1
|
Balhara A, Tsang YP, Unadkat JD. Cannabidiol and Δ9-tetrahydrocannabinol induce drug-metabolizing enzymes, but not transporters, in human hepatocytes: Implications for predicting complex cannabinoid-drug interactions. Drug Metab Dispos 2025; 53:100037. [PMID: 40009936 DOI: 10.1016/j.dmd.2025.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
Cannabidiol (CBD) or delta-9-tetrahydrocannabinol (THC) can inhibit multiple CYPs and UGTs in vivo and/or in vitro. CBD, but not THC, is also a time-dependent inhibitor of CYP3A, CYP1A2, and CYP2C19. We showed that a single 640 mg oral dose of CBD inhibits oral midazolam plasma clearance by 56%, whereas others found no interaction of chronic CBD with midazolam. These data can be explained if chronic CBD induces CYP3A enzymes. To investigate if CBD or THC induces CYP enzymes or transporters, we treated 4 lots of human hepatocytes for 72 hours with in vivo relevant concentrations of CBD (42 nM, 420 nM) or THC (250 nM, 700 nM). Then, mRNA expression and CYP activity were measured using quantitative polymerase chain reaction and liquid chromatography-tandem mass spectrometry, respectively. CYP3A4 mRNA was significantly induced to 7.3-, 11.1-, and 3.3-fold by CBD (420 nM) and 14.8-, 5.9-, and 3.1-fold by THC (700 nM) in 3 of the 4 lots. CYP3A activity was significantly induced 3.39- and 3.28-fold by low (42 nM) and 2.4- and 2.3-fold by high (420 nM) CBD concentrations, respectively, in 2 lots, and 2.3-fold by THC (700 nM) in 1 lot. Rifampin (10 μM) significantly induced CYP3A mRNA and activity across all lots. CBD (420 nM) significantly induced CYP1A2 and CYP2B6 mRNA (but not activity) in 2 lots. No significant induction of other CYPs, UGTs, or transporters was observed. Incorporation of CBD Emax and EC50 of CYP3A4 mRNA induction (without scaling by rifampin mRNA induction) into a CBD physiologically-based pharmacokinetic model successfully captured the lack of the observed chronic CBD-midazolam drug interaction. SIGNIFICANCE STATEMENT: Time-dependent inhibition and induction of CYP3A enzymes by cannabidiol (CBD) is a plausible explanation for the significant CBD-midazolam pharmacokinetic interaction after single-dose CBD administration and the absence of such an interaction after multiple-dose CBD administration.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Yik Pui Tsang
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington.
| |
Collapse
|
2
|
Schroeter T, Lapham K, Varma MVS, Obach RS. Positioning Enzyme- and Transporter-Based Precipitant Drug-Drug Interaction Studies in Drug Design. J Med Chem 2025; 68:1021-1032. [PMID: 39762221 DOI: 10.1021/acs.jmedchem.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In vitro assessment of the potential of compounds to affect drug metabolizing enzymes and transporters and perpetrate drug-drug interactions (DDIs) is a common practice in drug research. For the development phase, regulators define an exhaustive list of enzymes and transporters to consider, but DDIs associated with many of these are minor and can be well-managed in the clinic; thus, progression of drug candidates that address unmet medical needs should not be curtailed due to this property. However, some enzymes and transporters are very important in drug disposition, so it is important to avoid/reduce inhibition or induction of these through drug design. Herein, simplified criteria and methodologies amenable to high-throughput screening are defined to enable drug design to address DDI risk. A strategy is proposed that focuses on the most important enzymes and transporters: namely, cytochrome P450 (CYP) 3A4, CYP2C9, and CYP2D6, organic anion transporting polypeptide (OATP) 1B1, and breast cancer resistant protein (BCRP).
Collapse
Affiliation(s)
- Thomas Schroeter
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Kimberly Lapham
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Manthena V S Varma
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| | - R Scott Obach
- Department of Pharmacokinetics Dynamics & Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
3
|
Yadav J, Maldonato BJ, Roesner JM, Vergara AG, Paragas EM, Aliwarga T, Humphreys S. Enzyme-mediated drug-drug interactions: a review of in vivo and in vitro methodologies, regulatory guidance, and translation to the clinic. Drug Metab Rev 2024:1-33. [PMID: 39057923 DOI: 10.1080/03602532.2024.2381021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Enzyme-mediated pharmacokinetic drug-drug interactions can be caused by altered activity of drug metabolizing enzymes in the presence of a perpetrator drug, mostly via inhibition or induction. We identified a gap in the literature for a state-of-the art detailed overview assessing this type of DDI risk in the context of drug development. This manuscript discusses in vitro and in vivo methodologies employed during the drug discovery and development process to predict clinical enzyme-mediated DDIs, including the determination of clearance pathways, metabolic enzyme contribution, and the mechanisms and kinetics of enzyme inhibition and induction. We discuss regulatory guidance and highlight the utility of in silico physiologically-based pharmacokinetic modeling, an approach that continues to gain application and traction in support of regulatory filings. Looking to the future, we consider DDI risk assessment for targeted protein degraders, an emerging small molecule modality, which does not have recommended guidelines for DDI evaluation. Our goal in writing this report was to provide early-career researchers with a comprehensive view of the enzyme-mediated pharmacokinetic DDI landscape to aid their drug development efforts.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Benjamin J Maldonato
- Department of Nonclinical Development and Clinical Pharmacology, Revolution Medicines, Inc., Redwood City, CA, USA
| | - Joseph M Roesner
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Boston, MA, USA
| | - Ana G Vergara
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics (PDMB), Merck & Co., Inc., Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Sara Humphreys
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
4
|
Yin X, Cicali B, Rodriguez-Vera L, Lukacova V, Cristofoletti R, Schmidt S. Applying Physiologically Based Pharmacokinetic Modeling to Interpret Carbamazepine's Nonlinear Pharmacokinetics and Its Induction Potential on Cytochrome P450 3A4 and Cytochrome P450 2C9 Enzymes. Pharmaceutics 2024; 16:737. [PMID: 38931859 PMCID: PMC11206836 DOI: 10.3390/pharmaceutics16060737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Carbamazepine (CBZ) is commonly prescribed for epilepsy and frequently used in polypharmacy. However, concerns arise regarding its ability to induce the metabolism of other drugs, including itself, potentially leading to the undertreatment of co-administered drugs. Additionally, CBZ exhibits nonlinear pharmacokinetics (PK), but the root causes have not been fully studied. This study aims to investigate the mechanisms behind CBZ's nonlinear PK and its induction potential on CYP3A4 and CYP2C9 enzymes. To achieve this, we developed and validated a physiologically based pharmacokinetic (PBPK) parent-metabolite model of CBZ and its active metabolite Carbamazepine-10,11-epoxide in GastroPlus®. The model was utilized for Drug-Drug Interaction (DDI) prediction with CYP3A4 and CYP2C9 victim drugs and to further explore the underlying mechanisms behind CBZ's nonlinear PK. The model accurately recapitulated CBZ plasma PK. Good DDI performance was demonstrated by the prediction of CBZ DDIs with quinidine, dolutegravir, phenytoin, and tolbutamide; however, with midazolam, the predicted/observed DDI AUClast ratio was 0.49 (slightly outside of the two-fold range). CBZ's nonlinear PK can be attributed to its nonlinear metabolism caused by autoinduction, as well as nonlinear absorption due to poor solubility. In further applications, the model can help understand DDI potential when CBZ serves as a CYP3A4 and CYP2C9 inducer.
Collapse
Affiliation(s)
- Xuefen Yin
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Brian Cicali
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Leyanis Rodriguez-Vera
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | | | - Rodrigo Cristofoletti
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| | - Stephan Schmidt
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, FL 32827, USA; (X.Y.); (B.C.); (L.R.-V.)
| |
Collapse
|
5
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
6
|
Grañana-Castillo S, Montanha MC, Bearon R, Khoo S, Siccardi M. Evaluation of drug-drug interaction between rilpivirine and rifapentine using PBPK modelling. Front Pharmacol 2022; 13:1076266. [PMID: 36588698 PMCID: PMC9797969 DOI: 10.3389/fphar.2022.1076266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis remains the leading cause of death among people living with HIV. Rifapentine is increasingly used to treat active disease or prevent reactivation, in both cases given either as weekly or daily therapy. However, rifapentine is an inducer of CYP3A4, potentially interacting with antiretrovirals like rilpivirine. This in silico study investigates the drug-drug interaction (DDI) magnitude between daily oral rilpivirine 25 mg with either daily 600 mg or weekly 900 mg rifapentine. A physiologically based pharmacokinetic (PBPK) model was built in Simbiology (Matlab R2018a) to simulate the drug-drug interaction. The simulated PK parameters from the PBPK model were verified against reported clinical data for rilpivirine and rifapentine separately, daily rifapentine with midazolam, and weekly rifapentine with doravirine. The simulations of concomitant administration of rifapentine with rilpivirine at steady-state lead to a maximum decrease on AUC0-24 and Ctrough by 83% and 92% on day 5 for the daily rifapentine regimen and 68% and 92% for the weekly regimen on day 3. In the weekly regimen, prior to the following dose, AUC0-24 and Ctrough were still reduced by 47% and 53%. In both simulations, the induction effect ceased 2 weeks after the interruption of rifapentine's treatment. A daily double dose of rilpivirine after initiating rifapentine 900 mg weekly was simulated but failed to compensate the drug-drug interaction. The drug-drug interaction model suggested a significant decrease on rilpivirine exposure which is unlikely to be corrected by dose increment, thus coadministration should be avoided.
Collapse
Affiliation(s)
- Sandra Grañana-Castillo
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Maiara Camotti Montanha
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Rachel Bearon
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Saye Khoo
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Marco Siccardi
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Stanley LA, Wolf CR. Through a glass, darkly? HepaRG and HepG2 cells as models of human phase I drug metabolism. Drug Metab Rev 2022; 54:46-62. [PMID: 35188018 DOI: 10.1080/03602532.2022.2039688] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pharmacokinetic and safety assessment of drug candidates is becoming increasingly dependent upon in vitro models of hepatic metabolism and toxicity. Predominant among these is the HepG2 cell line, although HepaRG is becoming increasingly popular because of its perceived closer resemblance to human hepatocytes. We review the functionality of these cell lines in terms of Phase I protein expression, basal cytochrome P450-dependent activity, and utility in P450 induction studies. Our analysis indicates that HepG2 cells are severely compromised: proteomic studies show that they express few key proteins in common with hepatocytes and they lack drug-metabolizing capacity. Differentiated HepaRGs are more hepatocyte-like than HepG2s, but they also have limitations, and it is difficult to assess their utility because of the enormous variability in data reported, possibly arising from the complex differentiation protocols required to obtain hepatocyte-like cells. This is exacerbated by the use of DMSO in the induction protocol, together with proprietary supplements whose composition is a commercial secret. We conclude that, while currently available data on the utility of HepaRG generates a confusing picture, this line does have potential utility in drug metabolism studies. However, to allow studies to be compared directly a standardized, reproducible differentiation protocol is essential and the cell line's functionality in terms of known mechanisms of P450 regulation must be demonstrated. We, therefore, support the development of regulatory guidelines for the use of HepaRGs in induction studies as a first step in generating a database of consistent, reliable data.
