transactivation of CYP2D6. GW4064, a farnesoid X receptor agonist, decreases hepatic CYP2D6 expression and activity while increasing small heterodimer partner expression and its recruitment to the CYP2D6 promoter. The genotypes are key determinants of interindividual variability in CYP2D6 expression and activity. Recent genome-wide association studies have identified a large number of genes that can regulate CYP2D6. Pregnancy induces CYP2D6 via unknown mechanisms. Renal or liver diseases, smoking and alcohol use have minor to moderate effects only on CYP2D6 activity. Unlike CYP1 and 3 and other CYP2 members, CYP2D6 is resistant to typical inducers such as rifampin, phenobarbital and dexamethasone. Post-translational modifications such as phosphorylation of CYP2D6 Ser135 have been observed, but the functional impact is unknown. Further functional and validation studies are needed to clarify the role of nuclear receptors, epigenetic factors and other factors in the regulation of CYP2D6.
Collapse
Affiliation(s)
- Zhi-Xu He
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China
| | - Xiao-Wu Chen
- b Department of General Surgery , The First People's Hospital of Shunde, Southern Medical University , Shunde , Foshan , Guangdong , China , and
| | - Zhi-Wei Zhou
- c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| | - Shu-Feng Zhou
- a Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University , Guiyang , Guizhou , China .,c Department of Pharmaceutical Science , College of Pharmacy, University of South Florida , Tampa , FL , USA
| |
Collapse
|
24
|
Elentner A, Ortner D, Clausen B, Gonzalez FJ, Fernández-Salguero PM, Schmuth M, Dubrac S. Skin response to a carcinogen involves the xenobiotic receptor pregnane X receptor. Exp Dermatol 2015; 24:835-40. [PMID: 26013842 PMCID: PMC6334296 DOI: 10.1111/exd.12766] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/20/2022]
Abstract
Skin is in daily contact with potentially harmful molecules from the environment such as cigarette smoke, automobile emissions, industrial soot and groundwater. Pregnane X receptor (PXR) is a transcription factor expressed in liver and intestine that is activated by xenobiotic chemicals including drugs and environmental pollutants. Topical application of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) enhances Pxr, Cyp1a1, Cyp1b1 and Cyp3a11, but not Ahr expression in the skin. Surprisingly, DMBA-induced Pxr upregulation is largely impaired in Langerin(+) cell-depleted skin, suggesting that DMBA mainly triggers Pxr in Langerin(+) cells. Furthermore, PXR deficiency protects from DNA damage in epidermal cells but to a lesser extent than aryl hydrocarbon receptor (AHR) deficiency. Interestingly, skin exposure to low doses of DMBA induces migration of PXR-deficient but not of wild-type and AHR-deficient Langerhans cells (LCs). PXR-humanized mice show a marked increase in DNA damage to epidermal cells after topical application of DMBA, demonstrating relevance of these findings in human tissue. This is the first report suggesting that carcinogens might trigger PXR in epidermal cells, particularly in LCs, thus leading to DNA damage. Further studies are required to better delineate the role of PXR in cutaneous carcinogenesis.
Collapse
Affiliation(s)
- Andreas Elentner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniela Ortner
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Björn Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes, Gutenberg-University Mainz, Mainz, Germany
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pedro M. Fernández-Salguero
- Department of Biochemistry, Molecular Biology and Genetic, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Matthias Schmuth
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
25
|
|
26
|
Gaspar-Ramírez O, Pérez-Vázquez FJ, Salgado-Bustamante M, González-Amaro R, Hernandez-Castro B, Pérez-Maldonado IN. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells. J Immunotoxicol 2014; 12:266-72. [DOI: 10.3109/1547691x.2014.960108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
27
|
Sieroslawska A, Rymuszka A. Cylindrospermopsin induces oxidative stress and genotoxic effects in the fish CLC cell line. J Appl Toxicol 2014; 35:426-33. [PMID: 25219470 DOI: 10.1002/jat.3040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/07/2022]
Abstract
Cylindrospermopsin (CYN) is a cyanotoxin detected in water reservoirs worldwide. The toxin is a potent protein synthesis inhibitor capable of adversely influencing a wide range of cell functions. While data on the prooxidative potency of CYN are inconsistent, genotoxic effects towards certain mammalian cell types have been described. However, such a potential on fish cells has not yet been investigated. Hence, the aim of the study was to elucidate the prooxidative and genotoxic impact of CYN on a common carp (Cyprinus carpio L.) leucocyte cell line (CLC). The cells were incubated with the cyanotoxin at concentrations of 0.1, 0.5 or 1 µg ml⁻¹. After 24 h, cytotoxic activity of CYN at the highest used concentration was confirmed by decreased cell membrane integrity and inhibited cell proliferation. Additionally, CYN at 0.5 and 1 µg ml⁻¹ increased intracellular ATP levels and decreased the reduced to oxidized glutathione ratio. Furthermore, a significant increase in the reactive oxygen species (ROS) production with concomitant changes in superoxide dismutase activity was observed after a 3.5-h exposure of the cells to the toxin. Genotoxic activity of CYN, manifested as oxidative DNA damage and elevated number of micronuclei, was also detected in exposed cells. The obtained results indicate that CYN is able to exert a wide range of adverse effects, including oxidative stress and genotoxicity in fish leucocytes.
