1
|
Chavan PR, Pandey R, Patil BM, Murti K, Kumar N. Unravelling key signaling pathways for the therapeutic targeting of non-small cell lung cancer. Eur J Pharmacol 2025; 998:177494. [PMID: 40090536 DOI: 10.1016/j.ejphar.2025.177494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
Lung cancer (LC) remains the foremost cause of cancer-related mortality across the globe. Non-small cell lung cancer (NSCLC) is a type of LC that exhibits significant heterogeneity at histological and molecular levels. Genetic alterations in upstream signaling molecules activate cascades affecting apoptosis, proliferation, and differentiation. Disruption of these signaling pathways leads to the proliferation of cancer-promoting cells, progression of cancer, and resistance to its treatment. Recent insights into the function of signaling pathways and their fundamental mechanisms in the onset of various diseases could pave the way for new therapeutic approaches. Recently, numerous drug molecules have been created that target these cell signaling pathways and could be used alongside other standard therapies to achieve synergistic effects in mitigating the pathophysiology of NSCLC. Additionally, many researchers have identified several predictive biomarkers, and alterations in transcription factors and related pathways are employed to create new therapeutic strategies for NSCLC. Findings suggest using specific inhibitors to target cellular signaling pathways in tumor progression to treat NSCLC. This review investigates the role of signaling pathways in NSCLC development and explores novel therapeutic strategies to enhance clinical treatment options for NSCLC.
Collapse
Affiliation(s)
- Pavan Ramrao Chavan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Ruchi Pandey
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Baswant Malesh Patil
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education & Research, Hajipur, Bihar, India.
| |
Collapse
|
2
|
Meesilpavikkai K, Kaikaew K, Zhou Z, Dalm VA, Kaiser FM, Schliehe C, Swagemakers SM, van der Spek PJ, Schrijver B, Vasic P, de Bie M, Bakker M, Milanese C, Mastroberardino PG, Hirankarn N, Suratannon N, IJspeert H, Dik WA, Martin van Hagen P. Novel STAT3 Y360C Gain-of-function Variant Underlies Immune Dysregulation and Aberrancy in Mitochondrial Dynamics. Immune Netw 2025; 25:e18. [PMID: 40342844 PMCID: PMC12056293 DOI: 10.4110/in.2025.25.e18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/11/2025] Open
Abstract
The STAT3 is an important regulator in a wide range of different cell types. Human STAT3 variants are associated with several immune dysregulation diseases. The current study investigated the clinical, genetic, and immunobiological data obtained from a family with novel heterozygous STAT3 variants located at p.Y360C of the DNA binding domain. The clinical manifestations of these patients include autoimmunity, immunodeficiency, and postnatal growth defects. Broad STAT3 regulated cells including patient primary immune cells and HEK293 cells harboring the variant were assessed. Remarkably high levels of STAT3-regulated cytokines were detected in the sera of the patients. STAT3 nuclear binding and STAT3 activity were higher in STAT3-transduced HEK293 cells containing the p.Y360C variant when compared to HEK cells expressing wild type (WT) STAT3. Upon cytokine activation, STAT3 variants inhibited nuclear translocation of the WT STAT3 molecule. We also demonstrated that PBMCs from these patients exhibit significantly higher mitochondrial activity compared to that of healthy controls. The exploration of the effects of STAT3 Y360C variants described in our study provides novel insights into the molecular effects of the STAT3 variant and its role in the pathophysiology of STAT3 gain-of-function syndromes.
Collapse
Affiliation(s)
- Kornvalee Meesilpavikkai
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Kasiphak Kaikaew
- Center of Excellence in Alternative and Complementary Medicine for Gastrointestinal and Liver Diseases, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Zijun Zhou
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Fabian M.P. Kaiser
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Neonatal and Pediatric Intensive Care, Erasmus University Medical Center - Sophia Children’s Hospital, 3015 GD Rotterdam, The Netherlands
| | - Christopher Schliehe
- Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sigrid M.A. Swagemakers
- Department of Pathology and Bioinformatics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter J. van der Spek
- Department of Pathology and Bioinformatics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Benjamin Schrijver
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pamela Vasic
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Maaike de Bie
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Marleen Bakker
- Department of Pulmonary Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Chiara Milanese
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Pier G. Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Narissara Suratannon
- Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
| | - Hanna IJspeert
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Willem A. Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - P. Martin van Hagen
- Laboratory Medical Immunology, Department of Immunology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Academic Center for Rare Immune Diseases (RIDC), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
3
|
Weiss S, Zdársky B, Witalisz-Siepracka A, Edtmayer S, Holzer A, Heindl K, Casanova E, Podar K, Stoiber D. Atovaquone and selinexor as a novel combination treatment option in acute myeloid leukemia. Cancer Lett 2025; 613:217501. [PMID: 39864539 DOI: 10.1016/j.canlet.2025.217501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia and is predominantly affecting the elderly. It is a heterogenous disease, showing a broad spectrum of genomic alterations and mutations that influence the clinical outcome and treatment options. The expression of the signal transducer and activator of transcription 3 (STAT3) is often dysregulated in AML and its constitutive activation is associated with poor outcome. Thus, STAT3 became an attractive therapeutic target but until now drugs targeting STAT3 only had moderate efficacy. This phenomenon might be related to the expression ratio of the two alternatively spliced isoforms: the full-length isoform STAT3α and the truncated version STAT3β, which play opposite roles in AML. In this study, we investigated the potential of selected, well-established drugs to impact the STAT3β/α ratio, as a higher STAT3β/α ratio is associated with better disease outcome. Atovaquone and selinexor independently elevated the STAT3β/α ratio and led to an upregulation of the STAT3β target gene SELL (CD62L). The combined treatment with atovaquone and selinexor entailed synergistic killing of AML cells in vitro and impaired the leukemic cell infiltration in vivo. Moreover, CD62L overexpression in a human AML cell line resulted in significantly prolonged survival in a xenograft mouse model. We propose that targeting the STAT3β/α ratio could be a promising new strategy for treating patients with AML and that the combination of selinexor and atovaquone could offer enhanced treatment outcomes.
Collapse
Affiliation(s)
- Stefanie Weiss
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Bernhard Zdársky
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Agnieszka Witalisz-Siepracka
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sophie Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Anja Holzer
- Division Molecular Oncology and Hematology, Department General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Kerstin Heindl
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Klaus Podar
- Division Molecular Oncology and Hematology, Department General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
4
|
Tsimberidou AM, Vining DJ, Arora SP, de Achaval S, Larson J, Kauh J, Cartwright C, Avritscher R, Alibhai I, Tweardy DJ, Kaseb AO. Phase I Trial of TTI-101, a First-in-Class Oral Inhibitor of STAT3, in Patients with Advanced Solid Tumors. Clin Cancer Res 2025; 31:965-974. [PMID: 39792482 PMCID: PMC11911802 DOI: 10.1158/1078-0432.ccr-24-2920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025]
Abstract
PURPOSE Signal transducer and activator of transcription 3 is a transcription factor that is essential for the survival and immune sequestration of cancer cells. We conducted a phase I study of TTI-101, a first-in-class, selective small-molecule inhibitor of signal transducer and activator of transcription 3, in patients with advanced metastatic cancer. PATIENTS AND METHODS Patients were treated with TTI-101 orally twice daily in 28-day cycles at four dose levels (DL): 3.2 (DL1), 6.4 (DL2), 12.8 (DL3), and 25.6 (DL4) mg/kg/day ("3+3" design). Three TTI-101 formulations were used in a stepwise manner (NCT03195699). RESULTS Sixty-four patients were treated (median age, 63 years; male sex, 52%; median number of prior therapies, 3). No dose-limiting toxicities or fatal treatment-related adverse events (TRAE) were observed. Diarrhea (mostly grade 1/2) was the only TRAE observed in ≥30% of subjects. Five patients experienced grade 3 TRAEs that resolved. TTI-101 showed linear pharmacokinetics from DL1 to DL3, with the pharmacokinetics plateauing at DL3. The recommended phase II dose is 12.8 mg/kg/day (DL3). Of the 41 patients who were evaluable for response, five (12%) had confirmed partial responses (cPR) and 17 (41%) had stable disease. Three (18%) of the 17 patients with hepatocellular carcinoma had a cPR (median time to treatment failure, 10.6 months). Two other cPRs were noted in one patient with ovarian cancer and one patient with gastric cancer. CONCLUSIONS TTI-101 was well tolerated. cPRs were observed across tumor types. The antitumor activity of TTI-101 monotherapy in patients with advanced, metastatic solid tumors is promising. A phase II study of TTI-101 in hepatocellular carcinoma is currently underway.
Collapse
Affiliation(s)
- Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David J. Vining
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sukeshi P. Arora
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | - John Kauh
- Tvardi Therapeutics, Inc., Sugar Land, Texas
| | - Carrie Cartwright
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - David J. Tweardy
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Berkley K, Zalejski J, Sharma A. Targeting STAT3 for Cancer Therapy: Focusing on Y705, S727, or Dual Inhibition? Cancers (Basel) 2025; 17:755. [PMID: 40075607 PMCID: PMC11898704 DOI: 10.3390/cancers17050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor that is strongly implicated in various cancers. In its canonical signaling pathway, Janus kinases (JAKs) phosphorylate STAT3 at the Y705 residue in response to cytokines or growth factors, with pY705 serving as a key marker of STAT3 oncogenic activity. Elevated pY705 levels correlate with poor prognosis, and numerous small-molecule inhibitors have been developed to block this phosphorylation site. More recently, phosphorylation at the S727 residue (pS727) has emerged as a critical contributor to STAT3-mediated oncogenesis, particularly due to its role in mitochondrial translocation. Evidence suggests that pS727 may even surpass pY705 in driving oncogenic activity. These findings prompt an important question: Which residue should be prioritized for effective STAT3 inhibition in cancer therapy? METHODS This review compiles and critically analyzes the current literature on STAT3 inhibitors targeting pY705 and/or pS727, evaluating their therapeutic efficacy in vitro, in vivo, and in clinical trials. We assess the unique effects of targeting each residue on downstream signaling, toxicity, and clinical outcomes. RESULTS Our analysis indicates that inhibitors targeting both pY705 and pS727 achieve the greatest therapeutic effectiveness. However, pS727 targeting is associated with higher toxicity risks. CONCLUSIONS Comprehensive evaluation of STAT3 inhibitors underscores the importance of targeting pY705 for maximum therapeutic benefit. The analysis also shows that co-targeting pS727 may increase overall efficacy. However, pS727 inhibition should be approached with lower affinity to minimize toxicity and enhance the clinical feasibility of dual-targeting strategies.