Collapse
Affiliation(s)
- Lesley A Stanley
- Consultant in Investigative Toxicology, Linlithgow, UK.,School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - C Roland Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, UK
| |
Collapse
|
8
|
Preiss LC, Liu R, Hewitt P, Thompson D, Georgi K, Badolo L, Lauschke VM, Petersson C. Deconvolution of Cytochrome P450 Induction Mechanisms in HepaRG Nuclear Hormone Receptor Knockout Cells. Drug Metab Dispos 2021; 49:668-678. [PMID: 34035124 DOI: 10.1124/dmd.120.000333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and PXR/CAR knockout (KO) HepaRG cells, as well as a PXR reporter gene assay, were used to investigate the mechanism of CYP3A4 and CYP2B6 induction by prototypical substrates and a group of compounds from the Merck KGaA oncology drug discovery pipeline. The basal and inducible gene expression of CYP3A4 and CYP2B6 of nuclear hormone receptor (NHR) KO HepaRG relative to control HepaRG was characterized. The basal expression of CYP3A4 was markedly higher in the PXR (10-fold) and CAR (11-fold) KO cell lines compared with control HepaRG, whereas inducibility was substantially lower. Inversely, basal expression of CYP3A4 in PXR/CAR double KO (dKO) was low (10-fold reduction). Basal CYP2B6 expression was high in PXR KO (9-fold) cells which showed low inducibility, whereas the basal expression remained unchanged in CAR and dKO cell lines compared with control cells. Most of the test compounds induced CYP3A4 and CYP2B6 via PXR and, to a lesser extent, via CAR. Furthermore, other non-NHR-driven induction mechanisms were implicated, either alone or in addition to NHRs. Notably, 5 of the 16 compounds (31%) that were PXR inducers in HepaRG did not activate PXR in the reporter gene assay, illustrating the limitations of this system. This study indicates that HepaRG is a highly sensitive system fit for early screening of cytochrome P450 (P450) induction in drug discovery. Furthermore, it shows the applicability of HepaRG NHR KO cells as tools to deconvolute mechanisms of P450 induction using novel compounds representative for oncology drug discovery. SIGNIFICANCE STATEMENT: This work describes the identification of induction mechanisms of CYP3A4 and CYP2B6 for an assembly of oncology drug candidates using HepaRG nuclear hormone receptor knockout and displays its advantages compared to a pregnane X receptor reporter gene assay. With this study, risk assessment of drug candidates in early drug development can be improved.
Collapse
Affiliation(s)
- Lena C Preiss
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| | - Ruoqi Liu
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| | - Philip Hewitt
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| | - David Thompson
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| | - Katrin Georgi
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| | - Lassina Badolo
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| | - Volker M Lauschke
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| | - Carl Petersson
- Departments of Drug Metabolism and Pharmacokinetics (L.C.P., R.L., K.G., L.B., C.P.) and Early Chemical and Preclinical Safety (P.H.), Merck KGaA, Darmstadt, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (L.C.P., V.M.L.); and Research & Development, In Vitro Safety Systems, MilliporeSigma, St. Louis, Missouri (D.T.)
| |
Collapse
|
9
|
Hall A, Chanteux H, Ménochet K, Ledecq M, Schulze MSED. Designing Out PXR Activity on Drug Discovery Projects: A Review of Structure-Based Methods, Empirical and Computational Approaches. J Med Chem 2021; 64:6413-6522. [PMID: 34003642 DOI: 10.1021/acs.jmedchem.0c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This perspective discusses the role of pregnane xenobiotic receptor (PXR) in drug discovery and the impact of its activation on CYP3A4 induction. The use of structural biology to reduce PXR activity on drug discovery projects has become more common in recent years. Analysis of this work highlights several important molecular interactions, and the resultant structural modifications to reduce PXR activity are summarized. The computational approaches undertaken to support the design of new drugs devoid of PXR activation potential are also discussed. Finally, the SAR of empirical design strategies to reduce PXR activity is reviewed, and the key SAR transformations are discussed and summarized. In conclusion, this perspective demonstrates that PXR activity can be greatly diminished or negated on active drug discovery projects with the knowledge now available. This perspective should be useful to anyone who seeks to reduce PXR activity on a drug discovery project.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | | | | - Marie Ledecq
- UCB, Avenue de l'Industrie, Braine-L'Alleud 1420, Belgium
| | | |
Collapse
|
10
|
Houck KA, Simha A, Bone A, Doering JA, Vliet SMF, LaLone C, Medvedev A, Makarov S. Evaluation of a multiplexed, multispecies nuclear receptor assay for chemical hazard assessment. Toxicol In Vitro 2021; 72:105016. [PMID: 33049310 PMCID: PMC11267479 DOI: 10.1016/j.tiv.2020.105016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
Sensitivity to potential endocrine disrupting chemicals in the environment varies across species and is influenced by sequence conservation of their nuclear receptor targets. Here, we evaluated a multiplexed, in vitro assay testing receptors relevant to endocrine and metabolic disruption from five species. The TRANS-FACTORIAL™ system of human nuclear receptors was modified to include additional species: mouse (Mus musculus), frog (Xenopus laevis), zebrafish (Danio rerio), chicken (Gallus gallus), and turtle (Chrysemys picta). Receptors regulating endocrine function and xenobiotic recognition were included, specifically: ERα, ERβ, AR, TRα, TRβ, PPARγ and PXR. The assay, ECOTOX-FACTORIAL™, was evaluated with 191 chemicals enriched with known receptor ligands. Hierarchical clustering of potency values demonstrated strong coherence of receptor families. Interspecies comparisons of responses within a receptor family showed moderate to high concordance for potencies under 50 μM. PPARγ showed high concordance between mammalian species, 89%, but only 63% between mammalian and zebrafish. For chemicals with potencies below 1 μM, concordances were 89-100% for all receptors except PXR. Concordance showed a strong positive relationship to ligand-binding domain sequence similarity and critical amino acid residues obtained by the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool. In combination with SeqAPASS, ECOTOX-FACTORIAL may provide efficient screening of important receptors to identify species of high priority for effects monitoring.
Collapse
Affiliation(s)
- Keith A Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Anita Simha
- ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States
| | - Audrey Bone
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jon A Doering
- National Research Council, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sara M F Vliet
- Office of Research and Development, Center for Computational Toxicology and Ecology, Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Duluth, MN 55804, USA
| | - Carlie LaLone
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, United States of America
| | - Alex Medvedev
- Attagene, Inc., 7030 Kit Creek Rd, Morrisville, NC 27560, United States of America
| | - Sergei Makarov
- Attagene, Inc., 7030 Kit Creek Rd, Morrisville, NC 27560, United States of America
| |
Collapse
|
11
|
Vlach J, Bender AT, Przetak M, Pereira A, Deshpande A, Johnson TL, Reissig S, Tzvetkov E, Musil D, Morse NT, Haselmayer P, Zimmerli SC, Okitsu SL, Walsky RL, Sherer B. Discovery of M5049: A Novel Selective Toll-Like Receptor 7/8 Inhibitor for Treatment of Autoimmunity. J Pharmacol Exp Ther 2021; 376:397-409. [PMID: 33328334 DOI: 10.1124/jpet.120.000275] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor (TLR) 7 and TLR8 are transmembrane receptors that recognize single-stranded RNA. Activation of these receptors results in immune cell stimulation and inflammatory cytokine production, which is normally a protective host response. However, aberrant activation of TLR7/8 is potentially pathogenic and linked to progression of certain autoimmune diseases such as lupus. Thus, we hypothesize that an inhibitor that blocks TLR7/8 would be an effective therapeutic treatment. Prior efforts to develop inhibitors of TLR7/8 have been largely unsuccessful as a result of the challenge of producing a small-molecule inhibitor for these difficult targets. Here, we report the characterization of M5049 and compound 2, molecules which were discovered in a medicinal chemistry campaign to produce dual TLR7/8 inhibitors with drug-like properties. Both compounds showed potent and selective activity in a range of cellular assays for inhibition of TLR7/8 and block synthetic ligands and natural endogenous RNA ligands such as microRNA and Alu RNA. M5049 was found to be potent in vivo as TLR7/8 inhibition efficaciously treated disease in several murine lupus models and, interestingly, was efficacious in a disease context in which TLR7/8 activity has not previously been considered a primary disease driver. Furthermore, M5049 had greater potency in disease models than expected based on its in vitro potency and pharmacokinetic/pharmacodynamic properties. Because of its preferential accumulation in tissues, and ability to block multiple TLR7/8 RNA ligands, M5049 may be efficacious in treating autoimmunity and has the potential to provide benefit to a variety of patients with varying disease pathogenesis. SIGNIFICANCE STATEMENT: This study reports discovery of a novel toll-like receptor (TLR) 7 and TLR8 inhibitor (M5049); characterizes its binding mode, potency/selectivity, and pharmacokinetic and pharmacodynamic properties; and demonstrates its potential for treating autoimmune diseases in two mouse lupus models. TLR7/8 inhibition is unique in that it may block both innate and adaptive autoimmunity; thus, this study suggests that M5049 has the potential to benefit patients with autoimmune diseases.