Collapse
Affiliation(s)
- Anna Sieroslawska
- Department of Physiology and Ecotoxicology, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708, Lublin, Poland
| | | |
Collapse
|
28
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
29
|
Srivastava A, Sharma A, Yadav S, Flora SJS, Dwivedi UN, Parmar D. Gene expression profiling of candidate genes in peripheral blood mononuclear cells for predicting toxicity of diesel exhaust particles. Free Radic Biol Med 2014; 67:188-94. [PMID: 24216475 DOI: 10.1016/j.freeradbiomed.2013.10.820] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 12/18/2022]
Abstract
To validate gene expression profiling of peripheral blood mononuclear cells (PBMCs) as a surrogate for monitoring tissue expression, this study using RT-PCR-based TaqMan low-density array (TLDA) was initiated to investigate similarities in the mRNA expression of target genes altered by exposure to diesel exhaust particles (DEPs) in freshly prepared PBMCs and in lungs. Adult Wistar rats were treated transtracheally with a single dose of 7.5 or 15 or 30mg/kg DEPs and sacrificed 24h later. Blood and lungs were immediately taken out and processed for RT-PCR. DEP treatment induced similar patterns of increase in the expression of polycyclic aromatic hydrocarbon-responsive cytochrome P450s, the phase II enzymes, and their associated transcription factors in both lungs and PBMCs, at all doses. Similar to that seen in lungs, a dose-dependent increase was observed in the expression of genes involved in inflammation, such as cytokines, chemokines, and adhesion molecules, in PBMCs. The expression of various genes involved in DNA repair and apoptosis was also increased in a dose-dependent manner in PBMCs and lungs. The present TLDA data indicating similarities in the responsiveness of candidate genes involved in the toxicity of DEPs between PBMCs and lungs after exposure to DEPs demonstrate that expression profiles of genes in PBMCs could be used as a surrogate for monitoring the acute toxicity of fine and ultrafine particulate matter present in vehicular emissions.
Collapse
Affiliation(s)
- Ankita Srivastava
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India
| | - Amit Sharma
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India
| | - Sanjay Yadav
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India
| | - Swaran J S Flora
- Division of Regulatory Toxicology, Defence Research & Development Establishment, Gwalior, MP, India
| | | | - Devendra Parmar
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, UP, India.
| |
Collapse
|
30
|
Solomonsterol A, a marine pregnane-X-receptor agonist, attenuates inflammation and immune dysfunction in a mouse model of arthritis. Mar Drugs 2013; 12:36-53. [PMID: 24368568 PMCID: PMC3917259 DOI: 10.3390/md12010036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022] Open
Abstract
In the present study we provide evidence that solomonsterol A, a selective pregnane X receptor (PXR) agonist isolated from the marine sponge Theonella swinhoei, exerts anti-inflammatory activity and attenuates systemic inflammation and immune dysfunction in a mouse model of rheumatoid arthritis. Solomonsterol A was effective in protecting against the development of arthritis induced by injecting transgenic mice harboring a humanized PXR, with anti-collagen antibodies (CAIA) with beneficial effects on joint histopathology and local inflammatory response reducing the expression of inflammatory markers (TNFα, IFNγ and IL-17 and chemokines MIP1α and RANTES) in draining lymph nodes. Solomonsterol A rescued mice from systemic inflammation were assessed by measuring arthritis score, CRP and cytokines in the blood. In summary, the present study provides a molecular basis for the regulation of systemic local and systemic immunity by PXR agonists.