Collapse
Affiliation(s)
| | | | - Ashutosh Sharma
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA; (K.B.); (J.Z.)
| |
Collapse
|
6
|
Kumar S, Kumar BH, Nayak R, Pandey S, Kumar N, Pai KSR. Computational screening and molecular dynamics of natural compounds targeting the SH2 domain of STAT3: a multitarget approach using network pharmacology. Mol Divers 2025:10.1007/s11030-024-11075-5. [PMID: 39786519 DOI: 10.1007/s11030-024-11075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
SH2 (Src Homology 2) domains play a crucial role in phosphotyrosine-mediated signaling and have emerged as promising drug targets, particularly in cancer therapy. STAT3 (Signal Transducer and Activator of Transcription 3), which contains an SH2 domain, plays a pivotal role in cancer progression and immune evasion because it facilitates the dimerization of STAT3, which is essential for their activation and subsequent nuclear translocation. SH2 domain-mediated STAT3 inhibition disrupts this binding, reduces phosphorylation of STAT3, and impairs dimerization. This study employed an in silico approach to screen potential natural compounds that could target the SH2 domain of STAT3 and inhibit its function. The phytomolecules (182455) were retrieved from the ZINC 15 database and were docked using various modes like HTVS, SP, and XP. The phytomolecules exhibiting higher binding affinity were selected. MM-GBSA was performed to determine binding free energy, and the QikProp tool was utilized to assess the pharmacokinetic properties of potential hit compounds, narrowing down the list of candidates. Molecular dynamics simulations, thermal MM-GBSA, and WaterMap analysis were performed on compounds that exhibited favorable binding affinities and pharmacokinetic characteristics. Based on docking scores and binding interactions, ZINC255200449, ZINC299817570, ZINC31167114, and ZINC67910988 were identified as potential STAT3 inhibitors. ZINC67910988 demonstrated superior stability in molecular dynamics simulation and WaterMap analysis. Furthermore, DFT was performed to determine energetic and electronic properties, and HOMO and LUMO sites were predicted for electronic structure calculation. Additionally, network pharmacology was performed to map the compounds' interactions within biological networks, highlighting their multitarget potential. Compound-target networks elucidate the relationships between compounds and multiple targets, along with their associated pathways and help to minimize off-target effects. The identified lead compound showed strong potential as a STAT3 inhibitor, warranting further validation through in vitro and in vivo studies.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - B Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali, Bihar, 844102, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.
| |
Collapse
|
7
|
Roy NS, Kumari M, Alam K, Bhattacharya A, Kaity S, Kaur K, Ravichandiran V, Roy S. Development of bioengineered 3D patient derived breast cancer organoid model focusing dynamic fibroblast-stem cell reciprocity. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012007. [PMID: 39662055 DOI: 10.1088/2516-1091/ad9dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Three-dimensional (3D) models, such as tumor spheroids and organoids, are increasingly developed by integrating tissue engineering, regenerative medicine, and personalized therapy strategies. These advanced 3Din-vitromodels are not merely endpoint-driven but also offer the flexibility to be customized or modulated according to specific disease parameters. Unlike traditional 2D monolayer cultures, which inadequately capture the complexities of solid tumors, 3D co-culture systems provide a more accurate representation of the tumor microenvironment. This includes critical interactions with mesenchymal stem/stromal cells (MSCs) and induced pluripotent stem cells (iPSCs), which significantly modulate cancer cell behavior and therapeutic responses. Most of the findings from the co-culture of Michigan Cancer Foundation-7 breast cancer cells and MSC showed the formation of monolayers. Although changes in the plasticity of MSCs and iPSCs caused by other cells and extracellular matrix (ECM) have been extensively researched, the effect of MSCs on cancer stem cell (CSC) aggressiveness is still controversial and contradictory among different research communities. Some researchers have argued that CSCs proliferate more, while others have proposed that cancer spread occurs through dormancy. This highlights the need for further investigation into how these interactions shape cancer aggressiveness. The objective of this review is to explore changes in cancer cell behavior within a 3D microenvironment enriched with MSCs, iPSCs, and ECM components. By describing various MSC and iPSC-derived 3D breast cancer models that replicate tumor biology, we aim to elucidate potential therapeutic targets for breast cancer. A particular focus of this review is the Transwell system, which facilitates understanding how MSCs and iPSCs affect critical processes such as migration, invasion, and angiogenesis. The gradient formed between the two chambers is based on diffusion, as seen in the human body. Once optimized, this Transwell model can serve as a high-throughput screening platform for evaluating various anticancer agents. In the future, primary cell-based and patient-derived 3D organoid models hold promise for advancing personalized medicine and accelerating drug development processes.
Collapse
Affiliation(s)
- Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Mamta Kumari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Santanu Kaity
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Department of Anatomy & Regenerative Medicine, Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054 West Bengal, India
| |
Collapse
|
8
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
9
|
Bettin I, Brattini M, Kachoie EA, Capaldi S, Thalappil MA, Bernardi P, Ferrarini I, Fuhrmann G, Mariotto S, Butturini E. Extracellular Vesicles based STAT3 delivery as innovative therapeutic approach to restore STAT3 signaling deficiency. N Biotechnol 2024; 82:43-53. [PMID: 38734368 DOI: 10.1016/j.nbt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Extracellular Vesicles (EVs) have been proposed as a promising tool for drug delivery because of their natural ability to cross biological barriers, protect their cargo, and target specific cells. Moreover, EVs are not recognized by the immune system as foreign, reducing the risk of an immune response and enhancing biocompatibility. Herein, we proposed an alternative therapeutic strategy to restore STAT3 signaling exploiting STAT3 loaded EVs. This approach could be useful in the treatment of Autosomal Dominant Hyper-IgE Syndrome (AD-HIES), a rare primary immunodeficiency and multisystem disorder due to the presence of mutations in STAT3 gene. These mutations alter the signal transduction of STAT3, thereby impeding Th17 CD4+ cell differentiation that leads to the failure of immune response. We set up a simple and versatile method in which EVs were loaded with fully functional STAT3 protein. Moreover, our method allows to follow the uptake of STAT3 loaded vesicles inside cells due to the presence of EGFP in the EGFP-STAT3 fusion protein construct. Taken together, the data presented in this study could provide the scientific background for the development of new therapeutic strategy aimed to restore STAT3 signaling in STAT3 misfunction associated diseases like AD-HIES. In the future, the administration of fully functional wild type STAT3 to CD4+ T cells of AD-HIES patients might compensate its loss of function and would be beneficial for these patients, lowering the risk of infections, the use of medications, and hospitalizations.
Collapse
Affiliation(s)
- Ilaria Bettin
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Martina Brattini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Elham Ataie Kachoie
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy.
| | - Stefano Capaldi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy.
| | - Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Paolo Bernardi
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Human Anatomy, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Isacco Ferrarini
- Department of Engineering for Innovation Medicine, Section of Hematology, University of Verona, Verona, Italy.
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| |
Collapse
|
10
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
11
|
Kaynar A, Ozcan M, Li X, Turkez H, Zhang C, Uhlén M, Shoaie S, Mardinoglu A. Discovery of a Therapeutic Agent for Glioblastoma Using a Systems Biology-Based Drug Repositioning Approach. Int J Mol Sci 2024; 25:7868. [PMID: 39063109 PMCID: PMC11277330 DOI: 10.3390/ijms25147868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Glioblastoma (GBM), a highly malignant tumour of the central nervous system, presents with a dire prognosis and low survival rates. The heterogeneous and recurrent nature of GBM renders current treatments relatively ineffective. In our study, we utilized an integrative systems biology approach to uncover the molecular mechanisms driving GBM progression and identify viable therapeutic drug targets for developing more effective GBM treatment strategies. Our integrative analysis revealed an elevated expression of CHST2 in GBM tumours, designating it as an unfavourable prognostic gene in GBM, as supported by data from two independent GBM cohorts. Further, we pinpointed WZ-4002 as a potential drug candidate to modulate CHST2 through computational drug repositioning. WZ-4002 directly targeted EGFR (ERBB1) and ERBB2, affecting their dimerization and influencing the activity of adjacent genes, including CHST2. We validated our findings by treating U-138 MG cells with WZ-4002, observing a decrease in CHST2 protein levels and a reduction in cell viability. In summary, our research suggests that the WZ-4002 drug candidate may effectively modulate CHST2 and adjacent genes, offering a promising avenue for developing efficient treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Ali Kaynar
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Mehmet Ozcan
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bülent Ecevit University, Zongudak TR-67100, Turkey
| | - Xiangyu Li
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Medical Biology Department, Faculty of Medicine, Atatürk University, Erzurum TR-25240, Turkey;
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Mathias Uhlén
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (A.K.); (S.S.)
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden; (M.O.); (X.L.); (C.Z.); (M.U.)
| |
Collapse
|
12
|
Figueroa‐González G, Quintas‐Granados LI, Reyes‐Hernández OD, Caballero‐Florán IH, Peña‐Corona SI, Cortés H, Leyva‐Gómez G, Habtemariam S, Sharifi‐Rad J. Review of the anticancer properties of 6-shogaol: Mechanisms of action in cancer cells and future research opportunities. Food Sci Nutr 2024; 12:4513-4533. [PMID: 39055196 PMCID: PMC11266911 DOI: 10.1002/fsn3.4129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer is a major global health challenge that affects every nation and accounts for a large portion of the worldwide disease burden. Furthermore, cancer cases will rise significantly in the next few decades. The Food and Drug Administration has approved more than 600 drugs for treating diverse types of cancer. However, many conventional anticancer medications cause side effects, and drug resistance develops as the treatment proceeds with a concomitant impact on patients' quality of life. Thus, exploring natural products with antitumor properties and nontoxic action mechanisms is essential. Ginger (Zingiber officinale Roscoe) rhizome has a long history of use in traditional medicine, and it contains biologically active compounds, gingerols and shogaols. The main ginger shogaol is 6-shogaol, whose concentration dramatically increases during the processing of ginger, primarily due to the heat-induced conversion of 6-gingerol. Some studies have demonstrated that 6-shogaol possesses biological and pharmacological properties, such as antioxidant, anti-inflammatory, and anticancer activities. The mechanism of action of 6-shogaol as an anticancer drug includes induction of paraptosis, induction of apoptosis, increase in the production of reactive oxygen species, induction of autophagy, and the inhibition of AKT/mTOR signaling. Despite this knowledge, the mechanism of action of 6-shogaol is not fully understood, and the scientific data on its therapeutic dose, safety, and toxicity are not entirely described. This review article examines the potential of 6-shogaol as an anticancer drug, addressing the limitations of current medications; it covers 6-shogaol's attributes, mechanism of action in cancer cells, and opportunities for future research.