Collapse
Affiliation(s)
- Jaromir Vlach
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Andrew T Bender
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Melinda Przetak
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Albertina Pereira
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Aditee Deshpande
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Theresa L Johnson
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Sonja Reissig
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Evgeni Tzvetkov
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Djordje Musil
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Noune Tahmassian Morse
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Philipp Haselmayer
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Simone C Zimmerli
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Shinji L Okitsu
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Robert L Walsky
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| | - Brian Sherer
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts (J.V., A.T.B., M.P., A.P., A.D., T.J., E.T., N.T.M., S.F.Z., S.L.O., R.W., B.S.) and Merck KGaA, Darmstadt, Germany (S.R., D.M., P.H.)
| |
Collapse
|
12
|
Fuhr LM, Marok FZ, Hanke N, Selzer D, Lehr T. Pharmacokinetics of the CYP3A4 and CYP2B6 Inducer Carbamazepine and Its Drug-Drug Interaction Potential: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2021; 13:270. [PMID: 33671323 PMCID: PMC7922031 DOI: 10.3390/pharmaceutics13020270] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The anticonvulsant carbamazepine is frequently used in the long-term therapy of epilepsy and is a known substrate and inducer of cytochrome P450 (CYP) 3A4 and CYP2B6. Carbamazepine induces the metabolism of various drugs (including its own); on the other hand, its metabolism can be affected by various CYP inhibitors and inducers. The aim of this work was to develop a physiologically based pharmacokinetic (PBPK) parent-metabolite model of carbamazepine and its metabolite carbamazepine-10,11-epoxide, including carbamazepine autoinduction, to be applied for drug-drug interaction (DDI) prediction. The model was developed in PK-Sim, using a total of 92 plasma concentration-time profiles (dosing range 50-800 mg), as well as fractions excreted unchanged in urine measurements. The carbamazepine model applies metabolism by CYP3A4 and CYP2C8 to produce carbamazepine-10,11-epoxide, metabolism by CYP2B6 and UDP-glucuronosyltransferase (UGT) 2B7 and glomerular filtration. The carbamazepine-10,11-epoxide model applies metabolism by epoxide hydroxylase 1 (EPHX1) and glomerular filtration. Good DDI performance was demonstrated by the prediction of carbamazepine DDIs with alprazolam, bupropion, erythromycin, efavirenz and simvastatin, where 14/15 DDI AUClast ratios and 11/15 DDI Cmax ratios were within the prediction success limits proposed by Guest et al. The thoroughly evaluated model will be freely available in the Open Systems Pharmacology model repository.
Collapse
Affiliation(s)
| | | | | | | | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.M.F.); (F.Z.M.); (N.H.); (D.S.)
| |
Collapse
|
13
|
Garzel B, Zhang L, Huang SM, Wang H. A Change in Bile Flow: Looking Beyond Transporter Inhibition in the Development of Drug-induced Cholestasis. Curr Drug Metab 2020; 20:621-632. [PMID: 31288715 DOI: 10.2174/1389200220666190709170256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Drug-induced Liver Injury (DILI) has received increasing attention over the past decades, as it represents the leading cause of drug failure and attrition. One of the most prevalent and severe forms of DILI involves the toxic accumulation of bile acids in the liver, known as Drug-induced Cholestasis (DIC). Traditionally, DIC is studied by exploring the inhibition of hepatic transporters such as Bile Salt Export Pump (BSEP) and multidrug resistance-associated proteins, predominantly through vesicular transport assays. Although this approach has identified numerous drugs that alter bile flow, many DIC drugs do not demonstrate prototypical transporter inhibition, but rather are associated with alternative mechanisms. METHODS We undertook a focused literature search on DIC and biliary transporters and analyzed peer-reviewed publications over the past two decades or so. RESULTS We have summarized the current perception regarding DIC, biliary transporters, and transcriptional regulation of bile acid homeostasis. A growing body of literature aimed to identify alternative mechanisms in the development of DIC has been evaluated. This review also highlights current in vitro approaches used for prediction of DIC. CONCLUSION Efforts have continued to focus on BSEP, as it is the primary route for hepatic biliary clearance. In addition to inhibition, drug-induced BSEP repression or the combination of these two has emerged as important alternative mechanisms leading to DIC. Furthermore, there has been an evolution in the approaches to studying DIC including 3D cell cultures and computational modeling.
Collapse
Affiliation(s)
- Brandy Garzel
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Becton Dickinson, 54 Loveton Circle, Sparks, MD 21152, United States
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States.,Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, FDA, Silver Spring, MD 20993, United States
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| |
Collapse
|
14
|
Endo-Tsukude C, Kato M, Kaneko A, Iida S, Kuramoto S, Ishigai M, Hamada A. Risk of CYP2C9 induction analyzed by a relative factor approach with human hepatocytes. Drug Metab Pharmacokinet 2019; 34:325-333. [DOI: 10.1016/j.dmpk.2019.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/23/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
15
|
Advanced In Vitro HepaRG Culture Systems for Xenobiotic Metabolism and Toxicity Characterization. Eur J Drug Metab Pharmacokinet 2018; 44:437-458. [DOI: 10.1007/s13318-018-0533-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Kvist AJ, Kanebratt KP, Walentinsson A, Palmgren H, O'Hara M, Björkbom A, Andersson LC, Ahlqvist M, Andersson TB. Critical differences in drug metabolic properties of human hepatic cellular models, including primary human hepatocytes, stem cell derived hepatocytes, and hepatoma cell lines. Biochem Pharmacol 2018; 155:124-140. [PMID: 29953844 DOI: 10.1016/j.bcp.2018.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Primary human hepatocytes (PHH), HepaRG™, HepG2, and two sources of induced pluripotent stem cell (iPSC) derived hepatocytes were characterized regarding gene expression and function of key hepatic proteins, important for the metabolic fate of drugs. The gene expression PCA analysis showed a distance between the two iPSC derived hepatocytes as well as the HepG2 and HepaRG™ cells to the three PHH donors and PHH pool, which were clustered more closely together. Correlation-based hierarchical analysis clustered HepG2 close to the stem cell derived hepatocytes both when the expression of 91 genes related to liver function or only cytochrome P450 (P450) genes were analyzed indicating the non-liver feature and a similar low P450 profile in these cell models. The specific P450 activities and the metabolic pattern of well-characterized drug substances in the cell models demonstrated that iPSC derived hepatocytes had modest levels of CYP3A and CYP2C9, while CYP1A2, 2B6, 2C8, 2C9, 2C19, and 2D6 were barely detectable. High expression of several extrahepatic P450s such as CYP1A1 and 1B1 detected in the stem cell derived hepatocytes may have significant effects on metabolite profiles. However, one of the iPSC derived hepatocytes demonstrated significant combined P450 and conjugating enzyme activity of certain drugs. HepaRG™ cells showed many metabolic properties similar to PHHs and will in many respects be a good model in studies of metabolic pathways and induction of drug metabolism whereas there is still ground to cover before iPSC derived hepatocytes will be seen as a substitute to PHH in drug metabolism studies.
Collapse
Affiliation(s)
- Alexander J Kvist
- IMED Operations Project Management, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Walentinsson
- Translational Sciences, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Palmgren
- Bioscience Diabetes, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Anders Björkbom
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Linda C Andersson
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marie Ahlqvist
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Ott LM, Ramachandran K, Stehno-Bittel L. An Automated Multiplexed Hepatotoxicity and CYP Induction Assay Using HepaRG Cells in 2D and 3D. SLAS DISCOVERY 2017; 22:614-625. [PMID: 28346810 DOI: 10.1177/2472555217701058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Drug-induced liver injury (DILI) and drug-drug interactions (DDIs) are concerns when developing safe and efficacious compounds. We have developed an automated multiplex assay to detect hepatotoxicity (i.e., ATP depletion) and metabolism (i.e., cytochrome P450 1A [CYP1A] and cytochrome P450 3A4 [CYP3A4] enzyme activity) in two-dimensional (2D) and three-dimensional (3D) cell cultures. HepaRG cells were cultured in our proprietary micromold plates and produced spheroids. HepaRG cells, in 2D or 3D, expressed liver-specific proteins throughout the culture period, although 3D cultures consistently exhibited higher albumin secretion and CYP1A/CYP3A4 enzyme activity than 2D cultures. Once the spheroid hepatic quality was assessed, 2D and 3D HepaRGs were challenged to a panel of DILI- and CYP-inducing compounds for 7 days. The 3D HepaRG model had a 70% sensitivity to liver toxins at 7 days, while the 2D model had a 60% sensitivity. In both the 2D and 3D HepaRG models, 83% of compounds were predicted to be CYP inducers after 7 days of compound exposure. Combined, our results demonstrate that an automated multiplexed liver spheroid system is a promising cell-based method to evaluate DILI and DDI for early-stage drug discovery.
Collapse
Affiliation(s)
| | | | - Lisa Stehno-Bittel
- 1 Likarda, LLC, Kansas City, KS, USA.,2 University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
18
|
Jones BC, Rollison H, Johansson S, Kanebratt KP, Lambert C, Vishwanathan K, Andersson TB. Managing the Risk of CYP3A Induction in Drug Development: A Strategic Approach. Drug Metab Dispos 2017; 45:35-41. [PMID: 27777246 DOI: 10.1124/dmd.116.072025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
Induction of cytochrome P450 (P450) can impact the efficacy and safety of drug molecules upon multiple dosing with coadministered drugs. This strategy is focused on CYP3A since the majority of clinically relevant cases of P450 induction are related to these enzymes. However, the in vitro evaluation of induction is applicable to other P450 enzymes; however, the in vivo relevance cannot be assessed because the scarcity of relevant clinical data. In the preclinical phase, compounds are screened using pregnane X receptor reporter gene assay, and if necessary structure-activity relationships (SAR) are developed. When projects progress toward the clinical phase, induction studies in a hepatocyte-derived model using HepaRG cells will generate enough robust data to assess the compound's induction liability in vivo. The sensitive CYP3A biomarker 4β-hydroxycholesterol is built into the early clinical phase I studies for all candidates since rare cases of in vivo induction have been found without any induction alerts from the currently used in vitro methods. Using this model, the AstraZeneca induction strategy integrates in vitro assays and in vivo studies to make a comprehensive assessment of the induction potential of new chemical entities. Convincing data that support the validity of both the in vitro models and the use of the biomarker can be found in the scientific literature. However, regulatory authorities recommend the use of primary human hepatocytes and do not advise the use of sensitive biomarkers. Therefore, primary human hepatocytes and midazolam studies will be conducted during the clinical program as required for regulatory submission.
