1
|
Yamasaki K, Fujisaki-Hirakawa M, Taguchi K, Kadowaki D, Tsukigawa K, Nishi K, Otagiri M, Seo H. In Vitro and In Vivo Assessment of Atemoya Fruit (Annona atemoya) for Food-Drug Interactions. Eur J Drug Metab Pharmacokinet 2021; 47:177-185. [PMID: 34881402 DOI: 10.1007/s13318-021-00739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Atemoya (Annona atemoya) is increasingly being consumed worldwide because of its pleasant taste. However, only limited information is available concerning possible atemoya-drug interactions. In the present study, the issue of whether atemoya shows food-drug interactions with substrate drugs of the major drug-metabolizing cytochrome P450s (i.e., CYP1A2, CYP2C9, and CYP3A) is addressed. METHODS The ability of atemoya juice to inhibit the activities of phenacetin O-deethylase (CYP1A2), diclofenac 4'-hydroxylase (CYP2C9), and midazolam 1'-hydroxylase (CYP3A) was examined in vitro using human and rat liver microsomes. The in vivo pharmacokinetics of phenacetin and metabolites derived from it in rats when atemoya juice or fluvoxamine (a CYP1A2 inhibitor) was preadministered were also investigated. RESULTS Atemoya juice significantly inhibited CYP1A2 activity in human liver microsomes, but not the activities of CYP2C9 and CYP3A. In spite of this inhibition, preadministration of atemoya had no effect on the pharmacokinetics of phenacetin, a CYP1A2 substrate, in rats. Meanwhile, preadministration of fluvoxamine significantly extended the time needed for the elimination of phenacetin, possibly due to the inhibition of CYP1A2. This suggests that the intake of an excess amount of atemoya juice is necessary to cause a change in the pharmacokinetics of phenacetin when the IC50 values for CYP1A2 inhibition by atemoya and fluvoxamine are taken into account. CONCLUSION The results indicate that a daily intake of atemoya would not change the pharmacokinetics of CYP1A2 substrates such as phenacetin as well as CYP2C9- and CYP3A-substrate drugs.
Collapse
Affiliation(s)
- Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan.
| | | | - Kazuaki Taguchi
- Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 862-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 862-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 862-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 862-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| | - Hakaru Seo
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 862-0082, Japan
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Japan
| |
Collapse
|
2
|
Matura JM, Shea LA, Bankes VA. Dietary supplements, cytochrome metabolism, and pharmacogenetic considerations. Ir J Med Sci 2021; 191:2357-2365. [PMID: 34734388 DOI: 10.1007/s11845-021-02828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Dietary supplement use has continued to rise. In addition to supplement-drug interactions, it is prudent to consider how dietary supplements may interact with a patient's specific pharmacogenetics. Variations in genes associated with CYP 450 enzymes have evidence of impacting drug metabolism and adverse effects. AIMS This research was performed to evaluate CYP P450 enzyme activity of the top 15 dietary supplements used in the USA in order to initiate pharmacogenetic considerations specific to commonly used dietary supplements. METHODS The most common dietary supplements used in the USA were obtained from the National Health and Nutrition Examination Survey (NHANES). Primary literature detailing supplement CYP P450 activity was compiled from PubMed using MeSH search terms: supplement name(s), cytochrome P450 enzymes, metabolism, and pharmacokinetics. Additional resources utilized for documented CYP enzyme genotypes were the pharmacogenetic databases from Clinical Pharmacogenetics Implementation Consortium and The Pharmacogenomic Variation Consortium. RESULTS Of the 15 most common dietary supplements used in the USA, 53% (cranberry, echinacea, garlic, ginkgo biloba, ginseng, melatonin, milk thistle, and valerian) exhibit CYP P450 metabolism, with some having possible induction activity as well. Melatonin and garlic are substrates of CYP1A2 and CYP2C19, respectively. Additionally, there is evidence of echinacea having possible CYP3A4 induction activity. CONCLUSION CYP P450 activity is an important consideration for any patient but becomes increasingly critical if patients have certain CYP P450 phenotypes that impact metabolism. These popular supplements have the potential for changes in supplement exposure, and adverse effects based on pharmacogenetic profiles. Furthermore, these sites of metabolism are shared with many medications, setting the stage for possibly more profound interactions between medications and supplements. This paper highlights the mechanisms in which dietary supplements may constitute a risk for patients with certain CYP P450 phenotypes. Further research is needed in the area of dietary supplements and their pharmacogenomic implications.