Collapse
Affiliation(s)
- Gabriela Figueroa‐González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Laura Itzel Quintas‐Granados
- Colegio de Ciencias y Humanidades, Plantel CuautepecUniversidad Autónoma de la Ciudad de MéxicoCiudad de MéxicoMexico
| | - Octavio Daniel Reyes‐Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Isaac H. Caballero‐Florán
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Sheila I. Peña‐Corona
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de GenómicaInstituto Nacional de Rehabilitación Luis Guillermo Ibarra IbarraCiudad de MexicoMexico
| | - Gerardo Leyva‐Gómez
- Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKCentral Avenue, Chatham‐MaritimeKentME4 4TBUK
| | | |
Collapse
|
13
|
Baniya MK, Kim EH, Chun KS. Terfenadine, a histamine H1 receptor antagonist, induces apoptosis by suppressing STAT3 signaling in human colorectal cancer HCT116 cells. Front Pharmacol 2024; 15:1418266. [PMID: 38939837 PMCID: PMC11208689 DOI: 10.3389/fphar.2024.1418266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Colorectal cancer is a highly aggressive and metastatic cancer with inadequate clinical outcomes. Given the crucial role of histamine and histamine receptors in colorectal carcinogenesis, this study aimed at exploring the anticancer effects of terfenadine against colorectal cancer HCT116 cells and elucidate its underlying mechanism. Methods Herein, we examined the effect of terfenadine on growth and proliferation of HCT116 cells in vitro and in vivo. Various experimental techniques such as flow cytometry, western blot, immunoprecipitation, luciferase assay were employed to unveil the mechanism of cell death triggered by terfenadine. Results Terfenadine markedly attenuated the viability of HCT116 cells by abrogating histamine H1 receptor (H1R) signaling. In addition, terfenadine modulated the balance of Bax and Bcl-2, triggering cytochrome c discharge in the cytoplasm, thereby stimulating the caspase cascade and poly-(ADP-ribose) polymerase (PARP) degradation. Moreover, terfenadine suppressed murine double minute-2 (Mdm2) expression, whereas p53 expression increased. Terfenadine suppressed STAT3 phosphorylation and expression of its gene products by inhibiting MEK/ERK and JAK2 activation in HCT116 cells. Furthermore, treatment with U0126, a MEK inhibitor, and AG490, a JAK2 inhibitor, dramatically diminished the phosphorylations of ERK1/2 and JAK2, respectively, leading to STAT3 downregulation. Likewise, terfenadine diminished the complex formation of MEK1/2 with β-arrestin 2. In addition, terfenadine dwindled the phosphorylation of PKC substrates. Terfenadine administration (10 mg/kg) substantially retarded the growth of HCT116 tumor xenografts in vivo. Conclusion Terfenadine induces the apoptosis of HCT116 cells by abrogating STAT3 signaling. Overall, this study supports terfenadine as a prominent anticancer therapy for colorectal cancer.
Collapse
Affiliation(s)
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
14
|
Zhang L, Liu P, Jiang Y, Fan D, He X, Zhang J, Luo B, Sui J, Luo Y, Fu X, Yang T. Exploration of novel isoxazole-fused quinone derivatives as anti-colorectal cancer agents through inhibiting STAT3 and elevating ROS level. Eur J Med Chem 2024; 272:116448. [PMID: 38704936 DOI: 10.1016/j.ejmech.2024.116448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Colorectal cancer (CRC) is trending to be a major health problem throughout the world. Therapeutics with dual modes of action have shown latent capacity to create ideal anti-tumor activity. Signal transducer and activator of transcription 3 (STAT3) has been proved to be a potential target for the development of anti-colon cancer drug. In addition, modulation of tumor redox homeostasis through deploying exogenous reactive oxygen species (ROS)-enhancing agents has been widely applied as anti-tumor strategy. Thus, simultaneously targeting STAT3 and modulation ROS balance would offer a fresh avenue to combat CRC. In this work, we designed and synthesized a novel series of isoxazole-fused quinones, which were evaluated for their preliminary anti-proliferative activity against HCT116 cells. Among these quinones, compound 41 exerted excellent in vitro anti-tumor effect against HCT116 cell line with an IC50 value of 10.18 ± 0.4 nM. Compound 41 was proved to bind to STAT3 by using Bio-Layer Interferometry (BLI) assay, and can significantly inhibit phosphorylation of STAT3. It also elevated ROS of HCT116 cells by acting as a substrate of NQO1. Mitochondrial dysfunction, apoptosis, and cell cycle arrest, which was caused by compound 41, might be partially due to the inhibition of STAT3 phosphorylation and ROS production induced by 41. Moreover, it exhibited ideal anti-tumor activity in human colorectal cancer xenograft model and good safety profiles in vivo. Overall, this study provided a novel quinone derivative 41 with excellent anti-tumor activity by inhibiting STAT3 and elevating ROS level, and gave insights into designing novel anti-tumor therapeutics by simultaneously modulation of STAT3 and ROS.
Collapse
Affiliation(s)
- Lidan Zhang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pingxian Liu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongmei Fan
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinlian He
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baozhu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Sui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinyuan Fu
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Zeki NM, Mustafa YF. Natural linear coumarin-heterocyclic conjugates: A review of their roles in phytotherapy. Fitoterapia 2024; 175:105929. [PMID: 38548026 DOI: 10.1016/j.fitote.2024.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 05/26/2024]
Abstract
Heterocycle conjugates provide a fresh investigative scope to find novel molecules with enhanced phytotherapeutic characteristics. Coumarin-based products are widely used in the synthesis of several compounds with biological and medicinal properties since they are naturally occurring heterocycles with a broad dispersion. The investigation of coumarin-based phytochemicals with annulated heterocyclic rings is a promising approach to discovering novel conjugates with significant phytotherapeutic attributes. Due to the applicable coumarin extraction processes, a range of linear coumarin-heterocyclic conjugates were isolated from different natural resources and exhibited remarkable therapeutic efficacy. This review highlights the phytotherapeutic potential and origins of various natural linear coumarin-heterocyclic conjugates. We searched several databases, including Science Direct, Web of Science, Springer, Google Scholar, and PubMed. After sieving, we ultimately identified and included 118 pertinent studies published between 2000 and the middle of 2023. This will inspire medicinal chemists with extremely insightful ideas for designing and synthesizing therapeutically active lead compounds in the future that are built on the pharmacophores of coumarin-heterocyclic conjugates and have significant therapeutic attributes.
Collapse
Affiliation(s)
- Nameer Mazin Zeki
- Department of Pharmacology, College of Medicine, Ninevah University, Mosul, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq.
| |
Collapse
|
16
|
Panda SP, Kesharwani A, Datta S, Prasanth DSNBK, Panda SK, Guru A. JAK2/STAT3 as a new potential target to manage neurodegenerative diseases: An interactive review. Eur J Pharmacol 2024; 970:176490. [PMID: 38492876 DOI: 10.1016/j.ejphar.2024.176490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Neurodegenerative diseases (NDDs) are a collection of incapacitating disorders in which neuroinflammation and neuronal apoptosis are major pathological consequences due to oxidative stress. Neuroinflammation manifests in the impacted cerebral areas as a result of pro-inflammatory cytokines stimulating the Janus Kinase2 (JAK2)/Signal Transducers and Activators of Transcription3 (STAT3) pathway via neuronal cells. The pro-inflammatory cytokines bind to their respective receptor in the neuronal cells and allow activation of JAK2. Activated JAK2 phosphorylates tyrosines on the intracellular domains of the receptor which recruit the STAT3 transcription factor. The neuroinflammation issues are exacerbated by the active JAK2/STAT3 signaling pathway in conjunction with additional transcription factors like nuclear factor kappa B (NF-κB), and the mammalian target of rapamycin (mTOR). Neuronal apoptosis is a natural process made worse by persistent neuroinflammation and immunological responses via caspase-3 activation. The dysregulation of micro-RNA (miR) expression has been observed in the consequences of neuroinflammation and neuronal apoptosis. Neuroinflammation and neuronal apoptosis-associated gene amplification may be caused by dysregulated miR-mediated aberrant phosphorylation of JAK2/STAT3 signaling pathway components. Therefore, JAK2/STAT3 is an attractive therapeutic target for NDDs. Numerous synthetic and natural small molecules as JAK2/STAT3 inhibitors have therapeutic advances against a wide range of diseases, and many are now in human clinical studies. This review explored the interactive role of the JAK2/STAT3 signaling system with key pathological factors during the reinforcement of NDDs. Also, the clinical trial data provides reasoning evidence about the possible use of JAK2/STAT3 inhibitors to abate neuroinflammation and neuronal apoptosis in NDDs.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
| | - Adarsh Kesharwani
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Samaresh Datta
- Department of Pharmaceutical Chemistry, Birbhum Pharmacy School, Sadaipur, Birbhum, West Bengal, India
| | - D S N B K Prasanth
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Polepally SEZ, TSIIC, Jadcherla, Mahbubnagar, Hyderabad, 509301, India
| | | | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
17
|
Janjua D, Thakur K, Aggarwal N, Chaudhary A, Yadav J, Chhokar A, Tripathi T, Joshi U, Senrung A, Bharti AC. Prognostic and therapeutic potential of STAT3: Opportunities and challenges in targeting HPV-mediated cervical carcinogenesis. Crit Rev Oncol Hematol 2024; 197:104346. [PMID: 38608913 DOI: 10.1016/j.critrevonc.2024.104346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cervical cancer (CaCx) ranks as the fourth most prevalent cancer among women globally. Persistent infection of high-risk human papillomaviruses (HR-HPVs) is major etiological factor associated with CaCx. Signal Transducer and Activator of Transcription 3 (STAT3), a prominent member of the STAT family, has emerged as independent oncogenic driver. It is a target of many oncogenic viruses including HPV. How STAT3 influences HPV viral gene expression or gets affected by HPV is an area of active investigation. A better understanding of host-virus interaction will provide a prognostic and therapeutic window for CaCx control and management. In this comprehensive review, we delve into carcinogenic role of STAT3 in development of HPV-induced CaCx. With an emphasis on fascinating interplay between STAT3 and HPV genome, the review explores the diverse array of opportunities and challenges associated with this field to harness the prognostic and therapeutic potential of STAT3 in CaCx.
Collapse
Affiliation(s)
- Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, India.
| |
Collapse
|
18
|
Zeki NM, Mustafa YF. 6,7-Coumarin-heterocyclic hybrids: A comprehensive review of their natural sources, synthetic approaches, and bioactivity. J Mol Struct 2024; 1303:137601. [DOI: 10.1016/j.molstruc.2024.137601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Pereira TA, Espósito BP. Can iron chelators ameliorate viral infections? Biometals 2024; 37:289-304. [PMID: 38019378 DOI: 10.1007/s10534-023-00558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
The redox reactivity of iron is a double-edged sword for cell functions, being either essential or harmful depending on metal concentration and location. Deregulation of iron homeostasis is associated with several clinical conditions, including viral infections. Clinical studies as well as in silico, in vitro and in vivo models show direct effects of several viruses on iron levels. There is support for the strategy of iron chelation as an alternative therapy to inhibit infection and/or viral replication, on the rationale that iron is required for the synthesis of some viral proteins and genes. In addition, abnormal iron levels can affect signaling immune response. However, other studies report different effects of viral infections on iron homeostasis, depending on the class and genotype of the virus, therefore making it difficult to predict whether iron chelation would have any benefit. This review brings general aspects of the relationship between iron homeostasis and the nonspecific immune response to viral infections, along with its relevance to the progress or inhibition of the inflammatory process, in order to elucidate situations in which the use of iron chelators could be efficient as antivirals.