Collapse
|
31
|
Schmuth M, Moosbrugger-Martinz V, Blunder S, Dubrac S. Role of PPAR, LXR, and PXR in epidermal homeostasis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:463-73. [PMID: 24315978 DOI: 10.1016/j.bbalip.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 11/18/2013] [Accepted: 11/23/2013] [Indexed: 12/19/2022]
Abstract
Epidermal lipid synthesis and metabolism are regulated by nuclear hormone receptors (NHR) and in turn epidermal lipid metabolites can serve as ligands to NHR. NHR form a large superfamily of receptors modulating gene transcription through DNA binding. A subgroup of these receptors is ligand-activated and heterodimerizes with the retinoid X receptor including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR) and pregnane X receptor (PXR). Several isotypes of these receptors exist, all of which are expressed in skin. In keratinocytes, ligand activation of PPARs and LXRs stimulates differentiation, induces lipid accumulation, and accelerates epidermal barrier regeneration. In the cutaneous immune system, ligand activation of all three receptors, PPAR, LXR, and PXR, has inhibitory properties, partially mediated by downregulation of the NF-kappaB pathway. PXR also has antifibrotic effects in the skin correlating with TGF-beta inhibition. In summary, ligands of PPAR, LXR and PXR exert beneficial therapeutic effects in skin disease and represent promising targets for future therapeutic approaches in dermatology. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| | | | - Stefan Blunder
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
32
|
Bahari A, Mehrzad J, Mahmoudi M, Bassami MR, Dehghani H. Cytochrome P450 isoforms are differently up-regulated in aflatoxin B₁-exposed human lymphocytes and monocytes. Immunopharmacol Immunotoxicol 2013; 36:1-10. [PMID: 24168324 DOI: 10.3109/08923973.2013.850506] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Aflatoxins (AFs) are highly hazardous mycotoxins with potent carcinogenic, mutagenic and immune disregulatory properties. Cytochrome P450 (CYP) isoforms are central for enhanced AFB₁ toxicity in situ. It remains to be seen whether and how these AFB₁ activators work in human leukocytes. OBJECTIVE To investigate the involvement of CYP isoforms in AFB₁ toxicity of circulating mononuclear cells, we examined the impact of environmentally relevant levels of AFB1 on lymphocytes and monocytes. MATERIALS AND METHODS Very low and moderate doses of AFB₁ with/without CYP inducers on transcription of key CYP isoforms and toll-like receptor 4 (TLR4) were examined in human lymphocytes, monocytes and HepG2 cells; cell cycle distribution and viability were also analyzed in AFB₁-exposed lymphocytes and monocytes. RESULTS Only CYP1A1, CYP1B1, CYP3A4, CYP3A5 and CYP3A7 expressed in lymphocytes and monocytes. TLR4 much more expressed in monocytes than in lymphocytes, but HepG2 showed little TLR4 transcription. While CYP1A1, CYP1B1 and CYP3A4 were highly induced by AFB₁ in monocytes, in lymphocytes only CYP1A1 was induced. Among CYP1A1, CYP1B1 and CYP3A4 only CYP1A1 responded to low and moderate levels of AFB₁. Enhanced transcripts of CYPs by AFB₁ yielded little synergies on TLR4 transcription in lymphocytes and monocytes. Cell cycle arrest and necrosis were also detected in AFB₁-exposed lymphocytes and monocytes. CONCLUSIONS Our novel findings indicate that AFB₁ more intensively stimulates CYP genes expression in monocytes than in lymphocytes. Mechanistically, this could explain a more pronounced immunotoxicity of AFB₁ in myeloid than in lymphoid lineage cells in vitro/situ/vivo.
Collapse
Affiliation(s)
- Abbas Bahari
- Department of Pathobiology, Section Immunology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | | | | | | | | |
Collapse
|
33
|
Kodama S, Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metab Rev 2013; 45:441-9. [PMID: 24025090 DOI: 10.3109/03602532.2013.835630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan and
| | | |
Collapse
|
34
|
Jarrar YB, Cho SA, Oh KS, Kim DH, Shin JG, Lee SJ. Identification of cytochrome P450s involved in the metabolism of arachidonic acid in human platelets. Prostaglandins Leukot Essent Fatty Acids 2013; 89:227-34. [PMID: 23932368 DOI: 10.1016/j.plefa.2013.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/22/2013] [Accepted: 06/30/2013] [Indexed: 01/17/2023]
Abstract
Although cytochrome P450s (CYPs) have been identified in most human cells, identification of CYPs in human platelets remains poorly explored. CYP expressions in human platelets were screened by using reverse transcriptase-polymerase chain reaction and western blot analysis followed by functional assays using arachidonic acid (ARA). CYP1A1, 2U1, 2J2, 4A11, 4F2, and 5A1 were expressed as both proteins and mRNAs in platelets. Ethoxyresorufin-O-deethylase activity was observed in platelets and this activity was significantly decreased after treatment with the general P450 inhibitor SKF-525A and the CYP1A inhibitor, α-naphthoflavone (40-45%, P<0.001). Seventeen ARA metabolites were detected in ARA-treated platelets. Among these, the levels of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids were significantly decreased with the treatment of the P450 ω-hydroxylase inhibitor 17-octadecynoic acid (P<0.05-0.001). In summary, multiple ARA-metabolizing P450s were identified in human platelets. These findings may provide an important resource for understanding physiological function of platelet.