Collapse
Affiliation(s)
- Janelle M Matura
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA
| | - Leticia A Shea
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA.
| | - Victoria A Bankes
- School of Pharmacy, Regis University, 3333 Regis Blvd, Denver, CO, H-28, USA
| |
Collapse
|
3
|
Bidirectional Influences of Cranberry on the Pharmacokinetics and Pharmacodynamics of Warfarin with Mechanism Elucidation. Nutrients 2021; 13:nu13093219. [PMID: 34579096 PMCID: PMC8470483 DOI: 10.3390/nu13093219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Cranberry is a dietary supplement popularly used for the prophylaxis of urinary tract infection. Interestingly, cranberry–warfarin interactions in clinical reports have shown bidirectional outcomes. (±) Warfarin, a widely prescribed anticoagulant, but with a narrow therapeutic index, contains equal amounts of S- and R-warfarin, of which S-warfarin is more active. The aim of this study was to investigate the effects of different ingestion times of cranberry on the pharmacokinetics and pharmacodynamics of warfarin. Rats were orally administered (±) warfarin (0.2 mg/kg) with and without cranberry (5.0 g/kg) at 0.5 h prior to the warfarin, and at 10 h after the warfarin. The plasma concentrations of S- and R-warfarin were determined by LC/MS. The results indicate that cranberry ingested at 0.5 h before (±) warfarin significantly decreased the systemic exposures of S-warfarin and R-warfarin. Conversely, when cranberry was ingested at 10 h after (±) warfarin, the elimination of S-warfarin was significantly inhibited, and the anticoagulation effect of (±) warfarin was significantly enhanced. The results of the mechanism studies indicate that cranberry activated the breast cancer resistance protein (BCRP), which mediated the efflux transports of S-warfarin and R-warfarin. Moreover, the metabolites of cranberry inhibited cytochrome P450 (CYP) 2C9, the main metabolizing enzyme for S-warfarin. In conclusion, cranberry affected the pharmacokinetics of (±) warfarin in a bidirectional manner by activating the BCRP by CJ during absorption and inhibiting the BCRP and CYP2C9 by CMs during elimination, depending on the ingestion time of CJ. The combined use of cranberry with warfarin should be avoided.
Collapse
|
4
|
Gougis P, Hilmi M, Geraud A, Mir O, Funck-Brentano C. Potential Cytochrome P450-mediated pharmacokinetic interactions between herbs, food, and dietary supplements and cancer treatments. Crit Rev Oncol Hematol 2021; 166:103342. [PMID: 33930533 DOI: 10.1016/j.critrevonc.2021.103342] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022] Open
Abstract
Herbs, food and dietary supplements (HFDS), can interact significantly with anticancer drug treatments via cytochrome p450 isoforms (CYP) CYP3A4, CYP2D6, CYP1A2, and CYP2C8. The objective of this review was to assess the influence of HFDS compounds on these cytochromes. Interactions with CYP activities were searched for 189 herbs and food products, 72 dietary supplements in Web of Knowledge® databases. Analyses were made from 140 of 3,125 clinical trials and 236 of 3,374 in vitro, animal model studies or case reports. 18 trials were found to report direct interactions between 9 HFDS with 8 anticancer drugs. 21 HFDS were found to interact with CYP3A4, a major metabolic pathway for many anticancer drugs. All 261 HFDS were classified for their interaction with the main cytochromes P450 involved in the metabolism of anticancer drugs. We provided an easy-to-use colour-coded table to easily match potential interactions between 261 HFDS and 117 anticancer drugs.
Collapse
Affiliation(s)
- Paul Gougis
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; CLIP² Galilée, Department of Medical Oncology Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| | - Marc Hilmi
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| | - Arthur Geraud
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France; Early Drug Development Department (DITEP), Gustave Roussy, Villejuif, France
| | - Olivier Mir
- Department of Ambulatory Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Christian Funck-Brentano
- Sorbonne Université, INSERM CIC Paris-Est, AP-HP, ICAN, Pitié-Salpêtrière Hospital, Department of Pharmacology, F-75013, Paris, France
| |
Collapse
|
5
|
Gougis P, Palmieri LJ, Funck-Brentano C, Paci A, Flippot R, Mir O, Coriat R. Major pitfalls of protein kinase inhibitors prescription: A review of their clinical pharmacology for daily use. Crit Rev Oncol Hematol 2019; 141:112-124. [PMID: 31276964 DOI: 10.1016/j.critrevonc.2019.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Protein kinase inhibitors (PKI) are a growing class of anticancer agents. They are prescribed with flat doses, and their oral administration is associated with interindividual variability in exposure. Patients can be over- or underexposed, due to numerous factors. We reviewed key pharmacokinetic concepts and mechanisms by which PKIs prescription could be altered. Challenging situations that could lead to increased toxicity or to therapeutic failure are described and recommendation for clinicians are proposed. Finally, the interest of therapeutic drug monitoring and indications for its use in daily practice is discussed.