Collapse
Affiliation(s)
- Barry C Jones
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.).
| | - Helen Rollison
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Susanne Johansson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Kajsa P Kanebratt
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Craig Lambert
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Karthick Vishwanathan
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Tommy B Andersson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| |
Collapse
|
19
|
Williamson B, Lorbeer M, Mitchell MD, Brayman TG, Riley RJ. Evaluation of a novel PXR-knockout in HepaRG ™ cells. Pharmacol Res Perspect 2016; 4:e00264. [PMID: 27713827 PMCID: PMC5045942 DOI: 10.1002/prp2.264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/10/2016] [Indexed: 11/08/2022] Open
Abstract
The nuclear pregnane X receptor (PXR) regulates the expression of genes involved in the metabolism, hepatobiliary disposition, and toxicity of drugs and endogenous compounds. PXR is a promiscuous nuclear hormone receptor (NHR) with significant ligand and DNA‐binding crosstalk with the constitutive androstane receptor (CAR); hence, defining the precise role of PXR in gene regulation is challenging. Here, utilising a novel PXR‐knockout (KO) HepaRG cell line, real‐time PCR analysis was conducted to determine PXR involvement for a range of inducers. The selective PXR agonist rifampicin, a selective CAR activator, 6‐(4‐chlorophenyl)imidazo[2,1‐b][1,3]thiazole‐5‐carbaldehyde O‐(3,4‐dichlorobenzyl)oxime (CITCO), and dual activators of CAR and PXR including phenobarbital (PB) were analyzed. HepaRG control cells (5F clone) were responsive to prototypical inducers of CYP2B6 and CYP3A4. No response was observed in the PXR‐KO cells treated with rifampicin. Induction of CYP3A4 by PB, artemisinin, and phenytoin was also much reduced in PXR‐KO cells, while the response to CITCO was maintained. This finding is in agreement with the abolition of functional PXR expression. The apparent EC50 values for PB were in agreement between the cell lines; however, CITCO was ~threefold (0.3 μmol/L vs. 1 μmol/L) lower in the PXR‐KO cells compared with the 5F cells for CYP2B6 induction. Results presented support the application of the novel PXR‐KO cells in the definitive assignment of PXR‐mediated CYP2B6 and CYP3A4 induction. Utilization of such cell lines will allow advancement in composing structure activity relationships rather than relying predominantly on pharmacological manipulations and provide in‐depth mechanistic evaluation.
Collapse
Affiliation(s)
- Beth Williamson
- Evotec (UK) Ltd 114 Innovation Drive Abingdon Oxfordshire OX14 4RZ United Kingdom
| | - Mathias Lorbeer
- Evotec (UK) Ltd 114 Innovation Drive Abingdon Oxfordshire OX14 4RZ United Kingdom
| | | | | | - Robert J Riley
- Evotec (UK) Ltd 114 Innovation Drive Abingdon Oxfordshire OX14 4RZ United Kingdom
| |
Collapse
|
20
|
Almond LM, Mukadam S, Gardner I, Okialda K, Wong S, Hatley O, Tay S, Rowland-Yeo K, Jamei M, Rostami-Hodjegan A, Kenny JR. Prediction of Drug-Drug Interactions Arising from CYP3A induction Using a Physiologically Based Dynamic Model. Drug Metab Dispos 2016; 44:821-32. [PMID: 27026679 PMCID: PMC4885489 DOI: 10.1124/dmd.115.066845] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
Using physiologically based pharmacokinetic modeling, we predicted the magnitude of drug-drug interactions (DDIs) for studies with rifampicin and seven CYP3A4 probe substrates administered i.v. (10 studies) or orally (19 studies). The results showed a tendency to underpredict the DDI magnitude when the victim drug was administered orally. Possible sources of inaccuracy were investigated systematically to determine the most appropriate model refinement. When the maximal fold induction (Indmax) for rifampicin was increased (from 8 to 16) in both the liver and the gut, or when the Indmax was increased in the gut but not in liver, there was a decrease in bias and increased precision compared with the base model (Indmax = 8) [geometric mean fold error (GMFE) 2.12 vs. 1.48 and 1.77, respectively]. Induction parameters (mRNA and activity), determined for rifampicin, carbamazepine, phenytoin, and phenobarbital in hepatocytes from four donors, were then used to evaluate use of the refined rifampicin model for calibration. Calibration of mRNA and activity data for other inducers using the refined rifampicin model led to more accurate DDI predictions compared with the initial model (activity GMFE 1.49 vs. 1.68; mRNA GMFE 1.35 vs. 1.46), suggesting that robust in vivo reference values can be used to overcome interdonor and laboratory-to-laboratory variability. Use of uncalibrated data also performed well (GMFE 1.39 and 1.44 for activity and mRNA). As a result of experimental variability (i.e., in donors and protocols), it is prudent to fully characterize in vitro induction with prototypical inducers to give an understanding of how that particular system extrapolates to the in vivo situation when using an uncalibrated approach.
Collapse
Affiliation(s)
- Lisa M Almond
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Sophie Mukadam
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Iain Gardner
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Krystle Okialda
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Susan Wong
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Oliver Hatley
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Suzanne Tay
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Karen Rowland-Yeo
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Masoud Jamei
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| | - Jane R Kenny
- Simcyp (a Certara Company), Sheffield, United Kingdom (L.M.A., I.G., O.H., K.R.-Y., M.J., A.R.-H.); DMPK, Genentech Inc., South San Francisco, California (S.M., K.O., S.W., S.T., J.R.K.); and Manchester Pharmacy School, University of Manchester, United Kingdom (A.R.-H.)
| |
Collapse
|
21
|
Modulation of CYP3A4 activity alters the cytotoxicity of lipophilic phycotoxins in human hepatic HepaRG cells. Toxicol In Vitro 2016; 33:136-46. [DOI: 10.1016/j.tiv.2016.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/02/2016] [Accepted: 02/17/2016] [Indexed: 11/23/2022]
|
22
|
Dvorak Z. Opportunities and challenges in using human hepatocytes in cytochromes P450 induction assays. Expert Opin Drug Metab Toxicol 2016; 12:169-74. [PMID: 26612411 DOI: 10.1517/17425255.2016.1125881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Identification of inducers of xenobiotic-metabolizing cytochromes P450 (CYP) is of topical interest. The issue mainly concerns three sectors: (i) preclinical testing of drug candidates and testing existing drugs and their combinations; (ii) food safety applications with regard to additives, contaminants, and adulterants; (iii) environmental applications, comprising detection and identification of endocrine disruptors. AREAS COVERED A literature search was performed using the PubMed database, covering state-of-the-art of human hepatocyte (HH) culture use, and their exploitation for the identification of P450 inducers. A list of CYP inducers identified by HHs is provided. EXPERT OPINION Primary cultures of HHs had long been considered as a gold standard for induction assays of xenobiotic-metabolizing enzymes. Owing to several shortcomings of HHs, alternative approaches such as immortalization of HHs, use of cell lines, generation of clonal cell lines from HHs, use of induced pluripotent stem (iPS) cells, cells from humanized animals, etc., were employed. While yielding particular advantage, overall, alternatives to HHs still remain an avenue for discrete applications or technical situations. Thus, HHs remain the most suitable model for complex CYP induction studies. The summary may be effectively expressed by strength/weakness/opportunity/threats analysis.
Collapse
Affiliation(s)
- Zdenek Dvorak
- a Department of Cell Biology and Genetics, Faculty of Science , Palacky University Olomouc , Olomouc , Czech Republic
| |
Collapse
|
23
|
Vermet H, Raoust N, Ngo R, Esserméant L, Klieber S, Fabre G, Boulenc X. Evaluation of Normalization Methods To Predict CYP3A4 Induction in Six Fully Characterized Cryopreserved Human Hepatocyte Preparations and HepaRG Cells. Drug Metab Dispos 2016; 44:50-60. [PMID: 26467767 DOI: 10.1124/dmd.115.065581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/13/2015] [Indexed: 02/13/2025] Open
Abstract
Prediction of drug-drug interactions due to cytochrome P450 isoform 3A4 (CYP3A4) overexpression is important because this CYP isoform is involved in the metabolism of about 30% of clinically used drugs from almost all therapeutic categories. Therefore, it is mandatory to attempt to predict the potential of a new compound to induce CYP3A4. Among several in vitro-in vivo extrapolation methods recently proposed in the literature, an approach using a scaling factor, called a d factor, for a given hepatocyte batch to provide extrapolation between in vitro induction data and clinical outcome has been adopted by leading health authorities. We challenged the relevance of the calibration factor determined using a set of 15 well-known clinical CYP3A4 inducers or the potent CYP3A4 inducer rifampicin only. These investigations were conducted using six batches of human hepatocytes and an established HepaRG cell line. Our findings show that use of a calibration factor is preferable for clinical predictions, as shown previously by other investigators. Moreover, the present results also suggest that the accuracy of prediction through calculation of this factor is sufficient when rifampicin is considered alone, and the use of a larger set of fully characterized CYP3A4 clinical inducers is not required. For the established HepaRG cell line, the findings obtained in three experiments using a single batch of cells show a good prediction accuracy with or without the d factor. Additional investigations with different batches of HepaRG cell lines are needed to confirm these results.
Collapse
Affiliation(s)
- Hélène Vermet
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Platform (H.V., N.R., R.N., S.K., G.F., X.B.); Biostatistics and Programming, Clinical Sciences & Operations, Scientific Core Platform (L.E.), Sanofi Recherche & Développement, Montpellier, France
| | - Nathalie Raoust
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Platform (H.V., N.R., R.N., S.K., G.F., X.B.); Biostatistics and Programming, Clinical Sciences & Operations, Scientific Core Platform (L.E.), Sanofi Recherche & Développement, Montpellier, France
| | - Robert Ngo
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Platform (H.V., N.R., R.N., S.K., G.F., X.B.); Biostatistics and Programming, Clinical Sciences & Operations, Scientific Core Platform (L.E.), Sanofi Recherche & Développement, Montpellier, France
| | - Luc Esserméant
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Platform (H.V., N.R., R.N., S.K., G.F., X.B.); Biostatistics and Programming, Clinical Sciences & Operations, Scientific Core Platform (L.E.), Sanofi Recherche & Développement, Montpellier, France
| | - Sylvie Klieber
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Platform (H.V., N.R., R.N., S.K., G.F., X.B.); Biostatistics and Programming, Clinical Sciences & Operations, Scientific Core Platform (L.E.), Sanofi Recherche & Développement, Montpellier, France
| | - Gérard Fabre
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Platform (H.V., N.R., R.N., S.K., G.F., X.B.); Biostatistics and Programming, Clinical Sciences & Operations, Scientific Core Platform (L.E.), Sanofi Recherche & Développement, Montpellier, France
| | - Xavier Boulenc
- Drug Disposition Domain, Disposition, Safety and Animal Research Scientific Core Platform (H.V., N.R., R.N., S.K., G.F., X.B.); Biostatistics and Programming, Clinical Sciences & Operations, Scientific Core Platform (L.E.), Sanofi Recherche & Développement, Montpellier, France
| |
Collapse
|
24
|
Shehu AI, Li G, Xie W, Ma X. The pregnane X receptor in tuberculosis therapeutics. Expert Opin Drug Metab Toxicol 2015; 12:21-30. [PMID: 26592418 DOI: 10.1517/17425255.2016.1121381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Among the infectious diseases, tuberculosis (TB) remains the second most common cause of death after HIV. TB treatment requires the combination of multiple drugs including the rifamycin class. However, rifamycins are activators of human pregnane X receptor (PXR), a transcription factor that regulates drug metabolism, drug resistance, energy metabolism and immune response. Rifamycin-mediated PXR activation may affect the outcome of TB therapy. AREAS COVERED This review describes the role of PXR in modulating metabolism, efficacy, toxicity and resistance to anti-TB drugs; as well as polymorphisms of PXR that potentially affect TB susceptibility. EXPERT OPINION The wide range of PXR functions that mediate drug metabolism and toxicity in TB therapy are often underappreciated and thus understudied. Further studies are needed to determine the overall impact of PXR activation on the outcome of TB therapy.