Collapse
Affiliation(s)
- Yazun B Jarrar
- Department of Pharmacology, Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
35
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-1530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 965] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
36
|
Willrich MAV, Rodrigues AC, Cerda A, Genvigir FD, Arazi SS, Dorea EL, Bernik MM, Bertolami MC, Faludi A, Largura A, Baudhuin LM, Bryant SC, Hirata MH, Hirata RDC. Effects of atorvastatin on CYP3A4 and CYP3A5 mRNA expression in mononuclear cells and CYP3A activity in hypercholeresterolemic patients. Clin Chim Acta 2013; 421:157-63. [DOI: 10.1016/j.cca.2013.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 11/26/2022]
|
37
|
Jarrar YB, Shin JG, Lee SJ. Expression of arachidonic acid-metabolizing cytochrome P450s in human megakaryocytic Dami cells. In Vitro Cell Dev Biol Anim 2013; 49:492-500. [PMID: 23722412 PMCID: PMC3713264 DOI: 10.1007/s11626-013-9633-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Cytochrome P450s (P450s) are involved in the metabolism of arachidonic acid (ARA), and ARA metabolites are associated with various cellular signaling pathways, such as blood hemostasis and inflammation. The present study demonstrates the expression of ARA-metabolizing P450s in the human megakaryocytic Dami cells using reverse transcriptase-polymerase chain reaction (RT-PCR) and immunublotting analysis followed by activity assays using ARA as a substrate. In addition to the previously identified CYP5A1, both protein and mRNAs of CYP1A1, 2U1, and 2J2 bands were detected. Ethoxyresorufin-O-deethylase (EROD) activity was observed in Dami cells, and its activity was significantly decreased after treatment with the P450 inhibitor SKF-525A when compared to the control groups (60% reduction, P < 0.001). CYP1A1 protein expression in Dami cells was induced by 3-methylenecholantheren. This increase in CYP1A1 protein level was correlated with enhanced EROD activity (fourfold increase vs. the control), as well as with increased metabolites, such as 20-hydroxyeicosatrienoic acid (20-HETE), 14, 15-EET (14-,15-epoxyeicosatrienoic acid), and 14, 15-dihydroxyeicosatrienoic acid (14, 15-DHET). The expression of soluble epoxide hydrolase, an enzyme responsible for the synthesis of DHETs from EETs, was confirmed by RT-PCR. Furthermore, 15 ARA metabolites, including 8,9-EET, 14,15-EET, and 20-HETE, were detected by LC-MS/MS in ARA-treated Dami cells, and their levels were decreased with the treatment of the SKF-525A. The present data suggest the possibility that the P450s play a role in the metabolism of ARA and other CYP-related substrates in human megakaryocytes and that P450 expression in megakaryocytic cell lines may predict their existences in platelets with functional activities.
Collapse
Affiliation(s)
- Yazun Bashir Jarrar
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University, 633-165 Gaegum-dong, Busanjin-gu, Busan, South Korea
| | | | | |
Collapse
|
38
|
Kodama S, Negishi M. PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metab Rev 2013; 45:300-10. [DOI: 10.3109/03602532.2013.795585] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Sharma A, Saurabh K, Yadav S, Jain SK, Parmar D. Expression profiling of selected genes of toxication and detoxication pathways in peripheral blood lymphocytes as a biomarker for predicting toxicity of environmental chemicals. Int J Hyg Environ Health 2012; 216:645-51. [PMID: 23273579 DOI: 10.1016/j.ijheh.2012.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/18/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
To develop a rapid and sensitive tool for determining gene expression profiles of peripheral blood lymphocytes (PBL) as a surrogate for predicting toxicity associated with environmental exposures, studies were initiated using Taqman Low Density Array (TLDA), a medium throughput method for real time PCR (RT-PCR), for selected genes involved in toxication and detoxication processes. Total RNA was prepared from PBL and liver samples isolated from young rats treated with inducers of drug metabolizing enzymes, e.g. phenobarbital (PB, 80mg/kg i.p. X5 days) or methylcholanthrene (30mg/kg, i.p. X5 days) or ethanol (0.8ml/kg, i.p. X1 day). TLDA data showed that PBL expressed drug metabolizing enzymes (DMEs), though the level of expression was several folds lower when compared to liver. Treatment with different inducers of DMEs produced a similar pattern of an increase in the expression of various phase I and phase II DMEs and their respective transcription factors in liver and PBL. While treatment with MC increased the expression of MC inducible cytochrome P450 (CYP) 1A1, 1A2, 1B1, 2A2 & 3A1 and their associated transcription factors in PBL, an increase in the expression of CYP2B1, 2B2, 2C11 & 3A1 and their transcription factor was observed in PBL after PB treatment. Similarly, treatment of ethanol increased the expression of CYP2E1 and 3A1 along with transcription factors in PBL. These inducers were found to increase the expression of various phase II enzymes such as glutathione S-transferases, GSTs (GSTM1, GSTA1, GSTP1 and GSTK1), NQO1, Ephx1 and Sod1, genes involved in inflammation and apoptosis (p53, BCl2, Apaf1 and Caspase9) in both PBL and liver. The data suggests that the low-density array of selected genes in PBL has the potential to be developed as a rapid and sensitive tool for monitoring of individuals exposed to environmental chemicals as well as in clinical studies.