Collapse
Affiliation(s)
- Paul Gougis
- Sorbonne Université, Faculty of Medicine, AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and Clinical Investigation Center, F-75013, Paris, France; CLIP² Galilée, Pitié-Salpêtrière Hospital, F-75013, Paris, France.
| | - Lola-Jade Palmieri
- AP-HP, Cochin Hospital, Department of gastroenterology and gastrointestinal oncology, Université Paris Descartes, Paris, France
| | - Christian Funck-Brentano
- Sorbonne Université, Faculty of Medicine, AP-HP, Pitié-Salpêtrière Hospital, Department of Pharmacology and Clinical Investigation Center, F-75013, Paris, France; INSERM, CIC-1421 and UMR ICAN 1166, Institute of Cardiometabolism and Nutrition (ICAN), F-75013, Paris, France
| | - Angelo Paci
- Service de Pharmacologie, Département de Biologie et Pathologie Médicales, Gustave Roussy et Université Paris Saclay, Villejuif, France
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France; Department of Ambulatory Care, Gustave Roussy Cancer Campus, Villejuif, France
| | - Romain Coriat
- AP-HP, Cochin Hospital, Department of gastroenterology and gastrointestinal oncology, Université Paris Descartes, Paris, France
| |
Collapse
|
6
|
Kandagatla SK, Uhl RT, Graf TN, Oberlies NH, Raner GM. Pheophorbide Derivatives Isolated from Açaí Berries ( Euterpea oleracea) Activate an Antioxidant Response Element In Vitro. Nat Prod Commun 2019; 14. [PMID: 33214801 DOI: 10.1177/1934578x19852443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Activity-guided fractionation was used to isolate and identify two components of the Brazilian açaí berry (Euterpe oleracea Mart.) with the ability to induce antioxidant response element (ARE)-dependent gene transcription in human hepatoma (HepG2) cells. Using an ARE-Luciferase reporter construct in cultured HepG2 cells, a suite of fractions from dried and powdered açaí berries were evaluated for transcriptional up-regulation of the luciferase gene. Active fractions were further refined until several pure compounds were isolated and identified. These compounds belong to the pheophorbide class of molecules, and are composed of the methyl and ethyl esters of the parent pheophorbide A, all of which are classified as photosensitizers. Using standard pheophorbides, dose response studies were carried out, and ARE-activation could be observed at concentrations as low as 8.2 μM and 16.9 μM for pheophorbide A methyl ester and pheophorbide A, respectively. These studies not only suggest a possible source of antioxidant properties for the açaí berry, but may also explain the recently identified photosensitizing abilities of açaí products as well.
Collapse
Affiliation(s)
- Suneel K Kandagatla
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Robin Tate Uhl
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Gregory M Raner
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA 24515
| |
Collapse
|
7
|
Tian DD, Kellogg JJ, Okut N, Oberlies NH, Cech NB, Shen DD, McCune JS, Paine MF. Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea ( Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation. Drug Metab Dispos 2018; 46:552-560. [PMID: 29467215 PMCID: PMC5890833 DOI: 10.1124/dmd.117.079491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 11/22/2022] Open
Abstract
Green tea (Camellia sinensis) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20-180 μg/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis. Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (-)-epicatechin gallate and (-)-epigallocatechin gallate showed concentration-dependent inhibition, with IC50 values (105 and 59 μM, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 μM, respectively). Using the clinical intestinal UGT substrate raloxifene, the Ki values were ∼1.0 and 2.0 μM, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing.
Collapse
Affiliation(s)
- Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Joshua J Kellogg
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Neşe Okut
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Danny D Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
8
|
Pharmacokinetic Herb-Drug Interactions: Insight into Mechanisms and Consequences. Eur J Drug Metab Pharmacokinet 2016; 41:93-108. [PMID: 26311243 DOI: 10.1007/s13318-015-0296-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Herbal medicines are currently in high demand, and their popularity is steadily increasing. Because of their perceived effectiveness, fewer side effects and relatively low cost, they are being used for the management of numerous medical conditions. However, they are capable of affecting the pharmacokinetics and pharmacodynamics of coadministered conventional drugs. These interactions are particularly of clinically relevance when metabolizing enzymes and xenobiotic transporters, which are responsible for the fate of many drugs, are induced or inhibited, sometimes resulting in unexpected outcomes. This article discusses the general use of herbal medicines in the management of several ailments, their concurrent use with conventional therapy, mechanisms underlying herb-drug interactions (HDIs) as well as the drawbacks of herbal remedy use. The authors also suggest means of surveillance and safety monitoring of herbal medicines. Contrary to popular belief that "herbal medicines are totally safe," we are of the view that they are capable of causing significant toxic effects and altered pharmaceutical outcomes when coadministered with conventional medicines. Due to the paucity of information as well as sometimes conflicting reports on HDIs, much more research in this field is needed. The authors further suggest the need to standardize and better regulate herbal medicines in order to ensure their safety and efficacy when used alone or in combination with conventional drugs.