Collapse
|
20
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
21
|
Dalisay DS, Tenebro CP, Sabido EM, Suarez AFL, Paderog MJV, Reyes-Salarda R, Saludes JP. Marine-Derived Anticancer Agents Targeting Apoptotic Pathways: Exploring the Depths for Novel Cancer Therapies. Mar Drugs 2024; 22:114. [PMID: 38535455 PMCID: PMC10972102 DOI: 10.3390/md22030114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 04/13/2024] Open
Abstract
Extensive research has been conducted on the isolation and study of bioactive compounds derived from marine sources. Several natural products have demonstrated potential as inducers of apoptosis and are currently under investigation in clinical trials. These marine-derived compounds selectively interact with extrinsic and intrinsic apoptotic pathways using a variety of molecular mechanisms, resulting in cell shrinkage, chromatin condensation, cytoplasmic blebs, apoptotic bodies, and phagocytosis by adjacent parenchymal cells, neoplastic cells, or macrophages. Numerous marine-derived compounds are currently undergoing rigorous examination for their potential application in cancer therapy. This review examines a total of 21 marine-derived compounds, along with their synthetic derivatives, sourced from marine organisms such as sponges, corals, tunicates, mollusks, ascidians, algae, cyanobacteria, fungi, and actinobacteria. These compounds are currently undergoing preclinical and clinical trials to evaluate their potential as apoptosis inducers for the treatment of different types of cancer. This review further examined the compound's properties and mode of action, preclinical investigations, clinical trial studies on single or combination therapy, and the prospective development of marine-derived anticancer therapies.
Collapse
Affiliation(s)
- Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Edna M. Sabido
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
| | - Angelica Faith L. Suarez
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
| | - Melissa June V. Paderog
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (E.M.S.); (M.J.V.P.)
- Department of Pharmacy, University of San Agustin, Iloilo City 5000, Philippines
| | - Rikka Reyes-Salarda
- Department of Biology, University of San Agustin, Iloilo City 5000, Philippines;
| | - Jonel P. Saludes
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (DOST-PCHRD), Taguig 1631, Philippines;
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines;
- Department of Chemistry, University of San Agustin, Iloilo City 5000, Philippines
| |
Collapse
|
22
|
Shichkin VP. Enterosorption may contribute to the reactivation of anticancer immunity and be an effective approach to tumor growth control. Front Immunol 2024; 15:1366894. [PMID: 38469311 PMCID: PMC10925691 DOI: 10.3389/fimmu.2024.1366894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
|
23
|
殳 畅, 韩 烨, 孙 雨, 杨 再, 侯 建. [Changes of parameters associated with anemia of inflammation in patients with stage Ⅲ periodontitis before and after periodontal initial therapy]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:45-50. [PMID: 38318895 PMCID: PMC10845175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVE To investigate the differences and similarities of parameters associated with anemia of inflammation between patients with stage Ⅲ periodontitis and periodontally healthy volunteers, and to explore the influence of periodontal initial therapy on those indicators. METHODS Patients with stage Ⅲ periodontitis and periodontally healthy volunteers seeking periodontal treatment or prophylaxis at Department of Periodontology, Peking University School and Hospital of Stomatology from February 2020 to February 2023 were enrolled. Their demographic characteristics, periodontal parameters (including probing depth, clinical attachment loss, bleeding index), and fasting blood were gathered before periodontal initial therapy. Three months after periodontal initial therapy, the periodontal parameters of the patients with stage Ⅲ periodontitis were re-evaluated and their fasting blood was collected again. Blood routine examinations (including white blood cells, red blood cells, hemoglobin, packed cell volume, mean corpuscular volume of erythrocytes, and mean corpuscular hemoglobin concentration) were performed. And ferritin, hepcidin, erythropoietin (EPO) were detected with enzyme-linked immunosorbent assay (ELISA). All data analysis was done with SPSS 21.0, independent sample t test, paired t test, and analysis of covariance were used for comparison between the groups. RESULTS A total of 25 patients with stage Ⅲ periodontitis and 25 periodontally healthy volunteers were included in this study. The patients with stage Ⅲ periodontitis were significantly older than those in periodontally healthy status [(36.72±7.64) years vs. (31.44±7.52) years, P=0.017]. The patients with stage Ⅲ periodontitis showed lower serum hemoglobin [(134.92±12.71) g/L vs. (146.52±12.51) g/L, P=0.002] and higher serum ferritin [(225.08±103.36) μg/L vs. (155.19±115.38) μg/L, P=0.029], EPO [(41.28±12.58) IU/L vs. (28.38±10.52) IU/L, P < 0.001], and hepcidin [(48.03±34.44) μg/L vs. (27.42±15.00) μg/L, P=0.009] compared with periodontally healthy volunteers. After adjusting the age with the covariance analysis, these parameters (hemoglobin, ferritin, EPO, and hepcidin) showed the same trends as independent-sample t test with statistical significance. Three months after periodontal initial therapy, all the periodontal parameters showed statistically significant improvement. The serum hemoglobin raised [(146.05±15.48) g/L vs. (133.77± 13.15) g/L, P < 0.001], while the serum ferritin [(128.52±90.95) μg/L vs. (221.22±102.15) μg/L, P < 0.001], EPO [(27.66±19.67) IU/L vs. (39.63± 12.48) IU/L, P=0.004], and hepcidin [(32.54±18.67) μg/L vs. (48.18±36.74) μg/L, P=0.033] decreased compared with baseline. CONCLUSION Tendency of iron metabolism disorder and anemia of inflammation was observed in patients with stage Ⅲ periodontitis, which can be attenuated by periodontal initial therapy.
Collapse
Affiliation(s)
- 畅 殳
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 烨 韩
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 雨哲 孙
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 再目 杨
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - 建霞 侯
- />北京大学口腔医学院·口腔医院牙周科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| |
Collapse
|
24
|
Waye AA, Ticiani E, Veiga-Lopez A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicol Appl Pharmacol 2024; 483:116804. [PMID: 38185387 PMCID: PMC11212468 DOI: 10.1016/j.taap.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
25
|
Manoharan S, Saha S, Murugesan K, Santhakumar A, Perumal E. Natural bioactive compounds and STAT3 against hepatocellular carcinoma: An update. Life Sci 2024; 337:122351. [PMID: 38103726 DOI: 10.1016/j.lfs.2023.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a challenging and very fatal liver cancer. The signal transducer and activator of transcription 3 (STAT3) pathway is a crucial regulator of tumor development and are ubiquitously active in HCC. Therefore, targeting STAT3 has emerged as a promising approach for preventing and treating HCC. Various natural bioactive compounds (NBCs) have been proven to target STAT3 and have the potential to prevent and treat HCC as STAT3 inhibitors. Numerous kinds of STAT3 inhibitors have been identified, including small molecule inhibitors, peptide inhibitors, and oligonucleotide inhibitors. Due to the undesirable side effects of the conventional therapeutic drugs against HCC, the focus is shifted to NBCs derived from plants and other natural sources. NBCs can be broadly classified into the categories of terpenes, alkaloids, carotenoids, and phenols. Most of the compounds belong to the family of terpenes, which prevent tumorigenesis by inhibiting STAT3 nuclear translocation. Further, through STAT3 inhibition, terpenes downregulate matrix metalloprotease 2 (MMP2), matrix metalloprotease 9 (MMP9) and vascular endothelial growth factor (VEGF), modulating metastasis. Terpenes also suppress the anti-apoptotic proteins and cell cycle markers. This review provides comprehensive information related to STAT3 abrogation by NBCs in HCC with in vitro and in vivo evidences.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Shreejit Saha
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Krishnasanthiya Murugesan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Aksayakeerthana Santhakumar
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
26
|
Fan Z, Zou X, Wang G, Liu Y, Jiang Y, Wang H, Zhang P, Wei F, Du X, Wang M, Sun X, Ji B, Hu X, Chen L, Zhou P, Wang D, Bai J, Xiao X, Zuo L, Xia X, Yi X, Lv G. A transcriptome based molecular classification scheme for cholangiocarcinoma and subtype-derived prognostic biomarker. Nat Commun 2024; 15:484. [PMID: 38212331 PMCID: PMC10784309 DOI: 10.1038/s41467-024-44748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024] Open
Abstract
Previous studies on the molecular classification of cholangiocarcinoma (CCA) focused on certain anatomical sites, and disregarded tissue contamination biases in transcriptomic profiles. We aim to provide universal molecular classification scheme and prognostic biomarker of CCAs across anatomical locations. Comprehensive bioinformatics analysis is performed on transcriptomic data from 438 CCA cases across various anatomical locations. After excluding CCA tumors showing normal tissue expression patterns, we identify two universal molecular subtypes across anatomical subtypes, explore the molecular, clinical, and microenvironmental features of each class. Subsequently, a 30-gene classifier and a biomarker (called "CORE-37") are developed to predict the molecular subtype of CCA and prognosis, respectively. Two subtypes display distinct molecular characteristics and survival outcomes. Key findings are validated in external cohorts regardless of the stage and anatomical location. Our study provides a CCA classification scheme that complements the conventional anatomy-based classification and presents a promising prognostic biomarker for clinical application.
Collapse
Affiliation(s)
- Zhongqi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xinchen Zou
- Geneplus-Beijing Institute, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Haoyan Wang
- Geneplus-Beijing Institute, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Feng Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaohong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Xintong Hu
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Liguo Chen
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Peiwen Zhou
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Jing Bai
- Geneplus-Beijing Institute, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Xiao Xiao
- Geneplus-Shenzhen, No.14 Zhongxing Road, Pingshan District, Shenzhen, China
| | - Lijiao Zuo
- Geneplus-Beijing Institute, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
| | - Xin Yi
- Geneplus-Beijing Institute, 9th Floor, No.6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, Beijing, China
- School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
27
|
Zarezadeh SM, Sharafi AM, Erabi G, Tabashiri A, Teymouri N, Mehrabi H, Golzan SA, Faridzadeh A, Abdollahifar Z, Sami N, Arabpour J, Rahimi Z, Ansari A, Abbasi MR, Azizi N, Tamimi A, Poudineh M, Deravi N. Natural STAT3 Inhibitors for Cancer Treatment: A Comprehensive Literature Review. Recent Pat Anticancer Drug Discov 2024; 19:403-502. [PMID: 37534488 DOI: 10.2174/1574892818666230803100554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023]
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide, affecting millions of people physically and financially every year. Over time, many anticancer treatments have been proposed and studied, including synthetic compound consumption, surgical procedures, or grueling chemotherapy. Although these treatments have improved the daily life quality of patients and increased their survival rate and life expectancy, they have also shown significant drawbacks, including staggering costs, multiple side effects, and difficulty in compliance and adherence to treatment. Therefore, natural compounds have been considered a possible key to overcoming these problems in recent years, and thorough research has been done to assess their effectiveness. In these studies, scientists have discovered a meaningful interaction between several natural materials and signal transducer and activator of transcription 3 molecules. STAT3 is a transcriptional protein that is vital for cell growth and survival. Mechanistic studies have established that activated STAT3 can increase cancer cell proliferation and invasion while reducing anticancer immunity. Thus, inhibiting STAT3 signaling by natural compounds has become one of the favorite research topics and an attractive target for developing novel cancer treatments. In the present article, we intend to comprehensively review the latest knowledge about the effects of various organic compounds on inhibiting the STAT3 signaling pathway to cure different cancer diseases.