Collapse
Affiliation(s)
- Amina I Shehu
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| | - Guangming Li
- b Department of Hepatology, the 6th People's Hospital of Zhengzhou , the Hospital for Infectious Diseases in Henan Province , Zhengzhou , China
| | - Wen Xie
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| | - Xiaochao Ma
- a Center for Pharmacogenetics, Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA 15261 , USA
| |
Collapse
|
25
|
Foo WYB, Tay HY, Chan ECY, Lau AJ. Meclizine, a pregnane X receptor agonist, is a direct inhibitor and mechanism-based inactivator of human cytochrome P450 3A. Biochem Pharmacol 2015; 97:320-30. [PMID: 26239802 DOI: 10.1016/j.bcp.2015.07.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022]
Abstract
Meclizine is an agonist of human pregnane X receptor (PXR). It increases CYP3A4 mRNA expression, but decreases CYP3A-catalyzed testosterone 6β-hydroxylation in primary cultures of human hepatocytes, as assessed at 24h after the last dose of meclizine. Therefore, the hypothesis to be tested is that meclizine inactivates human CYP3A enzymes. Our findings indicated that meclizine directly inhibited testosterone 6β-hydroxylation catalyzed by human liver microsomes, recombinant CYP3A4, and recombinant CYP3A5. The inhibition of human liver microsomal testosterone 6β-hydroxylation by meclizine occurred by a mixed mode and with an apparent Ki of 31±6μM. Preincubation of meclizine with human liver microsomes and NADPH resulted in a time- and concentration-dependent decrease in testosterone 6β-hydroxylation. The extent of inactivation required the presence of NADPH, was unaffected by nucleophilic trapping agents or reactive oxygen species scavengers, attenuated by a CYP3A substrate, and not reversed by dialysis. Meclizine selectively inactivated CYP3A4, but not CYP3A5. In contrast to meclizine, which has a di-substituted piperazine ring, norchlorcyclizine, which is a N-debenzylated meclizine metabolite with a mono-substituted piperazine ring, did not inactivate but directly inhibited hepatic microsomal CYP3A activity. In conclusion, meclizine inhibited human CYP3A enzymes by both direct inhibition and mechanism-based inactivation. In contrast, norchlorcyclizine is a direct inhibitor but not a mechanism-based inactivator. Furthermore, a PXR agonist may also be an inhibitor of a PXR-regulated enzyme, thereby giving rise to opposing effects on the functional activity of the enzyme and indicating the importance of measuring the catalytic activity of nuclear receptor-regulated enzymes.
Collapse
Affiliation(s)
- Winnie Yin Bing Foo
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Hwee Ying Tay
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | - Aik Jiang Lau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
26
|
Riley RJ, Wilson CE. Cytochrome P450 time-dependent inhibition and induction: advances in assays, risk analysis and modelling. Expert Opin Drug Metab Toxicol 2015; 11:557-72. [PMID: 25659570 DOI: 10.1517/17425255.2015.1013095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION It is widely accepted that current practice of polypharmacy inevitably increases the incidence of drug-drug interactions (DDIs). Serious DDIs are a major liability for new molecular entities entering the pharmaceutical market. Various strategies are employed to avoid problematic compounds for clinical development. Progress made with reversible CYP DDIs has prompted a switch to study and model time-dependent inhibition and induction interactions. AREAS COVERED An overview of popular experimental practices is presented with discussion of techniques and algorithms used to analyse the clinical DDI risk. Emphasis is placed on the transition from early, simple static equations, via more complex net mechanistic, static models to dynamic approaches involving multiple perpetrators and metabolites, simultaneous inhibition and induction. EXPERT OPINION Inclusion of the more conservative terms for parameters required for DDI evaluation may eliminate promising chemical space, encourages poor practice and hampers innovation. Breakthroughs have originated from understanding of 'outliers' from such analyses where CYP enzyme-transporter interplay may be involved. The role of key transporters in drug disposition is firmly established as the chemistry required to address new targets deviates from traditional 'drug-like' space. Attempts to model more complex interactions for substrates of both CYP enzymes and drug transporters are still in their infancy and will benefit from dynamic modelling.
Collapse
Affiliation(s)
- Robert J Riley
- Evotec (UK) Ltd , 114 Innovation Drive, Milton Park, Abingdon, Oxon, OX14 4RZ , UK +44 1235 861561 ; +44 1235 863139 ;
| | | |
Collapse
|
27
|
Rubin K, Janefeldt A, Andersson L, Berke Z, Grime K, Andersson TB. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug Metab Dispos 2015; 43:119-25. [PMID: 25371393 DOI: 10.1124/dmd.114.059246] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The suppression of hepatic cytochrome P450 (P450) expression during inflammatory and infectious diseases and the relief of this suppression by successful disease treatment have been previously demonstrated to impact drug disposition. To address this clinically relevant phenomenon preclinically, the effect of proinflammatory cytokines on P450 isoenzymes in human hepatocytes has been examined by several researchers. In the present study we used the human hepatoma cell line (HepaRG) and cryopreserved primary human hepatocytes to investigate the effects of various inflammatory stimuli on P450 levels with the aim of further characterizing HepaRG cells as a useful surrogate for primary hepatocytes. In this study, HepaRG cells were exposed to bacterial lipopolysaccharide (LPS), interleukin-6 (IL-6), and interleukin-18 (IL-18) for 48 or 72 hours. The effects on CYP1A2, CYP2B6, and CYP3A4 mRNA and catalytic activity (phenacetin-O-deethylase, bupropion-hydroxylase, and midazolam-1'-hydroxylase) were measured. Cryopreserved pooled plateable hepatocytes were also exposed to IL-6 or IL-18 for 48 hours, and the effects on CYP1A2, CYP2B6, and CYP3A4 mRNA levels were measured. The exposure of HepaRG cells to IL-6 and LPS resulted in suppression of CYP1A2, CYP2B6, and CYP3A4 mRNA levels as well as their catalytic activities. However, no suppression of P450 activities or mRNA levels was observed after exposure to IL-18. Similar results on CYP1A2, CYP2B6, and CYP3A4 mRNA levels were observed with primary hepatocytes. The present study indicates that different proinflammatory mediators influence the expression of P450 differentially and that HepaRG cells may be used as an alternative to human hepatocytes for studies on cytokine-mediated suppression of drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Katarina Rubin
- AstraZeneca R&D, Mölndal, Sweden; and Respiratory, Inflammation and Autoimmunity Innovative Medicines Drug Metabolism and Pharmacokinetics (K.R., K.G.), Cardiovascular and Metabolic Diseases Innovative Medicines (A.J., T.B.A.), Drug Safety and Metabolism Drug Metabolism and Pharmacokinetics (L.A.), Personalized Healthcare and Biomarkers (Z.B.), and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Annika Janefeldt
- AstraZeneca R&D, Mölndal, Sweden; and Respiratory, Inflammation and Autoimmunity Innovative Medicines Drug Metabolism and Pharmacokinetics (K.R., K.G.), Cardiovascular and Metabolic Diseases Innovative Medicines (A.J., T.B.A.), Drug Safety and Metabolism Drug Metabolism and Pharmacokinetics (L.A.), Personalized Healthcare and Biomarkers (Z.B.), and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Linda Andersson
- AstraZeneca R&D, Mölndal, Sweden; and Respiratory, Inflammation and Autoimmunity Innovative Medicines Drug Metabolism and Pharmacokinetics (K.R., K.G.), Cardiovascular and Metabolic Diseases Innovative Medicines (A.J., T.B.A.), Drug Safety and Metabolism Drug Metabolism and Pharmacokinetics (L.A.), Personalized Healthcare and Biomarkers (Z.B.), and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Zsofia Berke
- AstraZeneca R&D, Mölndal, Sweden; and Respiratory, Inflammation and Autoimmunity Innovative Medicines Drug Metabolism and Pharmacokinetics (K.R., K.G.), Cardiovascular and Metabolic Diseases Innovative Medicines (A.J., T.B.A.), Drug Safety and Metabolism Drug Metabolism and Pharmacokinetics (L.A.), Personalized Healthcare and Biomarkers (Z.B.), and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Ken Grime
- AstraZeneca R&D, Mölndal, Sweden; and Respiratory, Inflammation and Autoimmunity Innovative Medicines Drug Metabolism and Pharmacokinetics (K.R., K.G.), Cardiovascular and Metabolic Diseases Innovative Medicines (A.J., T.B.A.), Drug Safety and Metabolism Drug Metabolism and Pharmacokinetics (L.A.), Personalized Healthcare and Biomarkers (Z.B.), and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Tommy B Andersson
- AstraZeneca R&D, Mölndal, Sweden; and Respiratory, Inflammation and Autoimmunity Innovative Medicines Drug Metabolism and Pharmacokinetics (K.R., K.G.), Cardiovascular and Metabolic Diseases Innovative Medicines (A.J., T.B.A.), Drug Safety and Metabolism Drug Metabolism and Pharmacokinetics (L.A.), Personalized Healthcare and Biomarkers (Z.B.), and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| |
Collapse
|
28
|
Characterization of the Transmembrane Transport and Absolute Bioavailability of the HCV Protease Inhibitor Danoprevir. Clin Pharmacokinet 2014; 54:537-49. [DOI: 10.1007/s40262-014-0222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
30
|
Zhang JG, Ho T, Callendrello AL, Clark RJ, Santone EA, Kinsman S, Xiao D, Fox LG, Einolf HJ, Stresser DM. Evaluation of calibration curve-based approaches to predict clinical inducers and noninducers of CYP3A4 with plated human hepatocytes. Drug Metab Dispos 2014; 42:1379-91. [PMID: 24924386 DOI: 10.1124/dmd.114.058602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 (P450) induction is often considered a liability in drug development. Using calibration curve-based approaches, we assessed the induction parameters R3 (a term indicating the amount of P450 induction in the liver, expressed as a ratio between 0 and 1), relative induction score, Cmax/EC50, and area under the curve (AUC)/F2 (the concentration causing 2-fold increase from baseline of the dose-response curve), derived from concentration-response curves of CYP3A4 mRNA and enzyme activity data in vitro, as predictors of CYP3A4 induction potential in vivo. Plated cryopreserved human hepatocytes from three donors were treated with 20 test compounds, including several clinical inducers and noninducers of CYP3A4. After the 2-day treatment, CYP3A4 mRNA levels and testosterone 6β-hydroxylase activity were determined by real-time reverse transcription polymerase chain reaction and liquid chromatography-tandem mass spectrometry analysis, respectively. Our results demonstrated a strong and predictive relationship between the extent of midazolam AUC change in humans and the various parameters calculated from both CYP3A4 mRNA and enzyme activity. The relationships exhibited with non-midazolam in vivo probes, in aggregate, were unsatisfactory. In general, the models yielded better fits when unbound rather than total plasma Cmax was used to calculate the induction parameters, as evidenced by higher R(2) and lower root mean square error (RMSE) and geometric mean fold error. With midazolam, the R3 cut-off value of 0.9, as suggested by US Food and Drug Administration guidance, effectively categorized strong inducers but was less effective in classifying midrange or weak inducers. This study supports the use of calibration curves generated from in vitro mRNA induction response curves to predict CYP3A4 induction potential in human. With the caveat that most compounds evaluated here were not strong inhibitors of enzyme activity, testosterone 6β-hydroxylase activity was also demonstrated to be a strong predictor of CYP3A4 induction potential in this assay model.