Collapse
|
9
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother Res 2016; 30:1265-86. [DOI: 10.1002/ptr.5642] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Antonella Smeriglio
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Davide Barreca
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Ersilia Bellocco
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| | - Domenico Trombetta
- University of Messina; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; Viale F. Stagno d'Alcontres 31 98166 Messina Italy
| |
Collapse
|
10
|
Dave AA, Samuel J. Suspected Interaction of Cranberry Juice Extracts and Tacrolimus Serum Levels: A Case Report. Cureus 2016; 8:e610. [PMID: 27335715 PMCID: PMC4911337 DOI: 10.7759/cureus.610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cytochrome P450 inhibition through fruit supplement interactions often results in increased serum levels of calcineurin inhibitors, including tacrolimus. Cranberry extract is a supplement often used for the prevention of recurrent urinary tract infections (UTIs), which are common in renal allograft recipients. To our knowledge, a decrease in serum levels of tacrolimus as a result of cranberry extract interaction is unreported. A 40-year-old renal transplant patient taking cranberry extract capsules for her recurrent cystitis presented asymptomatically with low serum levels of tacrolimus. Dose increase had little effect on the level, and cessation of the cranberry extract returned levels to desired range. Cranberry extracts are an adjunctive therapy used in the management of recurrent UTIs. Tacrolimus, an immunosuppressive agent, is metabolized intestinally by isoenzymes of the P450 cytochrome. Cranberry extracts may alter this metabolism and lead to sub-therapeutic serum levels of tacrolimus. This interaction is heretofore unreported. Cranberry extracts should be carefully monitored in allograft recipients due to interactions with serum tacrolimus levels.
Collapse
Affiliation(s)
- Atman A Dave
- Medical Education, Saint Luke's Hospital of Kansas City
| | | |
Collapse
|
11
|
Foo WYB, Tay HY, Chan ECY, Lau AJ. Meclizine, a pregnane X receptor agonist, is a direct inhibitor and mechanism-based inactivator of human cytochrome P450 3A. Biochem Pharmacol 2015; 97:320-30. [PMID: 26239802 DOI: 10.1016/j.bcp.2015.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022]
Abstract
Meclizine is an agonist of human pregnane X receptor (PXR). It increases CYP3A4 mRNA expression, but decreases CYP3A-catalyzed testosterone 6β-hydroxylation in primary cultures of human hepatocytes, as assessed at 24h after the last dose of meclizine. Therefore, the hypothesis to be tested is that meclizine inactivates human CYP3A enzymes. Our findings indicated that meclizine directly inhibited testosterone 6β-hydroxylation catalyzed by human liver microsomes, recombinant CYP3A4, and recombinant CYP3A5. The inhibition of human liver microsomal testosterone 6β-hydroxylation by meclizine occurred by a mixed mode and with an apparent Ki of 31±6μM. Preincubation of meclizine with human liver microsomes and NADPH resulted in a time- and concentration-dependent decrease in testosterone 6β-hydroxylation. The extent of inactivation required the presence of NADPH, was unaffected by nucleophilic trapping agents or reactive oxygen species scavengers, attenuated by a CYP3A substrate, and not reversed by dialysis. Meclizine selectively inactivated CYP3A4, but not CYP3A5. In contrast to meclizine, which has a di-substituted piperazine ring, norchlorcyclizine, which is a N-debenzylated meclizine metabolite with a mono-substituted piperazine ring, did not inactivate but directly inhibited hepatic microsomal CYP3A activity. In conclusion, meclizine inhibited human CYP3A enzymes by both direct inhibition and mechanism-based inactivation. In contrast, norchlorcyclizine is a direct inhibitor but not a mechanism-based inactivator. Furthermore, a PXR agonist may also be an inhibitor of a PXR-regulated enzyme, thereby giving rise to opposing effects on the functional activity of the enzyme and indicating the importance of measuring the catalytic activity of nuclear receptor-regulated enzymes.
Collapse
Affiliation(s)
- Winnie Yin Bing Foo
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Hwee Ying Tay
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Evaluation of the in vitro/in vivo potential of five berries (bilberry, blueberry, cranberry, elderberry, and raspberry ketones) commonly used as herbal supplements to inhibit uridine diphospho-glucuronosyltransferase. Food Chem Toxicol 2014; 72:13-9. [DOI: 10.1016/j.fct.2014.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/05/2014] [Accepted: 06/23/2014] [Indexed: 12/15/2022]
|
13
|
Bártíková H, Boušová I, Jedličková P, Lněničková K, Skálová L, Szotáková B. Effect of standardized cranberry extract on the activity and expression of selected biotransformation enzymes in rat liver and intestine. Molecules 2014; 19:14948-60. [PMID: 25237750 PMCID: PMC6271979 DOI: 10.3390/molecules190914948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/30/2023] Open
Abstract
The use of dietary supplements containing cranberry extract is a common way to prevent urinary tract infections. As consumption of these supplements containing a mixture of concentrated anthocyanins and proanthocyanidins has increased, interest in their possible interactions with drug-metabolizing enzymes has grown. In this in vivo study, rats were treated with a standardized cranberry extract (CystiCran®) obtained from Vaccinium macrocarpon in two dosage schemes (14 days, 0.5 mg of proanthocyanidins/kg/day; 1 day, 1.5 mg of proanthocyanidins/kg/day). The aim of this study was to evaluate the effect of anthocyanins and proanthocyanidins contained in this extract on the activity and expression of intestinal and hepatic biotransformation enzymes: cytochrome P450 (CYP1A1, CYP1A2, CYP2B and CYP3A), carbonyl reductase 1 (CBR1), glutathione-S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Administration of cranberry extract led to moderate increases in the activities of hepatic CYP3A (by 34%), CYP1A1 (by 38%), UGT (by 40%), CBR1 (by 17%) and GST (by 13%), while activities of these enzymes in the small intestine were unchanged. No changes in the relative amounts of these proteins were found. Taken together, the interactions of cranberry extract with simultaneously administered drugs seem not to be serious.