Collapse
Affiliation(s)
- Seyed Mahdi Zarezadeh
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Sharafi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Teymouri
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Mehrabi
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyyed Amirhossein Golzan
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Abdollahifar
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Javad Arabpour
- Department of Microbiology, Faculty of New Sciences, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| | - Zahra Rahimi
- School of Medicine, Zanjan University of Medical Sciences Zanjan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Nima Azizi
- Students' Scientific Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Soundararajan L, Warrier S, Dharmarajan A, Bhaskaran N. Predominant factors influencing reactive oxygen species in cancer stem cells. J Cell Biochem 2024; 125:3-21. [PMID: 37997702 DOI: 10.1002/jcb.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) and its related signaling pathways and regulating molecules play a major role in the growth and development of cancer stem cells. The concept of ROS and cancer stem cells (CSCs) has been gaining much attention since the past decade and the evidence show that these CSCs possess robust self-renewal and tumorigenic potential and are resistant to conventional chemo- and radiotherapy and believed to be responsible for tumor progression, metastasis, and recurrence. It seems reasonable to say that cancer can be cured only if the CSCs are eradicated. ROS are Janus-faced molecules that can regulate cellular physiology as well as induce cytotoxicity, depending on the magnitude, duration, and site of generation. Unlike normal cancer cells, CSCs expel ROS efficiently by upregulating ROS scavengers. This unique redox regulation in CSCs protects them from ROS-mediated cell death and nullifies the effect of radiation, leading to chemoresistance and radioresistance. However, how these CSCs control ROS production by scavenging free radicals and how they maintain low levels of ROS is a challenging to understand and these attributes make CSCs as prime therapeutic targets. Here, we summarize the mechanisms of redox regulation in CSCs, with a focus on therapy resistance, its various pathways and microRNAs regulation, and the potential therapeutic implications of manipulating the ROS levels to eradicate CSCs. A better understanding of these molecules, their interactions in the CSCs may help us to adopt proper control and treatment measures.
Collapse
Affiliation(s)
- Loshini Soundararajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Sudha Warrier
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
- Stem Cell and Cancer Biology laboratory, Curtin University, Perth, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Natarajan Bhaskaran
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| |
Collapse
|
29
|
Bao Q, Ganbold T, Bao M, Xiao H, Han S, Baigude H. Tumor targeted siRNA delivery by adenosine receptor-specific curdlan nanoparticles. Int J Biol Macromol 2023; 253:126845. [PMID: 37703972 DOI: 10.1016/j.ijbiomac.2023.126845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Aminated curdlan derivatives are highly effective nucleic acid carriers. Previously, we proved that the ligand-functionalized curdlan derivatives have greatly enhanced cell type specificity induced by receptor-mediated internalization in vitro. In this study, to improve biocompatibility and enhance tumor-targeting efficacy of the curdlan derivative, we pegylated the adenosine functionalized amino curdlan derivative (denoted by pAVC polymer). We confirmed that the uptake of pAVC polymer carrying siRNA by tumor cells was adenosine receptor (AR)-dependent and was specifically inhibited by AMP but not by GMP. The pAVC polymers not only preserved the receptor recognition and exhibited significantly decreased cytotoxicity but also showed remarkable tumor targeting efficiency in vivo. The nanoparticles formulated from siRNA (against STAT3) and pAVC4 polymer, which bears the highest degree of PEG substitution, delivered siRNA highly specifically to tumor tissue, knocked down STAT3, and inhibited tumor growth. The pAVC polymers may be a promising carrier for tumor specific delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Qingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Tsogzolmaa Ganbold
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Mingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Hai Xiao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Shuqin Han
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Huricha Baigude
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
30
|
Marella S, Sharma A, Ganesan V, Ferrer-Torres D, Krempski JW, Idelman G, Clark S, Nasiri Z, Vanoni S, Zeng C, Dlugosz AA, Zhou H, Wang S, Doyle AD, Wright BL, Spence JR, Chehade M, Hogan SP. IL-13-induced STAT3-dependent signaling networks regulate esophageal epithelial proliferation in eosinophilic esophagitis. J Allergy Clin Immunol 2023; 152:1550-1568. [PMID: 37652141 PMCID: PMC11102758 DOI: 10.1016/j.jaci.2023.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/11/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Basal zone hyperplasia (BZH) and dilated intercellular spaces (DISs) are thought to contribute to the clinical manifestations of eosinophilic esophagitis (EoE); however, the molecular pathways that drive BZH remain largely unexplored. OBJECTIVE We sought to define the role of IL-13-induced transcriptional programs in esophageal epithelial proliferation in EoE. METHODS We performed RNA sequencing, bioinformatics, Western blot, reverse transcriptase quantitative PCR, and histologic analyses on esophageal biopsies from healthy control and patients with EoE, primary esophageal cells derived from patients with EoE, and IL-13-stimulated esophageal epithelial keratinocytes grown at the air-liquid interface (EPC2-ALI). Genetic (shRNA) and pharmacologic (proteolysis-targeting chimera degrader) approaches and in vivo model of IL-13-induced esophageal epithelial remodeling (Krt5-rtTA x tetO-IL-13Tg) were used to define the role of signal transducer and activator of transcription 3 (STAT3) and STAT6 and secreted frizzled-related protein 1 (SFRP1) in esophageal epithelial proliferation. RESULTS RNA-sequencing analysis of esophageal biopsies (healthy control vs EoE) and EPC2-ALI revealed 82 common differentially expressed genes that were enriched for putative STAT3 target genes. In vitro and in vivo analyses revealed a link between IL-13-induced STAT3 and STAT6 phosphorylation, SFRP1 mRNA expression, and esophageal epithelial proliferation. In vitro studies showed that IL-13-induced esophageal epithelial proliferation was STAT3-dependent and regulated by the STAT3 target SFRP1. SFRP1 mRNA is increased in esophageal biopsies from patients with active EoE compared with healthy controls or patients in remission and identifies an esophageal suprabasal epithelial cell subpopulation that uniquely expressed the core EoE proinflammatory transcriptome genes (CCL26, ALOX15, CAPN14, ANO1, and TNFAIP6). CONCLUSIONS These studies identify SFRP1 as a key regulator of IL-13-induced and STAT3-dependent esophageal proliferation and BZH in EoE and link SFRP1+ esophageal epithelial cells with the proinflammatory and epithelial remodeling response in EoE.
Collapse
Affiliation(s)
- Sahiti Marella
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Ankit Sharma
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Varsha Ganesan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | | | - James W Krempski
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Gila Idelman
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich
| | - Sydney Clark
- Department of Pathology, University of Michigan, Ann Arbor, Mich
| | - Zena Nasiri
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Mich
| | - Simone Vanoni
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Chang Zeng
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Mich
| | - Haibin Zhou
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Shaomeng Wang
- Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, Mich
| | - Alfred D Doyle
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma and Immunology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, Ariz; Section of Allergy and Immunology, Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Jason R Spence
- Internal Medicine, University of Michigan, Ann Arbor, Mich
| | - Mirna Chehade
- Mount Sinai Center for Eosinophilic Disorders, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Simon P Hogan
- Department of Pathology, University of Michigan, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
31
|
Macharia JM, Varjas T, Mwangi RW, Káposztás Z, Rozmann N, Pintér M, Wagara IN, Raposa BL. Modulatory Properties of Aloe secundiflora's Methanolic Extracts on Targeted Genes in Colorectal Cancer Management. Cancers (Basel) 2023; 15:5002. [PMID: 37894369 PMCID: PMC10605537 DOI: 10.3390/cancers15205002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Colon tumors have a very complicated and poorly understood pathogenesis. Plant-based organic compounds might provide a novel source for cancer treatment with a sufficient novel mode of action. The objective of this study was to analyze and evaluate the efficacy of Aloe secundiflora's (AS) methanolic extracts on the expression of CASPS9, 5-LOX, Bcl2, Bcl-xL, and COX-2 in colorectal cancer (CRC) management. Caco-2 cell lines were used in the experimental study. In the serial exhaustive extraction (SEE) method, methanol was utilized as the extraction solvent. Upon treatment of CASPS9 with the methanolic extracts, the expression of the genes was progressively upregulated, thus, dose-dependently increasing the rate of apoptosis. On the other hand, the expressions of 5-LOX, Bcl2, and Bcl-xL were variably downregulated in a dose-dependent manner. This is a unique novel study that evaluated the effects of AS methanolic extracts in vitro on CRC cell lines using different dosage concentrations. We, therefore, recommend the utilization of AS and the application of methanol as the extraction solvent of choice for maximum modulatory benefits in CRC management. In addition, we suggest research on the specific metabolites in AS involved in the modulatory pathways that suppress the development of CRC and potential metastases.
Collapse
Affiliation(s)
- John M. Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Ruth W. Mwangi
- Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
- Department of Biological Sciences, Egerton University, Nakuru P.O. Box 3366-20100, Kenya
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary (B.L.R.)
| | - Nóra Rozmann
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Márton Pintér
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pẻcs, 7621 Pẻcs, Hungary
| | - Isabel N. Wagara
- Department of Biological Sciences, Egerton University, Nakuru P.O. Box 3366-20100, Kenya
| | - Bence L. Raposa
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary (B.L.R.)
| |
Collapse
|
32
|
Bao M, Bade R, Liu H, Tsambaa B, Shao G, Borjigidai A, Cheng Y. Astragaloside IV against Alzheimer's disease via microglia-mediated neuroinflammation using network pharmacology and experimental validation. Eur J Pharmacol 2023; 957:175992. [PMID: 37598923 DOI: 10.1016/j.ejphar.2023.175992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases in the world. The effective therapeutic methods and drugs are still not clear. Astragaloside IV (AS-IV), a triterpenoid saponin isolated from the root of Huangqi, has a beneficial effect in the treatment of AD. However, whether AS-IV alters microglia in the inflammation of AD is still ambiguous. In our study, 99 common targets were collected between AS-IV and AD. BCL2 apoptosis regulator (Bcl-2), pro-apoptotic BCL-2 protein BAX, epidermal growth factor receptor (EGFR), and receptor tyrosine phosphatase type C (PTPRC) were screened for inflammation and microglia in the above targets by network pharmacology. Interleukin-1β (IL-1β) and EGFR both interact with signal transducer and activator of transcription 3 (STAT3) by a protein interaction network, and IL-1β had a higher affinity for AS-IV based on molecular docking. Enrichment revealed targets involved in the regulation of neuronal cell bodies, growth factor receptor binding, EGFR tyrosine kinase inhibitor resistance., etc. Besides, AS-IV alleviated the reduced cell proliferation in amyloid-beta (Aβ)-treated microglial BV2 cells. AS-IV affected BV2 cell morphological changes and decreased cluster of differentiation 11b (CD11b) gene, IL-1β, and EGFR mRNA levels increment during lipopolysaccharide (LPS) injury in BV2 cell activation. Therefore, AS-IV may regulate microglial activation and inflammation via EGFR-dependent pathways in AD. EGFR and IL-1β are vital targets that may relate to each other to coregulate downstream molecular functions in the cure of AD. Our study provides a candidate drug and disease target for the treatment of neurodegenerative diseases in the clinic.