Collapse
Affiliation(s)
- Amit Sharma
- Developmental Toxicology Division, Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), M.G. Marg, Lucknow 226 001, UP, India; Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi 110 062, India
| | | | | | | | | |
Collapse
|
40
|
Sharma A, Dinesh K, Yadav S, Jain SK, Pant MC, Parmar D. Cytochrome P450 2A isoenzymes in freshly prepared blood lymphocytes isolated from rats and validation as a biomarker for clinical studies in humans. Xenobiotica 2012; 43:311-9. [PMID: 22934830 DOI: 10.3109/00498254.2012.717728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The present study aimed to identify the expression of carcinogen metabolizing cytochrome P4502A (CYP2A) isoenzymes in freshly prepared rat peripheral blood lymphocytes (PBL) isolated from adult rats and investigate similarities in the regulation of lymphocyte CYP2A-isoenzymes with the tissue enzyme. 2. qRT-PCR studies demonstrated significant constitutive mRNA expression of CYP2A-isoenzymes in PBL isolated from male and female rats which further increases significantly after pretreatment with nicotine or 3-methylcholanthrene (MC) indicating responsiveness of CYP2A-isoenzymes in PBL. This increase in the CYP2A expression was associated with an increase in the protein expression and CYP2A3-dependent coumarin hydroxylase (COH) activity in PBL. 3. Clinical studies further demonstrated significant increase in the expression of CYP2A6 and associated enzyme activity in PBL isolated from lung cancer patients. Our data thus provided evidence for similarities in the regulation of carcinogen metabolizing CYP2A-isoenzymes in PBL with the tissue enzymes. Further, responsiveness of blood CYP2A6 in human blood lymphocytes isolated from lung cancer patients has led us to suggest that associating expression profiles of CYP2A6 and other polycyclic aromatic hydrocarbons (PAH)-responsive CYPs in PBL with the genotyping data could lead to the development of a possible screen to monitor and predict environment-induced diseases and toxicity in humans.
Collapse
Affiliation(s)
- Amit Sharma
- Developmental Toxicology Division, Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), Lucknow, UP, India
| | | | | | | | | | | |
Collapse
|
41
|
Meyer zu Schwabedissen HE, Oswald S, Bresser C, Nassif A, Modess C, Desta Z, Ogburn ET, Marinova M, Lütjohann D, Spielhagen C, Nauck M, Kroemer HK, Siegmund W. Compartment-specific gene regulation of the CAR inducer efavirenz in vivo. Clin Pharmacol Ther 2012; 92:103-11. [PMID: 22588604 DOI: 10.1038/clpt.2012.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nuclear receptors such as the constitutive androstane receptor (CAR) are central factors that link drug exposure to the activities of drug metabolism and elimination. In order to determine the in vivo effects of efavirenz, a CAR activator, the expression of target genes was determined in duodenal biopsies obtained from 12 healthy volunteers before treatment and after 10 days of treatment with efavirenz; concomitant administration of the cholesterol inhibitor ezetimibe produced no significant difference. However, in in vitro studies, efavirenz significantly increased CYP2B6 expression in several cell types, suggesting that the drug transactivates CAR. This hypothesis is supported by our findings that there is significant induction of CAR target genes in in vivo peripheral blood mononuclear cells (PBMCs) isolated from healthy volunteers treated with multiple doses of efavirenz. The impact of efavirenz on hepatic metabolism in vivo was confirmed by significant changes in plasma 4β-hydroxycholesterol and bilirubin levels and the area under the curve (AUC) of efavirenz. Induction of CYP2B6 mRNA expression correlated with the decrease in the AUC of efavirenz (r = 0.61; P = 0.036). Taken together, our results provide evidence that efavirenz exerts compartment-specific inductive capacity in vivo.
Collapse
|
42
|
Berthier A, Oger F, Gheeraert C, Boulahtouf A, Le Guével R, Balaguer P, Staels B, Salbert G, Lefebvre P. The novel antibacterial compound walrycin A induces human PXR transcriptional activity. Toxicol Sci 2012; 127:225-35. [PMID: 22314385 DOI: 10.1093/toxsci/kfs073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human pregnane X receptor (PXR) is a ligand-regulated transcription factor belonging to the nuclear receptor superfamily. PXR is activated by a large, structurally diverse, set of endogenous and xenobiotic compounds and coordinates the expression of genes central to metabolism and excretion of potentially harmful chemicals and therapeutic drugs in humans. Walrycin A is a novel antibacterial compound targeting the WalK/WalR two-component signal transduction system of Gram (+) bacteria. Here, we report that, in hepatoma cells, walrycin A potently activates a gene set known to be regulated by the xenobiotic sensor PXR. Walrycin A was as efficient as the reference PXR agonist rifampicin to activate PXR in a transactivation assay at noncytotoxic concentrations. Using a limited proteolysis assay, we show that walrycin A induces conformational changes at a concentration which correlates with walrycin A ability to enhance the expression of prototypic target genes, suggesting that walrycin A interacts with PXR. The activation of the canonical human PXR target gene CYP3A4 by walrycin A is dose and PXR dependent. Finally, in silico docking experiments suggest that the walrycin A oxidation product Russig's blue is the actual ligand for PXR. Taken together, these results identify walrycin A as a novel human PXR activator.