Collapse
Affiliation(s)
- Hana Bártíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| | - Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| | - Pavla Jedličková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| | - Kateřina Lněničková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| | - Barbora Szotáková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Heyrovského 1203, Hradec Králové 50005, Czech Republic.
| |
Collapse
|
14
|
Langhammer AJ, Nilsen OG. In vitro inhibition of human CYP1A2, CYP2D6, and CYP3A4 by six herbs commonly used in pregnancy. Phytother Res 2014; 28:603-10. [PMID: 23843424 DOI: 10.1002/ptr.5037] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/11/2013] [Accepted: 06/16/2013] [Indexed: 11/09/2022]
Abstract
Black elderberry, cranberry, fennel, ginger, horsetail, and raspberry leaf, herbs frequently used in pregnancy, were investigated for their in vitro CYP1A2, 2D6, and 3A4 inhibitory potential. Aqueous or ethanolic extracts were made from commercially available herbal products, and incubations were performed with recombinant cDNA-expressed human CYP enzymes in the presence of positive inhibitory controls. Metabolite formation was determined by validated LCMS/MS or HPLC methodologies. IC50 inhibition constants were estimated from CYP activity inhibition plots using non-linear regression. The most potent inhibition was shown for fennel towards CYP2D6 and 3A4 with respective IC50 constants of 23 ± 2 and 40 ± 4 µg/ml, horsetail towards CYP1A2 with an IC50 constant of 27 ± 1 µg/ml, and raspberry leaf towards CYP1A2, 2D6, and 3A4 with IC50 constants of 44 ± 2, 47 ± 8, and 81 ± 11 µg/ml, respectively. Based on the recommended dosing of the different commercial herbal products, clinically relevant systemic CYP inhibitions could be possible for fennel, horsetail, and raspberry leaf. In addition, fennel and raspberry leaf might cause a clinically relevant inhibition of intestinal CYP3A4. The in vivo inhibitory potential of these herbs towards specific CYP enzymes should be further investigated.
Collapse
Affiliation(s)
- Astrid Jordet Langhammer
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology (NTNU), Norway
| | | |
Collapse
|
15
|
Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e107. [PMID: 24670388 PMCID: PMC4042458 DOI: 10.1038/psp.2013.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/28/2013] [Indexed: 11/08/2022]
Abstract
Herb-drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb-drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb-drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions.CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e107; doi:10.1038/psp.2013.69; advance online publication 26 March 2014.
Collapse
|
16
|
Brantley SJ, Graf TN, Oberlies NH, Paine MF. A systematic approach to evaluate herb-drug interaction mechanisms: investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors. Drug Metab Dispos 2013; 41:1662-70. [PMID: 23801821 PMCID: PMC3876807 DOI: 10.1124/dmd.113.052563] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/25/2013] [Indexed: 10/26/2022] Open
Abstract
Despite increasing recognition of potential untoward interactions between herbal products and conventional medications, a standard system for prospective assessment of these interactions remains elusive. This information gap was addressed by evaluating the drug interaction liability of the model herbal product milk thistle (Silybum marianum) with the CYP3A probe substrate midazolam. The inhibitory effects of commercially available milk thistle extracts and isolated constituents on midazolam 1'-hydroxylation were screened using human liver and intestinal microsomes. Relative to vehicle, the extract silymarin and constituents silybin A, isosilybin A, isosilybin B, and silychristin at 100 μM demonstrated >50% inhibition of CYP3A activity with at least one microsomal preparation, prompting IC50 determination. The IC50s for isosilybin B and silychristin were ∼60 and 90 μM, respectively, whereas those for the remaining constituents were >100 μM. Extracts and constituents that contained the 1,4-dioxane moiety demonstrated a >1.5-fold shift in IC50 when tested as potential mechanism-based inhibitors. The semipurified extract, silibinin, and the two associated constituents (silybin A and silybin B) demonstrated mechanism-based inhibition of recombinant CYP3A4 (KI, ∼100 μM; kinact, ∼0.20 min(-1)) but not microsomal CYP3A activity. The maximum predicted increases in midazolam area under the curve using the static mechanistic equation and recombinant CYP3A4 data were 1.75-fold, which may necessitate clinical assessment. Evaluation of the interaction liability of single herbal product constituents, in addition to commercially available extracts, will enable elucidation of mechanisms underlying potential clinically significant herb-drug interactions. Application of this framework to other herbal products would permit predictions of herb-drug interactions and assist in prioritizing clinical evaluation.