Collapse
Affiliation(s)
- MuLan Bao
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - RenGui Bade
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, School of Medical Technology and Anesthesiology, Baotou Medical College, Baotou 014040, China
| | - Hua Liu
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China
| | - Battseren Tsambaa
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar 13330, Mongolia
| | - Guo Shao
- Center for Translational Medicine, The Third People's Hospital of Longgang District, Shenzhen 518112, China
| | - Almaz Borjigidai
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China.
| | - Yong Cheng
- Key Laboratory for Ethnomedicine for Ministry of Education, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, Minzu University of China, Beijing 100081, China; Institute of National Security, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
33
|
Anderson JB, Bouchal SM, Zhang L, Daniels DJ. STAT3 as a biologically relevant target in H3K27M-mutant diffuse midline glioma. Oncotarget 2023; 14:858-859. [PMID: 37791912 PMCID: PMC10549769 DOI: 10.18632/oncotarget.28516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 10/05/2023] Open
Affiliation(s)
| | | | | | - David J. Daniels
- Correspondence to:David J. Daniels, Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA email
| |
Collapse
|
34
|
He C, Zhou W, Jin X, Zhou H. Derepressing of STAT3 and USP7 contributes to resistance of DLBCL to EZH2 inhibition. Heliyon 2023; 9:e20650. [PMID: 37829803 PMCID: PMC10565777 DOI: 10.1016/j.heliyon.2023.e20650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Diffuse large B-cell lymphoma is the most common subtype of lymphoma, representing ∼25 % of non-Hodgkin lymphoid malignancies. EZH2 is highly expressed in Diffuse large B-cell lymphoma and ∼22 % of patients contain EZH2 mutations. EZH2 have been studied as a potential therapeutic target for a decade, but efficient inhibition of EZH2 did not robustly kill lymphoma cells. Here, we found that EZH2 mediates repression of oncogenic genes STAT3 and USP7 in Diffuse large B-cell lymphoma cells. Inhibition of EZH2 leads to upregulation of STAT3 and USP7 at both RNA and protein levels. Along with USP7 upregulation, MDM2 is upregulated and its ubiquitylation substrate, Tumor suppressor P53, is downregulated. Upregulation of STAT3 and downregulation of p53 can strength cell proliferation and prevent cells from apoptosis, which suggests resistance mechanisms by which cells survive EZH2 inhibition-induced cell death. Short-course co-inhibition of USP7 and EZH2 showed increased apoptosis and cell proliferation prevention with the concentration as low as 0.08 μM. In STAT3 and USP7 depleted cells, EZH2 inhibition shows superior efficacy of apoptosis, and in EZH2 depleted cells, USP7 inhibition also shows superior efficacy of apoptosis. Thus, our findings suggest a new precision therapy by combinational inhibition of EZH2 with STAT3 or USP7 for Diffuse large B-cell lymphoma.
Collapse
Affiliation(s)
- Chenyun He
- Affililated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenbin Zhou
- East Hospital of Shaoyang Central Hospital Medical Group, Shaoyang, Hunan, China
| | - Xiaoxia Jin
- Affililated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Haining Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Ren Q, Dai X, Jiang Z, Huang X. Three STAT isoforms formed by selective splicing are involved in the regulation of anti-lipopolysaccharide factor expression in Macrobrachium nipponense during WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109039. [PMID: 37640125 DOI: 10.1016/j.fsi.2023.109039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 08/31/2023]
Abstract
White spot syndrome virus (WSSV), a double-stranded DNA virus, is harmful in aquaculture. The signal transducer and activator of transcription (STAT) has been shown to play a role during host infection with the virus, but the exact mechanism by which it acts is unclear. In this study, three STAT isoforms (MnSTAT1, MnSTAT2, and MnSTAT3) were identified in Macrobrachium nipponense. The full-length sequence of MnSTAT1 was 3336 bp, with 2259 bp open reading frame (ORF), encoding a 852 amino acids protein. The full-length sequence of MnSTAT2 was 2538 bp, and the ORF was 2391 bp, encoding 796 amino acids. The full-length sequence of MnSTAT3 sequence was 2618 bp, and the ORF was 2340 bp, encoding 779 amino acids. MnSTAT1-3 is produced by alternative last exon. MnSTAT1-3 all contain a STAT_int, a STAT_alpha, a STAT_bind, and a SH2 structure. MnSTAT1-3 are widely expressed in various tissues tested. The expression levels of MnSTAT1-3 in the intestine of M. nipponense were upregulated at multiple time points following WSSV stimulation. The expression of seven anti-lipopolysaccharide factors (ALFs) was significantly reduced with the knockdown of MnSTATs during WSSV infection. Results showed that MnSTATs regulated the expression of intestinal ALFs and was involved in the innate immunity against WSSV of M. nipponense.
Collapse
Affiliation(s)
- Qian Ren
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, China.
| | - Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China
| | - Zuosheng Jiang
- Hangzhou Vocational and Technical College, Hangzhou, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| |
Collapse
|
36
|
Nenu I, Toadere TM, Topor I, Țichindeleanu A, Bondor DA, Trella ȘE, Sparchez Z, Filip GA. Interleukin-6 in Hepatocellular Carcinoma: A Dualistic Point of View. Biomedicines 2023; 11:2623. [PMID: 37892997 PMCID: PMC10603956 DOI: 10.3390/biomedicines11102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is a pressing health concern, demanding a deep understanding of various mediators' roles in its development for therapeutic progress. Notably, interleukin-6 (IL-6) has taken center stage in investigations due to its intricate and context-dependent functions. This review delves into the dual nature of IL-6 in HCC, exploring its seemingly contradictory roles as both a promoter and an inhibitor of disease progression. We dissect the pro-tumorigenic effects of IL-6, including its impact on tumor growth, angiogenesis, and metastasis. Concurrently, we examine its anti-tumorigenic attributes, such as its role in immune response activation, cellular senescence induction, and tumor surveillance. Through a comprehensive exploration of the intricate interactions between IL-6 and the tumor microenvironment, this review highlights the need for a nuanced comprehension of IL-6 signaling in HCC. It underscores the importance of tailored therapeutic strategies that consider the dynamic stages and diverse surroundings within the tumor microenvironment. Future research directions aimed at unraveling the multifaceted mechanisms of IL-6 in HCC hold promise for developing more effective treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
| | - Teodora Maria Toadere
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Ioan Topor
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Andra Țichindeleanu
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Daniela Andreea Bondor
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Șerban Ellias Trella
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| | - Zeno Sparchez
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania;
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.N.); (T.M.T.); (A.Ț.); (D.A.B.); (Ș.E.T.); (G.A.F.)
| |
Collapse
|
37
|
Zhao C, Wang W, Bai Y, Amonkar G, Mou H, Olejnik J, Hume AJ, Mühlberger E, Fang Y, Que J, Fearns R, Ai X, Lerou PH. Age-related STAT3 signaling regulates severity of respiratory syncytial viral infection in human bronchial epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558606. [PMID: 37781574 PMCID: PMC10541147 DOI: 10.1101/2023.09.20.558606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Respiratory syncytial virus (RSV) can cause severe disease especially in infants; however, mechanisms of age-associated disease severity remain elusive. Here, employing human bronchial epithelium models generated from tracheal aspirate-derived basal stem cells of neonates and adults, we investigated whether age regulates RSV-epithelium interaction to determine disease severity. We show that following RSV infection, only neonatal epithelium model exhibited cytopathy and mucus hyperplasia, and neonatal epithelium had more robust viral spread and inflammatory responses than adult epithelium. Mechanistically, RSV-infected neonatal ciliated cells displayed age-related impairment of STAT3 activation, rendering susceptibility to apoptosis, which facilitated viral spread. In contrast, SARS-CoV-2 infection of ciliated cells had no effect on STAT3 activation and was not affected by age. Taken together, our findings identify an age-related and RSV-specific interaction with neonatal bronchial epithelium that critically contributes to severity of infection, and STAT3 activation offers a potential strategy to battle severe RSV disease in infants.
Collapse
|
38
|
Salgado MTSF, Fernandes E Silva E, Nascimento MAD, Lopes AC, Paiva LSD, Votto APDS. Potential Therapeutic Targets of Quercetin in the Cutaneous Melanoma Model and Its Cellular Regulation Pathways: A Systematic Review. Nutr Cancer 2023; 75:1687-1709. [PMID: 37553896 DOI: 10.1080/01635581.2023.2241698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023]
Abstract
Melanoma is a skin cancer with a high mortality rate due to its invasive characteristics. Currently, immunotherapy and targeted therapy increase patient survival but are ineffective in the advanced stages of the tumor. Quercetin (Que) is a natural compound that has demonstrated chemopreventive effects against different types of tumors. This review provides evidence for the therapeutic potential of Que in melanoma and identifies its main targets. The Scopus, Web of Science, and PubMed databases were searched, and studies that used free or encapsulated Que in melanoma models were included, excluding associations, analogs, and extracts. As a result, 73 articles were retrieved and their data extracted. Que has multiple cellular targets in melanoma models, and the main regulated pathways are cell death, redox metabolism, metastasis, and melanization. Que was also able to regulate important targets of signaling pathways, such as PKC, RIG-I, STAT, and P53. In murine models, treatment with Que reduced tumor growth and weight, and decreased metastatic nodules and angiogenic vasculature. Several studies have incorporated Que into carriers, demonstrating improved efficacy and delivery to tumors. Thus, Que is a promising therapeutic agent for the treatment of melanoma; however, further studies are needed to evaluate its effectiveness in clinical trials.