Collapse
|
43
|
Lock EF, Abdo N, Huang R, Xia M, Kosyk O, O'Shea SH, Zhou YH, Sedykh A, Tropsha A, Austin CP, Tice RR, Wright FA, Rusyn I. Quantitative high-throughput screening for chemical toxicity in a population-based in vitro model. Toxicol Sci 2012; 126:578-88. [PMID: 22268004 DOI: 10.1093/toxsci/kfs023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A shift in toxicity testing from in vivo to in vitro may efficiently prioritize compounds, reveal new mechanisms, and enable predictive modeling. Quantitative high-throughput screening (qHTS) is a major source of data for computational toxicology, and our goal in this study was to aid in the development of predictive in vitro models of chemical-induced toxicity, anchored on interindividual genetic variability. Eighty-one human lymphoblast cell lines from 27 Centre d'Etude du Polymorphisme Humain trios were exposed to 240 chemical substances (12 concentrations, 0.26nM-46.0μM) and evaluated for cytotoxicity and apoptosis. qHTS screening in the genetically defined population produced robust and reproducible results, which allowed for cross-compound, cross-assay, and cross-individual comparisons. Some compounds were cytotoxic to all cell types at similar concentrations, whereas others exhibited interindividual differences in cytotoxicity. Specifically, the qHTS in a population-based human in vitro model system has several unique aspects that are of utility for toxicity testing, chemical prioritization, and high-throughput risk assessment. First, standardized and high-quality concentration-response profiling, with reproducibility confirmed by comparison with previous experiments, enables prioritization of chemicals for variability in interindividual range in cytotoxicity. Second, genome-wide association analysis of cytotoxicity phenotypes allows exploration of the potential genetic determinants of interindividual variability in toxicity. Furthermore, highly significant associations identified through the analysis of population-level correlations between basal gene expression variability and chemical-induced toxicity suggest plausible mode of action hypotheses for follow-up analyses. We conclude that as the improved resolution of genetic profiling can now be matched with high-quality in vitro screening data, the evaluation of the toxicity pathways and the effects of genetic diversity are now feasible through the use of human lymphoblast cell lines.
Collapse
Affiliation(s)
- Eric F Lock
- University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Saurabh K, Parmar D. Evidence for cytochrome P450 2B1/2B2 isoenzymes in freshly prepared peripheral blood lymphocytes. Biomarkers 2011; 16:649-56. [PMID: 21988088 DOI: 10.3109/1354750x.2011.622412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytochrome P450 2B1 and 2B2, the major hepatic drug metabolizing enzymes belonging to CYP2 family and associated constitutive androstane receptor (CAR) were found to be expressed in peripheral blood lymphocytes (PBL) isolated from rats. As observed in liver, pretreatment of phenobarbital (PB) or phenytoin were found to increase the expression of CYP2B1, CYP2B2 and associated enzyme activity in PBL. Like in liver, blood lymphocyte CYP2B1/2B2 catalyzed the activity of 7-pentoxyresorufin O-dealkylase (PROD). The present data, demonstrating similarities in the regulation of blood lymphocyte CYP2B-isoenzymes with the liver enzymes, suggests that blood lymphocyte CYP2B-isoenzymes could be used as a biomarker to monitor tissue levels.
Collapse
Affiliation(s)
- Kumar Saurabh
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, UP, India
| | | |
Collapse
|
45
|
Helmig S, Seelinger JU, Döhrel J, Schneider J. RNA expressions of AHR, ARNT and CYP1B1 are influenced by AHR Arg554Lys polymorphism. Mol Genet Metab 2011; 104:180-4. [PMID: 21742528 DOI: 10.1016/j.ymgme.2011.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 11/26/2022]
Abstract
AIM The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that together with Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT) controls the expression of Xenobiotic metabolising enzymes (XME) such as CYP1B1. In the absence of exogenous ligands, AHR is supposed to be involved in promotion of cell cycle progression. Polymorphisms of the AHR gene are suggested to be associated with susceptibility to cancer. Because of its critical role in xenobiotic induced toxicity and carcinogenesis as well as its ligand independent relevance we investigated the effects of AHR Arg554Lys Polymorphism on gene expression level of the AHR, ARNT and CYP1B1. METHODS Detection of the AHR Arg554Lys polymorphism of the AHR gene was performed by rapid capillary PCR with melting curve analysis. The quantitative Real-Time PCR (qRT-PCR) of AHR, ARNT and CYP1B1 mRNAs was carried out in white blood cells from 287 Caucasians. Calculations of expression were made with the 2(-ΔΔCT) method. RESULTS The relative AHR mRNA expression revealed significant differences between the two homozygote AHR genotypes Arg554Arg (11.0±1.0; n=228) and Lys554Lys (0.6±0.4; n=3; p<0.001). Also significant differences were seen between the heterozygote genotype Arg554Lys (13.0±3.0; n=40) and the homozygote Lys554Lys genotype (0.6±0.4; n=3; p<0.001). These differences above were replicated significantly in the relative mRNA expression of ARNT and CYP1B1. Comparing the determined CT-values, a correlation coefficient of R=0.748 for AHR and ARNT, R=0.626 for ARNT and CYP1B1 as well as R=0.533 for AHR and CYP1B1 was calculated. CONCLUSION Our findings suggest that the homozygote variant genotype of AHR Lys554Lys is associated with a significantly lower AHR, ARNT and CYP1B1 mRNA expression.