Collapse
Affiliation(s)
- Scott J Brantley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
17
|
Cranberry in radiotherapy: dispelling the myths. A review of the literature. JOURNAL OF RADIOTHERAPY IN PRACTICE 2013. [DOI: 10.1017/s1460396913000320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackgroundTherapeutic radiographers routinely offer advice to patients regarding treatment-related side effects. Cranberry has long been used as a natural remedy for several health complaints and has more recently been suggested as having a role in the treatment and prophylaxis of urinary tract infection (UTI) and symptoms.PurposeThe aim of this review was to investigate whether there is a place for cranberry as part of the management of radiation cystitis caused by radiotherapy treatment of pelvic cancers, in order to aid therapeutic radiographers in tailoring their advice regarding pelvic side effects.Materials and methodsA structured search was carried out using PubMed, CINAHL, Scopus and Cochrane Library databases. A total of 25 articles were selected for review.ResultsThemes of mechanism of action of cranberry, composition of cranberry products, cranberry and UTI, use of cranberry in radiotherapy and further issues to consider were identified and explored.ConclusionA lack of high-quality data was identified in the literature reviewed and no firm evidence was found to support the continued recommendation of cranberry as part of management of radiation induced urinary tract side effects. Well-designed randomised controlled trials are required before further recommendations regarding the use of cranberry in radiotherapy are made.
Collapse
|
18
|
Althagafy HS, Graf TN, Sy-Cordero AA, Gufford BT, Paine MF, Wagoner J, Polyak SJ, Croatt MP, Oberlies NH. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle. Bioorg Med Chem 2013; 21:3919-26. [PMID: 23673225 PMCID: PMC3855444 DOI: 10.1016/j.bmc.2013.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/26/2013] [Accepted: 04/02/2013] [Indexed: 11/23/2022]
Abstract
Silymarin, an extract of the seeds of milk thistle (Silybum marianum), is used as an herbal remedy, particularly for hepatoprotection. The main chemical constituents in silymarin are seven flavonolignans. Recent studies explored the non-selective methylation of one flavonolignan, silybin B, and then tested those analogues for cytotoxicity and inhibition of both cytochrome P450 (CYP) 2C9 activity in human liver microsomes and hepatitis C virus infection in a human hepatoma (Huh7.5.1) cell line. In general, enhanced bioactivity was observed with the analogues. To further probe the biological consequences of methylation of the seven major flavonolignans, a series of 7-O-methylflavonolignans were generated. Optimization of the reaction conditions permitted selective methylation at the phenol in the 7-position in the presence of each metabolite's 4-5 other phenolic and/or alcoholic positions without the use of protecting groups. These 7-O-methylated analogues, in parallel with the corresponding parent compounds, were evaluated for cytotoxicity against Huh7.5.1 cells; in all cases the monomethylated analogues were more cytotoxic than the parent compounds. Moreover, parent compounds that were relatively non-toxic and inactive or weak inhibitors of hepatitis C virus infection had enhanced cytotoxicity and anti-HCV activity upon 7-O-methylation. Also, the compounds were tested for inhibition of major drug metabolizing enzymes (CYP2C9, CYP3A4/5, UDP-glucuronsyltransferases) in pooled human liver or intestinal microsomes. Methylation of flavonolignans differentially modified inhibitory potency, with compounds demonstrating both increased and decreased potency depending upon the compound tested and the enzyme system investigated. In total, these data indicated that monomethylation modulates the cytotoxic, antiviral, and drug interaction potential of silymarin flavonolignans.