Collapse
Affiliation(s)
- Mariana Teixeira Santos Figueiredo Salgado
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| | | | - Mariana Amaral do Nascimento
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Luciana Souza de Paiva
- Laboratório de Imunorregulação, Departamento de Imunobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ana Paula de Souza Votto
- Laboratório de Cultura Celular, ICB, FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas, ICB, FURG, Rio Grande, RS, Brazil
| |
Collapse
|
39
|
Jafari S, Dabiri S, Mehdizadeh Aghdam E, Fathi E, Saeedi N, Montazersaheb S, Farahzadi R. Synergistic effect of chrysin and radiotherapy against triple-negative breast cancer (TNBC) cell lines. Clin Transl Oncol 2023; 25:2559-2568. [PMID: 36964888 DOI: 10.1007/s12094-023-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/27/2023] [Indexed: 03/26/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, accounting for 20% of cases. Due to the lack of a molecular target, limited options are available for TNBC treatment. Radiation therapy (RT) is a treatment modality for the management of TNBC following surgery; however, it has a detrimental effect on surrounding healthy tissues/cells at a higher rate. METHODS We examined the effect of RT in combination with chrysin as a possible radiosensitizing agent in an MDA-MB-231 cell line as a model of a TNBC. The growth inhibitory effects of chrysin were examined using an MTT assay. Flow cytometry was performed to evaluate apoptosis and expression of hypoxia-induced factor-1α (HIF-1α). The protein expression of p-STAT3/STAT3 and Cyclin D1 was examined using western blotting. Real-time PCR determined apoptotic-related genes (Bax, BCL2, p53). RESULTS Treatment of MDA-MB-231 cells with chrysin in combination with RT caused synergistic antitumor effects, with an optimum combination index (CI) of 0.495. Our results indicated that chrysin synergistically potentiated RT-induced apoptosis in MDA-MB-231 compared with monotherapies (chrysin and/or RT alone). Expression of HIF-1α was decreased in the cells exposed to combinational therapy. The apoptotic effect of combinational therapy was correlated with increased Bax (pro-apoptotic gene) and p53 levels along with reduced expression of Bcl-2 (anti-apoptotic gene). Increased apoptosis was associated with reduced expression of Cyclin D1, p-STAT3. CONCLUSION These findings highlight the potential effect of chrysin as a radiosensitizer, indicating the synergistic anti-cancer effect of chrysin and RT in TNBC. Further investigation is warranted in this regard.
Collapse
Affiliation(s)
- Sevda Jafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheida Dabiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Mehdizadeh Aghdam
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166614731, Iran.
| |
Collapse
|
40
|
Wang J, Wang Y, Xiaohalati X, Su Q, Liu J, Cai B, Yang W, Wang Z, Wang L. A Bioinspired Manganese-Organic Framework Ameliorates Ischemic Stroke through its Intrinsic Nanozyme Activity and Upregulating Endogenous Antioxidant Enzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206854. [PMID: 37129343 PMCID: PMC10369237 DOI: 10.1002/advs.202206854] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Following stroke, oxidative stress induced by reactive oxygen species (ROS) aggravates neuronal damage and enlarges ischemic penumbra, which is devastating to stroke patients. Nanozyme-based antioxidants are emerging to treat stroke through scavenging excessive ROS. However, most of nanozymes cannot efficiently scavenge ROS in neuronal cytosol and mitochondria, due to low-uptake abilities of neurons and barriers of organelle membranes, significantly limiting nanozymes' neuroprotective effects. To overcome this limitation, a manganese-organic framework modified with polydopamine (pDA-MNOF), capable of not only mimicking catalytic activities of natural SOD2's catalytic domain but also upregulating two endogenous antioxidant enzymes in neurons is fabricated. With such a dual anti-ROS effect, this nanozyme robustly decreases cellular ROS and effectively protects them from ROS-induced injury. STAT-3 signaling is found to play a vital role in pDA-MNOF activating the two antioxidant enzymes, HO1 and SOD2. In vivo pDA-MNOF treatment significantly improves the survival of middle cerebral artery occlusion (MCAo) mice by reducing infarct volume and more importantly, promotes animal behavioral recovery. Further, pDA-MNOF activates vascular endothelial growth factor expression, a downstream target of STAT3 signaling, thus enhancing angiogenesis. Taken together, the biochemical, cell-biological, and animal-level behavioral data demonstrate the potentiality of pDA-MNOF as a dual ROS-scavenging agent for stroke treatment.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Yang Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Xiakeerzhati Xiaohalati
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Qiangfei Su
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Jingwei Liu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Bo Cai
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Wen Yang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022P. R. China
| |
Collapse
|
41
|
Macharia JM, Ngure V, Emődy B, Király B, Káposztás Z, Rozmann N, Erdélyi A, Raposa B. Pharmacotherapeutic Potential of Aloe secundiflora against Colorectal Cancer Growth and Proliferation. Pharmaceutics 2023; 15:pharmaceutics15051558. [PMID: 37242800 DOI: 10.3390/pharmaceutics15051558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Aloe species are widespread and diverse in African ecosystems, and this commonly correlates to their habitual use as reservoirs of herbal medicine. The side effects associated with chemotherapy and the development of antimicrobial resistance to empirically used antimicrobial drugs are substantial, paving the way for novel phytotherapeutic approaches. This comprehensive study aimed to evaluate and present Aloe secundiflora (A. secundiflora) as a compelling alternative with potential benefits in colorectal cancer (CRC) treatment. Important databases were systematically searched for relevant literature, and out of a large collection of 6421 titles and abstracts, only 68 full-text articles met the inclusion criteria. A. secundiflora possesses an abundant presence of bioactive phytoconstituents in the leaves and roots, including anthraquinones, naphthoquinones, phenols, alkaloids, saponins, tannins, and flavonoids, among others. These metabolites have proven diverse efficacy in inhibiting cancer growth. The presence of innumerable biomolecules in A. secundiflora signifies the beneficial effects of incorporating the plant as a potential anti-CRC agent. Nonetheless, we recommend further research to determine the optimal concentrations necessary to elicit beneficial effects in the management of CRC. Furthermore, they should be investigated as potential raw ingredients for making conventional medications.
Collapse
Affiliation(s)
- John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Veronica Ngure
- School of Science and Applied Technology, Laikipia University, Nyahururu P.O. Box 1100-20300, Kenya
| | - Barnabás Emődy
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Király
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Zsolt Káposztás
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Nóra Rozmann
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Attila Erdélyi
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| | - Bence Raposa
- Faculty of Health Sciences, University of Pẻcs, 7624 Pecs, Hungary
| |
Collapse
|
42
|
Jiao J, Sanchez JI, Saldarriaga OA, Solis LM, Tweardy DJ, Maru DM, Stevenson HL, Beretta L. Spatial molecular and cellular determinants of STAT3 activation in liver fibrosis progression in non-alcoholic fatty liver disease. JHEP Rep 2023; 5:100628. [PMID: 36687470 PMCID: PMC9850198 DOI: 10.1016/j.jhepr.2022.100628] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background & Aims The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and hepatocellular carcinoma in mice. Methods Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3 (pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD livers.Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demonstrating a direct role for STAT3 in HPC expansion. Conclusion Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression could lead to novel targeted treatment approaches. Impact and implications Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly associated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial distribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.
Collapse
Key Words
- DSP, digital spatial profiler
- FC, fold change
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HPCs, hepatic progenitor cells
- HSCs, hepatic stellate cells
- IPA, Ingenuity® Pathway Analysis
- LSECs, liver sinusoidal endothelial cells
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- SECs, sinusoidal endothelial cells
- STAT, signal transducer and activator of transcription
- STAT3
- cirrhosis
- fibrosis
- liver cancer
- pSTAT3, phospho-STAT3
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar A. Saldarriaga
- Department of Pathology, The University of Texas Medical Branch, Galveston TX, USA
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J. Tweardy
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dipen M. Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather L. Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston TX, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Jaradat NJ, Alshaer W, Hatmal M, Taha MO. Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning. RSC Adv 2023; 13:4623-4640. [PMID: 36760267 PMCID: PMC9896621 DOI: 10.1039/d2ra07007c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
STAT3 belongs to a family of seven vital transcription factors. High levels of STAT3 are detected in several types of cancer. Hence, STAT3 inhibition is considered a promising therapeutic anti-cancer strategy. In this work, we used multiple docked poses of STAT3 inhibitors to augment training data for machine learning QSAR modeling. Ligand-Receptor Contact Fingerprints and scoring values were implemented as descriptor variables. Escalating docking-scoring consensus levels were scanned against orthogonal machine learners, and the best learners (Random Forests and XGBoost) were coupled with genetic algorithm and Shapley additive explanations (SHAP) to identify critical descriptors that determine anti-STAT3 bioactivity to be translated into pharmacophore model(s). Two successful pharmacophores were deduced and subsequently used for in silico screening against the National Cancer Institute (NCI) database. A total of 26 hits were evaluated in vitro for their anti-STAT3 bioactivities. Out of which, three hits of novel chemotypes, showed cytotoxic IC50 values in the nanomolar range (35 nM to 6.7 μM). However, two are potent dihydrofolate reductase (DHFR) inhibitors and therefore should have significant indirect STAT3 inhibitory effects. The third hit (cytotoxic IC50 = 0.44 μM) is purely direct STAT3 inhibitor (devoid of DHFR activity) and caused, at its cytotoxic IC50, more than two-fold reduction in the expression of STAT3 downstream genes (c-Myc and Bcl-xL). The presented work indicates that the concept of data augmentation using multiple docked poses is a promising strategy for generating valid machine learning models capable of discriminating active from inactive compounds.
Collapse
Affiliation(s)
- Nour Jamal Jaradat
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan Amman 11942 Jordan
| | - Mamon Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University P.O. Box 330127 Zarqa 13133 Jordan
| | - Mutasem Omar Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan Amman 11492 Jordan +962 6 5339649 +962 6 5355000 ext. 23305
| |
Collapse
|
44
|
Nassar A, Zekri ARN, Elberry MH, Lymona AM, Lotfy MM, Abouelhoda M, Youssef ASED. Somatic Mutations Alter Interleukin Signaling Pathways in Grade II Invasive Breast Cancer Patients: An Egyptian Experience. Curr Issues Mol Biol 2022; 44:5890-5901. [PMID: 36547062 PMCID: PMC9777163 DOI: 10.3390/cimb44120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to investigate the impact of somatic mutations on various interleukin signaling pathways associated with grade II invasive breast cancer (BC) in Egyptian patients to broaden our understanding of their role in promoting carcinogenesis. Fifty-five grade II invasive BC patients were included in this study. Data for somatic mutations in 45 BC patients were already available from a previous study. Data for somatic mutations of 10 new BC patients were included in the current study. Somatic mutations were identified using targeted next-generation sequencing (NGS) to study their involvement in interleukin signaling pathways. For pathway analysis, we used ingenuity variant analysis (IVA) to identify the most significantly altered pathways. We identified somatic mutations in components of the interleukin-2, interleukin-6, and inter-leukin-7 signaling pathways, including mutations in JAK1, JAK2, JAK3, SOCS1, IL7R, MCL1, BCL2, MTOR, and IL6ST genes. Interestingly, six mutations which were likely to be novel deleterious were identified: two in the SCH1 gene, two in the IL2 gene, and one in each of the IL7R and JUN genes. According to IVA analysis, interleukin 2, interleukin 6, and interleukin 7 signaling pathways were the most altered in 34.5%, 29%, and 23.6% of our BC group, respectively. Our multigene panel sequencing analysis reveals that our BC patients have altered interleukin signaling pathways. So, these results highlight the prominent role of interleukins in the carcinogenesis process and suggest its potential role as promising candidates for personalized therapy in Egyptian patients.