Collapse
Affiliation(s)
- J George Zhang
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Thuy Ho
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Alanna L Callendrello
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Robert J Clark
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Elizabeth A Santone
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Sarah Kinsman
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Deqing Xiao
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Lisa G Fox
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - Heidi J Einolf
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| | - David M Stresser
- Corning Gentest Contract Research Services, Corning Life Sciences, Woburn, Massachusetts (J.G.Z., T.H., A.L.C., R.J.C., E.A.S., S.K., D.X., L.G.F., D.M.S.); and Novartis Institutes for Biomedical Research, East Hanover, New Jersey (H.J.E.)
| |
Collapse
|
31
|
Lee JK, Chung HJ, Fischer L, Fischer J, Gonzalez FJ, Jeong H. Human placental lactogen induces CYP2E1 expression via PI 3-kinase pathway in female human hepatocytes. Drug Metab Dispos 2014; 42:492-9. [PMID: 24408518 PMCID: PMC3965907 DOI: 10.1124/dmd.113.055384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/08/2014] [Indexed: 12/29/2022] Open
Abstract
The state of pregnancy is known to alter hepatic drug metabolism. Hormones that rise during pregnancy are potentially responsible for the changes. Here we report the effects of prolactin (PRL), placental lactogen (PL), and growth hormone variant (GH-v) on expression of major hepatic cytochromes P450 expression and a potential molecular mechanism underlying CYP2E1 induction by PL. In female human hepatocytes, PRL and GH-v showed either no effect or small and variable effects on mRNA expression of CYP1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, and 3A5. On the other hand, PL increased expression level of CYP2E1 mRNA with corresponding increases in CYP2E1 protein and activity levels. Results from hepatocytes and HepaRG cells indicate that PL does not affect the expression or activity of HNF1α, the known transcriptional activator of basal CYP2E1 expression. Furthermore, transient transfection studies and Western blot results showed that STAT signaling, the previously known mediator of PL actions in certain tissues, does not play a role in CYP2E1 induction by PL. A chemical inhibitor of PI3-kinase signaling significantly repressed the CYP2E1 induction by PL in human hepatocytes, suggesting involvement of PI3-kinase pathway in CYP2E1 regulation by PL. CYP2E1-humanized mice did not exhibit enhanced CYP2E1 expression during pregnancy, potentially because of interspecies differences in PL physiology. Taken together, these results indicate that PL induces CYP2E1 expression via PI3-kinase pathway in human hepatocytes.
Collapse
Affiliation(s)
- Jin Kyung Lee
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois (J.K.L., H.J.C., L.F., J.F., H.J.); College of Pharmacy, Gyeongsang National University, Jinju, South Korea (H.J.C.); Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (F.J.G.); and Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois (H.J.)
| | | | | | | | | | | |
Collapse
|
32
|
Comparative study of the effects of antituberculosis drugs and antiretroviral drugs on cytochrome P450 3A4 and P-glycoprotein. Antimicrob Agents Chemother 2014; 58:3168-76. [PMID: 24663015 DOI: 10.1128/aac.02278-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Predicting drug-drug interactions (DDIs) related to cytochrome P450 (CYP), such as CYP3A4 and one of the major drug transporters, P-glycoprotein (P-gp), is crucial in the development of future chemotherapeutic regimens to treat tuberculosis (TB) and TB/AIDS coinfection cases. We evaluated the effects of 30 anti-TB drugs, novel candidates, macrolides, and representative antiretroviral drugs on human CYP3A4 activity using a commercially available screening kit for CYP3A4 inhibitors and a human hepatocyte, HepaRG. Moreover, in order to estimate the interactions of these drugs with human P-gp, screening for substrates was performed. For some substrates, P-gp inhibition tests were carried out using P-gp-expressing MDCK cells. As a result, almost all the compounds showed the expected effects on human CYP3A4 both in the in vitro screening and in HepaRG cells. Importantly, the unproven mechanisms of DDIs caused by WHO group 5 drugs, thioamides, and p-aminosalicylic acid were elucidated. Intriguingly, clofazimine (CFZ) exhibited weak inductive effects on CYP3A4 at >0.25 μM in HepaRG cells, while an inhibitory effect was observed at 1.69 μM in the in vitro screening, suggesting that CFZ autoinduces CYP3A4 in the human liver. Our method, based on one of the pharmacokinetics parameters in humans, provides more practical information associated with not only DDIs but also with drug metabolism.
Collapse
|
33
|
Lundquist P, Englund G, Skogastierna C, Lööf J, Johansson J, Hoogstraate J, Afzelius L, Andersson TB. Functional ATP-binding cassette drug efflux transporters in isolated human and rat hepatocytes significantly affect assessment of drug disposition. Drug Metab Dispos 2014; 42:448-58. [PMID: 24396144 DOI: 10.1124/dmd.113.054528] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Freshly isolated hepatocytes are considered the gold standard for in vitro studies of hepatic drug disposition. To ensure a reliable supply of cells, cryopreserved human hepatocytes are often used. ABC-superfamily drug efflux transporters are key elements in hepatic drug disposition. These transporters are often considered lost after isolation of hepatocytes. In the present study, the expression and activity of ABC transporters BCRP, BSEP, P-gp, MRP2, MRP3, and MRP4 in human and rat cryopreserved hepatocytes were investigated. In commercially available human cryopreserved hepatocytes, all drug efflux transporters except human BCRP (hBCRP) exhibited similar expression levels as in fresh liver biopsies. Expression levels of hBCRP were 60% lower in cryopreserved human hepatocytes than in liver tissue, which could lead to, at most, a 2.5-fold reduction in hBCRP-mediated efflux. Fresh rat hepatocytes showed significantly lower levels of rat BCRP compared with liver expression levels; expression levels of other ABC transporters were unchanged. ABC transporters in human cryopreserved cells were localized to the plasma membrane. Functional studies could demonstrate P-gp and BCRP activity in both human cryopreserved and fresh rat hepatocytes. Inhibiting P-gp-mediated efflux by elacridar in in vitro experiments significantly decreased fexofenadine efflux from hepatocytes, resulting in an increase in apparent fexofenadine uptake. The results from the present study clearly indicate that ABC transporter-mediated efflux in freshly isolated as well as cryopreserved rat and human hepatocytes should be taken into account in in vitro experiments used for modeling of drug metabolism and disposition.
Collapse
Affiliation(s)
- Patrik Lundquist
- CNS and Pain Innovative Medicines DMPK, AstraZeneca R&D, Södertälje, (P.L., G.E., C.S., J.L., J.J., J.H., L.A.); Cardiovascular and Gastrointestinal Innovative Medicines DMPK, AstraZeneca R&D, Mölndal, (P.L., T.B.A.); Department of Pharmacy, Uppsala University, Uppsala, (P.L.); and Section of Pharmacogenetics, Departments of Physiology and Pharmacology, Karolinska Institutet, Stockholm, (T.B.A.), Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shardlow CE, Generaux GT, Patel AH, Tai G, Tran T, Bloomer JC. Impact of physiologically based pharmacokinetic modeling and simulation in drug development. Drug Metab Dispos 2013; 41:1994-2003. [PMID: 24009310 DOI: 10.1124/dmd.113.052803] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Physiologically based pharmacokinetic modeling and simulation can be used to predict the pharmacokinetics of drugs in human populations and to explore the effects of varying physiologic parameters that result from aging, ethnicity, or disease. In addition, the effects of concomitant medications on drug exposure can be investigated; prediction of the magnitude of drug interactions can impact regulatory communications or internal decision-making regarding the requirement for a clinical drug interaction study. Modeling and simulation can also help to inform the design and timings of clinical drug interaction studies, resulting in more efficient use of limited resources and improved planning in addition to promoting mechanistic understanding of observed drug interactions. These approaches have been used in GlaxoSmithKline from drug discovery to registration and have been applied to 41 drugs from a number of therapeutic areas. This report highlights the variety of questions that can be addressed by prospective or retrospective application of modeling and simulation and the impact this can have on clinical drug development (from candidate selection through clinical development to regulatory submissions).