Collapse
Affiliation(s)
- Hanan S. Althagafy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Arlene A. Sy-Cordero
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Brandon T. Gufford
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary F. Paine
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Wagoner
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98104, USA
| | - Stephen J. Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Global Health, University of Washington, Seattle, WA 98104, USA
| | - Mitchell P. Croatt
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
19
|
|
20
|
González-Pérez V, Connolly EA, Bridges AS, Wienkers LC, Paine MF. Impact of organic solvents on cytochrome P450 probe reactions: filling the gap with (S)-Warfarin and midazolam hydroxylation. Drug Metab Dispos 2012; 40:2136-42. [PMID: 22896727 PMCID: PMC3477202 DOI: 10.1124/dmd.112.047134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/14/2012] [Indexed: 12/18/2022] Open
Abstract
(S)-Warfarin 7-hydroxylation and midazolam 1'-hydroxylation are among the preferred probe substrate reactions for CYP2C9 and CYP3A4/5, respectively. The impact of solvents on enzyme activity, kinetic parameters, and predicted in vivo hepatic clearance (Cl(H)) associated with each reaction has not been evaluated. The effects of increasing concentrations [0.1-2% (v/v)] of six organic solvents (acetonitrile, methanol, ethanol, dimethyl sulfoxide, acetone, isopropanol) were first tested on each reaction using human liver microsomes (HLMs), human intestinal microsomes (midazolam 1'-hydroxylation only), and recombinant enzymes. Across enzyme sources, relative to water, acetonitrile and methanol had the least inhibitory effect on (S)-warfarin 7-hydroxylation (0-58 and 9-96%, respectively); acetonitrile, methanol, and ethanol had the least inhibitory effect on midazolam 1'-hydroxylation (0-29, 0-22, and 0-20%, respectively). Using HLMs, both acetonitrile and methanol (0.1-2%) decreased the V(max) (32-60 and 24-65%, respectively) whereas methanol (2%) increased the K(m) (100%) of (S)-warfarin-hydroxylation. (S)-Warfarin Cl(H) was underpredicted by 21-65% (acetonitrile) and 13-84% (methanol). Acetonitrile, methanol, and ethanol had minimal to modest impact on both the kinetics of midazolam 1'-hydroxylation (10-24%) and predicted midazolam Cl(H) (2-20%). In conclusion, either acetonitrile or methanol at ≤0.1% is recommended as the primary organic solvent for the (S)-warfarin 7-hydroxylation reaction; acetonitrile is preferred if higher solvent concentrations are required. Acetonitrile, methanol, and ethanol at ≤2% are recommended as primary organic solvents for the midazolam 1'-hydroxylation reaction. This information should facilitate optimization of experimental conditions and improve the interpretation and accuracy of in vitro-in vivo predictions involving these two preferred cytochrome P450 probe substrate reactions.
Collapse
Affiliation(s)
- Vanessa González-Pérez
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
21
|
Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther 2012; 136:186-201. [PMID: 22884524 DOI: 10.1016/j.pharmthera.2012.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022]
Abstract
Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
22
|
Safety and pharmacokinetics of escalating daily doses of the antituberculosis drug rifapentine in healthy volunteers. Clin Pharmacol Ther 2012; 91:881-8. [PMID: 22472995 DOI: 10.1038/clpt.2011.323] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rifapentine (RP T) is an antituberculosis drug that may shorten treatment duration when substituted for rifampin (RI F).The maximal tolerated daily dose of RP T and its potential for cytochrome 3A4 induction and autoinduction at clinically relevant doses are unknown. In this phase I, dose-escalation study among healthy volunteers, daily doses as high asa prespecified maximum of 20 mg/kg/day were well tolerated. Steady-state RP T concentrations increased with dose from 5 to 15 mg/kg, but area under the plasma concentration–time curve (AU C0–24) and maximum concentration (Cmax)were similar in the 15- and 20-mg/kg cohorts. Although RP T pharmacokinetics (PK) appeared to be time-dependent,accumulation occurred with daily dosing. The mean AU C0–12 of oral midazolam (MDZ), a cytochrome 3A (CYP 3A) probe drug, was reduced by 93% with the coadministration of RPT and by 74% with the coadministration of RIF (P < 0.01).Changes in the oral clearance of MDZ did not vary by RP T dose. In conclusion, RP T was tolerated at doses as high as20 mg/kg/day, its PK were less than dose-proportional, and its CYP 3A induction was robust.
Collapse
|
23
|
Haber SL, Cauthon KAB, Raney EC. Cranberry and Warfarin Interaction: A Case Report and Review of the Literature. ACTA ACUST UNITED AC 2012; 27:58-65. [DOI: 10.4140/tcp.n.2012.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Won CS, Oberlies NH, Paine MF. Influence of dietary substances on intestinal drug metabolism and transport. Curr Drug Metab 2011; 11:778-92. [PMID: 21189136 DOI: 10.2174/138920010794328869] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 11/20/2010] [Indexed: 11/22/2022]
Abstract
Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3Amediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitroin vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
25
|
Kim E, Sy-Cordero A, Graf TN, Brantley SJ, Paine MF, Oberlies NH. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes. PLANTA MEDICA 2011; 77:265-70. [PMID: 20717876 PMCID: PMC3023844 DOI: 10.1055/s-0030-1250259] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study.