Collapse
Affiliation(s)
- Auhood Nassar
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
- Correspondence: (A.N.); (A.R.N.Z.); Tel.: +20-222-742-607 (A.N.)
| | - Abdel Rahman N. Zekri
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
- Correspondence: (A.N.); (A.R.N.Z.); Tel.: +20-222-742-607 (A.N.)
| | - Mostafa H. Elberry
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Ahmed M. Lymona
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Mai M. Lotfy
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | | | - Amira Salah El-Din Youssef
- Cancer Biology Department, Virology and Immunology Unit, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| |
Collapse
|
45
|
Mahmood S, Khan SG, Rasul A, Christensen JB, Abourehab MAS. Ultrasound Assisted Synthesis and In Silico Modelling of 1,2,4-Triazole Coupled Acetamide Derivatives of 2-(4-Isobutyl phenyl)propanoic acid as Potential Anticancer Agents. Molecules 2022; 27:molecules27227984. [PMID: 36432091 PMCID: PMC9698963 DOI: 10.3390/molecules27227984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The development of an economical method for the synthesis of biologically active compounds was the major goal of this research. In the present study, we have reported the ultrasound-radiation-assisted synthesis of a series of novel N-substituted 1,2,4-triazole-2-thiol derivatives. The target compounds 6a−f were efficiently synthesized in significant yields (75−89%) by coupling 1,2,4-triazole of 2-(4-isobutylphenyl) propanoic acid 1 with different electrophiles using ultrasound radiation under different temperatures. The sonication process accelerated the rate of the reaction as well as yielded all derivatives compared to conventional methods. All derivatives were confirmed by spectroscopic (FTIR, 1HNMR, 13CNMR, HRMS) and physiochemical methods. All derivatives were further screened for their anticancer effects against the HepG2 cell line. Compound 6d containing two electron-donating methyl moieties demonstrated the most significant anti-proliferative activity with an IC50 value of 13.004 µg/mL, while compound 6e showed the lowest potency with an IC50 value of 28.399 µg/mL. The order of anticancer activity was found to be: 6d > 6b > 6f > 6a > 6c > 6e, respectively. The in silico modelling of all derivatives was performed against five different protein targets and the results were consistent with the biological activities. Ligand 6d showed the best binding affinity with the Protein Kinase B (Akt) pocket with the lowest ∆G value of −176.152 kcal/mol. Compound 6d has been identified as a promising candidate for treatment of liver cancer.
Collapse
Affiliation(s)
- Sadaf Mahmood
- Drug Design and Medicinal Chemistry Laboratory, Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Drug Design and Medicinal Chemistry Laboratory, Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (S.G.K.); (M.A.S.A.); Tel.: +92-300-427-0077 (S.G.K.)
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Jørn Bolstad Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Frederiksberg C, 1870 Copenhagen, Denmark
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Correspondence: (S.G.K.); (M.A.S.A.); Tel.: +92-300-427-0077 (S.G.K.)
| |
Collapse
|
46
|
Discovery and SAR Study of Quinoxaline–Arylfuran Derivatives as a New Class of Antitumor Agents. Pharmaceutics 2022; 14:pharmaceutics14112420. [DOI: 10.3390/pharmaceutics14112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
A novel class of quinoxaline–arylfuran derivatives were designed, synthesized, and preliminarily evaluated for their antiproliferative activities in vitro against several cancer cell lines and normal cells. The representative derivative QW12 exerts a potent antiproliferative effect against HeLa cells (IC50 value of 10.58 μM), through inducing apoptosis and triggering ROS generation and the accumulation of HeLa cells in vitro. Western blot analysis showed that QW12 inhibits STAT3 phosphorylation (Y705) in a dose-dependent manner. The BLI experiment directly demonstrated that QW12 binds to the STAT3 recombination protein with a KD value of 67.3 μM. Furthermore, molecular docking investigation showed that QW12 specifically occupies the pY+1 and pY-X subpocket of the SH2 domain, thus blocking the whole transmission signaling process. In general, these findings indicated that the study of new quinoxaline–aryfuran derivatives as inhibitors of STAT3 may lead to new therapeutic medical applications for cancer in the future.
Collapse
|
47
|
Kobayashi K, Kogen H, Tamura O. Total Synthesis of Phaeosphaerides with STAT3 Inhibitory Activity. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenichi Kobayashi
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido
| | - Hiroshi Kogen
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University
| | | |
Collapse
|
48
|
Zandi M, Moghaddam VA, Salehi Z, Mashayekhi F, Dalili S. The Impact of STAT3 rs1053005 Variation on Type 1 Diabetes Mellitus Susceptibility: Association Study and in Silico Analysis. Immunol Invest 2022; 51:1908-1919. [PMID: 35762640 DOI: 10.1080/08820139.2022.2079419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS Type 1 diabetes (T1DM) is an autoimmune disorder with multiple genetic and environmental risk factors that are still poorly understood. The signal transducer and activator of transcription (STAT) proteins play a pivotal role in immune-cell genesis and regulation. This study aimed to determine the effect of rs1053005 single nucleotide polymorphism (SNP) in 3'-UTR of STAT3 mRNA on the susceptibility to T1DM in an Iranian population. METHODS PCR-RFLP was conducted on 250 T1DM patients and 250 control cases to assess STAT3 rs1053005 polymorphism. Moreover, several bioinformatics tools were employed to identify the candidate miRNAs targeting the STAT3 mRNA region under study as well as the effect of rs1053005 on their binding site. RESULTS Significant variations in the distribution of genotypes and alleles were seen between cases and controls. The comparison results of the frequency of AA, AG, and GG genotypes between T1DM patients and control groups were 49.2% versus 64.8%, 39.2 versus 30%, and 11.6 versus 5.2%, respectively. Individuals who carried GG genotype were at 2.93-fold increased risk of developing T1DM and the G allele was associated with 1.79-fold higher T1DM risk. Bioinformatics analysis demonstrated that due to rs1053005, the interaction of 3 miRNAs were broken, 3 were weakened, 2 were reinforced, and 4 binding sites were created. CONCLUSION The result of this study indicates an association between STAT3 rs1053005 and T1DM susceptibility which may be due to interference of the SNP with native-binding site of some predicted miRNAs.
Collapse
Affiliation(s)
- Maryam Zandi
- Department of Biology, University Campus2, University of Guilan, Rasht, Iran
| | | | - Zivar Salehi
- Department of Biology, Faculty of sciences, University of Guilan, Rasht, Iran
| | - Farhad Mashayekhi
- Department of Biology, Faculty of sciences, University of Guilan, Rasht, Iran
| | - Setila Dalili
- Pediatric Diseases Research Center, Guilan University of medical sciences, Rasht, Iran
| |
Collapse
|
49
|
Fang S, Ju D, Lin Y, Chen W. The role of interleukin-22 in lung health and its therapeutic potential for COVID-19. Front Immunol 2022; 13:951107. [PMID: 35967401 PMCID: PMC9364265 DOI: 10.3389/fimmu.2022.951107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Although numerous clinical trials have been implemented, an absolutely effective treatment against coronavirus disease 2019 (COVID-19) is still elusive. Interleukin-22 (IL-22) has attracted great interest over recent years, making it one of the best-studied cytokines of the interleukin-10 (IL-10) family. Unlike most interleukins, the major impact of IL-22 is exclusively on fibroblasts and epithelial cells due to the restricted expression of receptor. Numerous studies have suggested that IL-22 plays a crucial role in anti-viral infections through significantly ameliorating the immune cell-mediated inflammatory responses, and reducing tissue injury as well as further promoting epithelial repair and regeneration. Herein, we pay special attention to the role of IL-22 in the lungs. We summarize the latest progress in our understanding of IL-22 in lung health and disease and further discuss maneuvering this cytokine as potential immunotherapeutic strategy for the effective manage of COVID-19.
Collapse
Affiliation(s)
- Si Fang
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yong Lin
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Chen
- Multiscale Research Institute of Complex Systems & Jingan District Central Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
50
|
Sarcognato S, Sacchi D, Fabris L, Zanus G, Gringeri E, Niero M, Gallina G, Guido M. Ferroptosis in Intrahepatic Cholangiocarcinoma: IDH1105GGT Single Nucleotide Polymorphism Is Associated With Its Activation and Better Prognosis. Front Med (Lausanne) 2022; 9:886229. [PMID: 35872783 PMCID: PMC9304620 DOI: 10.3389/fmed.2022.886229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Intrahepatic cholangiocarcinoma (ICC) has a dismal prognosis and often demonstrates an anti-apoptotic landscape, which is a key step to chemotherapy resistance. Isocitrate dehydrogenase 1 or 2 (IDH1-2)-mutated ICCs have been described and associated with better prognosis. Ferroptosis is a regulated iron-mediated cell death induced by glutathione peroxidase 4 (GPX4) inhibition, and may be triggered pharmacologically. GPX4 is overexpressed in aggressive cancers, while its expression is inhibited by IDH1R132C mutation in cell lines. We investigated tissue expression of ferroptosis activation markers in ICC and its correlation with clinical-pathological features and IDH1-2 status. Materials and Methods We enrolled 112 patients who underwent hepatic resection or diagnostic liver biopsy for ICC. Immunostaining for transferrin-receptor 1 and GPX4, and Pearls’ stain for iron deposits were performed to evaluate ferroptosis activation. Immunostaining for STAT3 was performed to study pro-inflammatory and anti-apoptotic landscape. Main IDH1-2 mutations were investigated in 90 cases by real-time polymerase chain reaction. Results GPX4 overexpression was seen in 79.5% of cases and related to poor histological prognostic factors (grading and perineural and vascular invasion; p < 0.005 for all) and worse prognosis (OS p = 0.03; DFS p = 0.01). STAT3 was expressed in 95.5% of cases, confirming the inflammation-related anti-apoptotic milieu in ICC, and directly related to GPX4 expression (p < 0.0001). A high STAT3 expression correlated to a worse prognosis (OS p = 0.02; DFS p = 0.001). Nearly 12% of cases showed IDH1105GGT single nucleotide polymorphism, which was never described in ICC up to now, and was related to lower tumor grade (p < 0.0001), longer overall survival (p = 0.04), and lower GPX4 levels (p = 0.001). Conclusion Our study demonstrates for the first time that in most inflammatory ICCs ferroptosis is not active, and its triggering is related to IDH1-2 status. This supports the possible therapeutic role of ferroptosis-inducer drugs in ICC patients, especially in drug-resistant cases.
Collapse
Affiliation(s)
- Samantha Sarcognato
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- *Correspondence: Samantha Sarcognato,
| | - Diana Sacchi
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Luca Fabris
- Department of Molecular Medicine – DMM, University of Padova, Padova, Italy
| | - Giacomo Zanus
- 4th Surgery Unit, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Surgery, Oncology and Gastroenterology – DISCOG, University of Padova, Padova, Italy
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology – DISCOG, University of Padova, Padova, Italy
| | - Monia Niero
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Giovanna Gallina
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| |
Collapse
|