Collapse
Affiliation(s)
- Simone Helmig
- Institut und Poliklinik für Arbeits- und Sozialmedizin, Justus-Liebig-Universität, Aulweg 129, D-35392 Giessen, Germany.
| | | | | | | |
Collapse
|
46
|
Chang ET, Canchola AJ, Cockburn M, Lu Y, Wang SS, Bernstein L, Clarke CA, Horn-Ross PL. Adulthood residential ultraviolet radiation, sun sensitivity, dietary vitamin D, and risk of lymphoid malignancies in the California Teachers Study. Blood 2011; 118:1591-9. [PMID: 21622649 PMCID: PMC3156047 DOI: 10.1182/blood-2011-02-336065] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/14/2011] [Indexed: 12/13/2022] Open
Abstract
To lend clarity to inconsistent prior findings of an inverse association between ultraviolet radiation (UVR) exposure and risk of lymphoid malignancies, we examined the association of prospectively ascertained residential ambient UVR exposure with risk of non-Hodgkin lymphomas (NHLs), multiple myeloma (MM), and classical Hodgkin lymphoma in the California Teachers Study cohort. Among 121 216 eligible women, 629 were diagnosed with NHL, 119 with MM, and 38 with Hodgkin lymphoma between 1995-1996 and 2007. Cox proportional hazards regression was used to estimate incidence rate ratios (RRs) with 95% confidence intervals (CIs). Residential UVR levels within a 20-km radius were associated with reduced risk of overall NHL (RR for highest vs lowest statewide quartile of minimum UVR [≥ 5100 vs < 4915 W-h/m(2)], 0.58; 95% CI, 0.42-0.80), especially diffuse large B-cell lymphoma (RR, 0.36; 95% CI, 0.17-0.78) and chronic lymphocytic leukemia/small lymphocytic lymphoma (RR, 0.46; 95% CI, 0.21-1.01), and MM (RR for maximum UVR, 0.57; 95% CI, 0.36-0.90). These associations were not modified by skin sensitivity to sunlight, race/ethnicity, body mass index, or neighborhood socioeconomic status. Dietary vitamin D also was not associated with risk of lymphoid malignancies. These results support a protective effect of routine residential UVR exposure against lymphomagenesis through mechanisms possibly independent of vitamin D.
Collapse
Affiliation(s)
- Ellen T Chang
- Cancer Prevention Institute of California, Fremont, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gene expression and inducibility of the aryl hydrocarbon receptor-dependent pathway in cultured bovine blood lymphocytes. Toxicol Lett 2011; 206:204-9. [PMID: 21803134 DOI: 10.1016/j.toxlet.2011.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 11/22/2022]
Abstract
The exposure to dioxin-like (DL) compounds, an important class of persistent environmental pollutants, results in the altered expression of target genes. This occurs through the binding to the aryl hydrocarbon receptor (AhR), the subsequent dimerization with the AhR nuclear translocator (ARNT), and the binding of the complex to DNA responsive elements. A number of genes are up-regulated, including, among others, the AhR repressor (AHRR) and several biotransformation enzymes, such as the members of CYP1 family and NAD(P)H-quinone oxidoreductase (NOQ1). The expression and the inducibility of the above genes were investigated in mitogen-stimulated cultured blood lymphocytes from cattle, which represent a notable source of DL-compound human exposure through dairy products and meat. As assessed by real-time PCR, all the examined genes except CYP1A2 and NQO1 were detected under basal conditions. Cell exposure to the DL-compounds PCB126 or PCB77 in the 10(-6)-10(-9)M concentration range resulted in a 2-4-fold induction of CYPIA1 and CYP1B1, which was antagonized by α-naphthoflavone or PCB153. This study demonstrates for the first time the presence and inducibility of the AhR pathway in easily accessible cells like bovine peripheral lymphocytes and prompts further investigations to verify whether similar changes could occur under in vivo conditions.