Collapse
Affiliation(s)
- Eunkyung Kim
- Herbal Medicinal Products Division, Korea Food and Drug Administration, Seoul, 122-704, Republic of Korea
| | - Arlene Sy-Cordero
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Scott J. Brantley
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary F. Paine
- Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
26
|
Tarirai C, Viljoen AM, Hamman JH. Herb-drug pharmacokinetic interactions reviewed. Expert Opin Drug Metab Toxicol 2010; 6:1515-38. [PMID: 21067427 DOI: 10.1517/17425255.2010.529129] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE OF THE FIELD the global increase in the popularity of alternative medicines has raised renewed concerns regarding herb-drug interactions. These interactions are especially important for drugs with narrow therapeutic indices and may either be pharmacodynamic or pharmacokinetic in nature. AREAS COVERED IN THIS REVIEW pharmacokinetic interactions which may exist between herbs and drugs, and the mechanisms of these interactions with appropriate examples based on primary and secondary data in publications are discussed. The mechanisms covered include those that affect oral drug absorption (e.g., modulation of efflux and uptake transporters, complex formation, gastrointestinal motility and pH) and drug biotransformation (e.g., inhibition or induction of enzymes). WHAT THE READER WILL GAIN knowledge on the mechanisms of herb-drug pharmacokinetic interactions supported by an extended list of these types of interactions for quick reference. A critical evaluation of certain herb-drug pharmacokinetic interactions reported in the scientific literature. TAKE HOME MESSAGE as the incidence and severity of herb-drug pharmacokinetic interactions increase due to a worldwide rise in the use of herbal preparations, more clinical data regarding herb-drug pharmacokinetic interactions are needed to make informed decisions regarding patient safety.
Collapse
Affiliation(s)
- Clemence Tarirai
- Tshwane University of Technology, Department of Pharmaceutical Sciences, Pretoria, South Africa
| | | | | |
Collapse
|
27
|
Ngo N, Brantley SJ, Carrizosa DR, Kashuba ADM, Dees EC, Kroll DJ, Oberlies NH, Paine MF. The warfarin-cranberry juice interaction revisited: A systematic in vitro-in vivo evaluation. J Exp Pharmacol 2010; 2010:83-91. [PMID: 20865058 PMCID: PMC2943398 DOI: 10.2147/jep.s11719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND: Cranberry products have been implicated in several case reports to enhance the anticoagulant effect of warfarin. The mechanism could involve inhibition of the hepatic CYP2C9-mediated metabolic clearance of warfarin by components in cranberry. Because dietary/natural substances vary substantially in bioactive ingredient composition, multiple cranberry products were evaluated in vitro before testing this hypothesis in vivo. METHODS: The inhibitory effects of five types of cranberry juices were compared with those of water on CYP2C9 activity (S-warfarin 7-hydroxylation) in human liver microsomes (HLM). The most potent juice was compared with water on S/R-warfarin pharmacokinetics in 16 healthy participants given a single dose of warfarin 10 mg. RESULTS: Only one juice inhibited S-warfarin 7-hydroxylation in HLM in a concentration-dependent manner (P < 0.05), from 20% to >95% at 0.05% to 0.5% juice (v/v), respectively. However, this juice had no effect on the geometric mean AUC(0-∞) and terminal half-life of S/R-warfarin in human subjects. CONCLUSIONS: A cranberry juice that inhibited warfarin metabolism in HLM had no effect on warfarin clearance in healthy participants. The lack of an in vitro-in vivo concordance likely reflects the fact that the site of warfarin metabolism (liver) is remote from the site of exposure to the inhibitory components in the cranberry juice (intestine).
Collapse
Affiliation(s)
- Ngoc Ngo
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott J Brantley
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel R Carrizosa
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela DM Kashuba
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - E Claire Dees
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David J Kroll
- Biomanufacturing Research Institute and Technology Enterprise and the Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Mary F Paine
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Cranberry juice and warfarin: when bad publicity trumps science. Am J Med 2010; 123:384-92. [PMID: 20399311 DOI: 10.1016/j.amjmed.2009.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/27/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022]
Abstract
Based on anecdotal reports, the question of whether cranberry juice interacts with warfarin has been raised. This article discusses the potential mechanism, and systematically reviews case reports as well as clinical trials examining the possible interaction. We systematically searched MEDLINE via PubMed, and the Cochrane Library database. Fifteen case reports were summarized, including the initial unpublished brief reports to the Committee on Safety of Medicines and the subsequent 6 published case reports. Seven clinical trials were analyzed, including 3 studies using warfarin and 4 surrogate drugs. Only 2 cases had a validation scale suggesting a "probable" interaction, but even in these patients there were many reasons to question the validity of a relevant drug interaction. Randomized clinical trials and surrogate markers found no evidence to support the interaction between cranberry juice and warfarin. Because the moderate consumption of cranberry juice does not affect anticoagulation, we encourage the reexamination of initial warnings based on scientific evidence. We conclude that the initial precautionary warnings by administrating bodies are limited to anecdotal case reports and represent misleading conclusions.
Collapse
|