Collapse
Affiliation(s)
- Carole E Shardlow
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Ware, Hertfordshire, United Kingdom (C.E.S., A.H.P., J.C.B.), King of Prussia, Pennsylvania (T.T., G.T.), and Research Triangle Park, North Carolina (G.T.G.)
| | | | | | | | | | | |
Collapse
|
35
|
Guo H, Liu C, Li J, Zhang M, Hu M, Xu P, Liu L, Liu X. A mechanistic physiologically based pharmacokinetic-enzyme turnover model involving both intestine and liver to predict CYP3A induction-mediated drug-drug interactions. J Pharm Sci 2013; 102:2819-36. [PMID: 23760985 DOI: 10.1002/jps.23613] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/03/2023]
Abstract
Cytochrome P450 (CYP) 3A induction-mediated drug-drug interaction (DDI) is one of the major concerns in drug development and clinical practice. The aim of the present study was to develop a novel mechanistic physiologically based pharmacokinetic (PBPK)-enzyme turnover model involving both intestinal and hepatic CYP3A induction to quantitatively predict magnitude of CYP3A induction-mediated DDIs from in vitro data. The contribution of intestinal P-glycoprotein (P-gp) was also incorporated into the PBPK model. First, the pharmacokinetic profiles of three inducers and 14 CYP3A substrates were predicted successfully using the developed model, with the predicted area under the plasma concentration-time curve (AUC) [area under the plasma concentration-time curve] and the peak concentration (Cmax ) [the peak concentration] in accordance with reported values. The model was further applied to predict DDIs between the three inducers and 14 CYP3A substrates. Results showed that predicted AUC and Cmax ratios in the presence and absence of inducer were within twofold of observed values for 17 (74%) of the 23 DDI studies, and for 14 (82%) of the 17 DDI studies, respectively. All the results gave us a conclusion that the developed mechanistic PBPK-enzyme turnover model showed great advantages on quantitative prediction of CYP3A induction-mediated DDIs.
Collapse
Affiliation(s)
- Haifang Guo
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sekiguchi M, Kobashigawa Y, Moriguchi H, Kawasaki M, Yuda M, Teramura T, Inagaki F. High-Throughput Evaluation Method for Drug Association with Pregnane X Receptor (PXR) Using Differential Scanning Fluorometry. ACTA ACUST UNITED AC 2013; 18:1084-91. [DOI: 10.1177/1087057113491826] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The pregnane xenobiotic receptor (PXR) is a key transcriptional regulator of cytochrome P450 (CYP) 3A, a crucial enzyme in the metabolism and detoxification of xenobiotics and endobiotics. PXR is activated by a wide variety of chemicals and serves as a master regulator of detoxification in mammals. Here, we report a fast evaluation method for PXR-drug interactions using differential scanning fluorometry (DSF). DSF analysis revealed that PXR associates with a fluorescence dye in the native state as well as in the unfolded state, which prevented precise evaluation of any shift in the transition midpoint (Δ Tm) due to association with a drug. Hence, we defined a new parameter, (dF/dT)50, where F is fluorescence intensity and T is temperature, to describe the ligand concentration. (dF/dT)50 exhibited better correlation with EC50 ( r2 = 0.84) than with Δ Tm ( r2 = 0.71). The correlation of Δ Tm measured using differential scanning calorimetry (DSC) with EC50 ( r2 = 0.86) was similar to the above (dF/dT)50 correlation. Therefore, the use of (dF/dT)50 enables DSF to be used for the rapid evaluation of PXR-drug interactions and could provide prescreening to narrow down the collection of candidate ligands that most likely result in transcriptional activation of CYP3A4.
Collapse
Affiliation(s)
- Mitsuhiro Sekiguchi
- Analysis and Pharmacokinetics Research Labs, Department of Drug Discovery, Astellas Pharma Inc., Tsukuba, Japan
| | - Yoshihiro Kobashigawa
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Analytical and Biophysical Chemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Hiroyuki Moriguchi
- Analysis and Pharmacokinetics Research Labs, Department of Drug Discovery, Astellas Pharma Inc., Tsukuba, Japan
| | - Masashi Kawasaki
- Analysis and Pharmacokinetics Research Labs, Department of Drug Discovery, Astellas Pharma Inc., Tsukuba, Japan
| | - Masamichi Yuda
- Analysis and Pharmacokinetics Research Labs, Department of Drug Discovery, Astellas Pharma Inc., Tsukuba, Japan
| | - Toshio Teramura
- Analysis and Pharmacokinetics Research Labs, Department of Drug Discovery, Astellas Pharma Inc., Tsukuba, Japan
| | - Fuyuhiko Inagaki
- Department of Structural Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
37
|
Juric S, Lundquist P, Hu Y, Juréus A, Sohlenius-Sternbeck AK. The utility of cold-preserved human hepatocytes in studies on cytochrome P450 induction and hepatic drug transport. Xenobiotica 2013; 43:785-91. [PMID: 23570537 DOI: 10.3109/00498254.2013.767952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human hepatocytes that had been cold-preserved in SureTran(TM) matrix (Abcellute Ltd, Cardiff, UK) were used for studies on cell viability, cytochrome P450 (CYP) 3A4, 2B6 and 1A2 induction and hepatic drug transporters. It has recently been shown that basal CYP activities are maintained in cold-preserved hepatocytes (Palmgren et al., 2012). After 5 d of cold preservation, the viability was still more than 70%, and after 8 d it was around 60%. In hepatocytes that had been cold-preserved for 3 d, the activity of CYP3A4 was induced around 15-fold upon treatment with 8 µM rifampicin for 72 h. For CYP2B6, the activity was induced 4- to 16-fold in hepatocytes that had been cold-preserved for 3 d and thereafter treated with 1 mM phenobarbital for 72 h. The activity of CYP1A2 was low and close to the limit of detection in non-treated cells that had been cold-preserved for up to 3 d, while the activity increased in cells treated with 0.3-25 µM β-naphthoflavone for 72 h. CYP3A4, 2B6 and 1A2 mRNA levels were only determined with hepatocytes from one donor and increased upon treatment with the inducers. Hepatic uptakes of estrone-3-sulfate, taurocholate, ipratropium and rosuvastatin were stable in human hepatocytes that had been cold-preserved for up to 2 d. In summary, cold-preserved human hepatocytes demonstrate retained viability and can advantageously be used for in vitro induction studies and for studies of hepatic uptake transporters.
Collapse
Affiliation(s)
- Sanja Juric
- DMPK, CNSP iMed, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | | | | | | | | |
Collapse
|
38
|
Sinz MW. Evaluation of pregnane X receptor (PXR)-mediated CYP3A4 drug-drug interactions in drug development. Drug Metab Rev 2013; 45:3-14. [DOI: 10.3109/03602532.2012.743560] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Avoiding PXR and CAR Activation and CYP3A4 Enzyme Induction. TOPICS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1007/7355_2013_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Zhang D, Luo G, Ding X, Lu C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.10.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
41
|
Zhou D, Sunzel M, Ribadeneira MD, Smith MA, Desai D, Lin J, Grimm SW. A clinical study to assess CYP1A2 and CYP3A4 induction by AZD7325, a selective GABA(A) receptor modulator - an in vitro and in vivo comparison. Br J Clin Pharmacol 2012; 74:98-108. [PMID: 22122233 DOI: 10.1111/j.1365-2125.2011.04155.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • AZD7325 is an orally administered, potent, selective gamma-amino-butyric acid (GABA(A) ) α2,3 receptor modulator intended for the treatment of anxiety. • The induction effects of AZD7325 on CYP1A2 and CYP3A4 have not been systematically studied. WHAT THIS STUDY ADDS • The in vitro studies showed that AZD7325 was a moderate CYP1A2 inducer and potent CYP3A4 inducer. • The follow-up clinical studies in healthy volunteers demonstrated that the expected efficacious daily dose of AZD7325 only weakly induced the pharmacokinetics of the CYP3A4 sensitive substrate, midazolam, and had no effect on the pharmacokinetics of the CYP1A2 substrate, caffeine. There was no apparent change in AZD7325 exposure following co-administration of midazolam or caffeine compared with AZD7325 alone. • The study demonstrated that clinical exposure of the inducer plays a critical role in the determination of cytochrome P450 induction risk of a drug candidate. AIM(S) To investigate the potential of AZD7325 to induce CYP1A2 and CYP3A4 enzyme activities. METHODS Induction of CYP1A2 and CYP3A4 by AZD7325 was first evaluated using cultured human hepatocytes. The effect of multiple doses of 10 mg AZD7325 on the pharmacokinetics of midazolam and caffeine was then examined in healthy subjects. RESULTS The highest CYP1A2 and CYP3A4 induction responses were observed in human hepatocytes treated with 1 or 10 µm of AZD7325, in the range of 17.9%-54.9% and 76.9%-85.7% of the positive control responses, respectively. The results triggered the further clinical evaluation of AZD7325 induction potential. AZD7325 reached a plasma C(max) of 0.2 µm after 10 mg daily dosing to steady-state. AZD7325 decreased midazolam geometric mean AUC by 19% (0.81-fold, 90% CI 0.77, 0.87), but had no effect on midazolam C(max) (90% CI 0.82, 0.97). The mean CL/F of midazolam increased from 62 l h(-1) (midazolam alone) to 76 l h(-1) when co-administered with AZD7325. The AUC and C(max) of caffeine were not changed after co-administration of AZD7325, with geometric mean ratios (90% CI) of 1.17 (1.12, 1.23) and 0.99 (0.95, 1.03), respectively. CONCLUSIONS While AZD7325 appeared to be a potent CYP3A4 inducer and a moderate CYP1A2 inducer from in vitro studies, the expected efficacious dose of AZD7325 had no effect on CYP1A2 activity and only a weak inducing effect on CYP3A4 activity. This comparison of in vitro and in vivo results demonstrates the critical role that clinical exposure plays in evaluating the CYP induction risk of a drug candidate.
Collapse
Affiliation(s)
- Diansong Zhou
- Clinical Pharmacology Science DMPK Clinical Neuroscience, AstraZeneca Pharmaceuticals LP, Wilmington, DE 19850, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Honma M, Kozawa M, Suzuki H. Methods for the quantitative evaluation and prediction of CYP enzyme induction using human in vitro systems. Expert Opin Drug Discov 2012; 5:491-511. [PMID: 22823132 DOI: 10.1517/17460441003762717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD For successful drug development, it is important to investigate the potency of candidate drugs causing drug-drug interactions (DDI) during the early stages of development. The most common mechanisms of DDIs are the inhibition and induction of CYP enzymes. Therefore, it is important to develop co.mpounds with lower potencies for CYP enzyme induction. AREAS COVERED IN THIS REVIEW The aim of the present paper is to present an overview of the current knowledge of CYP induction mechanisms, particularly focusing on the transcriptional gene activation mediated by pregnane X receptor, aryl hydrocarbon receptor and constitutive androstane receptor. The adoptable options of in vitro assay methods for evaluating CYP induction are also summarized. Finally, we introduce a method for the quantitative prediction of CYP3A4 induction considering the turnover of CYP3A4 mRNA and protein in hepatocytes based on the data obtained from a reporter gene assay. WHAT THE READER WILL GAIN In order to predict in vivo CYP enzyme induction quantitatively based on in vitro information, an understanding of the physiological induction mechanisms and the features of each in vitro assay system is essential. We also present the estimation method of in vivo CYP induction potency of each compound based on the in vitro data which are routinely obtained but not necessarily utilized maximally in pharmaceutical companies. TAKE HOME MESSAGE It is desirable to select compounds with lower potencies for the inductive effect. For this purpose, an accurate prioritization procedure to evaluate the induction potency of each compound in a quantitative manner considering the pharmacologically effective concentration of each compound is necessary.