Collapse
|
48
|
Sui Y, Xu J, Rios-Pilier J, Zhou C. Deficiency of PXR decreases atherosclerosis in apoE-deficient mice. J Lipid Res 2011; 52:1652-9. [PMID: 21685500 DOI: 10.1194/jlr.m017376] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pregnane X receptor (PXR, also known as SXR) is a nuclear hormone receptor activated by xenobiotics as well as diverse sterols and their metabolites. PXR functions as a xenobiotic sensor to coordinately regulate xenobiotic metabolism via transcriptional regulation of xenobiotic-detoxifying enzymes and transporters. Recent evidence indicates that PXR may also play an important role in lipid homeostasis and atherosclerosis. To define the role of PXR in atherosclerosis, we generated PXR and apoE double knockout (PXR(-/-)apoE(-/-)) mice. Here we show that deficiency of PXR did not alter plasma triglyceride and cholesterol levels in apoE(-/-) mice. However, PXR(-/-)apoE(-/-) mice had significantly decreased atherosclerotic cross-sectional lesion area in both the aortic root and brachiocephalic artery by 40% (P < 0.01) and 60% (P < 0.001), respectively. Interestingly, deficiency of PXR reduced the expression levels of CD36, lipid accumulation, and CD36-mediated oxidized LDL uptake in peritoneal macrophages of PXR(-/-)apoE(-/-) mice. Furthermore, immunofluorescence staining showed that PXR and CD36 were expressed in the atherosclerotic lesions of apoE(-/-) mice, and the expression levels of PXR and CD36 were diminished in the lesions of PXR(-/-)apoE(-/-) mice. Our findings indicate that deficiency of PXR attenuates atherosclerosis development, which may result from decreased CD36 expression and reduced lipid uptake in macrophages.
Collapse
Affiliation(s)
- Yipeng Sui
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
49
|
Transcriptomics identifies differences between ultrapure non-dioxin-like polychlorinated biphenyls (PCBs) and dioxin-like PCB126 in cultured peripheral blood mononuclear cells. Toxicology 2011; 287:113-23. [PMID: 21703328 DOI: 10.1016/j.tox.2011.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/30/2011] [Accepted: 06/07/2011] [Indexed: 01/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) remain ubiquitously present in human lipids despite the ban on their production and use. Their presence can be chemically monitored in peripheral blood samples of the general population. We tested whether in vitro exposure to different PCB congeners induced different gene expression profiles in peripheral blood cells. We have isolated peripheral blood mononuclear cells (PBMC) from whole blood of 8 healthy individuals and exposed these cells in vitro to individual non-dioxin-like (NDL)-PCB congeners (PCB52, 138 or 180; 10μM) or dioxin-like (DL)-PCB congener PCB126 (1μM) during 18h. Differential gene expression response was measured using Agilent whole-human genome microarrays. Two-way ANOVA analysis of the data showed that both gender and PCB exposure are important factors influencing gene expression responses in blood cells. Hierarchical cluster analysis of genes influenced by PCB exposure, revealed that DL-PCB126 induced a different gene expression response compared to the NDL-PCBs. Biological interpretation of the results revealed that exposure to PCB126 induced the AhR signaling pathway, whereas the induction of nuclear receptor pathways by the NDL-PCBs was limited in blood cells. Nevertheless, molecular responses of blood cells to individual PCB congeners revealed significantly expressed genes that play a role in biological functions and processes known to be affected by PCB exposure in vivo. Observed gene expression changes in this in vitro model were found to be related to hepatotoxicity, immune and inflammatory response and disturbance of lipid and cholesterol homeostasis.
Collapse
|
50
|
Ratajewski M, Walczak-Drzewiecka A, Sałkowska A, Dastych J. Aflatoxins upregulate CYP3A4 mRNA expression in a process that involves the PXR transcription factor. Toxicol Lett 2011; 205:146-53. [PMID: 21641981 DOI: 10.1016/j.toxlet.2011.05.1034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 02/08/2023]
Abstract
Pregnane X receptor (PXR) is a member of the nuclear hormone receptor (NHR) superfamily, which regulates xenobiotic and endobiotic metabolism in the liver. This transcription factor is activated by structurally diverse ligands, including drugs and environmental pollutants. PXR regulates the expression of numerous genes that function in biotransformation and the disposition of xenobiotics upon binding to an AG(G/T)TCA DNA motif in target promoter regions. We performed a screen of mycotoxins that pose a known environmental threat to human and animal health for the ability to activate PXR function in a human hepatocyte cell line, HepG2. We found that aflatoxins B1, M1, and G1 activated PXR. This activation was associated with upregulation of CYP3A4 expression and increased occupancy of PXR protein on the CYP3A4 promoter. Using a microarray approach, we also found that aflatoxin B1 upregulated the expression of multiple genes involved in xenobiotic metabolism, including genes known to be regulated in a PXR-dependent fashion. We also observed an effect of aflatoxin B1 on the expression in other functional groups of genes, including the downregulation of genes involved in cholesterologenesis. The results of this study indicate that aflatoxin B1 is able to activate PXR, a known regulator of liver xenobiotic metabolism, in human hepatocytes, and it can upregulate the expression of PXR-dependent genes responsible for aflatoxin B1 biotransformation, including CYP3A4.
Collapse
Affiliation(s)
- Marcin Ratajewski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland
| | | | | | | |
Collapse
|