Collapse
Affiliation(s)
- Masashi Honma
- The University of Tokyo Hospital, Faculty of Medicine, Department of Pharmacy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan +81 3 3815 5411 ; +81 3 3816 6159 ;
| | | | | |
Collapse
|
43
|
Peters SA, Schroeder PE, Giri N, Dolgos H. Evaluation of the use of static and dynamic models to predict drug-drug interaction and its associated variability: impact on drug discovery and early development. Drug Metab Dispos 2012; 40:1495-507. [PMID: 22566536 DOI: 10.1124/dmd.112.044602] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Simcyp, a population-based simulator, is widely used for evaluating drug-drug interaction (DDI) risks in healthy and disease populations. We compare the prediction performance of Simcyp with that of mechanistic static models using different types of inhibitor concentrations, with the aim of understanding their strengths/weaknesses and recommending the optimal use of tools in drug discovery/early development. The inclusion of an additional term in static equations to consider the contribution of hepatic first pass to DDIs (AUCR(hfp)) has also been examined. A second objective was to assess Simcyp's estimation of variability associated with DDIs. The data set used for the analysis comprises 19 clinical interactions from 11 proprietary compounds. Except for gut interaction parameters, all other input data were identical for Simcyp and static models. Static equations using an unbound average steady-state systemic inhibitor concentration (I(sys)) and a fixed fraction of gut extraction and neglecting gut extraction in the case of induction interactions performed better than Simcyp (84% compared with 58% of the interactions predicted within 2-fold). Differences in the prediction outcomes between the static and dynamic models are attributable to differences in first-pass contribution to DDI. The inclusion of AUCR(hfp) in static equations leads to systematic overprediction of interaction, suggesting a limited role for hepatic first pass in determining inhibition-based DDIs for our data set. Our analysis supports the use of static models when elimination routes of the victim compound and the role of gut extraction for the victim and/or inhibitor in humans are not well defined. A fixed variability of 40% of predicted mean area under the concentration-time curve ratio is recommended.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Respiratory and Inflammation DMPK, AstraZeneca R&D, Mölndal, SE 43183 Mölndal, Sweden.
| | | | | | | |
Collapse
|
44
|
Ballard P, Brassil P, Bui KH, Dolgos H, Petersson C, Tunek A, Webborn PJH. The right compound in the right assay at the right time: an integrated discovery DMPK strategy. Drug Metab Rev 2012; 44:224-52. [DOI: 10.3109/03602532.2012.691099] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Optimization of the HepaRG cell model for drug metabolism and toxicity studies. Toxicol In Vitro 2012; 26:1278-85. [PMID: 22643240 DOI: 10.1016/j.tiv.2012.05.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 01/08/2023]
Abstract
The HepaRG cell line is the first human cell line able to differentiate in vitro into mature hepatocyte-like cells. Our main objective within the framework of the EEC-LIINTOP project was to optimize the use of this cell line for drug metabolism and toxicity studies, especially after repeat treatments. The main results showed that differentiated HepaRG cells: (i) retained their drug metabolism capacity (major CYPs, phase 2 enzymes, transporters and nuclear receptors) and responsiveness to prototypical inducers at relatively stable levels for several weeks at confluence. The levels of several functions, including some CYPs such as CYP3A4, were dependent on the addition of dimethyl sulfoxide in the culture medium; (ii) sustained the different types of chemical-induced hepatotoxicity, including steatosis, phospholipidosis and cholestasis, after acute and/or repeat treatment with reference drugs. In particular, drug-induced vesicular steatosis was demonstrated in vitro for the first time. In conclusion, our results from the LIINTOP project, together with other studies reported concomitantly or more recently in the literature, support the conclusion that the metabolically competent human HepaRG cells represent a surrogate to primary human hepatocytes for investigating drug metabolism parameters and both acute and chronic effects of xenobiotics in human liver.
Collapse
|
46
|
Andersson TB, Kanebratt KP, Kenna JG. The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin Drug Metab Toxicol 2012; 8:909-20. [PMID: 22568886 DOI: 10.1517/17425255.2012.685159] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION HepaRG is a unique cell line showing a great plasticity, which differentiates to both canaliculae-like and hepatocyte-like cells. The long-term stability of key cell functions, for example, the drug-metabolizing cytochrome P450 (CYP) enzyme activities, in culture is especially useful in drug metabolism, disposition and toxicity studies. AREAS COVERED This review describes features of the HepaRG cells focusing on drug-metabolizing enzymes and drug transporters, their functionality and regulation. Several applications in drug discovery studies are discussed and the use of HepaRG, as a human relevant predictive in vitro CYP induction model, is described. In addition, promising studies using HepaRG cells for understanding liver toxicity mechanisms by drug compounds are also discussed. EXPERT OPINION HepaRG cells exhibit features which make them useful as an in vitro model for drug metabolism, disposition and toxicity studies, and could, for many studies, replace the requirement for primary human hepatocytes. Care should be taken since HepaRG cells are of a specific genotype which is reflected in the expression of drug processing proteins. The finding that HepaRG cells form tight junctions provides the basis for formation of functional canalicular structures and this should be investigated further to aid development of human relevant hepatic in vitro 2D and 3D models.
Collapse
Affiliation(s)
- Tommy B Andersson
- DMPK Innovative Medicines, AstraZeneca R&D, Mölndal S-431 83 Mölndal, Sweden.
| | | | | |
Collapse
|
47
|
Zanelli U, Caradonna NP, Hallifax D, Turlizzi E, Houston JB. Comparison of cryopreserved HepaRG cells with cryopreserved human hepatocytes for prediction of clearance for 26 drugs. Drug Metab Dispos 2012; 40:104-10. [PMID: 21998403 DOI: 10.1124/dmd.111.042309] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Prediction of clearance in drug discovery currently relies on human primary hepatocytes, which can vary widely in drug-metabolizing enzyme activity. Potential alternative in vitro models include the HepaRG cell (from immortalized hepatoma cells), which in culture can express drug-metabolizing enzymes to an extent comparable to that of primary hepatocytes. Utility of the HepaRG cell will depend on robust performance, relative to that of primary hepatocytes, in routine high-throughput analysis. In this study, we compared intrinsic clearance (CL(int)) in the recently developed cryopreserved HepaRG cell system with CL(int) in human cryopreserved pooled hepatocytes and with CL(int) in vivo for 26 cytochrome P450 substrate drugs. There was quantitative agreement between CL(int) in HepaRG cells and human hepatocytes, which was linear throughout the range of CL(int) (1-2000 ml · min(-1) · kg(-1)) and not dependent on particular cytochrome P450 involvement. Prediction of CL(int) in HepaRG cells was on average within 2-fold of in vivo CL(int) (using the well stirred liver model), but average fold error was clearance-dependent with greater underprediction (up to at least 5-fold) for the more highly cleared drugs. Recent reporting of this phenomenon in human hepatocytes was therefore confirmed with the hepatocytes used in this study, and hence the HepaRG cell system appears to share an apparently general tendency of clearance-limited CL(int) in cell models. This study shows the cryopreserved HepaRG cell system to be quantitatively comparable to human hepatocytes for prediction of clearance of drug cytochrome P450 substrates and to represent a promising alternative in vitro tool.
Collapse
Affiliation(s)
- Ugo Zanelli
- Metabolic Profiling, Screening and Technologies Department, Siena Biotech S.p.A., Siena, Italy
| | | | | | | | | |
Collapse
|
48
|
Morley A, Tomkinson N, Cook A, MacDonald C, Weaver R, King S, Jenkinson L, Unitt J, McCrae C, Phillips T. Effect of lipophilicity modulation on inhibition of human rhinovirus capsid binders. Bioorg Med Chem Lett 2011; 21:6031-5. [DOI: 10.1016/j.bmcl.2011.08.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/15/2011] [Accepted: 08/17/2011] [Indexed: 02/03/2023]
|
49
|
Templeton IE, Houston JB, Galetin A. Predictive utility of in vitro rifampin induction data generated in fresh and cryopreserved human hepatocytes, Fa2N-4, and HepaRG cells. Drug Metab Dispos 2011; 39:1921-9. [PMID: 21771933 DOI: 10.1124/dmd.111.040824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rifampin is a potent inducer of CYP3A4 in vitro and precipitates numerous drug-drug interactions (DDIs) when coadministered with CYP3A4 substrates. In the current study, we have critically assessed reported rifampin in vitro CYP3A4 induction data in Fa2N-4, HepaRG, and cryopreserved or primary human hepatocytes, using either CYP3A4 mRNA or probe substrate metabolism as induction endpoints. An in vivo data base of intravenously administered victim drugs (assuming hepatic induction only) was collated (n = 18) to assess the predictive utility of these in vitro systems and to optimize rifampin in vivo E(max). In addition, the effect of substrate hepatic extraction ratio on prediction accuracy was investigated using prediction boundaries proposed recently (Drug Metab Dispos 39:170-173). Incorporation of hepatic extraction ratio in the prediction model resulted in accurate prediction of 89% of intravenous induction DDIs (n = 18), regardless of the in vitro system or induction endpoint (mRNA or CYP3A4 activity). Effects of in vitro parameters from different cellular systems, and optimized in vivo E(max), on the prediction of 21 oral DDIs were assessed. Use of mRNA data resulted in pronounced overprediction across all systems, with 86 to 100% of DDIs outside the acceptable prediction limits; in contrast, CYP3A4 activity predicted up to 62% of the oral DDIs within limits. Although prediction accuracy of oral DDIs was improved when using intravenous optimized rifampin E(max), >35% of DDIs were incorrectly assigned, suggesting potential differential E(max) between intestine and liver. Implications of the findings and recommendations for prediction of rifampin DDIs are discussed.
Collapse
Affiliation(s)
- Ian E Templeton
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
50
|
Predicting Activation of the Promiscuous Human Pregnane X Receptor by Pharmacophore Ensemble/Support Vector Machine Approach. Chem Res Toxicol 2011; 24:1765-78. [DOI: 10.1021/tx200310j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|